Future Generation Computer Systems 95 (2019) 649-666

: : : : =
Contents lists available at ScienceDirect
FIGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs TS

MCS-Chain: Decentralized and trustworthy mobile crowdsourcing N

Check for

based on blockchain
Wei Feng *P<, Zheng Yan *<*

2 State Key Laboratory of ISN, School of Cyber Engineering, Xidian University, Xi’an, China
b Key Lab of Information Network Security, Ministry of Public Security, Shanghai, China
¢ Department of Communications and Networking, Aalto University, Espoo, Finland

HIGHLIGHTS

MCS-Chain is a novel blockchain-based mobile crowdsourcing system.

A consensus mechanism is designed for new block generation to avoid forks.
A trust evaluation mechanism is applied for worker selection.

MCS-Chain is secure w.r.t. liveness, decentralization, and fault tolerance.
MCS-Chain is effective and efficient compared with Bitcoin and Ethereum.

ARTICLE INFO ABSTRACT

Article history: Mobile Crowdsourcing (MCS) is an effective and novel method of data collection and processing. Current
Received 30 October 2018 MCS generally adopts a centralized architecture by depending on an assumed trusted party. This design
Received in revised form 30 December 2018 easily suffers from single-point failure and cannot be realized in practice since a trusted service provider
:\C/;?glflg éid:‘é”;gé?uﬁy 2019 does not really exist. More dangerously, the centralized party may perform dishonestly and thus harms

the benefit and privacy of MCS users. To tackle these problems, we propose a novel blockchain-based

Keywords: MCS system, named MCS-Chain, to realize fully distributed and decentralized trust management in
Blockchain MCS. Aiming at improving the poor efficiency of traditional blockchain technology, we propose a novel
Mobile Crowdsourcing (MCS) consensus mechanism for block generation, which greatly reduces computational overhead. The proposed
Trust MCS-Chain system also solves the fork issue and centralization problem suffered by most existing
Decentralization blockchain-based systems. Serious security analysis and experimental evaluation further illustrate the

security and efficiency of our system.
© 2019 Elsevier B.V. All rights reserved.

1. Introduction A typical MCS system is composed of three types of entities:
end user, worker, and service provider. End users issue tasks to a
Smart devices, like smart phones and wearable devices, are service provider, which will publish the tasks to recruit workers
widely equipped. As a result, mobile crowdsourcing (MCS) has for completion. The service provider acts as an MCS platform to
emerged as an effective method for data collection and process- recejve and publish MCS tasks to the workers that accept the
ing [1]. It leverages existing mobile devices as sensors to collect 3cks perform the tasks, and return the results of task execution
various data about temperature, weather, crowd density, voice/ t the MCS service provider. Generally, the MCS service provider is
dolinage, e MCS e o T some s hat emain - 0% S R L
plications basgd on MCS areydeveloped in vari%)Lis fields sllllc'h I;s coll.eFtion, data processipg, and evaluating trust O.f other system
. - . ’ . entities. It returns the final result of task execution to the end

smart transportation [2,3], public safety [4], environmental moni- l .
user. MCS owns several advantages over traditional wireless sensor

toring [5], and infrastructure monitoring. We can find many MCS ; . o o
based applications have been in use in industry, examples are networking (WSN) in terms of availability and flexibility because

Waze [6], Moovit [6], Weathermob [7], Minutely [7], WeatherSig- it leverages mobile devices as sensors and thus is free from high
nal [8], OpenSignal [8], etc. sensor deployment expense.

Despite the advantage of MCS, it still confronts a number of

* Corresponding author at: State Key Laboratory of ISN, School of Cyber Engi- challenges related t(,) Secu“tY and privacy. A traditional MCS s.ys—

neering, Xidian University, Xi'an, China. tem adopts a centralized architecture and assumes that there exists

E-mail addresses: zyan@xidian.edu.cn, zheng.yan@aalto.fi (Z. Yan). a trustworthy and centralized service provider. This design leads to

https://doi.org/10.1016/j.future.2019.01.036
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.01.036
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.01.036&domain=pdf
mailto:zyan@xidian.edu.cn
mailto:zheng.yan@aalto.fi
https://doi.org/10.1016/j.future.2019.01.036

650 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

several shortcomings. First, it is easy to suffer from single point of
failure because the system relies on the security and trust of the
centralized service provider. Once it is intruded and broken, the
whole system will crash. Second, potential privacy leakage is high.
The service provider normally keeps sensitive information of both
end users and workers, e.g., identities, task information, location
information, etc. The compromise of the service provider will lead
to privacy disclosure. Since the service provider may be curious
about the privacy of both end users and workers, it may not follow
the pre-defined protocols in order to gain more benefits, hence
harm the privacy and profits of both end users and workers. It may
also analyze its available information to infer additional privacy of
end users and workers.

There have been many works to deal with security, privacy,
and trust issues in MCS. Homomorphic encryption and pseudonym
mechanism have been widely leveraged to solve data privacy and
identity privacy problems, respectively [9,10]. Homomorphic en-
cryption enables data processing with privacy preservation. Some
schemes employ differential privacy to preserve location privacy
of MCS workers [11]. To address false data uploading attack by
workers, several solutions were proposed. Prandi et al. proposed
to evaluate data trustworthiness by comparing the collected data
with a gold data set in which the data is authorized and cor-
rect [12]; Zhang et al. employs K-means to find the truth from
unreliable data and resist the negative impact caused by false
data [13]. Other schemes aim at resisting the dishonest behaviors
of the MCS service provider. For example, some incentive schemes
provide a verification mechanism for workers to verify whether the
MCS service provider performs according to a predefined protocol.
Nevertheless, the aforementioned methods still adopt a central-
ized MCS architecture. They usually fail to resist dishonest behav-
iors of the centralized service provider. Neither can they solve the
single-point failure. Although some schemes embed a verification
mechanism into an incentive mechanism so that workers and
end users can verify the correctness of the payment calculated
by the service provider, they cannot guarantee the trust of other
procedures in MCS. We can see that the traditional MCS system
design based on centralized trust is not proper and impractical.
MCS is a distributed system. Decentralized trust management is
highly expected in MCS.

Blockchain, which is the backbone of the Bitcoin system [14],
is a popular technique to support decentralization in distributed
systems. Due to its properties of tamper-proof, transparency and
decentralization support, it is widely paid special attention in
recent years in both industry and academia. In spite of its popu-
larity, the underlying consensus algorithm in Bitcoin suffers from
low-efficiency and high resource consumption. Several improved
consensus algorithms have been developed, such as Proof of Stake
(PoS) [15], Delegated Proof of Stake (DPoS) [16], Bitcoin the next
generation (Bitcoin-NG) [17], etc., but none of them avoid the oc-
currence of chain fork. To be specific, most of them requires waiting
several blocks to check whether current chain is the longest chain,
and thus suffers from high latency and is not efficient at all. Apart
from the fork, most public blockchain faces the problem to ensure
decentralization. A powerful miner or mining pool may control the
blockchain by generating most blocks, and thus harms the trust of
blockchain [18]. Therefore, it is necessary to solve the problems of
fork and centralization issue of blockchain.

For decentralizing trust management in MCS and overcom-
ing the weakness of existing blockchain techniques, we propose
a novel MCS system, named MCS-Chain, by innovating a newly
designed blockchain to realize fully distributed and decentralized
trust management in MCS. Aiming at improving the poor effi-
ciency of traditional blockchain technology, we propose a novel
blockchain that greatly reduces computational overhead. The MCS-
Chain also solves the fork issue and centralization problem suffered

by most existing blockchain-based systems. MCS-Chain is suitable
to be applied into the MCS where there exists no centralized
trustworthy party. Specially, the main contributions of the paper
can be summarized as follows:

o We design MCS-Chain, a novel blockchain-based MCS system,
where the generation of a new block is determined by the
total amount of payment records waiting to be stored in
the next block. We design a new consensus algorithm for
new block confirmation. It guarantees that a unique block
can be determined even if several generated blocks appear
simultaneously.

e Under the condition of no trusted party existing in the system,
we propose a trust evaluation mechanism for MCS-Chain,
with which end users can choose reliable workers.

e We analyze the security and availability of the system. To be
specific, we theoretically prove safety, liveness, decentraliza-
tion, and fault tolerance of the proposed MCS-Chain system,
thus demonstrate the security of MCS-Chain.

e We implement MCS-Chain in both Windows and Android
devices and conduct several experiments based on the im-
plementation in order to evaluate MCS-Chain performance.
Experimental results show the effectiveness and efficiency of
our proposed system.

The remainder of the paper is organized as follows. We give a
brief review on related work in Section 2. In Section 3, we present
problem statement by describing a system and security model with
our research assumptions. The detailed design of the proposed
MCS-Chain system is presented in Section 4, followed by security
analysis and performance evaluation in Section 5. Finally, we con-
clude the paper in the last section.

2. Related work
2.1. Mobile crowdsourcing

Despite the advantages of MCS, it faces several challenges in
security, privacy, and trust. First, data collected by MCS is probably
sensitive to worker privacy. Second, the content of a task could re-
veal the sensitive information of MCS users. Besides, data collected
by MCS workers vary in quality because of imparity in workers’
abilities and trust. Presently, numerous works were proposed to
deal with these issues. Current works mainly concentrate on three
aspects, i.e., incentive mechanism [19,20], trust evaluation [21,22],
and truth discovery [13,23]. Among them, an incentive mechanism
aims at selecting a group of reliable and trustworthy workers
to conduct a task [19,20]; trust evaluation is performed for the
purpose of evaluating the trust of workers [21,22]; truth discov-
ery attempts to find the truth from collected distrusted or noisy
data[13,23]. For example, some researchers built an MCS incentive
mechanism based on game theory. By maximizing social welfare,
these incentive mechanisms guarantee that the workers cannot
get more benefits than behaving honestly if they bid tasks with
false attributes. As a result, they successfully guarantee the trust
of workers; however, they fail to prevent dishonest behaviors of
a centralized service provider. To resist dishonest behaviors of
the service provider, some incentive mechanisms offer a verifi-
cation mechanism, with which workers can verify whether the
centralized service provider follow the incentive mechanism and
honestly calculate the possible payments for the workers. Effective
as they are, the verification process requires the participation of
all workers. Therefore, they are not practical and cannot resist
a collusion attack between service provider and workers. Some
works focus on truth discovery, of which the goal is to process raw
data and exclude the negative impact caused by unreliable or fake
data.

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 651

All the schemes mentioned above adopt a centralized architec-
ture, while a centralized service provider is rational and probably
behaves dishonestly out of their own benefit. Besides, the central-
ized MCS architecture is vulnerable to single point of failure. For
solving these problems, some schemes were developed to alleviate
the negative impact of dishonest behaviors [9,10,12,24-27]. For
example, Zhang et al. [9] designed a secure and dependable in-
centive mechanism, in which the crowds of workers are randomly
divided into two groups with different sizes. The service provider
estimates the unit payment with the smaller group and a limited
budget. After the service provider selects the workers and decides
corresponding payments, all the workers can verify the correctness
of results based on public information. However, it requires the
participation of all the workers in the small groups, and thereby
is not practical. Besides, the verification may fail if the service
provider colludes with some workers. To resist single point of
failure, some workers build MCS database in a distributed way [26].
Data are stored in several cloud databases rather than a single
one. Data owners can decide data access policy by themselves. In
this way, even some of the databases are compromised, attackers
cannot access all the data. However, this existing work only builds
a distributed storage mechanism, which cannot be applied to solve
other issues of MCS, such as truth discovery and incentive mech-
anism. To conclude, how to overcome the security, privacy, and
trust problems of MCS caused by a distrusted centralized service
provider still remains an open issue.

2.2. Blockchain

Blockchain is the backbone technique of Bitcoin [14] and
Ethereum [15] and was first applied to build distributed cryp-
tocurrency and smart contract platforms. It allows all nodes to
verify the correctness of the content in the blockchain and has
such intrinsic advantages as tamper proof, transparency, decen-
tralization support, and consistency. Currently, blockchain has
attracted vast attention in both academia and industry. There are
numerous works to address its applications in various areas, such
as smart contracts, smart transportation [28], supply chain [29,30],
data management [31], trust evaluation [32], etc. Popular as it is,
blockchain still faces many challenges in terms of security, privacy,
efficiency, and scalability. First, it faces a number of security threats
like selfish mining [17], 51% attack, double spending [14], eclipse
attack [33], etc. Second, although blockchain realizes anonymity,
it fails to achieve transaction unlinkability. Besides, it cannot pre-
serve transaction privacy since all transaction information is public
on the chain [34]. Third, most blockchain based systems suffers
from low throughput and high resource consumption [35]. Fur-
thermore, fork exists in most public blockchain designs, which
makes miners have to wait for several blocks to achieve eventual
consistency, which leads to high consistency delay and long trans-
action confirmation time. Even worse, some blockchain systems,
like Bitcoin and Ethereum, face a centralization problem [18] since
block generation could be controlled by a limited small number of
miners.

There are already some attempts to address the above prob-
lems. Heilman et al. leveraged blind signature to enhance trans-
action privacy [36]. Eyal et al. proposed a simple and backwards-
compatible change to the Bitcoin protocol to resist selfish mining.
When a miner finds out competing branches with the same length,
it chooses to mine one of these branches randomly, and propagates
all these branches to other miners [17]. People have also proposed
a number of improved blockchain consensus protocols to reduce
computation resource and achieve better scalability. Eyal et al.
proposed a scalable Bitcoin protocol called Bitcoin-NG. Bitcoin-NG
consists of two types of blocks, i.e., the block for leader election
and the micro block containing ledger entries [16]. For miners, it

is easier to create a micro block than a block for leader election.
This increases block generation frequency and hence transactions
can be recorded in blockchain quickly. In this way, bitcoin-NG
achieves better scalability than Bitcoin. Ethereum leverages Proof-
of-Stake (PoS) instead of Proof-of-Work (PoW) as its underlying
consensus mechanism [15]. In this way, the computation overhead
of Ethereum is greatly reduced. Besides, it adopts the concept of
uncle block to alleviate the impact of fork [15]. Motivated by PoS,
Delegated Proof of Stake (DPoS) was proposed [16]. In DPoS, a
subset of miners is elected as block producers to validate the chain
of blocks. DPoS divides time into a series of time slots, and a block
producer is responsible for block generation for an assigned block.
As aresult, DPoS is able to generate new blocks with high efficiency
and can achieve much better throughput. Nevertheless, this design
sacrifices the property of decentralization. In summary, due to the
current drawbacks of blockchain, this technique cannot be directly
applied into MCS to realize decentralized trust management.

The development of blockchain motivates researchers to ex-
plore the application of blockchain in MCS. Thus far, there are
already some works concerning blockchain based or assisted MCS
systems. Some researchers directly apply blockchain into MCS to
build a secure MCS system [28,37-43]. For example, Yuan and
Wang proposed a blockchain based intelligent transportation sys-
tem for transportation information collection [28]; Li et al. de-
signed a blockchain based decentralized framework for crowd-
sourcing called CrowdBC, which utilizes smart contract to man-
age MCS task execution [37,42]. Similarly, Wang et al. employs
blockchain in crowdsourced energy systems [38]; Pinto et al. em-
ploys blockchain to build a decentralized public key infrastructure
(PKI) for crowdsourced Internet of Things (IoT) [39]; in [41], a
blockchain based system for real-estate crowdsourcing was pro-
posed, where blockchain works as a ledger to record agreements
so that they cannot be modified; Hu et al. leverages blockchain to
build a reputation based decentralized knowledge sharing system,
and employs a trusted storage server to reduce the burden of
miners [43]. These schemes can effectively overcome the negative
effect of a dishonest centralized service provider. Nonetheless,
they all use existing blockchain schemes. As a result, they inherit
the shortcomings of existing blockchain techniques and cannot
overcome their weakness, such as fork, poor scalability, etc.

To tackle these problems, some people improved the blockchain
to adjust it to MCS scenarios. For example, Bhatia et al. proposed a
decentralized MCS based on Ethereum [44]. When posting a trans-
action in blockchain, the poster is required to mine the blockchain.
In this way, it can provide more miners to working on maintaining
the blockchain when there are amounts of transactions. Although
the increase of miner number helps reduce the cost of transaction
verification, it is not the only reason that constrains the throughput
of blockchain. Besides, it still cannot solve the fork issue and
centralization in Ethereum. Fujihara proposed a blockchain in-
centivized transportation information gathering system [45]. In
this scheme, traffic information is recorded in blockchain, and
blockchain based cryptocurrency is employed to incentivize cars
to upload traffic information. To achieve satisfactory performance,
an area is divided into many segments, and each of them maintains
a blockchain. When an accident happens, the blockchain in this
segment is forked into two separate blockchains because the road
becomes impassable. Considering this, the scheme takes advantage
of blockchain fork to detect road accident, which is very novel and
effective. Nonetheless, its application is limited to some certain
crowdsourcing scenarios. In real world, when an end user submits
a task to blockchain, it is not practical for the user to request
several miners for information in different blockchains. Besides,
different from transportation, most MCS scenarios are dynamic
and lack fix infrastructure as roadside unit (RSU), and thus by
dividing an area into several segments and maintaining several

652 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

blockchains is not suitable for common MCS tasks. In [46], Zou et al.
builds a blockchain based MCS system, which applies a consensus
mechanism improved with trust to enhance scalability. The system
adopts a hybrid architecture, where several stakeholders compose
a permissioned consortium blockchain for accountability. In spite
its improvements on crowdsourcing accountability, it sacrifices
decentralization to some extend. The scheme cannot totally elim-
inate the risk of single point of failure. Buccafurri et al. proposed
an alternative to blockchain called Tweetchain based on social
networking to realize decentralized MCS [47]. It takes public posts
transmitted through social networks to build a meshed chain. The
main idea of Tweetchain is leveraging existing social networks
(for example, Twitter) to publish transactions. Each transaction
consists of a signature and a hash value from a hash chain, thus
the service provider of social network cannot forge, delete, or alter
transactions. Tweetchain has better scalability than blockchain
since it employs centralized service providers of social networks
to publish transactions. However, it faces single point of failure
since it introduces a centralized entity. If the centralized entity is
compromised or maliciously deny the publication of transactions,
the availability of Tweetchain will be destroyed. To conclude our
related work review, how to reform blockchain design to make it
effective for MCS is still an open issue.

3. Problem statement

In this section, we introduce M(CS-Chain system model and
security model, as well as our research assumptions and design
goals. For easy presentation, we also describe the notations used
in this paper at the end of this section.

3.1. System model

Fig. 1 illustrates the system model of MCS-Chain. MCS-Chain
contains a number of nodes (including various mobile devices)
connected with each other through various networks like cellular
networks, mobile ad-hoc networks, Wi-Fi, Bluetooth, and so on.
MCS nodes can be classified into three types: end user, worker,
and miner, and each node can act as either an end user, a worker,
or a miner. Among them, the miners cooperatively maintain and
manage the blockchain of MCS-Chain innovated for mobile crowd-
sourcing. The blockchain works as an MCS platform, records MCS
procedures, and evaluates trust of all system entities. In MCS-
Chain, each miner keeps a copy of the blockchain and can access
the data stored off the blockchain. An end user can be an individual
or organization that lacks the ability to perform a certain task,
e.g., data collection and processing. It requests task fulfillment by
offering proper payment to task executors. Besides, it also provides
a certain amount of service fee to the miners to motivate them to
honestly record and verify the related information of task execu-
tion. MCS workers are the nodes that participate in crowdsourcing
and perform the assigned tasks based on agreement. There are
mainly three kinds of workers, i.e., sensing workers, computing
workers, and storage workers. The difference between them lies in
the different tasks they conduct. To be specific, the sensing workers
leverage mobile devices as sensors to collect environmental data,
like images, voice, temperature, etc., or collect opinions or personal
data from device holders; the computing workers perform com-
puting tasks and submit computing results to the end user. The
storage workers offer data storage services with secure data access
control.

Each node contains a number of basic functional modules as
shown in Fig. 2 and as described below. An MCS-Chain App is
deployed to perform the basic functions of MCS, e.g., task request,
task bidding, task assignment, payment, and performance feed-
back. Blockchain Ul displays the contents of MCS-Chain blockchain.

Blockchain based

MCS
7 T Miner Miner
0. v ,,'; A e i IJ S
% / N / 0 { Worker
~ I\ N B oo R
& / Worker ﬁ & & % L : /ﬁ,;;w
HadUser N Worker \,J\
4 End User ‘
7
%End User
Fig. 1. MCS-Chain system model.
Node i
i \ Node 2
Blockchain Ull«—s| Blockchain y
Manager -
Node 1
/,_J \ Node 3
A Y mcs
Task L)
Trusted Local|, Ma:: or Platform
Database & Node /
Node 4
Node N
Node Ky
l—> MCS A
Manager PP ;

Fig. 2. MCS node structure.

Blockchain Manager is responsible for performing the tasks that
should be done by a miner, e.g., block generation and verification,
a personal node key pair generation, hashing data, checking data
integrity, and signing/verifying signatures. Task Manager is applied
to fulfill tasks being assigned and agreed. All information related to
the above functional modules is stored at Trusted Local Database,
e.g., latest blockchain if need to keep a copy locally, local data of
MCS, public/private key pair, etc. Note that local credentials can be
saved in a more secure place, other than Trusted Local Database.

3.2. Security model and research assumptions

3.2.1. Security model

Most current MCS systems are based on a centralized architec-
ture, which consists of a trusted centralized service provider. As
aforementioned, the centralized service provider is rational and
may not always behave honestly, which leads to several security
problems, such as false worker selection and selfish payment cal-
culation, inaccurate data processing result, and privacy disclosure.
Besides, it is also vulnerable to single point failure. MCS-Chain is
a fully distributed system based on blockchain. There is no any
centralized and trusted party to depend on. Instead, all nodes, in-
cluding miners, workers, and users, are rational and profit-driven.
They cannot be fully trusted. Moreover, the nodes in MCS-Chain
do not trust with each other, and all the nodes behave rationally

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 653

and make decisions based on the information recorded in the
blockchain, which is publicly proved and verified.

3.2.2. Research assumptions

We hold the following assumptions in the design of MCS-Chain
with justification based on the above system model and security
model, as well as previous work.

1. The system comprises no any centralized party responsible
for identity and key management, trust management, or serving as
a centralized MCS service provider.

2. We assume that each node can obtain a synchronized time
stamp. This can be achieved with public GPS signals or based
on a public time blockchain [48,49]. Besides, MCS nodes cannot
forge time stamp. This assumption is reasonable since all messages
transmitted through MCS are monitored by its neighbors and net-
work infrastructures like base stations.

3. All nodes generate and store their public/private key pairsin a
secure way. We also assume that the Trusted Local Database is well
protected and safe, e.g., based on trusted computing technologies.
Non-authorized parties cannot access it.

4. In case the limitation of local storage, some contents of
the blockchain can be stored in another place, e.g., cloud with
essential protection like encryption if needed. While a link and a
key directing to the remotely stored contents are kept locally in a
secure way.

5. Since communication security is not the focus of this paper,
we assume that MCS nodes can communicate with each other
through a secure communication channel.

3.3. MCS-Chain design goals

MCS-Chain aims to employ blockchain to build a decentralized
and trustworthy MCS, where no entity is fully trusted. Nonetheless,
as aforementioned, existing blockchain designs confront a series
of problems in terms of security and availability. First, most ex-
isting blockchain designs face centralization problems. Second, it
takes longer time to record a transaction in blockchain because
of temporary forks in most blockchain designs, which also causes
some security issues. Third, the computation overhead of some
consensus mechanisms, like PoW, is extremely high, which leads
to low efficiency. Fourth, long transaction confirmation time and
high computation overhead limit the maximum of throughput of
blockchain. Current solutions cannot solve all these problems. The
main goal of MCS-Chain is to solve or improve the above problems
in order to build a decentralized and trustworthy MCS system with
high availability.

1. MCS-Chain aims at solving centralization problem in
blockchain to improve its security. As a result, the blockchain
cannot be controlled by a centralized party. Besides, MCS-
Chain also tries to solve the temporary fork issue. To be
specific, in each epoch, a unique block can be generated
without waiting to check which branch is the longest.

2. To improve the availability of blockchain, MCS-Chain tries
to avoid time-consuming mining happened in PoW and
explores a more efficient consensus mechanism to achieve
faster block generation. Besides, MCS-Chain also aims at
reducing transaction confirmation time by solving tempo-
rary fork issue and reduce block generation time. Another
goal of MCS-Chain is to improve maximum throughput of
blockchain to support many MCS tasks.

3. MCS-Chain intends to provide accurate trust evaluation,
which can offer MCS participants instruction on the trust
levels of other participants, thus support trustworthy mobile
crowdsourcing.

Table 1
Notations and descriptions.
Notations Descriptions
N; The node i
PK;, SK; The public and private key of node i
SIG (m, SK) The signing algorithm working on data m with private key SK.
H(-) The hash function
Ty The time stamp of block k
By The block k
Bip, The ID of block k
TVikr The trust value of node i in block k with role r, r can be end
user (u), worker (w), or miner (m)
TEiojr id The feedback from node i on node j for its role r w.r.t. task id
CBy The content of By
TR; The task request of N;
STRs i The sub-task s of TR;
Dessip, ; The task description of STR; ;
ReqSTRgii The task requirements of STR; ;

IDrg, The unique identifier of TR;

DRy ; The unique identifier of STR; ;

TBstg ; The bidding on sub-task STR, ; from N;

TAstr, ; The assignment on sub-task STR; ; on N;

TCorr, ;; The assignment confirmation on sub-task STR; ; from N;

BPrg, The bidding period of TR;

FD(r, id, PK;) The feedback on node N; regarding role r and task id

KEYstR,; The key that is applied to protect the result of STR; ;

ADRgsrg, ; The storage address that is applied to store the result of STR; ;;
it can be a storage node

WPaysry, ;; The payment confirmation message of STR; ; from N; including
actual payment for worker N;

ENC(m,DEK) The data encryption function that uses DEK to encrypt m

ETsrg, ; The execution time of STR; ;

8 The percentage of blockchain management service fee

QUAG1R, ; The quality requirement of STR; ;

PAY The threshold sum of payment that triggers new block
generation

TERstr The task execution message containing the execution result of
STRy

R(IDg;) The record of TR; and its execution

Paysrr,; The payment budget of user N; for subtask STR ;

Pay’mi y The expected payment amount from worker j for subtask s

. generated by user N;
Pay/s’mﬁ_]_] The actual payment paid by user N; to worker N; for its
' contribution in subtask s
Dy i j The execution result generated by worker Nj, for subtask

STRs ;

3.4. Notations and definitions

For easy presentation, Table 1 summarizes all the notations
used in the MCS-Chain design. For some important notations, we
give detailed definitions as below:

1. TR; is the task request of N; and is composed of several
sub-tasks. Each sub-task consists of following parts: subtask
id IDsrg, ;, the description of the sub-task Desgsr ;, the re-
quireménts the workers should satisfy Reqsrg the payment
budget Paysr ;, N;i's public key PK;, and bidding period of
TRj. To be speéific, TR, = {IDSTRS.,» DESSTRS,', ReqSTRS_i, Paysms i
PK;, BPr), s =1, S; ' '

2. IDgg, is the identifier of the task, which is generated by
calculating the hash code of the task request, namely IDrz, =
H(TR;)

3. IDgrg,; is the identifier of the subtask, and is generated by
calculating the hash code of the subtask description, subtask
requirements, and its payment budget, namely, IDsrz, =
H(Dessrr, ;» Reqstr, ;» Paystr, ;)

4, Reqsms.i = (Certs,,;j, KEYSTRS,,-a QUASTRSJ-’ ADRSTRS,,-a ETSTRSJ) is
the subtask requirement, which indicates the expected cer-
tificates of the workers for fulfilling the task, the encryption
key used to protect task data, the quality requirement of

654 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

task execution and the location to upload/store the task
execution result, as well execution time deadline.

5. TBstg,; = [(IDSTRSJ., Certs; j, Pay/STRSJ.j> } is node Nj’s bidding

on subtask IDsrg, ;, which includes required certificate Cert;
and a bidding price Pay’STRsij. The bidding is signed by N;’s

private key as SIG (H (TBsrg ;) SK;):

6. TAstr,; = | (IDstry;j PVsrg, } ,s = 1,...,S is the task
assignment result;
7. TCstx,;; = SIG (H (TAst, ;) » SKj) .5 = 1,...S, is task

confirmation generated by selected worker Nj;

8. TERstx,;; = {IDstw,, E (Ds.ij, Keystr, ;) , ADRstx, ;) is the task
execution reply for STR; ; from N; to N;, where Dy ; ; is the task
execution result of N; for subtask STK; ;.

9. WPaysr, ,; = SIG((PayQTRSJJ, PK;), SK;). SIG((8%Paygpe, .), SKi)
is the payment confirmation message including the actual
payment of STR; ; from N;to N; considering trust values;

TR;, SIG(H (TR)) , SK;)
TAstr, ;;» SIG(H (TAst, ;) » SKi)
TCorr, ;;
TERstg, ;;» SIG(H(TERstR, ;;), SK;)
WPaysrg ;;
TExsy.r.id» SIG(H (TEx—y.r.id, IDSTRSJ) . SKy)

10. R(IDgg,) =

where TEy_y rid, SIG(H (TEy—y.r.ia. IDstx, ;) » SKx) is node x’s feed-
back on node y with regard to role r played by y and task IDgsrg_,.
R(ID1g,) is a record in the blockchain, and each record is attached
with a signature by its issuer. The complete content of R(IDrg,) can
be saved off the blockchain, while the hash value of R(IDg,) can be
saved in the blockchain.

4. MCS-Chain design

This section provides the details of MCS-Design. We first
overview the whole system design and introduce the structure
of MCS-Chain block. Then, we describe the task management
procedure in the MCS-Chain and design its trust evaluation algo-
rithm. Finally, we specify the consensus mechanism and incentive
mechanism of MCS-Chain.

4.1. System overview

We establish a fully distributed MCS architecture based on
the proposed MCS-Chain. MCS-Chain achieves security, trust, and
efficiency with economic computing resource consumption. It en-
ables miners to record messages and to generate blocks efficiently,
which reduces processing latency and improves system through-
put. We design a novel consensus mechanism for MCS-Chain,
which avoids time-consuming computation to generate a new
block. In MCS-Chain, a miner creates a new block when the accu-
mulated payment amount waiting to be recorded in the next block
exceeds a pre-defined threshold. Therefore, it greatly reduces the
computation overhead. To avoid forks that occur in most current
blockchain systems, we design a block selection algorithm that
enables the miners to uniquely determine which block should
be chosen and confirmed when they receive multiple newly an-
nounced blocks. Based on the proposed MCS-Chain, we build a fully
distributed MCS system.

The blockchain applied in the MCS-Chain records all the task
related information as well as trust information of nodes. The data
stored by the miners can be categorized into two types: online
data and offline data. Online data are stored in the blockchain.

When generating a new block, the content of the data is recorded
in the blockchain. Differently, for offline data, the miners only
record the hash codes of them in the blockchain. In this way, the
miners can remove the outdated data in time to reduce memory
space occupation. Once data are recorded in the blockchain, it
means that most miners have verified the validity of the data.
Once a block is accepted by most of miners and satisfied with
the consensus mechanism, we call the block is validated and the
information recorded in this block is activated as well. Similarly,
if a task execution result is recorded in the blockchain, this means
that the correctness and validity of the execution result has been
verified and confirmed. The information in the blockchain instructs
its maintenance and the execution of MCS tasks. For example,
the end user can refer to the trust information of nodes in the
blockchain to select trustworthy workers.

MCS-Chain mainly implements four functions, namely,
blockchain management, task management, trust evaluation, and
incentive mechanism. Among them, the blockchain of MCS-Chain
acts as a distributed database recording key information regarding
task execution and management, trust evaluation and manage-
ment, and incentive mechanism. The task management includes
task request, bid collection, task assignment and confirmation, and
task execution (including data collection, data storage, and data
processing). Task management stores collected data and process-
ing results in a distributed way by recruiting storage nodes, and
keeps the digest of task execution in the blockchain. Besides, all
the data about task request, task bid, task assignment, and task
confirmation are stored in the blockchain as offline data. The trust
of miners, workers, and end users are evaluated by the miners. The
results of evaluation are stored in the blockchain. The incentive
mechanism includes the incentive to miners and the incentive to
workers. It decides the amount of payments that the miners and
the workers can obtain based on their behaviors and performances
in task fulfillment and their trust. As a result, it motivates mobile
users to act as either workers or miners and encourages their
honest behaviors.

4.2. Block structure

The structure of block k is designed and shown in Fig. 3. It con-
tains its previous block’s ID, Bip,_,, which is the hash value of the
content CBy_; of block k — 1, i.e., Bjp, = H(CBy_1); the time stamp
of block k’s generation Tj; the ID of block creator IDy,; a series of
records that record a number of MCS tasks’ execution. Each task
record contains the data about task request, task assignment, task
assignment confirmation, task execution results, and task payment
(the payments to both the miners and the workers), as well as the
feedback related to the task. What is also recorded in the block is a
trust value list that records the trust value of all nodes in different
roles with newly updates in this block. The part of feedback can be
empty for some nodes in terms of some roles in case that there are
no MCS interactions happening with the roles after the generation
of previous block and before the new block is generated.

4.3. Task management

MCS-Chain has no centralized service provider responsible for
worker selection, data collection, and trust evaluation. Instead,
task management is performed in a fully distributed way with
the assistance of the blockchain. First, an end user sends a task
request with signature to a miner. The miner that receives the
request will verify the validity of signature and then broadcast it
in the network of MCS-Chain. In MCS-Chain, we call a message
is validated if and only if it has been recorded in a created block
and the block is accepted by the miners. If the task request is
validated, all the workers can submit bidding messages to provide

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 655

BIDk—l Tk IDN

X

TaskRecords = {H(R(IDgg))}

Payments
= {(SIG(H{SIG((* PaySTRS’iJ,),SK,-)}, 6

+2!]fs s Pay;mw), (SIG((Pay;TRS‘U, PK),SK))}
G=1,..5i=1,..,Ls=1,..,5)

TrustValueList = {(TV;;, 1, PK;},
J=1,..

J,r=wuorm

Fig. 3. Block structure.

their attributes and expected payment within an expiry period
to a miner in order to apply for the task. With several rounds of
bargain, the end user and the worker reach an agreement on the
payment, and the decision will be recorded in the blockchain. After
the agreement is validated, the workers begin to perform the con-
firmed tasks. Typically, sensing workers sense data, upload data to
the indicated storage workers. The data should be protected with
encryption. Our scheme supports various encryption algorithms,
such as symmetric encryption, asymmetric encryption, attribute-
based encryption (ABE), homomorphic encryption, homomorphic
re-encryption, etc., based on the requirements of the end users.
Computing workers can access the data and perform requested
operations. Finally, the computing workers transfer processing
results to the end users in a secure way. After the task is com-
pleted, all the participants involved in the task generate feedback
on others based on their behaviors. The miners further aggregate
the feedback and evaluate the trust of them. The miners also
decide the final payment to themselves and the workers in this
step. Concretely, the detailed procedure is illustrated in Fig. 4 and
presented as below.

Step 1. End user i announces its task request TR; by sending
TR; with SIG(H (TR;), SK;) and PK; in the MCS network.
The announced task contains a number of subtasks STRy ;
s=1,... ... ,S) with detailed subtask description
Desgrg, ;; the subtask requirement Reqsrg, ; that indicates
the expected certificates of the workers for fulfilling the
task, the encryption key used to protect task data KEYsrg_;
and the location to upload/store the task execution result,
quality requirements QUASTRS .» subtask execution time
deadline ETsrg ;, and the minimum payment for subtask
fulfillment Paysms ;- Note that the certificates can be stored
in some existing blockchains and verified in a transparent
and open measure. The miners verify the validity of task
request and announce validation result in the MCS net-
work.

Step 2: Workers bid the task or the subtasks TBsrg,
Certs ; j, PaySTR

= {IDstg, ;.
} by providing required certlflcate Certs i j

and indicating a bidding price PaySTR . The decision of
worker selection is made by the end user by considering
the bidding price and worker trust.

Step 3: End useri verifies SIG(H (TBSTRS.,-J) , SK;) and checks Cert; ; ;.
It decides task or subtask workers based on trust values of
workers TV x » in the role of worker and their bidding price
Pay/sms_iyj-

Step 4: End user i announces its task assignment TASTRSJ.J with
SIG(H (TAst, ;;) » SKi). The miners verify the validity of task
assignment and announce validation result in the MCS
network.

Step 5: The workers provide their confirmation on the task assign-
ment TCsrRS_iJ- . Note that Step 2-5 could perform several
rounds in order to reach a task contract between the end
user and the workers. Negotiation could be conducted
before real task assignment and confirmation. The miners
verify the validity of task assignment confirmation and
announce validation result in the MCS network.

Step 6: The workers announce task fulfillment before execution
deadline by announcing TERSTRSJ.J. with SIG(H(TERSTRS‘U.),
SK;). The task execution result is stored in the indicated
address ADRgty, ; and protected by indicated keyKEYsrg ;.

Step 7: End user i checks the quality of the work, if the quality can
satisfy QUAgrg, ;, it announces WPaySTRSJ._}., which includes
the actual payment to node j, and also the service fee
for miners that is an specified percentage of Pay/S’TRsij. If

the quality cannot satisfy QUAsrg,;, node i may reject
the payment or request task re-do. The quality can be
proved by the miner group that judges the correctness
of execution behaviors. The miners verify the validity of
task fulfillment and announce validation result in the MCS
network.

Step 8: Feedback is announced by the end user, the miners and
the workers TE,_,, iq With regard to different roles in the
fulfillment of TR; or its subtasks STR; ; ;.

Step 9: The miners collect feedback within an expected and spec-
ified period. When the feedback collection period is ex-
pired, they perform trust evaluation and block generation
in order to confirm task execution and payment.

Note that all related parties in the system (end users, miners and
workers) can feedback with each other after the task is executed
during the feedback period. The feedback is used to evaluate the
trust of different nodes with different roles in order to decide the
priority of block generation.

4.4. Trust evaluation

This subsection presents the way of trust evaluation in MCS-
Chain. In order to overcome attacks in trust evaluation (e.g., unfair
rating attack and bad/good mouthing attack), we apply devia-
tion between personal feedback and average feedback as well as
past trust value to tailor the contribution of individual feedback
TE;,; ria to the trust value calculation for generating a new block.
The trust evaluationon N;j = 1,... ... ,J) is performed by the
miners during the process to create a new block based on the
following formula:

1

|k kl|
(+ 1) *0

_|k=ki]
et B |I<—I<,-|
ij,r.kj ke T,

ij,r,k =

IS
205 Wissjrid * TEisjr id * (1 - dvi,j,r)

|I<—I<,-|
-t

656 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

End User
Node i

Announce TR; with SIG(H(TR;), SK;) and PK;

Worker Miner
Node j

Node / Blockchain

Verify the validity of task
request and announce

Verify SIG, check Cert;,

validation result

Bid IDgrg,, with SIG(H(TBsrg,_), SK;) and PK;

basedon TV, and
bidding Paylsmsyi’j to
decide task executer
when BPrg, is expired

Announce TAgrg, (s =1,..,8)with SIG(H{T Agr,,;}, SK;)

Verify the validity of task
assignment and announce

Confirm task assignment TACgyp

validation result

Verify task assignment

- confirmation and
announce validation result

Announce task fulfillment TERsrg,,, with SIG(H(TERSTRSVU.)

Verify the quality of
task fulfillment

Announce WPays-rRs”

Verify the validity of task
fulfillment and announce
validation result

Provide TE;_,j,, iqWith SIG(H(TE_j,ia, IDSTR;,.‘,,')' SK;)

Provide TE;.;y, i With SIG(H(TE; ;0. IDsrr,), SK;)

Provide TE;_, ig With SIG(H(TE_, i, IDstr,,), SKi)

Provide T}, iq With SIG(H(TE) m i, IDstw,), SK))

When task feedback
period is expired, perform
trust evaluation and new

block generation

Fig. 4. MCS-Chain task management procedures.

1
where dvi,j’r = |TEi—>j,r,id_ TS

, S wisjria * TEijrial is

is Wisjrid 7
the trust evidence deviation, 0 = X/Jwijria(1— dvij,),
Wissjrid = Pay/s/TRm y is the weight calculated based on the volume
of subtask payment. Obviously, the weight of a feedback is related
to the payment of the feedback generator and the accuracy of the
feedback. The main reason for it is that we assume all MCS nodes
are rational. In this way, MCS nodes are motivated to generate
feedback honestly, which will be analyzed in detail in the following
part. In the evaluation, we also consider the effect of the previous
value of trust. Parameter 7 is applied to control time decaying that
makes later trust value to contribute more in the evaluation. k; is
the block number of the latest TV ;;; appeared in the blockchain.
We use (1 — dv;,) to tailor TE;_,;, j¢ in order to overcome the
negative influence on the trust evaluation raised by bad mouthing
attack or malicious/distrusted evidence providing nodes [50,51]. In
the initial block, since there is no previous information about any
nodes, all node trust values are set to zero, and the task record area
is empty. We assume that the trust value is a real number in the
scope of [0, 1], where O represents fully distrusted and 1 stands for
fully trusted.

4.5. Consensus mechanism

For solving the fork problem in the existing consensus mech-
anisms, e.g., PoW, PoS and DPoS, we propose a novel consensus
mechanism in MCS-Chain. PoW is the underlying consensus al-
gorithm of Bitcoin. Although it can achieve eventual consistency,
it suffers from high resource consumption, high latency, and low
throughput. Presently, a number of improved schemes are devel-
oped, like PoS and DPoS. Although these algorithms well overcome
the drawbacks of Bitcoin, they also face the fork problem, the same
as PoW. When fork happens, it takes time to judge which one is the
longest chain. In order to overcome this issue, we propose a novel
consensus algorithm, where a new block is generated when the
accumulated payment amount waiting to be recorded in the next
block exceeds a pre-defined threshold. When finding a new block,
the miner conduct trust evaluation and calculate the payment
to the former block generator in order to fully make use of the

computation resources of the miners. Algorithm 1 illustrates the
details of block generation algorithm.

Note that in SIG(H [SIG ((5 *PaygTRs)ivj) ,sm)] SK,), SK, is

rJ.s

block k’s creator’s private key. § % X Payfs/TRs iy is the total service

1],S

award that should be paid to the creator of block k — 1. Ei{;ijsl's/
Pay’S’TRS y is the total value of payment of all the tasks that should
be recorded in the new block. In case that multiple miners work
out the new block at the same time, we apply Algorithm 2 to select
the winner in order to avoid blockchain forks. First, the node that
generates the block at the earliest time wins. Applying this rule
aims to ensure the efficiency of blockchain generation. But if a
node holds too many awards, we give priority to another miner
in order to ensure decentralization and avoid such a situation that
the blockchain is controlled by few nodes. Second, in case that two
nodes generate the block at the same time, we give the node with
higher trust a higher priority, since the node holding a higher trust
value has more incentive to behave honestly for block generation.
But if the reputable node holds too many awards, we give priority
to another node in order to ensure decentralization and also avoid
such a situation that the blockchain is controlled by few nodes.
Third, in case that two nodes generate the blocks at the same time
and have the same trust values, we give a higher priority to the
node with less awards. This rule aims to avoid the situation that
the blocks are generated by a small number of miners in order to
ensure decentralization. In case tie happens again at this moment,
we let the miner with a bigger (or smaller) public key wins. In
case that multiple miners generate the new block at the same
time, we select a winner by following the similar rules as above.
To guarantee the next block can be decided within a limited time,
the miner will wait for a limited period for more blocks when it
receives a block of the next epoch for the first time and if the
block is verified as valid. The length of the period, represented as
0, is predefined and can be adjusted according to the variation of
the MCS network. Any blocks that are received after the expiry
of the period will be rejected by the miner. In order to ensure
decentralization, one miner should not always win, we limit the
total number of wins for an individual miner in a specific time
period based on the total number of miners (i.e., M), e.g., the total

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 657

Algorithm 1: Block Generation

Input: A set of {R (IDTRl,)} waiting for inserting into the blockchain of MCS-Chain; B, (I = 0, ,k — 1) is the previous

blocks.

Output: Block By, its creator’s public key PK,., and the creator’s signature on CB,.

When a number of tasks have completely executed and their feedback collection periods are expired, and

2I3-1Paysre,,, = PAY,
Do

Verify the correctness of all related signatures as valid in task execution procedure;

Verify the correctness of all payments by checking with the latest trust values based on roles that are used for payment

calculation;
Verify the payment to the creator of block &-1;
Forj=1,..,5;i=1,..,1Do
For r = w,u, or m, respectively Do

Calculate dv; j, based on TE;,; ;4 and Paysrg

Calculate TV; .,

idij’

Package By based on block structure by calculating By, _, , and inserting the payment into the block and issue awards

to block k—1 creator. The award & * EL{V;I{SI'S’Pa SI‘ITRsij and the signature SIG(H{SIG((S *
Paysrg, i].)}, SK;),SK,) are put as the first part of payments.

(Note that Ty is the signing time of B, ’s creator.)

number of wins can be set as <. where ¢ is a parameter to

control winning times. Algorithm 2 ensures that only one winner
of a new block generation can be found, thus no blockchain fork
could happen. In MCS-Chain, any mistake on block creation can be
found and solved.

4.6. Incentive mechanism

Incentive mechanism decides the payment to nodes to en-
courage them to behave honestly and positively. The incentive
mechanism of MCS-Chain is composed of the incentive mechanism
to miners and the incentive mechanism to workers. To be specific,
it determines the amount of payment the miners and the workers
can obtain through participation in MCS tasks and based on their
trust. The node trust is directly decided by node feedback regarding
the execution of MCS tasks. The trust evaluation algorithm can
effectively resist negative impact caused by inaccurate feedback,
which is proved in our previous studies [50,51]. Thus, the node
trust can well reveal the behavior of nodes. Based on the trust, we
deign the incentive mechanism of MCS-Chain. As a result, it is able
to motivate both miners and workers to behave honestly.

4.6.1. Incentive mechanism to workers

Payment is the direct motivation that encourages workers to
accept a task. Obviously, it is effective to associate the payment of
nodes with their trust in order to incent them to behave honestly.
Based on this idea, we design the incentive mechanism to workers.
To be specific, suppose PaygTRs y denotes the actual payment paid

to worker N; for its contribution in subtask s, and Paygp, ,; can be
calculated with the following formula: "

(Paystr, ; + Pay /STRS i.j)
i , — Vi)

where parameter ¢ is a payment control index to adjust the pay-
ment scale impacted by the trust values of the end user and the
worker. The higher trust value the worker has, the more payment
the worker gains; the lower trust value the user has, the more
payment the worker gains. With this way, both the user and the
worker are encouraged to behave honestly in order to increase
their income and reduce their expense, respectively.

Pay/S,TRSV,*_j = * (1 —€ (Tvi,u,k,-

4.6.2. Incentive mechanism to miners
Just like the incentive mechanism in Bitcoin, our incentive
mechanism offers payment to miners that successfully create a
new block. Nevertheless, in our scheme, the reward for block
creation is not cryptocurrency. Instead, MCS-Chain requests the
end user to include the payment to miners in Paysrg, ; ;- The min-
i

ers calculate the sum of § * PaySTRsij by aggregating all the SIG

((8 * Pay’S/TRS ij) , SK;) in WPaySTRs_U message as the reward to the

previous block creator. We should note that § can be dynamically
adjusted based on the trust of the block miner, thatis § = §p *
(14 TVimr — ¥ Zo_; Vi mk,). Where the trust value of miner x
below the average of miner trust value will cause lower service
award and above the average of miner trust value will help gaining
higher award than the offer. In order to motivate the miners to
work honestly and efficiently, we give a more reputable miner
that works out the new block a higher award. We also give the
miner with higher miner trust value the higher priority for block
generation, refer to Algorithm 2.

For encouraging the collaboration of the miners, the awards can
be shared among the miners who contributed to the verification
of each step of the task execution. Information announcement
is valid if more than half of the miners acknowledge that the
announcement is received and verified as valid. Some part of the
award can be shared based on the number of announcement ac-
knowledgments provided by the miners. Thus, even though some
miners cannot be the winner of block creation, they can still benefit
from the participation of the work of MCS.

5. Security analysis and performance evaluation

In this section, we prove the security of MCS-Chain and con-
duct a series of experiments to evaluate its performance. For the
security analysis, we mainly prove four security properties of
MCS-Chain, namely, liveness, safety, fault tolerance, and decen-
tralization assurance [52,53]. For the performance evaluation, we
conduct a number of experiments to test such quality attributes
as block generation frequency, latency of transaction response,
throughput, computational overhead, and trust evaluation accu-
racy, based on concrete MCS-Chain implementation in both Win-
dows and Android platforms.

658 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

Algorithm 2: Block Miner Selection

Input: N; and N;, which announced creating a new block with timestamp Ty, and TN]. and both generated blocks cor-

rectly;
Output: the winner of block generation
Do
Ty, # Ty,
Do

Output the node that creates the valid next block at earlier time as the winner (except that this node has gained

more than a threshold times of awards, in this case, we select the winner as the second earliest miner);

IfTy, = TN].
KTV # TVim,
Do

Output the node with a latest higher miner trust value as the winner (except that this node has gained more

than a threshold times of awards);
Else If TV, ,, = TV,

Output the node with less number of awards;

In case tie again in the above process, the node with a bigger or smaller public key wins.

5.1. Security analysis

In this subsection, we analyzed the security of the proposed
system with four properties, i.e., liveness, safety, fault tolerance,
and decentralization. In a blockchain system, liveness means that
a new block can be always generated. Safety means that there
will not exist a permanent fork among honest miners if they
obey an underlying protocol. Liveness and safety are two basic
security properties of a blockchain system. Among them, liveness
guarantees the availability of blockchain based services. Safety
ensures that the blockchain is trustful. That is, there will not exist
more than one block that are accepted by honest miners at the
same time. As a result, inconsistency among honest miners will
not happen. Another important security property of a blockchain
system is fault tolerance. The blockchain system works in a trust-
less environment. There surely exist dishonest miners that attempt
to harm the security of the blockchain. Fault tolerance indicates
how many dishonest miners can be resisted by the system. The
last property of security is decentralization. As mentioned above,
centralization phenomenon occurs in several existing blockchain
based applications, like Bitcoin and Ethereum. Therefore, although
blockchain claims to provide a perfect decentralized platform, it
still confronts serious centralization problem. In our scheme, we
provide an extra mechanism to ensure decentralization even there
exist a powerful miner. To demonstrate its effectiveness, we prove
the decentralization of our scheme in theory.

5.1.1. Model of analysis

We analyze the security of MCS-Chain based on the following
model. We assume the presence of an adversary that controls a
proportion u € (0, 1) of the whole set of miners, and thus a
proportion of 1 — u behave honestly. Suppose all the miners have
equal data collection abilities. Therefore, the number of miners
controlled by the adversary determines its probability for block
admission. We also take into consideration the impact of network
model on the consistency of blockchain. We adopt the network
model in [54], where the time difference between the time of block
announcement and the time when a node receives the announce-
ment follows an exponential distribution. To be specific, we denote
the time difference as t; j, where i is the block creator and j is the
miner receiving the block creation announcement. Then ¢; j follows
the exponential distribution as below.

P (f,',j = f) = %e_%t

where A is the average time latency for a miner receiving the
block announcement. In Bitcoin, the average time latency is 12.6
s, namely, A = 12.6 s. In our analysis, we assume the average time
required to find a new block is y. In a certain time epoch, if an
honest miner receives a block with time stamp TS; for the next time
epoch, it should first verify the validity of the block. If the block
passes the verification, the miner will stop mining and continue to
listen to receive more blocks for the next epoch until it meets the
expiry time TS;+6, where 6 is the waiting period of receiving newly
generated blocks.

Similar to other blockchain systems, time is divided into a series
of epochs. The creation of the next block indicates the end of the
previous epoch and the start of the next epoch. As a result, each
epoch corresponds to a block. Suppose {Bi}i—01,2,..... Ny, 1S the
created blocks that have been admitted by all the miners, where
Naiocr is the number of blocks that have achieved consistency. Let
Bnyoe+1,iD€ the next block created by miner M; and M; € M, where
M is the set of miners. Suppose TS; is the time stamp that indicates
when the block By, +1,i is created.

5.1.2. Liveness

Definition 1 (Liveness). For any epoch after the blockchain started,
liveness means that at least a new block will be created after a
sufficiently long but bounded period of time.

Theorem 1. Suppose {Bi}i—o,1,2,... Ny, IS the created blocks that
have been accepted by the miners, at least one block By, ,+1 will be
generated by a miner.

Proof. In our design, a miner generates a new block when it
records enough payment confirmation messages, of which the
accumulated payment amount reaches the predefined threshold.
Therefore, as long as MCS-Chain is operating, there will always be
a new task request reaching miners. Suppose there are at least n
payment confirmation messages per unit time, and the average
payment amount for each transaction is «, and the threshold for
block generation is 8, then the waiting time for generating the next
block should be at most % Therefore, miners can always generate
a new block as long as the system is operating.

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 659

5.1.3. Safety

Definition 2 (Safety). Safety means that there exist no forks even
multiple blocks are created by different miners.

Theorem 2. Suppose {Bi}i=q12,...Ny,, IS the created blocks that
have been accepted by the miners, where Np is the number of
blocks that have achieved consistency, then after a sufficiently long
but bounded period of time, all honest miners will accept a common
block By, +1 as the next block of current blockchain.

Proof. The proof of safety is based on the security model where no
entity in MCS-Chain is fully trusted and all entities are rational and
profit driven. First, we prove that in our design, the probability for
a miner to receive a valid block with the earliest timestamp is at
least 1 — e‘%. Then we show that within a certain 6, this block can
be received and accepted by all the miners with a high probability.
Finally, we can conclude that a unique block can be selected as the
next block.

Based on Theorem 1, if the block set of current chain is
{Bi}k=0,12, ... Ngoq AL 1€ast one Byy, . +1 block will be generated by
a miner after a sufficiently long but bounded period of time. Here,
we represent the upper bound of the time as y, then within y, there
is at least one block generated by a miner. Based on the network
model, once a block is created and broadcast, it can arrive in other
nodes within limited time. Therefore, suppose a honest miner M;
receives a block By, ,.i; and as aforementioned, it will create
a block set {Bpy,.,.i}, insert the received block into the set, and
continue to listen to the network for more blocks before the expiry
time TS;, + 6. Once it meets the expiry time, M; stops listening
and invokes Algorithm 2 to select a unique block represented
by B’Nmmk +1- Based on the Algorithm 2, we could safely draw the

conclusion that BlNBIock 1 has the earliest time stamp (with selection
priority if its generator does not win over a threshold times) in set
{BNBIOCI<+1 ,i}-

At this point, all the honest miners in the blockchain network

has their own BlNBlock 41- Suppose these blocks form the block set

+1)» and suppose By, ., +1 is the output of Algorithm 2 taking

{By,

INBlock
{B]NBlock 41} as input. Therefore, By, +1 has the earliest time stamp,

which stands for that it is the earliest block for epoch Ngjoq + 1.
Considering that By, 11 is created at TSy, +1, and that the time
difference between the time when the block is created and the time
a miner receives the block follows exponential distribution, if a
miner M; receives the block at time ¢, then t; should follows the
following distribution:

1 14
P (t] = t) = XE A(t TSNBIDCk+1)’ (tj > TSNBlock+1)

Cumulative distribution function of t; is that:

P (t] < t) =1- e_%(t_TSNBIOCk+1)’ (tl > TSNBIock+1)

Therefore, the probability of the block By, +1 is received by a
miner before the expiry time Ty, +1 + 6 is:

_e
p (t] < TSNBlack+] + 0) =1-e i (t] > TSNB’DC’(+1)

Since By, +1 has the earliest time stamp, the miners that first
received By, +1 Will ends listening period ahead of other miners.
Hence for any miner M;, its expiry time TSf\,Bm 41 T 0 satisfies

TSf\,Block 41 1+ 0 = TSnyu+1 + 0, and its probability of receiving

Bny,q+1 before its expiry time satisfies:

i _0
P (6 < TShyrs +0) = P (6 < Tigepe1 +6) = 1- €%

Therefore, for any miner in the network, its probability of re-
ceiving By, +1 is at least 1 — e‘%. Therefore, if the miner obeys
the predefined protocol, when expiry time ends, at least 1 —
e~ »percent of miners have received the block. 6 is a threshold
value defined ahead of time, and can be adjusted based on a net-
work status. The aforementioned probability varies with different
values of 6. We calculate the probability with different values of
6 as below, from which we can see that more miners can receive
the block with a longer 6. A proportion 99.995% of all the miners
can receive By, +1 when we set the value 6 as 10A. Therefore,
considering the time consumed for block creation, the block with
earliest timestamp can arrive at more than 99.995% of all the
miners within y 4 6 with a high probability when 6 > 10A.

When 6 = 4, P (tj < Tnyout1 +6) = 1—e1 =0.6321;

When 6 = 24, P (tj < Tngu+1+60) = 1—e7? = 0.8647;
When 6 = 34, P (tj < Tngpqs1 +60) = 1— 7> = 0.9502;
When 6 = 42, P (tj < Tyyeu1 +60) = 1—e™* = 0.9816;
When 6 =52, P (t; < Tnyeut1 +60) = 1— €7 =0.9933;
When 6 = 62, P (tj < Tyyout1 +60) = 1 — €75 = 0.9975;
When 6 = 74, P (tj < Tngeq1 +60) = 1— €77 =0.9991;
When 6 = 84, P (tj < Tngu+1+0) = 1—e 8 =0.9996;
When 6 = 94, P (t; < Tngpu+1+0) = 1—e° =0.9998;
When 6 = 104, P (tj < Tgyg 1 +6) = 1— e = 0.99995.

When there exist multiple blocks with the earliest timestamp,
we can leverage Algorithm 2 to decide which block to select. Since
each miner has its unique public key, even the block generators
have the same timestamp, trust value, and number of blocks gen-
erated, a unique block can be decided by comparing their public
keys and then the system reaches consistency.

5.1.4. Fault tolerance

Definition 3. For each epoch, all honest miners will accept a
common block even there exists a certain proportion of malicious
miners.

Theorem 3. For each previous time epoch, all the honest miners in our
scheme agree on a common block even with the presence of malicious
miners.

Proof. We conduct our analysis with the assumption that all mali-
cious miners are rational and attempt to gain the biggest benefits.
Therefore, if a malicious miner finds a block ahead of others, the
best choice is to publish it at once because with a proper 6, the
block generated by the malicious miner will be accepted as the next
block with a high probability.

If the malicious miner finds a block later than an honest miner,
then it will lose the game based on Theorem 2 even it publishes
the block at once, and all honest miners will reject this block.
Nevertheless, since the adversary controls a proportion y of the
whole network miners, it can ask all malicious miners to work
on the block it found. However, honest miners will not turn to
work on the block created by the malicious miners since it has a
later creation timestamp. Besides, since all the blocks contain the
hash values of their previous blocks, all the blocks created by the
malicious miners will be forbidden by all honest miners because
they do not share a common previous block in the blockchain.

When a miner cannot figure out whether a block is generated
by an honest miner or a malicious miner (e.g., the miner just joins
in MCS-Chain), it can simply request the latest blocks from other
miners, and choose a unique block from all received blocks with
Algorithm 2. In this case, if there exists more than one honest

660 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

miner among these miners, a miner is able to receive the block
accepted by honest miners. Therefore, the malicious miners suc-
ceed in cheating the miner to choose the invalid block only when all
the n miners are dishonest. Suppose the malicious miners occupy
a proportion u of the whole nodes and the number of miners
being requested is n. Then, the probability for malicious miners
successfully cheat the honest miner is Ps,.c = u". In practice, we
hope the probability to be as small as possible. For simplicity, if we
hope Py is smaller than o, then u satisfies:

w< Jo

Apparently, a large n can reduce the probability Pg,... Nonethe-
less, it will also raise higher communication cost and consen-
sus delay. Therefore, we balance the efficiency and security, and
setn = 10 and ¢ = 0.00001, then we calculate that u <
/0.00001 ~ 32%. Therefore, when we set n as 10, our scheme
can resist misbehaviors of 32% of the whole miners. When n is 20,
our scheme can resist misbehaviors of 56%.

5.1.5. Decentralization

Definition 4 (Decentralization). Decentralization refers to that even
a miner has much more powerful ability than other miners, the
miner cannot control the blockchain.

Theorem 4. Supposing there exists a powerful miner with much
higher block generation efficiency than others, the miner still cannot
control the blockchain by generating most of the valid blocks in the
blockchain.

Proof. We employ state machine to prove the decentralization.
In particular, we first model MCS-Chain consisting of a powerful
miner as a state machine and define system states. Then, we get
the state transition probability of the system and further obtain
the probability of each state that the system reaches. We calculate
the probability that the powerful miner successfully creates a new
block. Finally, based on the calculated probability, we demonstrate
that the probability can be reduced to a low level in MCS-Chain and
prove its decentralization.

In our design, when a miner generates a new block, if the miner
has successfully created more than ng, blocks within the latest n,
blocks, all honest miners will consider the block as invalid and re-
ject it directly. Obviously, np should be larger thann,,,. We assume
there is a miner that is more powerful than other miners and is able
to generate new blocks more efficiently. For simplicity, we assume
this miner has a probability of p to create a new block ahead of
other miners. We then prove that with a certain selection of n, and
Ny, our scheme can effectively guarantee decentralization.

Herein, we consider a simple case, where ng, = 1. In this
case, once a miner generates a block and the block is accepted
by other miners, any block generated by this miner will not be
accepted in the following n, epochs. In the n, + 1 epoch, the
miner competes with other miners. Fig. 5 depicts the process of
the system as a state machine. We define the system state with a
0-1 sequence of length ny. If the ith element of the sequence is 1,
it means that the ith block of the previous n, epochs is generated
by the powerful miner, while O represents the opposite. For any
np continuous epochs, the powerful miner can create at most one
block. Therefore, the number of possible system states is n, + 1.
Suppose that current epoch is the kth epoch, we define the system
state set S = {so, S1,, Sy, }, where s represents the state that
none of the previous n, blocks is generated by the powerful miner
and all of sg’s elements are 0; s;(0 < i < ny) represents the ith
block in the previous n, block is generated by the powerful miner,
and only the ith element is 1.

Fig. 5. State machine with transition frequencies.

P(s;) denotes the probability that MCS-chain reaches state s;.
From Fig. 5, we can obtain the following equations:

P (so) =P (so) - (1 —p) +P(s1) - 1
P (sn,) =P (s0) - p
P (s;) = P (siy1) for0 <i < ny
PP (s) =1

Through simple algebra, we can obtain the probability of each
state as below:

P(sg) = —
(S0) 15 om,
P .
PGj)=——— (0<i<n
(1) 1+,0nb (b)

Since the power miner creates a block if and only if the system
state transfers from sy to s,,, . Therefore, the probability of the miner

to generate a new block is P (sp) - p = ﬁ'

In the worst case, p is equal to 1, which means that the powerful
miner can always generate the next block ahead of others. With the
proposed design, the probability that the powerful miner generates
anew blockis ﬁ and a large enough n;, can effectively reduce the
probability. Therefore, in practice, we can balance the availability
and decentralization and select a proper value of n, to guarantee
the decentralization of MCS-Chain.

5.2. Performance evaluation

In this subsection, we first set up an evaluation metrics and then
go ahead to test MCS-Chain performance.

5.2.1. Evaluation metrics

In our experiments, we tested the following five metrics of
MCS-Chain, i.e., block generation time, latency, throughput, com-
putational overhead, and accuracy of trust evaluation. Among
them, block generation time is highly related to latency. In most
blockchain systems, it is also an important factor affecting through-
put. Latency is related to service quality. It defines how long a user
needs to wait to confirm that the message he/she submitted to
the blockchain has been processed and has achieved consistency
among miners. Throughput reveals system’s ability of message
processing. A higher throughput means that the system can pro-
cess more messages within a unit time period. We further tested
computational overhead because some blockchain systems result
in high computational overhead. Since there are numerous mobile
devices in MCS, we hope MCS-Chain is so efficient that mobile
devices can participate in mining process. In MCS-Chain, we intro-
duce trust evaluation to enhance the trust of blockchain since node
trust influences block selection as well as node payment. Thus,
we need to evaluate the accuracy of trust evaluation to ensure its
effectiveness.

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 661

4] MCS-Chain - — [C=REEE > MCS_BC
Task | Subtask | Requirements | Description | Worker Num | Payment | ST You can check the latest
1= BLOCK block information here
~| PREVIOUS You can check previous
< | ») BLOCKS blocks information here
Feedback = MCS Functions
Upload Data
GENERATE You can start a MCS
New Task ATASK task here
fccepta Task ACCEPT A You can accept a task a
Communicati TASK work as worker here
Potential List SELECT You can select workers
WORKERS execution results here
Add ‘
FINISH A You can upload the task
aiecholker . | TASK execution results here
Select Data || il
e = EXECUTION You can check the task
PREVIEW execution results here
Fig. 6. MCS-Chain interface.
(1) Block generation time: The block generation time is mea- Table 2
sured as the average generation time of a single block. In ~ Experiment settings.
our test, we configure the workload by adjusting the task Experiment setting
generation frequency of each user and then monitor the ~ Miner 50 desktop nodes and 1 android
block generation time. Node setting node
2) Lat - The lat R d th ti Worker 50 desktop nodes
(2) La ency: The latency is measured as the response time per End user 10 desktop nodes
transaction. We test the confirmation time that the system —
R X R . Bidding message 50/task
spends to confirm a transaction with regard to different task Task setting D33 message submitted 25/task
generation frequency. s Average payment for a 5
(3) Throughput: The throughput is measured as the maximum Worker))
number of messages successfully recorded in blockchain per Task message generation rate 0~150 tasks/min
second. Block setting PAY (Threshold to generatea 2000~10000

(4) Computational overhead: The computational overhead is
measured as the CPU utilization rate and the memory usage
of devices. We observe the CPU utilization rate and memory
usage of both desktop and mobile phone under different task
generation frequency.

(5) Accuracy of trust evaluation: The accuracy of trust evalua-
tion is measured as the deviation between trust evaluation
results and the real trust of nodes.

5.2.2. Experimental setting

Implementation environment: We implemented MCS-Chain
with Java language in both Windows platform and Android plat-
form to evaluate its performance. It is implemented in a desktop
running 64-bit Windows 7 with 3.2-GHz Intel Core i5 Quad-CPU
and 8G RAM, and in an Android phone running 64-bit Android
7.1.2 with 1.95-GHz Snapdragon 653 Octa-CPU and 6G RAM. Fig. 6
depicts the interface of MCS-Chain in both Windows and Android,
respectively.

Node setup: In the experiment, we emulated 110 nodes in the
desktop, of which 50 nodes are miners, 50 nodes are workers, and
ten nodes are users. Besides, the desktop connects to an Android
phone that acts as a miner in the emulated network.

Network setup: According to [54], in the Bitcoin system, the
time of other miners receives a block creation announcement
follows an exponential distribution. Therefore, to better evaluate
the performance of our system in a real world, we emulate the real-
world overlay network by adding a random latency between node
communications so that the time of receiving a block announce-
ment by the miners follows the exponential distribution.

MCS task setup: The execution of a task includes a series of
message exchanges and decides the transaction frequency and

new block)

communication overhead. Besides, the number of tasks conducted
by MCS-Chain is also related to the block generation time. In our
experiments, all the worker will generate a bid message for an
issued task, and 25 of them will be randomly selected by the
task issuer to execute the task and the average payment for each
worker is set as 5. We set different values for PAY in the following
experiments, ranging from 2000 to 10000. The selected workers
will submit a task execution result to the blockchain. After all the
task execution results are collected, all participants of the task
will provide feedback to others. We observe the performance of
MCS-Chain under different task generation frequencies. For easier
presentation, we summarize the experiment setting in Table 2.

5.2.3. Experimental results

(1) Block generation time

In this experiment, we tested the block generation time with
different task generation frequency, as shown in Fig. 7. From the
figure, we can see that when task generation frequency is low
(2 tasks/min), the block generation time is very long (2578 s).
Then the block generation time drops sharply with the increase of
task generation frequency. This is because in our scheme, a miner
creates a block when it records enough payment confirmation
messages of which accumulated payment reaches the threshold
value (10000 in our experiments). Since each task recruits the
same number of workers and average payment for a worker is
set as a fixed value, the block generation time varies inversely
with task generation frequency. However, when the task gener-
ation frequency reaches 20 tasks per minute, the block genera-
tion reaches its minimum, and almost no longer varies as task

662 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

10000

—=— PAY=2000
—e— PAY=4000

w —a— PAY=6000

g —»— PAY=8000

= —e— PAY=10000

< 1000

k<]

©

[0

c

[}

o

x

©

o

o

100 4
: ¥ T % T ¥ T T

. — —
0 20 40 60 80 100 120 140 160
task number/min

Fig. 7. Block generation time with regard to task generation rate.

generation frequency increases. This is because the system has
reached its maximum processing rate. Therefore, though more
tasks are generated, the system processing rate cannot catch with
the task generation frequency. But the block generation time can
be controlled by setting up a proper payment threshold PAY.

(2) Transaction confirmation latency

We tested transaction confirmation latency with different task
generation frequency and observed the average latency from the
first epoch to the tenth epoch. The experimental results are il-
lustrated in Fig. 8. Similar to block generation time, transaction
confirmation latency also drops sharply when task generation
frequency is below 20 tasks per minute. When task generation
frequency exceeds 20 tasks per minute, the average latency gradu-
ally increases with the increase of task generation frequency. This
is mainly because when task generation frequency is below 20
tasks per minute, the process rate of MCS-Chain is higher than
task generation frequency. Therefore, it is able to deal with all
the messages received. In this case, the long confirmation time is
mainly caused by the long block generation time, since only when
a block is created can a message be involved in a block and further
reach the consistency. However, when task generation frequency
is above 20 tasks per minute, the system cannot process all the
messages in time. As a result, MCS messages beyond the processing
ability of MCS-Chain are blocked in sequence, which leads to the
increase of latency. To further verify it, we performed an extra
experiment, where we tested the transaction confirmation latency
with regard to epochs under different task generation frequency.
Fig. 9 presents the experimental results. In Fig. 9, when the task
generation frequency is 1, 10, and 20, the message confirmation
latency almost remains invariant. While task generation frequency
is 30, 40, 50, 110, 150 tasks per minute, the message confirmation
latency increases linearly with time. This is because task gen-
eration frequency exceeds the maximum processing rate of the
system.

Based on the experimental results of experiment 1 and exper-
iment 2, we can see when task generation frequency increases
beyond 20 tasks per minute, the system cannot immediately pro-
cess the related transactions. Since the execution of each task
requires at least 102 messages including the execution of each
task requires at least 102 messages, including 1 task request, 50
bidding messages, 1 worker selection confirmation message, 25
task execution results, we can safely conclude that the throughput
of the system is 34 messages per second when PAY is 10 000.

(3) Computational overhead

3000
T —=— PAY=2000
2500 - —e— PAY=4000
i —a— PAY=6000
v PAY=8000
2000 - e PAY=10000
1500

1000

transaction confirmation time (s)

500

0 — 1 v 1 '

—3 1 T 1
0 20 40 60 80 100 120 140 160

number of tasks/min

Fig. 8. Transaction confirmation time with regard to task generation rate.

3000

N

(o))

o

o
1

N

=]

o

o
1

1500

1000

500

transaction confirmation time (s)

A A A A A A A A ‘}4
0 —71 r T rT1 11 °Fr 71717

0 2 4 6 8 10 12 14
block number

| I & 1 = T &
16 18 20 22 24
Fig. 9. Transaction confirmation time with regard to block number.

We evaluate the computing efficiency by testing the CPU uti-
lization rate and memory usage in both desktop and mobile phone.
Figs. 10 and 11 respectively depict the CPU utilization rate and
memory usage with regard to task generation rate. As can be seen
in the figures, when the system reaches its maximum throughput,
the CPU utilization rates are 75% in mobile device and 25% in
desktop, and the memory usage is 97 MB in mobile device and 460
MB in desktop. Therefore, MCS-Chain is efficient enough to run on
a mobile device.

(4) Trust evaluation accuracy

We further evaluate the accuracy of trust evaluation algorithm.
In these experiments, we set 100 nodes. Among them, the first 25
nodes are with low trust, the last 25 nodes are with high trust, and
the remainders are with medium trust. All these nodes are assigned
0 as their initial trust. These nodes are involved in 100 tasks, and
their trust values are updated after each task is finished. In our
experiment, we assume the high-trust nodes generate feedback
honestly and with high accuracy; the medium-trust nodes tend to
generate feedback honestly and a little lower accuracy; the low-
trust nodes tend to generate feedback dishonestly. The feedback
was generated with a random function. If a node has a high pay-
ment, the average of its feedback will be closer to the real trust of

100

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 663

80

CPU utilization rate

—=— \Windows
—e— Android

e e e
20 40 60 80 100 120 140 160

task number/min

Fig. 10. CPU utilization rate with regard to task generate rate.

500

w S

o o

o o
1 |

memory usage (MB)
g
1

100

—=— \Windows
—e— Android

1.0

T * T % T ¥ T » T ¥ T * T ’
20 40 60 80 100 120 140 160
task number/min

Fig. 11. Memory usage with regard to task generate rate.

o
o
1

trust value
{ =)

PN

1

0.2

—— Node with low trust

—@— Node with medium trust
—&— Node with high trust

0.0
0

T T T T T T T T T
20 40 60 80 100

rounds of tasks

Fig. 12. Evolution of node trust.

1.0

0.9 LR] b

e 9
N
TR

=
o
I

trust Value
o
w
1

o
~
I

2
w
[

S
N}
1

it

0 20 40 60 80 100
node ID

=
N

Fig. 13. Trust distribution of nodes.

evaluated nodes. Fig. 12 shows the average trust values of three
types of nodes, which depicts the trust evolution of three types of
nodes. From Fig. 12, we can see that our trust evaluation formula
can quickly generate the accurate trust values for MCS nodes.
Fig. 13 depicts the distribution of nodes after 100 tasks’ execution.
In this figure, the first 25 nodes have low trust evaluated, the last
25 nodes have high trust evaluated, and the remaining nodes’ trust
is in the middle. This result demonstrates the effectiveness of our
evaluation method.

5.2.4. Comparison

To demonstrate the superiority of MCS-Chain scheme to other
existing blockchain systems, we compare MCS-Chain with sev-
eral blockchain systems, i.e., Bitcoin, Ethereum, Litecoin, Bitcoin
Cash, and Primecoin, in both security and performance. In terms
of security, we compare the realization of basic security proper-
ties, i.e., liveness, safety, decentralization, and fault tolerance. The
comparison results are summarized in Table 3. Although all the
other five blockchain claim to be decentralized systems, they face
the challenge of centralization. Gencer et al. pointed out that for
both Bitcoin and Ethereum, the mining power of several largest
mining pools has occupied most of the total power. Therefore,
it is possible that the several largest mining pools control the
whole system by controlling the generation of new blocks. For
Litecoin, Bitcoin Cash, and Primecoin, although they improve the
efficiency of Bitcoin, they are basically based on PoW, and thus
cannot achieve real decentralization. Different from them, MCS-
Chain guarantees the decentralization by constraining the number
of blocks generated by a single miner within a certain period. For
fault tolerance, Eyal et al. demonstrated that the consistency of
Bitcoin can be destroyed when attackers control more than 25%
miners. Similarly, the other three blockchain systems also face the
same problem, and as a result their fault tolerances are also 25%.
The fault tolerance of Ethereum is related to how many coins are
held by malicious miners. When a single miner holds more than
half of existing coins in Ethereum, the miner can conduct 51%
attacks [55]. Therefore, if the malicious miners control more than
50% coins, the security of Ethereum will be harmed. As proved in
Section 5.1, with certain parameter setting, MCS-Chain can tolerate
more than 56% malicious miners.

In terms of performance, we mainly compared MCS-Chain with
Bitcoin and Ethereum in block generation time, transaction confir-
mation time, computation overhead, throughput, and communica-
tion cost, as shown in Table 3. We can see that block generation

664 W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

Table 3
Performance comparison results.

Metrics Security property Performance
Liveness Safety Decentralization Fault Block Transaction Computation Throughput Communication
tolerance generation time confirmation overhead complexity
latency
Bitcoin Yes Yes No 25% 600 s 3600 s High 7 transactions O(N)
per second
Bitcoin Cash Yes Yes No 25% 600 s 3600 s High 56 transactions O(N)
per second
Litecoin Yes Yes No 25% 180s 900 s Medium 60 transactions O(N)
per second
Primecoin Yes Yes No 25% 60 s 360s High 70 transactions O(N)
per second
Ethereum Yes Yes No Depends on 12s 72s Medium 30 transactions O(N)
coins that the per second
malicious
miners hold.
Our scheme Yes Yes Yes 56% 53s 30s Low 34 messages O(N)
(Pay = 2000) per second

N is the total number of miners.

time in MCS-Chain is only larger than that in Ethereum and is
smaller than all other four blockchain systems. But in MCS-Chain,
the generation time of a block can be dynamically adjusted by set-
ting different thresholds of accumulated payment amount. Since
a large threshold can increase the difficulty of block generation,
and as a result the number of blocks generated simultaneously
can be reduced, we adopt a relatively large threshold for block
generation (PAY = 2000). Nevertheless, our block confirmation
time is much shorter than Bitcoin, Litecoin, Primecoin, and Bitcoin
Cash, and is similar to Ethereum. This is mainly because when
multiple blocks generated at the same time, all blockchain systems
except ours need to wait for at least six blocks to decide which
branch is the longest. Hence, although block generation delay in
Ethereum is much smaller than that in MCS-Chain, the efficiency
deviation in terms of block confirmation time between MCS-Chain
and Ethereum is not large. Another important performance metric
is computation overhead. As known to all, miners in Bitcoin and
Bitcoin Cash have to conduct time consuming computations to find
the next block. Therefore, their computation overhead is extremely
high. Similarly, Primecoin implements another PoW in which min-
ers need to find a certain prime to generate a block. This makes the
computation valuable, but its computation overhead is still quite
high. To alleviate this problem, Litecoin reduces the difficulty of
puzzle in blockchain. Nonetheless, miners in Litecoin still spend
a lot of computing capacities in solving the puzzle. Differently,
Ethereum leverages PoS instead of PoW, and thus greatly reduces
computation overhead. Similarly, the proposed consensus algo-
rithm in this paper also avoids all the time-consuming computing
operations in PoW, and thus greatly improves efficiency. However,
it also requires that miners conduct some computation. Compared
with them, MCS-Chain requires no time-consuming computations.
Therefore, our scheme achieves high efficiency and its computa-
tional overhead is low. For throughput, the throughput of Bitcoin
is limited to the block size, and suffers from low throughput of
7 transactions per second. Bitcoin Cash, Litecoin and Primecoin
respectively achieve a throughput of 56, 60, and 70 transactions
per second. Ethereum improves the throughput by accelerating
the block generation and can process around 30 transactions per
second. For MCS-Chain, the experimental result shows that it can
process as many as 20 tasks per minute. In the experiments, the
execution of each task requires at least 102 messages, including 1
task request, 50 bidding messages, 1 worker selection confirmation
message, 25 task execution results, and at least 25 feedbacks.
Therefore, the maximum throughput is 34 messages per second.
Therefore, MCS-Chain has a better throughput scalability than
Ethereum. With regard to communication cost, MCS-Chain is based
on the same network architecture of public blockchain systems,

e.g., Bitcoin and Ethereum. So MCS-Chain has the same commu-
nication complexity as Bitcoin and Ethereum. To be specific, in
the process of MCS message transmission, when a miner receives
an MCS message, such as task request, bidding message, task
execution results, etc., it should transmit the message to all other
miners in the network. Therefore, the communication complexity
of MCS-Chain is O(LN) for L messages, where L is the total number
of messages and N is the number of miners. In the process of block
generation, since the block has to be transmitted to all miners
in the network, the communication complexity is O(N). Table 3
summarizes the comparison results of communication comparison
results between MCS-Chain and the other five blockchain systems
with regard to block generation.

We also compare MCS-Chain with Tweetchain, an alternative
blockchain for crowdsourcing [47]. The main idea of Tweetchain
is to leverage messages in social networks (e.g., Twitter) to pub-
lish transactions. As a result, the trust of the Tweetchain still
depends on the trust of the centralized service provider. The
authors of Tweetchain argued that by building a meshed trans-
action chain, the service providers of social networks are unable
to forge, delete, or alter transactions. Besides, the availability
of these service providers is high, and building Tweetchain on
multiple social networks can achieve extremely high availability.
Tweetchain is in nature a crowdsourcing system based on a cen-
tralized and trustworthy crowdsourcing platform. The difference
between Tweetchain and traditional centralized crowdsourcing
architecture is that the platform just provides information ex-
change services and does not realize other functions like worker
selection or data processing. Since Tweetchain employs one or
multiple centralized entities to improve performance, here we
mainly compare MCS-Chain with Tweetchain in terms of security.
For Tweetchain, the centralized service provider can maliciously
deny the publication of some messages and thus hinder the normal
operation of Tweetchain. In this case, Tweetchain fails to achieve
liveness since some transactions cannot be published to all users.
When utilizing multiple social networks, attackers can conduct
double spending by publishing different transactions at the same
time slot in different social networks. Therefore, it cannot well
achieve safety. Since it still employs one or multiple centralized
service providers as an information publishing platform, it can only
achieve limited decentralization because the security still partly
depends on centralized entities. Therefore, our scheme outper-
forms Tweetchain in security.

6. Conclusions

In this paper, we proposed a novel blockchain, in which a
new block is generated when the accumulated payment amount

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666 665

waiting to be recorded in the next block exceeds the pre-defined
threshold. The blockchain design solves the fork issue and cen-
tralization problem existing in most public blockchain systems.
Based on it, we proposed a decentralized and trustworthy MCS sys-
tem, named MCS-Chain, where no any centralized service provider
exists. We proved the security of MCS-Chain in theory, and im-
plemented the MCS-Chain system in both Windows platform and
Android platform. We further conducted a number of experiments
to test the performance of MCS-Chain. The experimental results
demonstrated the effectiveness and efficiency of MCS-Chain. How-
ever, privacy has not been explored in this paper. In the future, we
will further explore privacy in MCS-Chain. In particular, we will
concentrate on anonymous authentication on trust with unlinka-
bility and preserve privacy in MCS-Chain.

Acknowledgments

This work is sponsored by the National Key Research and
Development Program of China (Grant 2016YFB0800704), the Na-
tional Natural Science Foundation of China (Grants 61672410 and
U1536202), the Academy of Finland (Grant 308087), the Project

Supported by Natural Science Basic Research Plan in Shaanxi Province

of China (Program No. 2016ZDJC-06), the Key Lab of Information
Network Security, Ministry of Public Security (Grant C18614), and
the China 111 project (Grants B16037 and B08038).

References

[1] W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao, Y.T. Hou, A survey on security,
privacy, and trust in mobile crowdsourcing, IEEE Internet Things]. 5 (4) (2018)
2971-2992.

D. Shin, D. Aliaga, S.M. Tunger, S. Kim, D. Ziind, G. Schmitt, Urban sensing:

Using smartphones for transportation mode classification, Comput. Environ.

Urban Syst. 53 (2015) 76-86.

B. Kantarci, H.T. Mouftah, Trustworthy sensing for public safety in cloud-

centric internet of things, IEEE Internet Things 1 (4) (2014) 360-368.

C. Chen, Y. Huang, Y. Liy, C. Liu, L. Meng, Y. Sun, Interactive crowdsourcing to

spontaneous reporting of adverse drug reactions, in: International Conference

on Communication (ICC) IEEE Sydney NSW, 2014, pp. 4275-4280.

S. Hu, L. Su, H. Liu, H. Wang, T.F. Abdelzaher, SmartRoad: Smartphone-based

crowd sensing for traffic regulator detection and identification, ACM Trans.

Sensor Netw. 11 (4) (2015) 1-27.

G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, B.Y. Zhao, Defending against

sybil devices in crowdsourced mapping services, in: Proceedings of the 14th

Annual International Conference on Mobile Systems, Applications, and Ser-

vices, 2016, pp. 179-191.

B. Kosucu, B. Arnrich, C. Ersoy, A crowdsourced SkyMap, in: Signal Processing

and Communications Applications Conference (SIU), 2014, pp. 1283-1286.

A. Overeem, J.C. Robinson, H. H. Leijnse, G.J. Steeneveld, B.K. Horn, R. Ui-

jlenhoet, Crowdsourcing urban air temperatures from smartphone battery

temperatures, Geophys. Res. Lett. 40 (15) (2013) 4081-4085.

Y.Zhang, H. Zhang, S. Tang, S. Zhong, Designing secure and dependable mobile

sensing mechanisms with revenue guarantees, IEEE Trans. Inf. Forensics

Secur. 11 (1) (2016) 100-113.

[10] J. Sun, H. Ma, Privacy-preserving verifiable incentive mechanism for online
crowdsourcing markets, in: Proceeding of International Conference on Com-
puter Communication and Networks, Shanghai, 2014, pp. 1-8.

[11] H.Jin,L.Su, B.Ding, N. Borisov, Enabling privacy-preserving incentives for mo-
bile crowd sensing systems, in: IEEE International Conference on Distributed
Computing Systems, 2016, pp. 344-353.

[12] C.Prandi,S. Ferretti, S. Mirri, P. Salomoni, A trustworthiness model for crowd-
sourced and crowdsensed data, in: Proceedings of International Conference
on Trustcom/BigDataSE/ISPA IEEE Helsinki, 2015, pp. 1261-1266.

[13] J. Zhang, V.S. Sheng, J. Wu, X. Wu, Multi-class ground truth inference in
crowdsourcing with clustering, IEEE Trans. Knowl. Data Eng. 28 (4) (2016)
1080-1085.

[14] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, (2008), http:
//www.bitcoin.org/bitcoin.pdf.

[15] G.Wood, Ethereum: A Secure Decentralized Generalized Transaction ledger,
in: Ethereum project yellow paper, 1152014 p. 1-32.

[16] I Eyal, A.E. Gencer, E.G. Sirer, R.V. Renesse, Bitcoin-NG: A scalable Blockchain
protocol, in: NSDI, 2016, pp. 45-59.

[17] I Eyal, E.G. Sirer, Majority is not enough: Bitcoin mining is vulnerable, ACM
Commun. 61 (7) (2018) 95-102.

2

3

[4

5

[6

[7

8

[9

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]
(39]
[40]
[41]

[42]

[43]

(44]

(45]

AE. Gencer, S. Basu, I. Eyal, R.V. Renesse, E.G. Sirer, Decentralization in Bitcoin
and Ethereum Networks, (2018), arXiv preprint arXiv:1801.03998.

S. Luo, Y. Sun, Z. Wen, Y. Ji, C2: Truthful incentive mechanism for multiple
cooperative tasks in mobile cloud, in: IEEE International Conference on Com-
munication, 2016, pp. 1-6.

Y. Wen,]. Shi, Q. Zhang, X. Tian, Z. Huang, H. Yu, X. Shen, Quality-driven
auction-based incentive mechanism for mobile crowd sensing, IEEE Trans.
Veh. Technol. 64 (9) (2015) 4203-4214.

H. Mousa, S.B. Mokhtar, O. Hasan, O. Younes, M. Hadhoud, L. Brunie, Trust
management and reputation systems in mobile participatory sensing appli-
cations: A survey, Comput. Netw. 90 (2015) 49-73.

H. Amintoosi, S.S. Kanhere, A reputation framework for social participatory
sensing systems, Mob. Netw. Appl. 19 (1) (2014) 88-100.

R.W. Ouyang, M. Srivastava, A. Toniolo, T. Norman, Truth discovery in crowd-
sourced detection of spatial events, IEEE Trans. Knowl. Data Eng. 28 (4) (2016)
1047-1060.

D. Zhao, X.Y. Li, H. Ma, Budget-feasible online incentive mechanisms for
crowdsourcing tasks truthfully, IEEE/ACM Trans. Netw. 24 (2) (2016) 647-
661.

I. Krontiris, T. Dimitriou, Privacy-respecting discovery of data providers in
crowd-sensing applications, in: Proceeding of IEEE International Conference
on Distributed Computing in Sensor Systems, Cambridge MA, 2013, pp. 249-
257.

J-Ren, Y. Zhang, K. Zhang, K. Zhang, X. Shen, Exploiting mobile crowdsourcing
for pervasive cloud services: Challenges and solutions, IEEE Commun. Mag.
53(3)(2015)98-105.

H. Choi, S. Chakraborty, Z.M. Charbiwala, M.B. Srivastava, SensorSafe: A frame-
work for privacy-preserving management of personal sensory information,
in: Proceeding of Workshop Secure Data Manag, 2011, pp. 85-100.

Y. Yuan, F.Y. Wang, Towards blockchain-based intelligent transportation sys-
tems, in: IEEE 19th International Conference on Intelligent Transportation
Systems, 2016, pp. 2663-2668.

F. Tian, An agri-food supply chain traceability system for China Based on
RFID & blockchain technology, in: IEEE International Conference on Service
Systems and Service Management Kunming, 2016, pp. 1-6.

K. Korpela,]J. Hallikas, T. Dahlberg, Digital supply chain transformation toward
blockchain integration, in: Proceedings of International Conference on Sys-
tem Sciences, 2017.

G. Zyskind, O. Nathan, A. Pentland, Decentralizing privacy: Using blockchain
to protect personal data, in: IEEE Security and Privacy Workshops, 2015, pp.
180-184.

Z. Yan, L. Peng, Trust evaluation based on Blockchain in pervasive social
networking, IEEE Blockchain Newsl. (2018) 1-4.

E. Heilman, A. Kendler, A. Zoha, S. Goldberg, Eclipse attacks on Bitcoin’s peer-
to-peer network, in: USENIX Security Symposium, 2015, pp. 129-144.

S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G.M. Voelker,
S.A. Savage, Fistful of Bitcoins: Characterizing payments among men with
no names, in: Proceedings of ACM Conference on Internet Measurement
Conference, 2013, pp. 127-140.

M. Vukoli¢, The quest for scalable Blockchain Fabric: Proof-of-Work vs. BFT
Replication, in: Springer International Workshop on Open Problems in Net-
work Security, 2015, pp. 112-125.

E. Heilman, F. Baldimts, S. Goldberg, Blindly.Signed. Contracts, Blindly signed
contracts anonymous On-Blockchain and Off-Blockchain Bitcoin transactions,
in: Springer International Conference on Financial Cryptography and Data
Security, 2016, pp. 43-60.

M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, R.H. Deng, CrowdBC: A
Blockchain-based decentralized framework for crowdsourcing, in: IACR Cryp-
tol., Vol. 444, 2017.

S. Wang, A. Taha, J. Wang, Blockchain-Assisted Crowdsourced Energy Sys-
tems, (2018) arXiv preprint arXiv: 1802.03099.

G. Pinto, J.P. Dias, H.S. Ferreira, Blockchain-based PKI for crowdsourced IoT
sensor information, in: arXiv preprint arXiv:1807.03863, (2018).

Y. Lu, Q. Tang, G. Wang, ZebraLancer: Private and anonymous crowdsourcing
system atop open blockchain, in: arxiv preprint arxiv:1803.01256, (2018).
K.C. Asmoredjo, A. Hovanesyan, S.M. To, CM. Wong Loi Sing, Decentralized
Mortgage Market: An Open Market for Real-estate Crowdsourcing, 2017.
M.Yang, T. Zhy, K. Liang, W. Zhou, R.H. Deng, R. H, A Blockchain-based location
privacy-preserving crowdsensing system, in: Future Generation Computer
Systems, 2018.

S. Hu, L. Hou, G. Chen,]. Weng, J. Li, Reputation-based distributed knowledge
sharing system in Blockchain, in: Proceedings of the 15th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services, 2018, pp. 476-481.

G.K. Bhatia, P. Kumaraguru, A. Dubey, A.B. Buduru, V. Kaulgud, WorkerRep:
Building trust on crowdsourcing platform using Blockchain, in: IIIT-Delhi,
2018.

A. Fujihara, Proposing a system for collaborative traffic information gathering
and sharing incentivized by Blockchain technology, in: International Confer-
ence on Intelligent Networking and Collaborative Systems, 2017, pp. 170-
182.

http://refhub.elsevier.com/S0167-739X(18)32696-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb7
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb7
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb7
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb8
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb8
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb8
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb8
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb8
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb13
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb16
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb16
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb16
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb17
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb17
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb17
http://arxiv.org/abs/1801.03998
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb20
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb20
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb20
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb20
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb20
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb29
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb29
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb29
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb29
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb29
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb37
http://arxiv.org/abs/1802.03099
http://arxiv.org/abs/1807.03863
http://arxiv.org/abs/1803.01256
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb44
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb44
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb44
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb44
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb44
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb45
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb45
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb45
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb45
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb45
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb45
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb45

666

W. Feng and Z. Yan / Future Generation Computer Systems 95 (2019) 649-666

[46]].Zou,B.Ye, L. Qu, Y. Wang, M.A. Orgun, L. Li, A proof-of-trust consensus pro-

[47]

[48]

[49]
[50]
[51]

[52]
[53]

[54]

[55]

tocol for enhancing accountability in crowdsourcing services, in: IEEE Trans-
actions on Services Computing, http://dx.doi.org.10.1109/TSC.2018.2823705.
F. Buccafurri, G. Lax, S. Nicolazzo, A. Nocera, Tweetchain: An Alternative to
Blockchain for crowd-based applications, in: Springer International Confer-
ence on Web Engineering, 2017, pp. 386-393.

K. Fan, S. Wang, Y. Ren, K. Yang, Z. Yan, H. Li, Y. Yang, Blockchain-based
secure time protection scheme in IoT, IEEE Internet Things J. (2018) http:
//dx.doi.org/10.1109/JI0T.2018.2874222.

K. Fan, Y. Ren, Z. Yan, S. Wang, H. Li, Y. Yang, Secure time synchronization
scheme in IoT based on Blockchain, in: IEEE Blockchain, 2018.

Z.Yan, Y. Chen, Y. Shen, A practical reputation system for pervasive social
chatting, J. Comput. System Sci. 79 (5) (2013) 556-572.

Z.Yan, Y. Chen, Y. Shen, PerContRep: A practical reputation system for perva-
sive content services, Supercomputing 70 (3) (2014) 1051-1074, Springer.
A. Baliga, Understanding Blockchain consensus models, in: Persistent, 2017.
B. Alpern, F.B. Schneider, Recognizing safety and liveness, Distrib. Comput. 2
(3)(1987) 117-126.

C. Decker, R. Wattenhofer, Information propagation in the Bitcoin network,
in: [EEE International Conference on Peer-to-Peer Computing (P2P), 2013.

X. Li, P. Jiang, T. Chen, X. Luo, Q. Wen, A survey on the security of blockchain
systems, Future Gener. Comput. Syst. (2017) http://dx.doi.org/10.1016/j.
future.2017.08.020.

Wei Feng received the B.Sc. degree in telecommunica-
tions engineering from Xidian University, Xian, China, in
2011, where he is currently pursuing the Ph.D. degree in
information security. His research interests include in-
formation security, privacy preservation, and trust man-
agement in social networking. He is currently a visiting
research scholar in Aalto University, Finland.

Zheng Yan is currently a professor at the Xidian Univer-
sity, China and a visiting professor and Finnish academy
research fellow at the Aalto University, Finland. She re-
ceived the Doctor of Science in Technology from the
Helsinki University of Technology, Finland. Before join-
ing academia in 2011, she was a senior researcher at
the Nokia Research Center, Helsinki, Finland, since 2000.
Her research interests are in trust, security, privacy, and
security-related data analytics. She is an associate editor
of IEEE Internet of Things Journal, Information Fusion,
Information Sciences, IEEE Access, and JNCA. She served
as a general chair or program chair for a number of international conferences
including IEEE TrustCom 2015. She is a founder steering committee co-chair of IEEE
Blockchain conference. She received several awards, including the 2017 Best Journal
Paper Award issued by IEEE Communication Society Technical Committee on Big
Data and the Outstanding Associate Editor of 2017 for IEEE Access.

http://dx.doi.org/http://dx.doi.org.10.1109/TSC.2018.2823705
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb47
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb47
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb47
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb47
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb47
http://dx.doi.org/10.1109/JIOT.2018.2874222
http://dx.doi.org/10.1109/JIOT.2018.2874222
http://dx.doi.org/10.1109/JIOT.2018.2874222
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb49
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb49
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb49
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb50
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb50
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb50
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb51
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb51
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb51
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb52
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb53
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb53
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb53
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb54
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb54
http://refhub.elsevier.com/S0167-739X(18)32696-7/sb54
http://dx.doi.org/10.1016/j.future.2017.08.020
http://dx.doi.org/10.1016/j.future.2017.08.020
http://dx.doi.org/10.1016/j.future.2017.08.020

	MCS-Chain: Decentralized and trustworthy mobile crowdsourcing based on blockchain
	Introduction
	Related work
	Mobile crowdsourcing
	Blockchain

	Problem statement
	System model
	Security model and research assumptions
	Security model
	Research assumptions

	MCS-Chain design goals
	Notations and definitions

	MCS-Chain design
	System overview
	Block structure
	Task management
	Trust evaluation
	Consensus mechanism
	Incentive mechanism
	Incentive mechanism to workers
	Incentive mechanism to miners

	Security analysis and performance evaluation
	Security analysis
	Model of analysis
	Liveness
	Safety
	Fault tolerance
	Decentralization

	Performance evaluation
	Evaluation metrics
	Experimental setting
	Experimental results
	Comparison

	Conclusions
	Acknowledgments
	References

