Accepted Manuscript e

FIGICIS:
LADRA: Log-based abnormal task detection and root-cause analysis in S Rt T

big data processing with Spark

Siyang Lu, Xiang Wei, Bingbing Rao, Byungchul Tak, Long Wang, s

Ligiang Wang s
PII: S0167-739X(18)30768-4

DOI: https://doi.org/10.1016/j.future.2018.12.002

Reference: FUTURE 4623

To appear in: Future Generation Computer Systems

Received date: 1 April 2018
Revised date: 8 November 2018
Accepted date: 6 December 2018

Please cite this article as: S. Lu, X. Wei, B. Rao et al., LADRA: Log-based abnormal task detection
and root-cause analysis in big data processing with Spark, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2018.12.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.12.002

LADRA: Log-Based Abnormal Task Detectic a 1d
Root-Cause Analysis in Big Data Processing with >, ark

Siyang Lu®*, Xiang Wei*?, Bingbing Rao®, Byungchul Ta’ *, L' ng vang?,
Ligiang Wang®*

%Dept. of Computer Science, University of Central Florida, Orlando, FL, USA
bSchool of Software Engineering, Beijing Jiaotong Una. ~rsity, C vina
¢Dept. of Computer Science and Engineering, Kyungpook N-*ionu. * .versity, Korea
dIBM T.J. Watson Research Center, Yorktown ieight NY, USA

Abstract

As big data processing is being widely -uopuweu by many domains, massive
amount of generated data become more reliant o.. the parallel computing plat-
forms for analysis, wherein Spark is one ~f che most widely used frameworks.
Spark’s abnormal tasks may cause si, u.”~an, performance degradation, and it
is extremely challenging to dete = ~=d a’agnose the root causes. To that end,
we propose an innovative tool, name. LADRA, for log-based abnormal tasks
detection and root-cause @ .alys. " using Spark logs. In LADRA, a log parser
first converts raw log files . *o st ctured data and extracts features. Then, a
detection method is propos.d to detect where and when abnormal tasks hap-
pen. In order to araly. - ror ¢ causes we further extract pre-defined factors
based on these fer oo -=s. Finally, we leverage General Regression Neural Net-
work (GRNN) + identify root causes for abnormal tasks. The likelihood of
reported root ~aus:s are presented to users according to the weighted factors
by GRNN. LADR- is an off-line tool that can accurately analyze abnormal-
ity witho." e .tra aonitoring overhead. Four potential root causes, i.e., CPU,
meme y, networy, and disk I/0, are considered. We have tested LADRA atop

of th1 e Spar . benchmarks by injecting aforementioned root causes. Experi-

*Corres onding authors. This work was supported in part by NSF-1836881.
“mo7 addresses: siyang@knights.ucf.edu (Siyang Lu), lwang@cs.ucf.edu (Ligiang
Wang)

Preprint submitted to Journal of BTEX Templates January 7, 2019

10

15

20

25

mental results show that our proposed approach is more accurate 'm t'e root
cause analysis than other existing methods.

Keywords: Spark, Log Analysis, Abnormal Task, Root ’aus>

1. Introduction

Parallel computing frameworks that follows the M» _Tleduce 1] paradigm are
widely-used in real-world big data applications to h n” ¢ ba ch and streaming
data. Among these, Spark [2] has recently gaineu viae-adoption. Different
from the Hadoop framework [3], Spark suppoi. a mors general programming
model, in which an in-memory technique, calle. Resilient Distributed Dataset
(RDD) [4], is used to store the input ana ~termediate data generated during
computation stages.

While Spark is highly successful for dav = analytics, it could suffer from signif-
icant performance degradation under ‘*he ~xistence of abnormal tasks. A task is
considered abnormal if it shows ¢ ..l ~» delay in comparison with other tasks
within the same stage. A few causes ot s..ch performance degradation can be due
to ineffective coding, resour .e cou. *ntion, and data locality problems [5, 6, 7, 8].

To mitigate such perforn.. ~ce p oblems, Spark employs a speculation mecha-
nism [9] to detect strag lers {uring runtime, in which slow tasks are re-scheduled
after marked as stre ,glei. Sy urk checks and performs speculative execution of
tasks till a specifi- d 1. ~tion (defined by spark.speculation.quantile, which
is 75% by defav’., ~f tasks is completed. Spark identifies stragglers by checking
whether the . mn'ag tasks are much slower (e.g., 1.5 times, by default) than
the mediar of ~ll successfully completed tasks in the current stage. However,
speculatio.. *.echs aism cannot detect all stragglers and does not provide the
root ¢ wuses cf degraded performance. In addition, monitoring tools are usually
heavy- veight .nd cause significant overhead, which may impact the performance
¢ Sparl even for normal executions. Therefore, abnormal task detection and
re ot caur 2 analysis still remain grand challenges.

Thig paper proposes LADRA, an off-line tool for log-based abnormal tasks

30

35

40

5L

detection and root-cause analysis for big data processing with Spa «. I ADRA
detects abnormal tasks by examining features extracted from logs . ~d an.'yzes
them to find root causes via a neural network model. Specifice 1y, . v proposed
approach adopts a statistical spatial-temporal analysis for ., ~ < logs, which
consists of Spark execution logs and JVM garbage collec’ .on (G7) 10gs related
to resource usage. LADRA’s abnormal task detection me hod is nore effective
than Spark speculation, as all Spark stages are cons’dered -nd abnormal tasks
happened in any life span could be detected. Moreove., Spar .’s report could be
inaccurate because Spark uses only fixed amount of 1. ished task duration to
speculate the unfinished tasks. Our approach repc *s t¥ 2 likelihood of each po-
tential root cause, which can be leveraged by users “o tune resource allocations
and reduce the impact of abnormal tasks. 1.~ instance, in one of our experi-
ments, LADRA reports that abnormal asks .. caused 80% by network issues
and 20% by CPU issues on victim - ~des, sers may check the network condi-
tion first, then tune CPU usage accora mgy,. There are four major root causes
for task abnormalities: CPU, men.. ~v, necwork, and disk I/0O, all of which are
considered by this paper.

We make the following contribu Sions in this work.

e An abnormality « ctec ion method is proposed that can accurately locate
where and when ' aorr al task executions happen by analyzing Spark

logs.

e 22 log fer ¢ur. 5 and 7 factors are identified to be critical in exposing the

T

degree o1 . " 1ormality from the analysis of Spark logs and GC logs.

e A 1 wurs net vork-based analysis method is proposed, which is more ac-
c ..ute and provides the ranked likelihood for true root causes in order
‘0 bette understand the performance problems and to tune the Spark

settiugs.

T. ~ rest of the paper is organized as follows. Section 2 introduces the back-

g1« 1 knowledge of Spark and surveys the related work. Section 3 gives an

60

65

70

75

80

overview of our approach. Section 4 illustrates the feature extractior fror Spark
logs and abnormal task detection based on these features. Sectic. 5 pic ents
factor synthesization for root cause analysis. Section 6 descri’ es . he details of
root cause analysis using GRNN. Section 7 shows our exper.. ~ cal results by
evaluating our approach on several widely used benchmar \s. Section 8 summa-

rizes our method and discusses its limitations and future -ork.

2. Related work and background

In this section, we give brief background ¢ ¢ Spark s “heduling mechanisms

1 woix in the area of the root

and its log structures. Then, we review relav.
cause analysis for big data platforms.

This paper significantly extends our nrevious . aper [10], a statistical method
for detecting task abnormalities and anal, % 1g root causes. Compared with our
prior work, the factor extraction is ex. 1..'~d a.ad the weighted statistical method
for detection is improved, whic’ .=~ m.sented in Section 6.1. Our previous
approach diagnoses root causes by ap,'ving weights to each factor. Such rule-
based weight calculation ar jroa.™es may cause false positives. Moreover, due
to the complex relationship. hetwe: n hardware and software and between input
and output, we believe nat .non-linear model can do a better job. As we stated
before, the root caus~ de. “tior is better to be treated as a regression rather than
a classification prr o. ™. Hence, in this paper, the most significant extension is
that we propose new Geuneral Regression Neural Network (GRNN) as a better

choice, which an .void the ad-hoc factor selection and weight computing.

2.1. Spar . arc witec'ure and its log structure

Sp ... arci.cecture: Apache Spark is an in-memory parallel computing
frame vork for large-scale data processing. Moreover, to achieve the scalability
ar . .ault wolerance, Spark introduces resilient distributed data set (RDD) [4],
1 hich re resents a read-only collection of objects partitioned across a set of

machines that can be rebuilt if a partition is lost. As shown in Figure 1, Spark

85

90

95

cluster consists of one master node and several slave nodes, named =s v orkers,
which may contain one or more executors. When a Spark applic. ““on 1. 3ub-
mitted, the master will request computing resource from the » :sou rre manager
based on the requirement of the application. When the resom« 7, ready, Spark
scheduler distributes tasks to all executors to run in par:.el. Dring this pro-

cess, the master node will monitor the status of executc s and _ollect results

from worker nodes.

Master Worker 1 Worker 3 Worker n
: Executor 1 Executor n
Driver —
|

Driver
Execution log

Spark
Execution log
Spark GC log

~ [

Spark
L. ution log
‘ opark GC log
=7

Spark
Execution log
Spark GC log

Worker 2
Executor 2

Spark Cluster

Spark Log

Aggregated
Spark GC

I
Aggregated
Spark Exertition
log

2
“igur 1: Spark framework and log files

Spark logs in -'de execution logs and JVM GC logs. Spark driver (mas-
ter node) collects the iniccmation of all executors (i.e., driver log), and each
executor reco’ ds t} 2 status of tasks, stages, and jobs within the executor (i.e.,
execution I’ g). b *des these logs, Spark JVM Garbage Collection (GC) logs
are also ' 'ed)y o ¢ analysis, which are the output from two output channels,
stder~ .ad stu ut. When an application is finished, we collect all Spark logs
and & rgregate them into two different categories: execution logs and GC logs.
A~ _xampie is shown in Figure 2.

Spark uses “log4j”, a JAVA logging framework, as its logging framework.

Svark users can customize “log4j” by changing configuration parameters, such

105

110

115

17/02/22 21:04:02.259 INFO

TaskSetManager: Starting task 12.0 in stage 1.0 (TID 58, 10.190.128.171, pu. “tion 12,
ANY, 5900 bytes)

17/02/22 21:04:02.259 INFO

CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task < on evecutor id: 1
hostname: 10.190.128.101.

17/02/22 21:04:02.276 INFO

TaskSetManager: Finished task 1.0 in stage 1.0 (TID 47) in 14175 ms o 10.190.128.101

(1/384)

Figure 2: An example of Spark exe~ution log.

as log level, log pattern, and log direction. In .™is par er, we use the default
configurations in “log4j”. As shown in Figure z, ~ach line of Spark execution
log contains four types of information: times. *mp with ISO format, logging level
(e.g., INFO, WARNING, or ERROR), -.. 7 ~lass (which class prints out this
message) and message content. A messa, > content contains two main kinds
of information: constant keywords (e., t.-~ished task in stage TID in ms

on), and variables (e.g., 1.0 1.0 "7 12l 5..).

[GC (Allocation Failure)
[PSYoungGen: 95744K->905 K(111v 6K)| 95744K->9088K(367104K), 0.0087250 secs]
[Times: user=0.08, sys=0.01, 2l=0.0 secs]

Figure 3: 1n e’ ampl~ of Spark garbage collection (GC) log.

During the exe . +ion of a spark application, JVM monitors memory usage
and outputs its status to <C logs when garbage collection is invoked. GC logs
report two ki «ds ¢. memory usage: heap space and young generation space,
where your g gene. *ion space is a part of heap memory space to store new
objects. “igr e 3 shows an example of Spark JVM GC log, where “Alloca-
tion Fr.iure” iu. okes this GC operation, and “PSYoungGen” shows the usage
of yo. ng gene ation memory space. In “95744K->9080K(111616K)”, the first
n’ .ueric 1s the young space before this GC happens, the second one is the young
shace aft r this GC, and the last one is the total young memory space. Sim-

Harly, *95744K->9088K(367104K)) illustrates heap memory instead of young

120

125

130

135

140

145

generation space.

2.2. Related work

2.2.1. Root causes

There are several categories of the root causes for ‘.e abnorinal perfor-
mances. Ananthanarayanan et al. [11] identify three cav gories f root causes
for Map-Reduce outliers: the key role cause is machir ¢ characteristics (resource
problems), the other two causes are network and da. . skew problem. Ibidun-
moye et al. [12] depict that four root causes may . use bottlenecks, which
are system resource, workload size, platform pro.'~ms, .nd application (buggy
codes). Garbageman et al. [13] analyze around _"-day cloud center data and
summarize that most common root cause 1. ~loud center of abnormal occur-
rence is server resource utilization, an = u.. ~vew problems only take 3% of
total root causes. According to the shove » udies on real world experiment, the
primary root causes of abnormal task. ai. machine resources, which includes
CPU, memory, network, and disk " /0U. w.oreover, the mentioned resource root
causes mainly impact the performance of CPS computation layers. Therefore,
in our paper, we consider “ne only the four main root causes, and ignore data

skew and ineffective cod > prov ~m ..

2.2.2. Existing appr-aci.

Statistical and m. “hine learning techniques are promising approaches in the
root causes ana', . ", and their combination has been widely used in the parallel
computing ar. ~ tc solve performance degradation problem caused by abnormal
executions Ahnorn.ality detection and analysis using this approach can be
categorizew ! rgel’ into online, offline, and combination of online and offline
appro .ches.

Oi."ine de ection: The online detection strategy is invoked during the exe-
c «tions ~f applications. For example, both Spark and Hadoop provide online
“.necula’.on”[9], which is a built-in component for detecting stragglers statis-

v Although it can detect stragglers during runtime, it does not offer the

150

155

160

165

170

175

root causes. In addition, the speculation is often inaccurate, i.e., - msy raise
too many false alarms [14]. Chen et al. [15] propose a tool ca.. 1 Pu., oint
that monitors the execution and uses log traces to identify the au. 5 modules in
J2EE applications via standard data mining approaches. A stre v -based mining
algorithm for online anomalies prediction is presented by su et 2l |16]. Anan-
thanarayanan et al. [11] design a task monitoring tool cal ~d Mar -ti, which can
cut outliers and restart tasks in real time according o its = ~onitoring strategy.
Offline detection: Nevertheless, monitoring data w.ay nc. be always acces-
sible from the user side, due to the fact that the mou. oring tools are hard to
install and tune. Hence, some studies focus or the #-lir 2 strategy by analyzing
logs instead of monitoring [17, 18]. For example, 1. * et al. [19] introduce a pure
off-line state machine tool called SALSA, wi.-h simulates data flows and con-
trol flows in big data systems with stay sticc ~ >thod, and leverages Hadoop’s
historical execution logs. Then, Tar -t al. 20] build up a performance tool to
visualized MapReduce which based on SA.LSA. However, those state machine
based statistical approaches can n.* extract feature by itself. Chen et al. [21]
propose a self-adaptive tool called SAMR, which adds weights for calculating
each task duration accord ig to hi torical data analysis. Xu et al. [22] use an
automatic log parser to - arse sc v e code and combine PCA to detect anomaly,
which is based on the abs ract syntax tree (AST) to analyze source code and
uses machine learni'.g to tra. data. Qi et al. [23] leverage Classification and Re-
gression Tree (CART) v =nalyze straggler root causes by using Spark event logs
and monitorinc dat . (hardware metrics such as CPU status, disk read /write rate
and network sew. " /receive rate) which collected by synchronous sampling tool.
However, sur 7 ppreach is a pure off-line method and only leverage Spark log to
analyze abno. me’ tasks. Furthermore, we prefer using probabilistic output to
deter aine the degree and category of abnormality, rather than considering the
prohlen. ~f ~assifications of positive and negative samples that CART did.
Come ‘nation of online and offline detection: In order to achieve higher ac-
cur. 7 .ne offline strategy can be combined with the online one. Garraghan et

al |1o| propose an empirical approach to extract execution paths for straggler

180

185

190

195

200

205

detection by leveraging an integrated offline and online model. Sc ~e r achine
learning approaches are also leveraged in predicting system faults u. g log and
monitoring data, which are similar to the root cause analysis pro lem. fulpet
al. [24] leverage a sliding window to parse system logs and pre. ~ failures using
SVM. Yadwadkaret al. [25] propose an offline approach th: ¢ work= with resource
usage data collected from the monitoring tool Ganglia [2¢, It lev rages Hidden
Markov Models (HMM), which is a liner machine lea ning ~oroach. Moreover,
there are some off-line approaches that analyze hotu og fi’:s and monitoring
data to identify abnormal events. Aguilera et al. [2/, nropose two statistical
methods to discover causal paths in distributed s, “ten oy analyzing historical
log and monitoring data from the traces of applic. “ions. The most closely re-
lated work to our approach is BigRoots [28|, -hich detects stragglers by Spark
speculation and analyzes the root cau. ~s v tracted features. It leverages
experience rule to extract features fr each ask from application log and moni-
toring data. However, the threshold in 'mai.. speculation is not proper to detect
abnormal tasks. In addition, Bigkc *s cousiders only the features for each indi-
vidual task, which can not canture the status change of the cluster, thus such a
rule-based method is very ! mited. = n our method, we choose the combination of
features to create the fa tors p. > nting the status change of the whole cluster,
and a GRNN techniq' - is "sver ged instead of a rule-based statistical approach

to avoid the limits.

3. Overview of 1 ADRA’s approach

Althour a Svark 'ogs are informative, they lack direct information about
the root « mr: of ibnormal tasks. Thus, simple keyword-based log search is
ineffer .ive for a.agnosing the abnormal tasks, which motivates us to design
an au omatic approach to help users detect abnormal tasks and analyze their
17 ot cavses. An overview of our tool is depicted in Figure 4, which contains
fi e prim .ry components: log prepossessing, feature extraction, abnormal task

'~+action, factor extraction, and root cause analysis.

5.Pa0ot Ca. =
Anc <is

1. Log Prepossessing 3. Abnormal Detection | r
GRN! .. march
\

Abnormal
localization

Raw
Execution
log

Rou. ~use Probability

2. Feature Extraction

Parsing

Feature
Sets

4. Abnormal Fz
Extraction

Structed Spark log
Data sets

X Factor
fats

Figure 4: The workflow ot . *DRA

1. Log prepossessing: Spark log ¢ ~tain: a large amount of information. In
order to extract useful informatic » fo. analysis, we first collect all Spark
logs, including execution logs < ~d JVM GC logs, from the driver node and
all worker nodes. Then = use a parser to eliminate noisy and trivial logs,
and convert them in’» struct red data.

2. Feature extractior. Base. m the Spark scheduling and abnormal task
occurring condi.. ~ns we juantify the data locality feature with a binary
number form . Then, we screen structured logs and select three kinds of
feature datasets: c. ~cution-related, memory-related, and system-related.
Finally, - /e st re them into two numerical matrices: execution log matrix
and CC ma. 7ix.

3. Abr »rm .l de’ :ction: We implement a statistical abnormal detection algo-
r*' m to - vect where and when the abnormal tasks happen based on the

analysis of execution-related feature sets. This detection method deter-

miu, vhe threshold by calculating the standard deviation of task duration

anc use it to detect abnormal tasks in each stage from Spark logs, which

1> mmtroduced in Section 4.

10

225

230

235

240

245

250

4. Abnormal factor extraction: According to our empirical cas * str dy, we
combine special features to synthesize two kinds of factors, the meea . ctor
and the degree factor, which describe the status of each r ode in the whole
cluster. Section 5 introduced these factors used by our rv * :ause analysis
method.

5. Root cause analysis: We propose a General Regre: “ion N ural Network
(GRNN) based approach for our root-cause an .Lysis _ which probability
result can be calculated more accurately thar our previr as statistical work.
Our experiments show that the GRNN-based app. »ach has more accurate
results than existing approaches, which ~re 1. *nd* ced in details in Section

6.

4. Log feature extraction and abn. *m: . . sk detection

4.1. Log feature extraction

When an abnormal task happ.~ 1 .. ally does not cast any warnings or er-
ror messages. As Spark does not directly reveal any information about abnormal
tasks, it is a very challengi- g pro.'em to detect these problems. Our approach
starts from understandirg tu. Spa & scheduling strategy, then extracts features
associated with CPU. mer ory, network, and disk I/O to build a feature ma-
trix, which reflects “ne w.. le cluster’s status. These features can be classified
into three catego wes. ~xecution-related, memory-related, and system-related,
as shown in Ta’ . °

The execu.. ™ celated features are extracted from Spark execution logs, in-
cluding (1° the ID wumber of each task, stage, executor, job, and host, (2)
the duratio. of e ch task, stage, and job, (3) the whole application execution
time, \4) thc timestamp for each event, and (5) data locality. Spark GC logs
repres. °t JV' [memory usage of each executor in workers, from which we can
€ ¢tract . remory-related features such as heap usage, young space usage before
G ™ vor .g space usage after GC. In addition, system related features can be

an . tracted from GC logs, such as real time, system time, and user time.

11

255

260

265

270

Table 1: Extracted features for abnormal task detection

Feature Category Feature Name
Execution related Task ID Job ID Task dv . "»n N

Stage ID Job duration Data “ocalit

Host ID Stage duration Timesta. »

Executor ID Application execu-
tion time

GC time After young GC Afte. 7™ .p GC

Memory related Full GC time Before young GC F _io. > Heap GC

Heap space GC category

System related Real time CPU time User time

4.2. Abnormal task detection

Our abnormal task detection is based ou “he extracted feature sets. In order
to eliminate the false negative proble . . *he Spark speculation’s detection
mentioned in Section 1, a more robuct app. rach is designed to locate where and
when an abnormal case happens, whic™ 1. 'udes the following two steps.

Step-1: Comparing task a. ~aui... on inter-node:

One basic rule for abnormal task ideutification is that the duration of abnor-
mal task is relatively much .onger ‘“an the duration of normal tasks (long tail).
In the existing approach~s fo. ~bn rmal detection, both Hadoop and Spark use

[3

speculation, and [13] v ses “nea~” and “median” to decide the threshold. How-
ever, to seek a mor . reasc 2'.le abnormal detection strategy, we consider not
only the mean ar « me “*an of the task running times, but also the distribution
of the whole te ,ks duration including the standard deviation. In this way, we
can get a mac.. © sareness on the task duration, and then based on the distri-
bution of - ata a more reasonable threshold can be determined to differentiate
the abnormi. fror . the normal ones.

W: comp ve the duration of tasks in the same stage but across different

nodes [nter-~.ode). Let T _task; ;j denote the execution duration of task k in

s.age i ¢ node j. And let avg_stage; denote the average execution time of all

12

275

280

285

290

295

tasks, which run on different nodes in the same stage i.

J KJ
1
avg-stage; = — (Z ZT,taski’j,k) (1)
ST K, i=1k=1
j=1

where J and K are the total node numbers and tota! task nu nbers in node
7, respectively.

To determine a more appropriate threshold, we lc vere ¢ 1 ‘e standard devia-
tion of tasks duration in stage j of all nodes, which "~ denc*~ . by std_stage;, and
A is a threshold parameter used in Spark spectilation, v hich is 1.5 by default.

Thus, abnormal tasks can be determined by . » fou. .ng conditions:

tasky — abnormal T _task: > cva_stuge; + A * std_stage; @)
normal otherwise.

Step-2: Locating abnormal ta. % ..:ppening: After the first step, all
tasks are classified into “normal” « 4 “aunormal”, the time line is labeled as a
vector with binary number (i.e., 0 or 1, which denotes normal and abnormal,
respectively). To smooth t'.e outli s (e.g., 1 appears after many continuous 0)
inside each vector, whiclk coui. he an abrupt change but inconsistent abnormal
case, we empirically s ¢ a <.idin , window with the size of 5 to scan this vector.
If the sum of numl ers ins.- the window is larger than 2, the number in the
center of the win.ow w"! be set to 1, otherwise 0.

The next s'ep @ to locate the start timestamp and end timestamp of the
current abnorn..' task. Note that, since Spark logs record the task finishing
time but r ot t} ¢ start time, we locate the real abnormal task’s start time as the
recorded tas.. fin’ hing time minus its duration. Moreover, to detect abnormal
tasks m each ‘tage, we classify tasks into two sets. One set includes the initial
tasks whnee Start timestamp are the beginning of each stage, as these tasks
¢ tten ha = more overhead (such as loading code and Java jar packages), and
the - mer ally last much longer than the following tasks. The other set consists of

th . 1cnaining tasks. Our experiments show that this classification inside each

13

300

305

310

315

320

stage can lead to a much accurate abnormal threshold. In this way, ¢ ab ormal
detection method can not only detect whether abnormal tasks hap, “n, bu. also
locate where and when they happen.

Figure 5 shows abnormal detection process in our expe. v :nt for Spark
WordCount under CPU interference. Figure 5 (a) and (b’ are tvo stages inside
the whole application. Moreover, inside each of the sta_e, pur e dot-line is
the abnormal threshold determined by Eq. (1), and ‘ae bl- * dot-line indicates
the threshold calculated by Spark speculation. For «u tas! s within a certain
stage, the duration longer than the threshold are deter.. ‘ned as abnormal tasks;
otherwise, they are normal. Figure 5 (c) shows “e e ecution-related feature
visualization in the whole execution time. 5 (d) . -es memory-related feature
to display memory occupation along the exec. “ion of its corresponding working
stages.

As we mentioned before, the dat <kew ~roblem is not within our four con-
sidered root causes. Therefore, in the rcal a. alysis, those abnormal tasks caused
by data skew should be eliminatea . ~ a noise. Data skew tasks can be easily de-
tected by checking data localitv features (i.e., target data is not on the current

node) combined with task turatior features from execution logs.

5. Factor extractic ' fo' ror ¢-cause analysis

To look for the ¢ * causes of abnormal tasks, we introduce abnormal factors,
which are the ¢ ~thesis of features based on the empirical study on the 22
features in S; ark .og matrix and GC matrix. Those factors are normalized
features th .t prese. status change of the whole cluster, not only for assessing
individua. ~o apor onts, such as task and stage, but also a series of abnormal
tasks. wnich may be generated by continuous interference affecting the cluster.

In normal cases, each factor should be close to 1; otherwise, it implies an
2’ ,normal case. In our factors’ definition, j denotes the jth node, J presents a
s * of nor es; i indicates the index of stage, I is a set of stages; k denotes a task,

™ e a task set; n stands for a GC record, N is a GC record set. All factors

14

=== * == |ADRA === * === culatic J

7 250 = ‘
~nodel| © [~ nodel|
£ N ~node2| E
H |~ node3|
5 i -~ node4| 5
=1 o nodeS{ =2
e ! ~nodes| ©
3 3
hel ©
@ @
© o ©
8 ; 8
149 1) 151 152 153 1. N 1 1.5405 1.541 15415] 1542
) 2
= \ a)) x10 N > . o)) x10
g\ stage duration (ms) N stage duration (ms)
~ 10° N
o ? L T vooel |
RN NN -—$§z
= e S % == n0de3.
c \ - i ~ -o-mta
Sy —= et N = oles
2 . L Vo N |- rgces
e o N
3 \ - h N /
e Y R
5 . = SN /
O % s s 1t 1sE 1. 1% B t-ma
-~ e
_ job du. “tion(11s)
o)
2 x0
e — todel]
o e -
54 f !
[}
S y /
fenl
5] [
§1 []
f
el L 7
O 15 . 5 S im iem 1% 1% 1% T

x10°

) -
~ ication execution time (Ms)

Figure 5: Abnorr ' detection under CPU interference in the experiment of WordCount:
(a) Abnormal d cecti- a result in Stage-1. (b) Abnormal detection result in Stage-2. (c)
Execution-relrted 1. *ure visualization for abnormal detection in the whole execution. (d)

Memory-rel' ced f ature visualization for abnormal detection in the whole execution.

15

25 used to determine root causes are listed as below.

Degree of Abnormal Ratio (DAR) describes the degree 0. ‘mbau. 1ced
scheduling of victim nodes, due to the fact that the victim nor es v i1l be sched-
uled with fewer tasks than other normal nodes. For example, a. ~} own in Figure
6, CPU interference can cause fewer tasks (red dots) to be schediled at a victim

s0 node (nodel) than normal nodes. Eq. (3) illustrates th degre of abnormal
ratio in a certain stage. Therefore, the factor DAR 7 nplie- *hat the number of

tasks in intra-node on a certain stage can be used fo1 abnor aal detection.

- I=l N) _
DAR = i (3)

where k; denotes the number of tasks on noa. 4, and J is the total number of

nodes in the cluster. Here, we assume t. at 1 . j' is abnormal.

5 — . — LA RA ~-— Speculation «::ceeer 75%
x 10

2.5 T
--nodel
A --node2
2 7 Y --node3
E s i - node4
= 18 S/ \ node5
s ¢ v node6
= N
©
g 1k \ -
-z
(%]
2 0.5F .
0O 500

Stage Duration (s)

Figure 6: Tas. lura’ on variation in CPU interference injected after Sorting application has

been s omitted for 60s, and continuously impacts for 120s.

335 Tegi.. of Abnormal Duration (DAD) is used to measure the average

16

340

345

task duration, as the abnormal nodes often record longer task dur: ion

avg-node;

DAD = . (4)

5 ((Zl avg_node;)—avg-node;:)
J:

where avg_node; is defined as:

K.
1 J

avg_node; = F(Z T task;) (5)
J k=1

Degree of CPU Occupation (DCO) describe. “he degree of CPU occu-
pation by calculating the ratio between the wa.. ~lock *.me and the real CPU
time. In the normal multiple-core environment, “realTime” is often less than
“sysTime+userTime”, because GC is usuain, invoked in a multi-threading way.
However, if the “realTime” is bigger the . © ~Time+userTime”, it may indicate
that the system is quite busy due tc CPU i disk I/O contentions. We choose

a max value across nodes as the final [cue ™

realTime; ;

DCO = mazx(avg(— | _
jeg sysit.me; ; + userTime;

(6)

Memory Change Sy zed (M CS) indicates the speed of memory usage
change according to G curv. Jue to the fact that under CPU, memory,
and disk I/0O interfere -ce, ne v ctim node’s GC curve will vary slower than the
normal nodes’ GC ¢ urve, as ".own in Figure 7. start, and stable, are the points
of the start posi.ion (. = corresponding memory usage at abnormal starting
time) and the stal e memory usage position, respectively. start, and stable,
are the start a.. ' end positions of abnormal memory, respectively, which are
obtained I y an .lyzing logs introduced before. The intuition is that the interfered
node gradua.._ - 11s s less memory than normal nodes under interference, as shown
in Fig 1re 7. L. »nce, we use the area under GC curve a in the whole cluster (start,

of norn. ' n~ Le) to calculate this factor, as shown in Eq. (7).

table,
fsstaarte f(ﬂ?a)d.’[}a

MCS = stabley,
fstart f(xb)dxb

17

350

355

360

f normal/nod

2 p— C of abnormal node 1

Memory Usage (kb))

0 50 100 1£° 27y 250
Application Execution Tin. (s)

Figure 7: Memory usage variation in CPU interference .. ‘~cted after WordCount application

has been submitted for 20s, and continuously 1. ‘pac s 1u. 120s.

Abnormal Recovery Speed (- K.} measures the speed of abnormal
task’s recovery. Since one Spark “ode o.ten accesses data from other nodes,
it can leads to network interference propagation. It is both inter-node and
intra-node problem. We ce 1 detec. network interference happening inside clus-
ter, as shown in Figure &, whi ™ is che location of our detected interference and
shows that task dura on vill ".e affected by delayed data transmission. We
leverage Eq. (8) te calcule - this factor, where abn_prob; indicates the ratio
of the abnormals chat - detect for each node j inside that area. The reason
that we use th pr. duct of abnormal ratio other than the sum of them is that
only when all .. < es are with a portion of abnormal, we identify them with a
potential f ne work interference; if their sum is used, we cannot detect this
joint probaw. ‘ty. Meanwhile, the exponential is to make sure this factor is no
less t .an 1. ."ence, the phenomenon of error propagation will be detected and

quanti. 1 h+ calculating this factor.

J
ARS = exp(J * H abn_prob;) (8)

Jj=1

18

365

370

375

. r= =1
4 | —-— LADRA — - — Speculation «-----e 75% 1 Abnormal area
x 10 P e ! |

AT
: i/; J\; I
1 ‘l': i :
! VAR I
- 10~ FARN i T S B
1S ! Sl }
= |7 il
c 1 ¢ 3,';! 0 : :
o 1 S 'f." , :
= ! TRvalrar Bt | :
© 1 [Nt :
5 g oo ‘f,}‘lt',,L I S R i |
2RIy I8 A |
4) | ¥ 1 H
£ _fﬂf\:lLlll_«‘_:" H:_:_______ ______ - =g
ot LY. o ey | (—— —_- f—
N iy \l!‘, | "H_"p,l P PP A S —— s
{ Hy o S o S RUv APV <<
Wi T .
](.)00 200 300 400 5C) 600

Stage Duration | .\

Figure 8: Task duration variation in Network interferenc. ‘njected after WordCount has been

executed for 100s, and continuously impacts fo. 160 .

Degree of Memory Change (. W ™) describes how much of memory
usage changed during the executic. 1n cach node. In fact, when network band-
width is limited, or the network speed slows down, the victim node gets affected
by that interference, and te .ks will vait for their data transformation from other
nodes. Hence, the tasks will . ns or work very slowly, and data transfer rate
becomes low, as show 1 in figve 9. We leverage Eq. (9) to find the longest
horizontal line that presenu. *.ie conditions under which tasks’ progress become
tardy (e.g., CPU .s rew “ively idle and memory remains the same). In Eq. (9),
m;, indicates .he gradient of memory changing in the nth task on node j.
First, the max - e of gradient is calculated for each GC point, denoted as
m. Secor , w make a trade-off between its gradient and the corresponding
horizontal 1c. ~th .o identify the longest horizontal line in each node. Then, to
deter 1ine a . lative value that presents the degree of abnormal out of normal,
we fina v coapare the max and min among nodes with their max “horizontal

fictor” (~IMinlx (25, —xj,-1)), where e is to ensure that the whole factor of

19

380

385

b not less than 1.

~Nminl g (20 — s
mag{magle”!" " # (0 — Tjn-1)]}

DMC = i Tmazle 5T | N
minymaxje "anl x (X, — Tinpn—_1) *
jeJ “neN J,m Jn—1L1/.

Yjin—Yjn—1

where my, = ot

6 ’7 — CPUidle tn.
x 10 CPUidle t |

6 . — 3

Sy - :
|
|
|
I
|

Memory Usage (kb)

i |
% 100 200 300 400
Application L ~c.'~n Time (s)

Figure 9: Memory usage variati .n in Net ork interference injected after WordCount has been

executed for 30s, and continrousi, mpa ¢s for 160s.

Degree of Loadi. ~ T elar (DLD) measures how much difference of load-
ing duration on cl- ster noacs. Note that the initial task at the beginning of
each stage always has a igher overhead to load data compared with the rest
tasks. Similar ,o tf : factor DMC, instead of taking all tasks inside the detected
stage into c nsiac ~tion, here, the first task of each node is used to replace the
“avg_nod ;”.

Inst~~d ot .~'.ing all the tasks inside the detected stage into consideration,
here, -he first task of each node is used to replace the “avg_node;” in Eq. (4).

Fe- -ally, l.¢ equation is modified as Eq. (10) shows.

T_taski,j/’l

avg(T task; j1)
JjeJ

DLD = where, j' ¢ J (10)

20

390

395

400

405

410

415

6. Root cause analysis

6.1. Statistical rule based approach

We propose a statistical rule based approach for root causs ana’ ssis extended
from [10]. As shown in Table 2, each root cause is determir . by a . >mbination
of factors with specific weights.

The nodes with CPU interference often have a rel- ..vely iower computation
capacity, which leads to less tasks allocated and long = xecu ion time for tasks
on it. Factors DAR and DAD are used to test whet.. ~ the interference is CPU
or not, because CPU interference can reduce the ~umber of scheduled tasks and
increase the abnormal tasks’ execution time. Fa. *or DCO indicates the degree
of CPU occupation, and CPU interference ill slow down of the performance
compared to normal cases. Factor MC'™ *~ nsed 0 measure memory changing
rate, because CPU interference may lead n. > nory change, thus the nodes become
slow than other regular nodes.

For the network-related inte.. “rc...” -ecause of its propagation, the nodes
interfered earlier will often recover earlicr, too. So our approach is to detect the
first recovered node as the “aitial . stwork-interfered node, and the degree ARS
quantitatively describes the terf rence. When network interference occurs,
tasks are usually waiti .g fc = data delivery (factor DMC).

' ir ,erference, when memory interference is injected

For the memory .elavc
into the cluster, ~ e « n even detect a relatively lower CPU usage than other
normal nodes. “. sidering this, the task numbers (factor DAR) and task du-
ration (factor MA7/) are also added to determine such root causes with certain
weights. M orecer, e memory interference will impact memory usage, and the
factor MC.. - 1oul . be considered for this root cause detection.

Tec deterr ine disk-related interference, we introduce the factor DLD to mea-
sure t. ~ degr ¢ of disk interference. The task set scheduled at the beginning of
e «ch ste e could be affected by disk I/O. Therefore, these initial tasks on disk

I, O inte’ ered nodes behave differently from other nodes’ initial tasks beginning

ve. "~ factor DLD), CPU will become busy, and memory usage is different from

21

420

430

Table 2: Related factors for each root cause
Factor | CPU | Mem | Network | Disk
DAR VA v
DAD | v | J
DCO Vv Vv
Mes | v | Vv
ARS W, N
DMC v \
DLD 7\/J

other nodes’. Therefore, the memory changing rate (. ctor MCS) and CPU
Occupation (factor DCO) are also used to de ~rmu. - .ch root causes.

After deciding the combination of factore fo= ~~ ", root cause, we give them
weights to determine root causes accurately as .”~ (11) shows. Here, all weights
are between 0 and 1, and the sum of th m ’or cach root cause is 1. To decide
the values of weights, we use class .. ! lin - regression on training sets that
we obtained from experiments. Eq. 12) is proposed to calculate the final

probability that the abnormal belong -~ to each of the root causes.

CPU =03*xD2AR+03 DAD+02xDCO+0.2+«MCS
Memory = 0.25. D 1R+ 0.25%« DAD 4+ 0.5« MCS

(11)
Netwo <« = 3. 1% DAD +0.4%x ARS + 0.5« DMC
Dik=0.. DCO+02xMCS+0.6*DLD
bability = 1 — ! (12)
probability = Factor

To sum np, " ~ statistical rule based approach offers a reasonable result to
explain it roc cavses probabilities. However it can not give a satisfied result
with higher | ~ciion for its classifying. Since the relationship between factors
is not simply ‘nearly correlated, and we also changed old factor MCR to a new
factor n2.7'9 ,ith AUC calculation instead of gradients calculation and add it to
cur facte sets. From this point, a GRNN-based approach is proposed for root
caw. -~ .alysis to consider non-linearly correlated relationship of new factor set,

ar 4 avoid human ad-hoc choosing and classification.

22

435

440

6.2. GRNN approach

In this paper, we propose a new neural network based model to au. ~mat.cally
calculate the probability of each root cause. We use a one-pa‘ s tri * ‘ng neural

network, GRNN, to create a smooth transition and more accui. 2 results.

Factors Input Pattern ' summation Outpu. | Probability
Layer Layer Layer iy Result
2
- ! — PT(CPU)
Xq — Q‘ <
A‘ < P PT(memory)
Xp ~ ‘
/ f — PT(network)
X¢ n3 P3
L[] L[]
L[]
. . DT
. . : PT(disk 10)
Xg — . r — P"(normal)

Figure 10: The arch’ ectv-e of cur GRNN-based model for root-cause analysis.

GRNN is a simr .e and ¢.” cient network with fast computing speed, because
GRNNs transfer .unctic = (pattern layer) is a kind of Gaussian function, and it
could achieve ")cal approximation with fast speed without any back propaga-
tion training opc -tions. As due to the fact that classical neural networks, espe-
cially deer neuv al networks, require much more efforts to tune hyper-parameters,
which has be. » v oved to be not proper to fit small datasets, just like our Spark
log. ~lence, v = choose GRNN in our design. Thanks to its flexible structure,
which ¢~ = comatically set the number of nerve cells in the pattern layer. In
1 rief, the BP (Back Propagation) based deep learning algorithms may be vul-
ner. '~ Lo the over-fitting problem especially when the dataset is small, which is

ju ¢ vue characteristic of our dataset. Traditional data fitting algorithms usually

23

450

455

460

465

470

475

assumes that the data obey a certain distribution in advance, whic! can Jdrasti-
cally affect the final result. As a non-parameter neural network m. el fo. Jata
fitting, with its high efficiency and accuracy, GRNN is fully c¢ pai le of aealing
with our current problem. In addition, the experimental res. 't. demonstrate
the effectiveness of GRNN compared with other attempt: we hae tried.

As a non-parameter neural network model for data Stting. with its high
efficiency and accuracy, GRNN is fully capable of deali- ~ with our current
problem. In addition, the experimental results demuustrat : the effectiveness
of GRNN compared with other attempts we have tri. 1. A representation of
the GRNN architecture for our implementation .“ roe’ cause identification is
shown in Figure 10. Our model consists of four ‘~vers: input layer, pattern
layer, summation layer, and output layer. Ac.~rding to our data structure, the
input layer consists of 7 neurons, which . aiw. .. the dimension of our extracted
input feature vector (zq,zs...24). T ~ pat. tn layer is a fully connected layer,
which consists of neurons with the sa.e vze as input data, and followed by
the summation layer. At the end, .. » ouvput layer of GRNN gives a prediction
result on the probability for each root cause. We use softmax function to convert
the output into a normaliz :d one t. r more intuitive comparison.

The transfer functio. F; m. ~ .tern layer is defined in (13), X denotes the
input data, o represe’ ts 2, a s a0oth parameter, which is set to 0.5 according
to our experimenta’ attemp. . The hyper-parameter of o is used to control the
smoothness of the mou.' When the value is relatively large, it is equivalent
to increasing t.ie v wriance in the Gaussian density distribution, which makes
the transition b veen different categories smoother. While the problem is that
the classif cati- o boundary will be blurred. Conversely, when a smaller value is
assigned to t.. " b per-parameter, the ability to fit real data of the model will be
stron er but 1 e generalization turns out to be relatively weak. In the following,
summa, -~ 'Lyer is added, which contains two kinds of neurons: S-summation
1euron (') and D-summation neuron (SD), as defined in (14), respectively.
SL -~ ons are used to calculate the arithmetic summation of pattern layer’s

o1 .puc. The remaining S neurons weight summation for the output of pattern

24

480

485

490

495

layer. The i denotes ith number of input data, j denotes the jth ¢ mer sion of
output, and S; denotes the 4" S neuron output. Then, the w de. ~tes v ight
in hidden layer. The label (output layer) here is a 5-dimensic 1 0. e-hot vector
with one indicating normal log and the rest four are injectio.. y indicates y;
indicates the j** output item the output as defined in (17). Due to probability

representation of root cause, after the output layer of GR.™N, we .dd a softmax

layer to convert the sum of 5-dimensional output to e 1.

(—(X - Xi)T(X - Xj)

552), where X = Xa, Xp...Xg] T (13)
o

F; =exp

SD=3%",(F). wh ~i=1:n

Summations (14)
S; =31 (wi;F;), where j =1,2,3,4,5
where n is equal to input data set si. ~.
S; ;
y; = S—[.When j=1,2,3,4,5 (15)

To sum up, GRNN can select a dow. mant weight for each of our factors, and

provide the root cause prob .o, results with high accuracy.

7. Experiments

We evaluate L/ DRA o. four widely used benchmarks and focus on the
following two quustions. (1) Can the abnormal tasks be detected? (2) What
accuracy can AL RA’s root cause analysis achieve? In the experiment, we
conduct a series . interference injections to simulate various scenarios that lead

to abnorr al t7 sks.

7.1. Setup

Clu ~ters We set up an Apache Spark standalone cluster with one master
1 ode (la. eled by m1) and six slave nodes (labeled by n1,n2,n3,n4,n5n6) based
on *mar on EC2 cloud resource. Each node is configured with type of “r3.xlarge”

(z . +.-tual cores and 30GB of memory) and Ubuntu 16.04.9. We conduct a

25

505

510

515

520

bunch of experiments atop of Apache Spark 2.2.0 with JDK 1.8.0, S la-".11.11,
and Hadoop-2.7.4 packages. Given that an AWS instance is configu, 1 wit.. ©BS
by default, it is difficult for us to inject disk I/O interference. "ten e we set up

a 90G ephemeral disk for each instance and deploy a HDFS v ' ore data.

Table 3: Benchmark resource intensity

CPU | Memory | Disk I/O ‘ Ne. -ork |

WordCount Vv v #7 |

Sorting YV v v

K-Means Va ‘ Vv]
PageRank v v ‘

Workload: In fact, some Spark applications 1. ~v consume resources more
intensively. According to previous studies on . ~ark performance [29], we choose
four benchmarks built on Hibench [30] nu ... real-world CPS application in
our experiments: WordCount, Sort" <, Pa_eRank, K-means, which cover the
domain of statistical batch applicatior. mecchine learning program, and itera-
tive application. WordCount and . ~ting are one-pass programs, K-means and
PageRank are iterative programs. We characterize the benchmarks by resource
intensive type and progra a type -or underpinning our approach’s scalability.
The resource intensity ¢~ each . ~ chmark is shown in Table 3. The character-

istics of four benchme ks r e lic ved as follows.

e WordCount = a one-pass program for counting how many times a word
appears. We leveraze RandomTextWriter in Hibench to generate 80G
datasets as ¢ ar workload and store it in HDFS. It is CPU-bound and

disk-F bund « +ing map stage, then network-bound during reduce stage.

e Sorti.. ~ 18 8’50 a one-pass program that encounters heavy shuffle. The
‘aput ata is generated by RandomTextWriter in Hibench. Sorting is
Jisk-bo’ nd in sampling stage and CPU-bound in map stage, and its reduce

st: 7e is network-bound.

7 ineans is an iterative clustering machine learning algorithm.The work-

10ad is generated by the k-means generator in Hibench, and is composed

26

525

530

535

540

550

of 80 million points and 12 columns (dimensions). It is CPTU hov .d and

network-bound during map stage.

e PageRank is an iterative ranking algorithm for graph cc aput ag. ™n order
to analyze root causes of abnormal tasks with PageRank, w. 1se Hibench
PageRank as the testing workload, and generate ei hty tho sand vertices
by Hibench’s generator as input datasets. It is C"PU-. -~ . in each itera-

tion’s map stage, and network bound in each : adv ¢ st ge.

A CPS K-means is a real-world CPS applicati. ~ in c1vil engineering that
we developed before. The workload data “ze is 1, GB and collected by
sensors installed at a classroom building. .™ase sensors measure real time
temperature and humidity from eacl: 'assroom. The collected data set is
leveraged for detecting outlier te ~~rature and humidity. To solve this
real-world problem with effective ap, - vaches, we implemented a K-means
algorithm on Spark for pre-clus.~ri. ~ and grouping sensor data into sub-

clusters and decide the out. ~o.

7.2. LADRA interference fr "ork

In order to induce abne. mal ta ks in the real execution for experiment, we
design an interference .ran :work that can inject four major resource (CPU,
memory, disk I/O, rna . »twe k) interference to mimic various abnormal sce-
narios. In order tc ». "vlify experiment, we apply all interference injection tech-
niques only on » “e nl for all test cases. In addition, for each injection, it will
be launched ¢ in | a time interval of 10 seconds and 60 seconds after the first
spark job is mitiatew., and continue for 120 seconds to 300 seconds. Finally, when
a test cas. s yver we recover all involved computing nodes to normal state by
termir ating all .nterference injections. Specifically, the following interference

inject. s are 1sed in our experiments:

o CT 7 interference: CPU Hog is simulated via spawning a bunch of pro-

_-ses at the same time to compete with Apache Spark processes. This

27

555

560

565

570

575

580

injection causes CPU resource contention in consequence of 1" nmite . CPU

resource.

e Memory interference: Memory resource scarcity is simul .ted - 1a . “nning a
program that requests a significant amount of memorv in a ¢ ~tain time to
compete with Apache Spark jobs, then we hold on ' his cert. in of memory
space for a while. Thus, Garbage Collection will he 1. >~ _itly invoked to

reclaim free space.

e Disk interference: Disk Hog (contention) is simu.’~ted via leveraging “dd”
command to continuously read data and wi. ~ ther back to the ephemeral
disk to compete with Apache Spark jobs. 1. ‘mpacts both write and read
speed. After the interference is donc, we clear the generated files and

system cache space.

e Network interference: Network - ~mari is simulated when network latency
has a great impact on Spark. Sped‘fically, we use “tc” command to limit
bandwidth between two compu ‘ng nodes with specific duration. In this

way, the data transmis~" - rate will be slowed down for a while.

7.8. Abnormal task dete-tion

To evaluate LARL 1, w cor pare LADRA’s detection with the Spark specu-
lation. Each benchr iark is €. cuted 50 times without any interference injection,
and 50 times unuer the ~ircumstances of abnormal tasks. After that, we cal-
culate the Trv : Pc itive Rate (TPR) and False Positive Rate (FPR) results by
counting the co. ct rate of each job classification as shown in Eq. (16) and

Eq. (17). "’he omnarison result is shown in Table 4.

A abuila in straggler detector, Spark speculation brings False Positive (FP)
and Tro N gative (TN) problems in abnormal task detection. We compare
I ADRA vith Spark speculation in details. For instance, Figure 11 shows one
stag 7 a normal K-means execution, x-axis and y-axis present stage duration

ar Jd task duration, respectively, and no abnormal tasks are detected by LADRA

28

Table 4: LADRA’s abnormal task detection compares with Spark specula. ~n’s approach in

four intensive benchmarks, where TPR = True Positive Rate, FPR = False Positive Rate.

LADRA Spark veculatic 1
Abnormal tasks detection —y—
TPR | FPR | TP™ [7.
WordCount 096 | 006 | 94 8
Sorting 096 | 016 ' 096 | 07
K-Means 07 | o1 | oo | o7
CPS K-Means 0.7 0.1 0.2 0.7
PageRank 0.6 0.0.7 U.y 0.48
. — —_ lation ceeeeeee %
X 104 L LADRA Speculation 75%
3.5 : » » »
~nodel=- -~ A T e g e
_ al=node2 __ __ _ ,.,fg,;‘ﬁ FETTTTTN
2 ~node3| 4~~~ o Tl
= 2_5,+node4!) N _ b]
S node5 S Eoar
B ol node6 (Y)
5 | Ny H 'f AN JE R -
o | ‘\ ‘ﬂ‘ ’; ',",
_‘E 15 : I“:‘ AR
" y AP N P
| i a
‘ b

0 e 4L
5.5, 5372 5.374 5.376 5.378 5.38 5.382 5.384
Stage Duration (ms) x 10

Fig -~ ".: Abnormal task detection for K-means without interference injection.

29

590

595

Table 5: Root cause analysis result of LADRA’s GRNN approach, TPR = True r. ** ve Rate,

P = Precision

WordCount Sorting K-Means CPS K-Me* .» Pag crank
GRNN
TPR P TPR P TPR P TPR P ‘ Tt P
T
CPU 1.000 | 1.000 | 1.000 | 0.940 | 0.857 | 0.835 | 0.866 ‘ 0.837 | 1951 | 0.826

Disk I/O 0.450 0.420 0.679 0.894 | 0.423 0.692 0.5¢ . 0.666 0.540 0.847

Network 1.000 0.955 1.000 0.853 0.679 0.730 0.700 | n7Ee 0.688 0.564
T

Normal 0.919 0.837 | 0.965 0.924 | 0.733 0.686 0.737 N.632 0.602 0.640

(purple higher horizontal dash dotted line). However, . ark speculation (black
lower horizontal dash dotted line) detects stre~eler. ‘ar- a above the speculation
line and beside red dotted vertical line) after 75." tasks (red dotted vertical
line) finish. In this way, Spark speculation m.. - delay the normal execution, as
it will reschedule the stragglers to other xec' v..s. Moreover, Spark speculation
will cause true negative problems a: hown ‘n Figure 6, because it only checks
the 25% slowest tasks. As shown in Ta le «, LADRA has a better accuracy in
abnormal task detection than Spai.. speculation for all benchmarks. However,
LADRA has lower accuracy ~» K-Means and PageRank than WordCount and
Sorting. We find that und r norme' execution, most tasks in the map stage or
sampling stage of K-Me .ns anu ™ .geRank have an unexpected longer duration,
because these benchm. ks aave many iteration stages, and tasks in those stages
have data skew anc cross-rac’. traffic fetching problems. LADRA cannot detect
data skew problem wit..'» normal detection results. Too many such kinds of

tasks with une pec ed duration will cause LADRA to report false positives.

TP

TPR= 7P s Fi) (16)
FP

FPR = s (17)

30

600

605

610

615

620

7.4. LADRA’s root cause analysis result

To test the accuracy of LADRA’s GRNN approach for root cauw. ~ ana.ysis,
we use cross validation strategy with 1/3 for test data and 2,3 f - *rain data
each time. Data in normal cases is also used in our training .. mproving the
accuracy. In order to demonstrate the effectiveness of our appro. “h, we run the
GRNN 100 times and get the final accuracy result. We c.'~ulat- the Precision
(P) and True Positive Rate (TPR) for each detected 10t ¢ .w. = type by Eq. (18)
and Eq. (16).

TP

P=_——""_ _ 1
(TP+Fr, (18)

We abandon memory root cause analy - .1 vur experiments for three rea-
sons. First, injecting significant memorv interfe.. nce into one node may cause
the whole application to crash, as executc s of Spark will fail if without enough
memory. For instance, injected men.w, inturference in PageRank benchmark
not only causes Out-of-Memory "~ M) "ilures, but also makes executor keep
quitting (executors are continuously 1. *tarted and fail). Secondly, memory in-
terference does not work fo' now memory-intensive benchmarks. For instance,
WordCount is not a memo., intens ve program, and it will not evoke abnormal
tasks, even injecting sir aific .t memory interference. Thirdly, memory interfer-
ence could also consme ‘PU resources, and may mislead GRNN’s classifying.

Table 5 summs ... ~s the total P and TPR results of LADRA’s root cause anal-
ysis for four ber “marks. There are two issues to be noted. (1) LADRA has
the highest C" U & .alysis precision (1.000 in CPU root cause analysis for Word-
Count) an’ higher etwork analysis precision (0.9545 in network root cause
analysis 1. - V ord/ ount) results than disk I/O (0.4200 in disk I/O root cause
analys s ror WoruCount) for three reasons. First, all four benchmarks are CPU-
intens ve, anc require large CPU resource for computing (map and sampling
s’ ages), and network resource to transfer data (reduce stages). Secondly, ab-
n rmal t sks have longer duration after CPU interference is injected, and the

“~nact of network injection is significant (CPU stays idle). Thus, the synthe-

31

630

635

640

645

650

655

sized factors demonstrate their effectiveness. Thirdly, as disk hog ic ‘nje ¢ed by
leveraging a bunch of processes to read and write disk, it consumes . ~t on., disk
I/0 but also a certain of CPU resources. Therefore, disk I/O i jec inus may be
wrongly classified into other root causes (e.g., CPU, network, ~ normal). (2)
As shown by Table 5, LADRA is more precise on one-y iss be~chmarks than
iterative benchmarks, such as K-means and PageRank. The TF R of k-means
and PageRank’s disk I/O is lower than the other twc oenc* ~arks. It is because
that PageRank and k-means are not disk I/O-intensive vench narks, if the inter-
mediate data is small enough to be caught in memory, .. will not use disk space.
Therefore, the disk interference does not impect tv mu- a for these benchmarks
that have small size intermediate data. Moreover, -rong classification of other
root causes in k-means and PageRank also ini, ~cts LADRA’s normal root cause
classification, it causes more FP proble ms, .. " 3s TP. So the normal cases in
k-means and PageRank also have 1+ wer pi1 cision and TPR. To compare with
the same approach with different data =ize in different domains, two K-means
experiments are performed on owr “AbUnA. One uses a generated dataset by
Hibench [30], and the other nses the dataset produced by a real-world CPS
application. We keep all t} ¢ hyper »arameter setting to be identical. Theoreti-
cally, due to the worklos 1 data 'i- ¢ribution is different, the Spark platform will
give a weakly differer bu’ sim’.ar result since data itself is not a critical role,
as shown in our exr erimenu.

To sum up, L/.DRA . ~n analyze root causes via Spark log with high precision
and TPR for ¢ «e-p ss applications. However, there may be a few of limitations
for LADRA to « alyze root causes by only using Spark logs. Although Spark
logs conte n fv 1 information, but not so rich as monitoring data.

It micht . ~ r)t possible to analyze all kinds of root causes by only lever-
aging log file. Some root causes such as code failures, resource usages, and
networs “- ces; may rely on monitoring tools. LADRA’s goal is to mine useful
iformat. n and leverage limited log information to analyze resource root causes

pl

Wi, extra overhead.

32

660

665

670

675

680

8. Conclusions and future work

This paper presents LADRA, an off-line log-based root cav<~ ana. <is tool
to accurately detect abnormal tasks for big data platforms.LA OR/ ca.. identify
abnormal tasks by analyzing extracted features from Spark Tngs, . hich is more
accurate than Spark’s speculation-based straggler detec ion met od. In addi-
tion, LADRA 1is capable of analyzing the root causes ~~ecis.’, .sing a GRNN-

based method without additional monitoring. The >xr cim: ntal results using

1 ap,.vach can accurately

realistic benchmarks demonstrate that the propos.
locate abnormalities and report their root caus = Accor ing to our experiment
results, we can effectively detect the resource a. ~ormai and analyze root causes
in Spark applications.

For the future work, we will consider more co.. plex scenarios, such as multi-
ple interferences happening in parallel, t¢ v ake our framework more robust for

root cause analysis.

Acknowledgement: This - ww - supported in part by NSF-1836881.

References

[1] J. Dean, S. Ghem: wat, 1."~ reduce: simplified data processing on large

clusters, Commu 'cat'ons { the ACM 51 (1) (2008) 107-113.
[2] Apache Spar} . ~bsite, http://Spark.apache.org/.
[3] Apache H .doc » website, http://hadoop.apache.org)/.

[4] M. Za} aria, v. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Frar ‘lin S. Caenker, I. Stoica, Resilient distributed datasets: A fault-
te'soant av. .raction for in-memory cluster computing, in: NSDI, USENIX

£ ssociati n, 2012.

5] H. "hang, H. Huang, L. Wang, Mrapid: An efficient short job optimizer
on ' adoop, in: Parallel and Distributed Processing Symposium (IPDPS),
2917 IEEE International, IEEE, 2017, pp. 459-468.

33

685

690

695

700

705

[6]

[10]

[13]

L. Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant, J. L. Rar At micity
and provenance support for pipelined scientific workflows, Fu. -re G era-

tion Computer Systems 25 (5) (2009) 568-576.

V. Subramanian, L. Wang, E.-J. Lee, P. Chen, Rapid nroc. ~sing of syn-
thetic seismograms using windows azure cloud, in: 7 he 2nd “EE Interna-
tional Conference on Cloud Computing Technologv ana =~ .ce (CloudCom

2010), IEEE, 2010.

V. Subramanian, H. Ma, L. Wang, E.-J. Lee, k. “hen, Rapid 3d seismic
source inversion using windows azure and a. ~zon :c2, in: Proceedings of

the 2011 IEEE World Congress on Services, . "EE, 2011.

M. Zaharia, A. Konwinski, A. D. Joseph, 1. H. Katz, I. Stoica, Improving
mapreduce performance in heteroge ~ec as environments, in: Osdi, Vol. 8,

2008, p. 7.

S. Lu, B. Rao, X. Wei, B. . x, o. Vang, L. Wang, Log-based abnormal
task detection and root cause analysis for spark, in: Web Services (ICWS),

2017 IEEE Internatior al Con ~rence on, IEEE, 2017, pp. 389-396.

G. Ananthanaraye an. S. ."andula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, E. Har.. ".eini.g in the outliers in map-reduce clusters using

mantri, in: OF Y, Vol. 19, 2010, p. 24.

O. Ibidur .. e, F. Hernidndez-Rodriguez, E. Elmroth, Performance
anomaly . ~te tion and bottleneck identification, ACM Computing Surveys

(CSU™.) 49 (1) (2015) 4.

P. C'arrag’ » +, X. Ouyang, R. Yang, D. McKee, J. Xu, Straggler root-cause
¢ nd impe >t analysis for massive-scale virtualized cloud datacenters, IEEE

Tra.. _.ons on Services Computing.

H. ayathilaka, C. Krintz, R. Wolski, Performance monitoring and root

cause analysis for cloud-hosted web applications, in: Proceedings of the

34

710

715

720

725

730

735

[15]

[16]

26th International Conference on World Wide Web, Internat ~nal World
Wide Web Conferences Steering Committee, 2017, pp. 469—4, "

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer, ¥ mpc at. "roblem
determination in large, dynamic internet services, in: Depen ~ble Systems
and Networks, 2002. DSN 2002. Proceedings. Intern tional « onference on,
IEEE, 2002, pp. 595-604.

X. Gu, H. Wang, Online anomaly prediction for . oust /.uster systems, in:
Data Engineering, 2009. ICDE’09. IEEE 25th Iniw. national Conference on,
IEEE, 2009, pp. 1000-1011.

A. Oliner, J. Stearley, What superco~7 ' __ _.y: A study of five system
logs, in: DSN, IEEE, 2007.

S. Ryza, U. Laserson, S. Owen. J. W "s;, Advanced Analytics with Spark:
Patterns for Learning from Data .t . ale, O’Reilly Media, 2015.

J. Tan, X. Pan, S. Kavulya, R. “‘andhi, P. Narasimhan, Salsa: Analyzing
logs as state machines, ¥¥7* SL 8 (2008) 6—6.

J. Tan, S. Kavulya. K. “*and’.i, P. Narasimhan, Visual, log-based causal
tracing for perfor ianc : debugging of mapreduce systems, in: Distributed
Computing Sys .ems 'C7,CS), 2010 IEEE 30th International Conference
on, IEEE, 20 .0, , ». 795-806.

Q. Chen. D. hang, M. Guo, Q. Deng, S. Guo, Samr: A self-adaptive
maprecuce » “eduling algorithm in heterogeneous environment, in: Com-
pute anc Infrrmation Technology (CIT), 2010 IEEE 10th International
Corfereny » - n, IEEE, 2010, pp. 2736-2743.

V7 Xu, I Huang, A. Fox, D. Patterson, M. I. Jordan, Detecting large-scale
system problems by mining console logs, in: SOSP, ACM, 2009.

Qi, Y. Li, H. Zhou, W. Li, H. Yang, Data mining based root-cause anal-

ysis of performance bottleneck for big data workload, in: High Performance

35

740

745

750

755

760

[24]

[25]

[30]

Computing and Communications; IEEE 15th International Cc ~ferr ace on
Smart City; IEEE 3rd International Conference on Data Scic. ~e an.. Sys-
tems (HPCC/SmartCity/DSS), 2017 IEEE 19th Internat onz' Conterence
on, IEEE, 2017, pp. 254-261.

E. W. Fulp, G. A. Fink, J. N. Haack, Predicting cor \puter s stem failures
using support vector machines, WASL 8 (2008) 5-%.

N. J. Yadwadkar, G. Ananthanarayanan, R. Ka. , Wre agler: Predictable
and faster jobs using fewer resources, in: Proceeu. ~gs of the ACM Sympo-

sium on Cloud Computing, ACM, 2014, pp. " -14.

M. L. Massie, B. N. Chun, D. E. Culler ™ ___slia distributed monitoring
system: design, implementation, and exper.. ~ce, Parallel Computing 30 (7)

(2004) 817-840.

M. K. Aguilera, J. C. Mogul, . . Wiener, P. Reynolds, A. Muthi-
tacharoen, Performance deb. e ! ¢ distributed systems of black boxes,

ACM SIGOPS Operating Systems Review 37 (5) (2003) 74-89.

H. Zhou, Y. Li, H. Y 'ng, J. . 'a, W. Li, Bigroots: An effective approach
for root-cause ana ysis ot . cagglers in big data system, arXiv preprint

arXiv:1801.03314.

J. Shi, Y. Q'1, J F. Minhas, L. Jiao, C. Wang, B. Reinwald, F. Ozcan,
Clash of t' . ‘itans: Mapreduce vs. spark for large scale data analytics,

Proceedi.. s . the VLDB Endowment 8 (13) (2015) 2110-2121.

S. H .ang J. TMuang, J. Dai, T. Xie, B. Huang, The hibench benchmark
suit~ (.. v cterization of the mapreduce-based data analysis, in: Data
I ngineer 1g Workshops (ICDEW), 2010 IEEE 26th International Confer-
-nce ., [EEE, 2010, pp. 41-51.

36

Byungchul Tak is currently an assistant professor at Kyungpook National Ui.. -ersity, Republic of
Korea. He was a research staff member at IBM T.J. Watson Researc Cent~r, Yorktown Height,
NY prior to joining the university. He received his Ph.D. in computer ‘cience 12012 from
Pennsylvania State University. He received his MS degree in compute * scie’.ce from Korea
Advanced Institute of Science and Technology (KAIST) in 2003. and hi< BS from Yonsei
University, Korea in 2000. Prior to joining Pennsylvania State U ive sity, he worked as a
researcher in the Electronics and Telecommunications Rese#rch institi’ ¢ (ETRI), Daejeon, Korea.
His research interest includes virtualization, operating systems a. 7 cloud computing. He is a
member of IEEE.

— —
Eadl -]

——
‘. : |
Siyang Lu is Ph.D. student in the Department o1 “~mputer Science at University
of Central Florida. He is working in Big sata "omputing Lab in area of parallel

computing framework optimizatior. Siy. ~g rr ceived his Master of Science in computer science
from University of Wyoming in 2C .5, 7 1d Master of Science in software engineering from Tianjin

University in 2015. His researc' inte,. -t s the design and analysis of parallel systems for big-
data computing. For the aspr . ~f design, he is working on optimizing performance.

For the aspect of analysis .ic 's currently working on using log to detect
abnormal, analysis root ca. " 2s and performance defects in large-scale parallel

computing systems

¢
Jfarnr, .2 He received his bachelor’s degree in computer science from Tianjin Polytechnic
Ui sersity in 2012, and has been taking successive postgraduate and doctoral programs of

study for doctoral degree since Sep. 2012 in Beijing Jiaotong University. He had been
rewarded the first-class scholarship for his good performance, and participated in two search
grants from National Science Foundation of China (NSFC). His research interr ,t focuses on
intelligent information processing.

L))

Long Wang is a Research Staff Member at the IBM T.J. W tsor, Research
Center, Yorktown Heights, NY, where he leads the ar :hitr . re of Disaster
Recovery of IBM Cloud Managed Services to IBM Re_...enc' Services. His
research interests include Fault-Tolerance and Reliav." 'ty

of Systems and Applications, Dependable and Sec.ve < ystems, as well as
Measurement and Assessment. He obtained his r.> D. degree from Department
of Electrical & Computer Engineering in Univ. -suy or Illinois at Urbana-
Champaign (UIUC) in 2010. Dr. Wang is a memu.* of the IEEE.

Ligiang Wang

Bingbing Rao

HIGHTLIGHTS

e An abnormality detection tool is proposed for log analysis, nar .ed .ADRA.

e LADRA’s detection approach can accurately locate where and w>en abnormal
tasks happen.

e Effective features and abnormal factors are extracte.' in exy dsing the degree of
abnormality from log analysis.

e Root causes of detected abnormal tasks are ana. 7eu vy GRNN based neural

network model.

e The results are reasonable and outperforn, ~xisting methods in precision.

