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Abstract

As big data processing is being widely adopted by many domains, massive

amount of generated data become more reliant on the parallel computing plat-

forms for analysis, wherein Spark is one of the most widely used frameworks.

Spark’s abnormal tasks may cause significant performance degradation, and it

is extremely challenging to detect and diagnose the root causes. To that end,

we propose an innovative tool, named LADRA, for log-based abnormal tasks

detection and root-cause analysis using Spark logs. In LADRA, a log parser

first converts raw log files into structured data and extracts features. Then, a

detection method is proposed to detect where and when abnormal tasks hap-

pen. In order to analyze root causes we further extract pre-defined factors

based on these features. Finally, we leverage General Regression Neural Net-

work (GRNN) to identify root causes for abnormal tasks. The likelihood of

reported root causes are presented to users according to the weighted factors

by GRNN. LADRA is an off-line tool that can accurately analyze abnormal-

ity without extra monitoring overhead. Four potential root causes, i.e., CPU,

memory, network, and disk I/O, are considered. We have tested LADRA atop

of three Spark benchmarks by injecting aforementioned root causes. Experi-
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mental results show that our proposed approach is more accurate in the root

cause analysis than other existing methods.

Keywords: Spark, Log Analysis, Abnormal Task, Root Cause

1. Introduction

Parallel computing frameworks that follows the MapReduce [1] paradigm are

widely-used in real-world big data applications to handle batch and streaming

data. Among these, Spark [2] has recently gained wide-adoption. Different

from the Hadoop framework [3], Spark supports a more general programming5

model, in which an in-memory technique, called Resilient Distributed Dataset

(RDD) [4], is used to store the input and intermediate data generated during

computation stages.

While Spark is highly successful for data analytics, it could suffer from signif-

icant performance degradation under the existence of abnormal tasks. A task is10

considered abnormal if it shows significant delay in comparison with other tasks

within the same stage. A few causes of such performance degradation can be due

to ineffective coding, resource contention, and data locality problems [5, 6, 7, 8].

To mitigate such performance problems, Spark employs a speculation mecha-

nism [9] to detect stragglers during runtime, in which slow tasks are re-scheduled15

after marked as stragglers. Spark checks and performs speculative execution of

tasks till a specified fraction (defined by spark.speculation.quantile, which

is 75% by default) of tasks is completed. Spark identifies stragglers by checking

whether the running tasks are much slower (e.g., 1.5 times, by default) than

the median of all successfully completed tasks in the current stage. However,20

speculation mechanism cannot detect all stragglers and does not provide the

root causes of degraded performance. In addition, monitoring tools are usually

heavy-weight and cause significant overhead, which may impact the performance

of Spark even for normal executions. Therefore, abnormal task detection and

root cause analysis still remain grand challenges.25

This paper proposes LADRA, an off-line tool for log-based abnormal tasks
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detection and root-cause analysis for big data processing with Spark. LADRA

detects abnormal tasks by examining features extracted from logs and analyzes

them to find root causes via a neural network model. Specifically, our proposed

approach adopts a statistical spatial-temporal analysis for Spark logs, which30

consists of Spark execution logs and JVM garbage collection (GC) logs related

to resource usage. LADRA’s abnormal task detection method is more effective

than Spark speculation, as all Spark stages are considered and abnormal tasks

happened in any life span could be detected. Moreover, Spark’s report could be

inaccurate because Spark uses only fixed amount of finished task duration to35

speculate the unfinished tasks. Our approach reports the likelihood of each po-

tential root cause, which can be leveraged by users to tune resource allocations

and reduce the impact of abnormal tasks. For instance, in one of our experi-

ments, LADRA reports that abnormal tasks are caused 80% by network issues

and 20% by CPU issues on victim nodes, users may check the network condi-40

tion first, then tune CPU usage accordingly. There are four major root causes

for task abnormalities: CPU, memory, network, and disk I/O, all of which are

considered by this paper.

We make the following contributions in this work.

• An abnormality detection method is proposed that can accurately locate45

where and when abnormal task executions happen by analyzing Spark

logs.

• 22 log features and 7 factors are identified to be critical in exposing the

degree of abnormality from the analysis of Spark logs and GC logs.

• A neural network-based analysis method is proposed, which is more ac-50

curate and provides the ranked likelihood for true root causes in order

to better understand the performance problems and to tune the Spark

settings.

The rest of the paper is organized as follows. Section 2 introduces the back-

ground knowledge of Spark and surveys the related work. Section 3 gives an55
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overview of our approach. Section 4 illustrates the feature extraction from Spark

logs and abnormal task detection based on these features. Section 5 presents

factor synthesization for root cause analysis. Section 6 describes the details of

root cause analysis using GRNN. Section 7 shows our experimental results by

evaluating our approach on several widely used benchmarks. Section 8 summa-60

rizes our method and discusses its limitations and future work.

2. Related work and background

In this section, we give brief background of Spark scheduling mechanisms

and its log structures. Then, we review related work in the area of the root

cause analysis for big data platforms.65

This paper significantly extends our previous paper [10], a statistical method

for detecting task abnormalities and analyzing root causes. Compared with our

prior work, the factor extraction is extended and the weighted statistical method

for detection is improved, which are presented in Section 6.1. Our previous

approach diagnoses root causes by applying weights to each factor. Such rule-70

based weight calculation approaches may cause false positives. Moreover, due

to the complex relationships between hardware and software and between input

and output, we believe that a non-linear model can do a better job. As we stated

before, the root cause detection is better to be treated as a regression rather than

a classification problem. Hence, in this paper, the most significant extension is75

that we propose a new General Regression Neural Network (GRNN) as a better

choice, which can avoid the ad-hoc factor selection and weight computing.

2.1. Spark architecture and its log structure

Spark architecture: Apache Spark is an in-memory parallel computing

framework for large-scale data processing. Moreover, to achieve the scalability80

and fault tolerance, Spark introduces resilient distributed data set (RDD) [4],

which represents a read-only collection of objects partitioned across a set of

machines that can be rebuilt if a partition is lost. As shown in Figure 1, Spark
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cluster consists of one master node and several slave nodes, named as workers,

which may contain one or more executors. When a Spark application is sub-85

mitted, the master will request computing resource from the resource manager

based on the requirement of the application. When the resource is ready, Spark

scheduler distributes tasks to all executors to run in parallel. During this pro-

cess, the master node will monitor the status of executors and collect results

from worker nodes.90
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Figure 1: Spark framework and log files

Spark logs include execution logs and JVM GC logs. Spark driver (mas-

ter node) collects the information of all executors (i.e., driver log), and each

executor records the status of tasks, stages, and jobs within the executor (i.e.,

execution log). Besides these logs, Spark JVM Garbage Collection (GC) logs

are also used by our analysis, which are the output from two output channels,95

stderr and stdout. When an application is finished, we collect all Spark logs

and aggregate them into two different categories: execution logs and GC logs.

An example is shown in Figure 2.

Spark uses “log4j”, a JAVA logging framework, as its logging framework.

Spark users can customize “log4j” by changing configuration parameters, such100
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17/02/22 21:04:02.259 INFO

TaskSetManager: Starting task 12.0 in stage 1.0 (TID 58, 10.190.128.101, partition 12,

ANY, 5900 bytes)

17/02/22 21:04:02.259 INFO

CoarseGrainedSchedulerBackend$DriverEndpoint: Launching task 58 on executor id: 1

hostname: 10.190.128.101.

17/02/22 21:04:02.276 INFO

TaskSetManager: Finished task 1.0 in stage 1.0 (TID 47) in 14075 ms on 10.190.128.101

(1/384)

Figure 2: An example of Spark execution log.

as log level, log pattern, and log direction. In this paper, we use the default

configurations in “log4j”. As shown in Figure 2, each line of Spark execution

log contains four types of information: timestamp with ISO format, logging level

(e.g., INFO, WARNING, or ERROR), related class (which class prints out this

message) and message content. A message content contains two main kinds105

of information: constant keywords (e.g., Finished task in stage TID in ms

on), and variables (e.g., 1.0 1.0 47 14075..).

[GC (Allocation Failure)

[PSYoungGen: 95744K->9080K(111616K) ] 95744K->9088K(367104K), 0.0087250 secs ]

[Times: user=0.03, sys=0.01, real=0.01 secs ]

Figure 3: An example of Spark garbage collection (GC) log.

During the execution of a spark application, JVM monitors memory usage

and outputs its status to GC logs when garbage collection is invoked. GC logs

report two kinds of memory usage: heap space and young generation space,110

where young generation space is a part of heap memory space to store new

objects. Figure 3 shows an example of Spark JVM GC log, where “Alloca-

tion Failure” invokes this GC operation, and “PSYoungGen” shows the usage

of young generation memory space. In “95744K->9080K(111616K)”, the first

numeric is the young space before this GC happens, the second one is the young115

space after this GC, and the last one is the total young memory space. Sim-

ilarly, “95744K->9088K(367104K)) illustrates heap memory instead of young
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generation space.

2.2. Related work

2.2.1. Root causes120

There are several categories of the root causes for the abnormal perfor-

mances. Ananthanarayanan et al. [11] identify three categories of root causes

for Map-Reduce outliers: the key role cause is machine characteristics (resource

problems), the other two causes are network and data skew problem. Ibidun-

moye et al. [12] depict that four root causes may cause bottlenecks, which125

are system resource, workload size, platform problems, and application (buggy

codes). Garbageman et al. [13] analyze around 20-day cloud center data and

summarize that most common root cause in cloud center of abnormal occur-

rence is server resource utilization, and data skew problems only take 3% of

total root causes. According to the above studies on real world experiment, the130

primary root causes of abnormal tasks are machine resources, which includes

CPU, memory, network, and disk I/O. Moreover, the mentioned resource root

causes mainly impact the performance of CPS computation layers. Therefore,

in our paper, we consider the only the four main root causes, and ignore data

skew and ineffective code problems.135

2.2.2. Existing approaches

Statistical and machine learning techniques are promising approaches in the

root causes analysis, and their combination has been widely used in the parallel

computing area to solve performance degradation problem caused by abnormal

executions. Abnormality detection and analysis using this approach can be140

categorized largely into online, offline, and combination of online and offline

approaches.

Online detection: The online detection strategy is invoked during the exe-

cutions of applications. For example, both Spark and Hadoop provide online

“speculation”[9], which is a built-in component for detecting stragglers statis-145

tically. Although it can detect stragglers during runtime, it does not offer the
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root causes. In addition, the speculation is often inaccurate, i.e., it may raise

too many false alarms [14]. Chen et al. [15] propose a tool called Pinpoint

that monitors the execution and uses log traces to identify the fault modules in

J2EE applications via standard data mining approaches. A stream-based mining150

algorithm for online anomalies prediction is presented by Gu et al. [16]. Anan-

thanarayanan et al. [11] design a task monitoring tool called Manrti, which can

cut outliers and restart tasks in real time according to its monitoring strategy.

Offline detection: Nevertheless, monitoring data may not be always acces-

sible from the user side, due to the fact that the monitoring tools are hard to155

install and tune. Hence, some studies focus on the off-line strategy by analyzing

logs instead of monitoring [17, 18]. For example, Tan et al. [19] introduce a pure

off-line state machine tool called SALSA, which simulates data flows and con-

trol flows in big data systems with statistical method, and leverages Hadoop’s

historical execution logs. Then, Tan et al. [20] build up a performance tool to160

visualized MapReduce which based on SALSA. However, those state machine

based statistical approaches can not extract feature by itself. Chen et al. [21]

propose a self-adaptive tool called SAMR, which adds weights for calculating

each task duration according to historical data analysis. Xu et al. [22] use an

automatic log parser to parse source code and combine PCA to detect anomaly,165

which is based on the abstract syntax tree (AST) to analyze source code and

uses machine learning to train data. Qi et al. [23] leverage Classification and Re-

gression Tree (CART) to analyze straggler root causes by using Spark event logs

and monitoring data (hardware metrics such as CPU status, disk read/write rate

and network send/receive rate) which collected by synchronous sampling tool.170

However, our approach is a pure off-line method and only leverage Spark log to

analyze abnormal tasks. Furthermore, we prefer using probabilistic output to

determine the degree and category of abnormality, rather than considering the

problem of classifications of positive and negative samples that CART did.

Combination of online and offline detection: In order to achieve higher ac-175

curacy, the offline strategy can be combined with the online one. Garraghan et

al. [13] propose an empirical approach to extract execution paths for straggler
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detection by leveraging an integrated offline and online model. Some machine

learning approaches are also leveraged in predicting system faults using logs and

monitoring data, which are similar to the root cause analysis problem. Fulpet180

al. [24] leverage a sliding window to parse system logs and predict failures using

SVM. Yadwadkaret al. [25] propose an offline approach that works with resource

usage data collected from the monitoring tool Ganglia [26]. It leverages Hidden

Markov Models (HMM), which is a liner machine learning approach. Moreover,

there are some off-line approaches that analyze both log files and monitoring185

data to identify abnormal events. Aguilera et al. [27] propose two statistical

methods to discover causal paths in distributed system by analyzing historical

log and monitoring data from the traces of applications. The most closely re-

lated work to our approach is BigRoots [28], which detects stragglers by Spark

speculation and analyzes the root causes by extracted features. It leverages190

experience rule to extract features for each task from application log and moni-

toring data. However, the threshold in Spark speculation is not proper to detect

abnormal tasks. In addition, BigRoots considers only the features for each indi-

vidual task, which can not capture the status change of the cluster, thus such a

rule-based method is very limited. In our method, we choose the combination of195

features to create the factors presenting the status change of the whole cluster,

and a GRNN technique is leveraged instead of a rule-based statistical approach

to avoid the limits.

3. Overview of LADRA’s approach

Although Spark logs are informative, they lack direct information about200

the root cause of abnormal tasks. Thus, simple keyword-based log search is

ineffective for diagnosing the abnormal tasks, which motivates us to design

an automatic approach to help users detect abnormal tasks and analyze their

root causes. An overview of our tool is depicted in Figure 4, which contains

five primary components: log prepossessing, feature extraction, abnormal task205

detection, factor extraction, and root cause analysis.
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Figure 4: The workflow of LADRA

1. Log prepossessing: Spark log contains a large amount of information. In

order to extract useful information for analysis, we first collect all Spark

logs, including execution logs and JVM GC logs, from the driver node and

all worker nodes. Then, we use a parser to eliminate noisy and trivial logs,210

and convert them into structured data.

2. Feature extraction: Based on the Spark scheduling and abnormal task

occurring conditions, we quantify the data locality feature with a binary

number format. Then, we screen structured logs and select three kinds of

feature datasets: execution-related, memory-related, and system-related.215

Finally, we store them into two numerical matrices: execution log matrix

and GC matrix.

3. Abnormal detection: We implement a statistical abnormal detection algo-

rithm to detect where and when the abnormal tasks happen based on the

analysis of execution-related feature sets. This detection method deter-220

mines the threshold by calculating the standard deviation of task duration

and use it to detect abnormal tasks in each stage from Spark logs, which

is introduced in Section 4.
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4. Abnormal factor extraction: According to our empirical case study, we

combine special features to synthesize two kinds of factors, the speed factor225

and the degree factor, which describe the status of each node in the whole

cluster. Section 5 introduced these factors used by our root cause analysis

method.

5. Root cause analysis: We propose a General Regression Neural Network

(GRNN) based approach for our root-cause analysis, in which probability230

result can be calculated more accurately than our previous statistical work.

Our experiments show that the GRNN-based approach has more accurate

results than existing approaches, which are introduced in details in Section

6.

4. Log feature extraction and abnormal task detection235

4.1. Log feature extraction

When an abnormal task happen, it usually does not cast any warnings or er-

ror messages. As Spark does not directly reveal any information about abnormal

tasks, it is a very challenging problem to detect these problems. Our approach

starts from understanding the Spark scheduling strategy, then extracts features240

associated with CPU, memory, network, and disk I/O to build a feature ma-

trix, which reflects the whole cluster’s status. These features can be classified

into three categories: execution-related, memory-related, and system-related,

as shown in Table 1.

The execution-related features are extracted from Spark execution logs, in-245

cluding (1) the ID number of each task, stage, executor, job, and host, (2)

the duration of each task, stage, and job, (3) the whole application execution

time, (4) the timestamp for each event, and (5) data locality. Spark GC logs

represent JVM memory usage of each executor in workers, from which we can

extract memory-related features such as heap usage, young space usage before250

GC, young space usage after GC. In addition, system related features can be

also extracted from GC logs, such as real time, system time, and user time.
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Table 1: Extracted features for abnormal task detection

Feature Category Feature Name

Execution related Task ID Job ID Task duration

Stage ID Job duration Data locality

Host ID Stage duration Timestamp

Executor ID Application execu-

tion time

GC time After young GC After Heap GC

Memory related Full GC time Before young GC Before Heap GC

Heap space GC category

System related Real time CPU time User time

4.2. Abnormal task detection

Our abnormal task detection is based on the extracted feature sets. In order

to eliminate the false negative problem in the Spark speculation’s detection255

mentioned in Section 1, a more robust approach is designed to locate where and

when an abnormal case happens, which includes the following two steps.

Step-1: Comparing task duration on inter-node:

One basic rule for abnormal task identification is that the duration of abnor-

mal task is relatively much longer than the duration of normal tasks (long tail).260

In the existing approaches for abnormal detection, both Hadoop and Spark use

speculation, and [13] uses “mean” and “median” to decide the threshold. How-

ever, to seek a more reasonable abnormal detection strategy, we consider not

only the mean and median of the task running times, but also the distribution

of the whole tasks’ duration including the standard deviation. In this way, we265

can get a macro-awareness on the task duration, and then based on the distri-

bution of data, a more reasonable threshold can be determined to differentiate

the abnormal from the normal ones.

We compare the duration of tasks in the same stage but across different

nodes (inter-node). Let T taski,j,k denote the execution duration of task k in270

stage i on node j. And let avg stagei denote the average execution time of all
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tasks, which run on different nodes in the same stage i.

avg stagei =
1

J∑
j=1

Kj

(
J∑

j=1

Kj∑

k=1

T taski,j,k) (1)

where J and Kj are the total node numbers and total task numbers in node

j, respectively.

To determine a more appropriate threshold, we leverage the standard devia-275

tion of tasks duration in stage j of all nodes, which is denoted by std stagei, and

λ is a threshold parameter used in Spark speculation, which is 1.5 by default.

Thus, abnormal tasks can be determined by the following conditions:

taskk =





abnormal T taskk > avg stagei + λ ∗ std stagei
normal otherwise.

(2)

Step-2: Locating abnormal task happening: After the first step, all

tasks are classified into “normal” and “abnormal”, the time line is labeled as a280

vector with binary number (i.e., 0 or 1, which denotes normal and abnormal,

respectively). To smooth the outliers (e.g., 1 appears after many continuous 0)

inside each vector, which could be an abrupt change but inconsistent abnormal

case, we empirically set a sliding window with the size of 5 to scan this vector.

If the sum of numbers inside the window is larger than 2, the number in the285

center of the window will be set to 1, otherwise 0.

The next step is to locate the start timestamp and end timestamp of the

current abnormal task. Note that, since Spark logs record the task finishing

time but not the start time, we locate the real abnormal task’s start time as the

recorded task finishing time minus its duration. Moreover, to detect abnormal290

tasks in each stage, we classify tasks into two sets. One set includes the initial

tasks whose start timestamp are the beginning of each stage, as these tasks

often have more overhead (such as loading code and Java jar packages), and

they usually last much longer than the following tasks. The other set consists of

the remaining tasks. Our experiments show that this classification inside each295
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stage can lead to a much accurate abnormal threshold. In this way, our abnormal

detection method can not only detect whether abnormal tasks happen, but also

locate where and when they happen.

Figure 5 shows abnormal detection process in our experiment for Spark

WordCount under CPU interference. Figure 5 (a) and (b) are two stages inside300

the whole application. Moreover, inside each of the stage, purple dot-line is

the abnormal threshold determined by Eq. (1), and the black dot-line indicates

the threshold calculated by Spark speculation. For all tasks within a certain

stage, the duration longer than the threshold are determined as abnormal tasks;

otherwise, they are normal. Figure 5 (c) shows the execution-related feature305

visualization in the whole execution time. 5 (d) uses memory-related feature

to display memory occupation along the execution of its corresponding working

stages.

As we mentioned before, the data skew problem is not within our four con-

sidered root causes. Therefore, in the real analysis, those abnormal tasks caused310

by data skew should be eliminated as a noise. Data skew tasks can be easily de-

tected by checking data locality features (i.e., target data is not on the current

node) combined with task duration features from execution logs.

5. Factor extraction for root-cause analysis

To look for the root causes of abnormal tasks, we introduce abnormal factors,315

which are the synthesis of features based on the empirical study on the 22

features in Spark log matrix and GC matrix. Those factors are normalized

features that present status change of the whole cluster, not only for assessing

individual components, such as task and stage, but also a series of abnormal

tasks, which may be generated by continuous interference affecting the cluster.320

In normal cases, each factor should be close to 1; otherwise, it implies an

abnormal case. In our factors’ definition, j denotes the jth node, J presents a

set of nodes; i indicates the index of stage, I is a set of stages; k denotes a task,

K is a task set; n stands for a GC record, N is a GC record set. All factors

14
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Figure 5: Abnormal detection under CPU interference in the experiment of WordCount:

(a) Abnormal detection result in Stage-1. (b) Abnormal detection result in Stage-2. (c)

Execution-related feature visualization for abnormal detection in the whole execution. (d)

Memory-related feature visualization for abnormal detection in the whole execution.
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used to determine root causes are listed as below.325

Degree of Abnormal Ratio (DAR) describes the degree of imbalanced

scheduling of victim nodes, due to the fact that the victim nodes will be sched-

uled with fewer tasks than other normal nodes. For example, as shown in Figure

6, CPU interference can cause fewer tasks (red dots) to be scheduled at a victim

node (node1) than normal nodes. Eq. (3) illustrates the degree of abnormal330

ratio in a certain stage. Therefore, the factor DAR implies that the number of

tasks in intra-node on a certain stage can be used for abnormal detection.

DAR =

1
J−1 ((

J∑
j=1

kj)−kj′)

kj′
(3)

where kj denotes the number of tasks on node j, and J is the total number of

nodes in the cluster. Here, we assume that node j′ is abnormal.
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Figure 6: Task duration variation in CPU interference injected after Sorting application has

been submitted for 60s, and continuously impacts for 120s.

Degree of Abnormal Duration (DAD) is used to measure the average335
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task duration, as the abnormal nodes often record longer task duration.

DAD =
avg nodej′

1
J−1 ((

J∑
j=1

avg nodej)−avg nodej′)
(4)

where avg nodej is defined as:

avg nodej =
1

Kj
(

Kj∑

k=1

T taski,j,k) (5)

Degree of CPU Occupation (DCO) describes the degree of CPU occu-

pation by calculating the ratio between the wall-clock time and the real CPU

time. In the normal multiple-core environment, “realTime” is often less than

“sysTime+userTime”, because GC is usually invoked in a multi-threading way.

However, if the “realTime” is bigger than “sysTime+userTime”, it may indicate

that the system is quite busy due to CPU or disk I/O contentions. We choose

a max value across nodes as the final factor.

DCO = max(avg
j∈J

(
realT imei,j

sysT imei,j + userT imei,j
)) (6)

Memory Change Speed (MCS) indicates the speed of memory usage

change according to GC curve. Due to the fact that under CPU, memory,

and disk I/O interference, the victim node’s GC curve will vary slower than the

normal nodes’ GC curve, as shown in Figure 7. starta and stablea are the points340

of the start position (the corresponding memory usage at abnormal starting

time) and the stable memory usage position, respectively. startb and stablea

are the start and end positions of abnormal memory, respectively, which are

obtained by analyzing logs introduced before. The intuition is that the interfered

node gradually uses less memory than normal nodes under interference, as shown345

in Figure 7. Hence, we use the area under GC curve a in the whole cluster (starta

of normal node) to calculate this factor, as shown in Eq. (7).

MCS =

∫ stablea
start

f(xa)dxa∫ stableb
start

f(xb)dxb
(7)
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Figure 7: Memory usage variation in CPU interference injected after WordCount application

has been submitted for 20s, and continuously impacts for 120s.

Abnormal Recovery Speed (ARS) measures the speed of abnormal

task’s recovery. Since one Spark node often accesses data from other nodes,

it can leads to network interference propagation. It is both inter-node and350

intra-node problem. We can detect network interference happening inside clus-

ter, as shown in Figure 8, which is the location of our detected interference and

shows that task duration will be affected by delayed data transmission. We

leverage Eq. (8) to calculate this factor, where abn probj indicates the ratio

of the abnormals that we detect for each node j inside that area. The reason355

that we use the product of abnormal ratio other than the sum of them is that

only when all nodes are with a portion of abnormal, we identify them with a

potential of network interference; if their sum is used, we cannot detect this

joint probability. Meanwhile, the exponential is to make sure this factor is no

less than 1. Hence, the phenomenon of error propagation will be detected and360

quantified by calculating this factor.

ARS = exp(J ∗
J∏

j=1

abn probj) (8)
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Figure 8: Task duration variation in Network interference injected after WordCount has been

executed for 100s, and continuously impacts for 160s.

Degree of Memory Change (DMC) describes how much of memory

usage changed during the execution in each node. In fact, when network band-

width is limited, or the network speed slows down, the victim node gets affected

by that interference, and tasks will wait for their data transformation from other365

nodes. Hence, the tasks will pause or work very slowly, and data transfer rate

becomes low, as shown in Figure 9. We leverage Eq. (9) to find the longest

horizontal line that presents the conditions under which tasks’ progress become

tardy (e.g., CPU is relatively idle and memory remains the same). In Eq. (9),

mj,n indicates the gradient of memory changing in the nth task on node j.370

First, the max value of gradient is calculated for each GC point, denoted as

m. Second, we make a trade-off between its gradient and the corresponding

horizontal length to identify the longest horizontal line in each node. Then, to

determine a relative value that presents the degree of abnormal out of normal,

we finally compare the max and min among nodes with their max “horizontal375

factor” (e−|mj,n| ∗ (xj,n − xj,n−1)), where e is to ensure that the whole factor of
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b not less than 1.

DMC =

max
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]}

min
j∈J
{max
n∈N

[e−|mj,n| ∗ (xj,n − xj,n−1)]} (9)

where mj,n =
yj,n−yj,n−1

xj,n−xj,n−1
.
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Figure 9: Memory usage variation in Network interference injected after WordCount has been

executed for 30s, and continuously impacts for 160s.

Degree of Loading Delay (DLD) measures how much difference of load-

ing duration on cluster nodes. Note that the initial task at the beginning of380

each stage always has a higher overhead to load data compared with the rest

tasks. Similar to the factor DMC, instead of taking all tasks inside the detected

stage into consideration, here, the first task of each node is used to replace the

“avg nodej”.

Instead of taking all the tasks inside the detected stage into consideration,385

here, the first task of each node is used to replace the “avg nodej” in Eq. (4).

Formally, the equation is modified as Eq. (10) shows.

DLD =
T taski,j′,1

avg
j∈J

(T taski,j,1)
where, j′ /∈ J (10)
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6. Root cause analysis

6.1. Statistical rule based approach

We propose a statistical rule based approach for root cause analysis extended390

from [10]. As shown in Table 2, each root cause is determined by a combination

of factors with specific weights.

The nodes with CPU interference often have a relatively lower computation

capacity, which leads to less tasks allocated and longer execution time for tasks

on it. Factors DAR and DAD are used to test whether the interference is CPU395

or not, because CPU interference can reduce the number of scheduled tasks and

increase the abnormal tasks’ execution time. Factor DCO indicates the degree

of CPU occupation, and CPU interference will slow down of the performance

compared to normal cases. Factor MCS is used to measure memory changing

rate, because CPU interference may lead memory change, thus the nodes become400

slow than other regular nodes.

For the network-related interference, because of its propagation, the nodes

interfered earlier will often recover earlier, too. So our approach is to detect the

first recovered node as the initial network-interfered node, and the degree ARS

quantitatively describes the interference. When network interference occurs,405

tasks are usually waiting for data delivery (factor DMC).

For the memory-related interference, when memory interference is injected

into the cluster, we can even detect a relatively lower CPU usage than other

normal nodes. Considering this, the task numbers (factor DAR) and task du-

ration (factor DAD) are also added to determine such root causes with certain410

weights. Moreover, the memory interference will impact memory usage, and the

factor MCS should be considered for this root cause detection.

To determine disk-related interference, we introduce the factor DLD to mea-

sure the degree of disk interference. The task set scheduled at the beginning of

each stage could be affected by disk I/O. Therefore, these initial tasks on disk415

I/O interfered nodes behave differently from other nodes’ initial tasks beginning

tasks (factor DLD), CPU will become busy, and memory usage is different from
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Table 2: Related factors for each root cause

Factor CPU Mem Network Disk

DAR
√ √

DAD
√ √ √

DCO
√ √

MCS
√ √ √

ARS
√

DMC
√

DLD
√

other nodes’. Therefore, the memory changing rate (factor MCS) and CPU

Occupation (factor DCO) are also used to determine such root causes.

After deciding the combination of factors for each root cause, we give them420

weights to determine root causes accurately as Eq. (11) shows. Here, all weights

are between 0 and 1, and the sum of them for each root cause is 1. To decide

the values of weights, we use classical liner regression on training sets that

we obtained from experiments. Eq. (12) is proposed to calculate the final

probability that the abnormal belongs to each of the root causes.425

CPU = 0.3 ∗DAR+ 0.3 ∗DAD + 0.2 ∗DCO + 0.2 ∗MCS

Memory = 0.25 ∗DAR+ 0.25 ∗DAD + 0.5 ∗MCS

Network = 0.1 ∗DAD + 0.4 ∗ARS + 0.5 ∗DMC

Disk = 0.2 ∗DCO + 0.2 ∗MCS + 0.6 ∗DLD

(11)

probability = 1− 1

factor
(12)

To sum up, the statistical rule based approach offers a reasonable result to

explain its root causes probabilities. However it can not give a satisfied result

with higher precision for its classifying. Since the relationship between factors

is not simply linearly correlated, and we also changed old factor MCR to a new

factor MCS with AUC calculation instead of gradients calculation and add it to430

our factor sets. From this point, a GRNN-based approach is proposed for root

cause analysis to consider non-linearly correlated relationship of new factor set,

and avoid human ad-hoc choosing and classification.
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6.2. GRNN approach

In this paper, we propose a new neural network based model to automatically435

calculate the probability of each root cause. We use a one-pass training neural

network, GRNN, to create a smooth transition and more accurate results.

n1

𝑛7

n2

𝑃1

𝑃𝑛

𝑃3

𝑥𝑎

𝑥𝑏

𝑥𝑔

Output 
Layer

Factors Input 
Layer

Pattern 
Layer

Summation
Layer

Probability
Result

𝑃2

n3𝑥c

𝑦2

𝑦3

y1

𝑦4

𝑦5

𝑆1

𝑆𝐷

𝑆2

𝑆5

𝑆3

𝒑𝒓(memory)

𝒑𝒓(CPU)

𝒑𝒓(normal)

𝒑𝒓(disk IO)

𝒑𝒓(network)

Figure 10: The architecture of our GRNN-based model for root-cause analysis.

GRNN is a simple and efficient network with fast computing speed, because

GRNNs transfer function (pattern layer) is a kind of Gaussian function, and it

could achieve local approximation with fast speed without any back propaga-440

tion training operations. As due to the fact that classical neural networks, espe-

cially deep neural networks, require much more efforts to tune hyper-parameters,

which has been proved to be not proper to fit small datasets, just like our Spark

log. Hence, we choose GRNN in our design. Thanks to its flexible structure,

which can automatically set the number of nerve cells in the pattern layer. In445

brief, the BP (Back Propagation) based deep learning algorithms may be vul-

nerable to the over-fitting problem especially when the dataset is small, which is

just the characteristic of our dataset. Traditional data fitting algorithms usually
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assumes that the data obey a certain distribution in advance, which can drasti-

cally affect the final result. As a non-parameter neural network model for data450

fitting, with its high efficiency and accuracy, GRNN is fully capable of dealing

with our current problem. In addition, the experimental results demonstrate

the effectiveness of GRNN compared with other attempts we have tried.

As a non-parameter neural network model for data fitting, with its high

efficiency and accuracy, GRNN is fully capable of dealing with our current455

problem. In addition, the experimental results demonstrate the effectiveness

of GRNN compared with other attempts we have tried. A representation of

the GRNN architecture for our implementation of root cause identification is

shown in Figure 10. Our model consists of four layers: input layer, pattern

layer, summation layer, and output layer. According to our data structure, the460

input layer consists of 7 neurons, which indicates the dimension of our extracted

input feature vector (xa,xb...xg). The pattern layer is a fully connected layer,

which consists of neurons with the same size as input data, and followed by

the summation layer. At the end, the output layer of GRNN gives a prediction

result on the probability for each root cause. We use softmax function to convert465

the output into a normalized one for more intuitive comparison.

The transfer function Fi in pattern layer is defined in (13), X denotes the

input data, σ represents as a smooth parameter, which is set to 0.5 according

to our experimental attempts. The hyper-parameter of σ is used to control the

smoothness of the model. When the value is relatively large, it is equivalent470

to increasing the variance in the Gaussian density distribution, which makes

the transition between different categories smoother. While the problem is that

the classification boundary will be blurred. Conversely, when a smaller value is

assigned to this hyper-parameter, the ability to fit real data of the model will be

stronger but the generalization turns out to be relatively weak. In the following,475

summation layer is added, which contains two kinds of neurons: S-summation

neuron (S) and D-summation neuron (SD), as defined in (14), respectively.

SD neurons are used to calculate the arithmetic summation of pattern layer’s

output. The remaining S neurons weight summation for the output of pattern
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layer. The i denotes ith number of input data, j denotes the jth dimension of480

output, and Sj denotes the jth S neuron output. Then, the w denotes weight

in hidden layer. The label (output layer) here is a 5-dimension one-hot vector

with one indicating normal log and the rest four are injections. y indicates yj

indicates the jth output item the output as defined in (15). Due to probability

representation of root cause, after the output layer of GRNN, we add a softmax485

layer to convert the sum of 5-dimensional output to be 1.

Fi = exp (
−(X−Xi)

T(X−Xi)

2σ2
), where X = [xa,xb...xg]T (13)

Summations





SD =
∑n

i=1(Fi), where i = 1 : n

Sj =
∑n

i=1(wijFi), where j = 1, 2, 3, 4, 5
(14)

where n is equal to input data set size.

yj =
Sj

SD
,where j = 1, 2, 3, 4, 5 (15)

To sum up, GRNN can select a dominant weight for each of our factors, and

provide the root cause probability results with high accuracy.

7. Experiments490

We evaluate LADRA on four widely used benchmarks and focus on the

following two questions: (1) Can the abnormal tasks be detected? (2) What

accuracy can LADRA’s root cause analysis achieve? In the experiment, we

conduct a series of interference injections to simulate various scenarios that lead

to abnormal tasks.495

7.1. Setup

Clusters: We set up an Apache Spark standalone cluster with one master

node (labeled by m1) and six slave nodes (labeled by n1,n2,n3,n4,n5,n6) based

on Amazon EC2 cloud resource. Each node is configured with type of “r3.xlarge”

(24 virtual cores and 30GB of memory) and Ubuntu 16.04.9. We conduct a500
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bunch of experiments atop of Apache Spark 2.2.0 with JDK 1.8.0, Scala-2.11.11,

and Hadoop-2.7.4 packages. Given that an AWS instance is configured with EBS

by default, it is difficult for us to inject disk I/O interference. Hence, we set up

a 90G ephemeral disk for each instance and deploy a HDFS to store data.

Table 3: Benchmark resource intensity

CPU Memory Disk I/O Network

WordCount
√ √ √

Sorting
√ √ √

K-Means
√ √

PageRank
√ √

Workload: In fact, some Spark applications may consume resources more505

intensively. According to previous studies on Spark performance [29], we choose

four benchmarks built on Hibench [30] and one real-world CPS application in

our experiments: WordCount, Sorting, PageRank, K-means, which cover the

domain of statistical batch application, machine learning program, and itera-

tive application. WordCount and Sorting are one-pass programs, K-means and510

PageRank are iterative programs. We characterize the benchmarks by resource

intensive type and program type for underpinning our approach’s scalability.

The resource intensity of each benchmark is shown in Table 3. The character-

istics of four benchmarks are listed as follows.

• WordCount is a one-pass program for counting how many times a word515

appears. We leverage RandomTextWriter in Hibench to generate 80G

datasets as our workload and store it in HDFS. It is CPU-bound and

disk-bound during map stage, then network-bound during reduce stage.

• Sorting is also a one-pass program that encounters heavy shuffle. The

input data is generated by RandomTextWriter in Hibench. Sorting is520

disk-bound in sampling stage and CPU-bound in map stage, and its reduce

stage is network-bound.

• K-means is an iterative clustering machine learning algorithm.The work-

load is generated by the k-means generator in Hibench, and is composed
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of 80 million points and 12 columns (dimensions). It is CPU-bound and525

network-bound during map stage.

• PageRank is an iterative ranking algorithm for graph computing. In order

to analyze root causes of abnormal tasks with PageRank, we use Hibench

PageRank as the testing workload, and generate eighty thousand vertices

by Hibench’s generator as input datasets. It is CPU-bound in each itera-530

tion’s map stage, and network bound in each reduce stage.

A CPS K-means is a real-world CPS application in civil engineering that

we developed before. The workload data size is 18 GB and collected by

sensors installed at a classroom building. Those sensors measure real time

temperature and humidity from each classroom. The collected data set is535

leveraged for detecting outlier temperature and humidity. To solve this

real-world problem with effective approaches, we implemented a K-means

algorithm on Spark for pre-clustering and grouping sensor data into sub-

clusters and decide the outliers.

7.2. LADRA interference framework540

In order to induce abnormal tasks in the real execution for experiment, we

design an interference framework that can inject four major resource (CPU,

memory, disk I/O, and network) interference to mimic various abnormal sce-

narios. In order to simplify experiment, we apply all interference injection tech-

niques only on node n1 for all test cases. In addition, for each injection, it will545

be launched during a time interval of 10 seconds and 60 seconds after the first

spark job is initiated, and continue for 120 seconds to 300 seconds. Finally, when

a test case is over, we recover all involved computing nodes to normal state by

terminating all interference injections. Specifically, the following interference

injections are used in our experiments:550

• CPU interference: CPU Hog is simulated via spawning a bunch of pro-

cesses at the same time to compete with Apache Spark processes. This
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injection causes CPU resource contention in consequence of limited CPU

resource.

• Memory interference: Memory resource scarcity is simulated via running a555

program that requests a significant amount of memory in a certain time to

compete with Apache Spark jobs, then we hold on this certain of memory

space for a while. Thus, Garbage Collection will be frequently invoked to

reclaim free space.

• Disk interference: Disk Hog (contention) is simulated via leveraging “dd”560

command to continuously read data and write them back to the ephemeral

disk to compete with Apache Spark jobs. It impacts both write and read

speed. After the interference is done, we clear the generated files and

system cache space.

• Network interference: Network scenario is simulated when network latency565

has a great impact on Spark. Specifically, we use “tc” command to limit

bandwidth between two computing nodes with specific duration. In this

way, the data transmission rate will be slowed down for a while.

7.3. Abnormal task detection

To evaluate LARDA, we compare LADRA’s detection with the Spark specu-570

lation. Each benchmark is executed 50 times without any interference injection,

and 50 times under the circumstances of abnormal tasks. After that, we cal-

culate the True Positive Rate (TPR) and False Positive Rate (FPR) results by

counting the correct rate of each job classification as shown in Eq. (16) and

Eq. (17). The comparison result is shown in Table 4.575

As a build-in straggler detector, Spark speculation brings False Positive (FP)

and True Negative (TN) problems in abnormal task detection. We compare

LADRA with Spark speculation in details. For instance, Figure 11 shows one

stage in a normal K-means execution, x-axis and y-axis present stage duration580

and task duration, respectively, and no abnormal tasks are detected by LADRA
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Table 4: LADRA’s abnormal task detection compares with Spark speculation’s approach in

four intensive benchmarks, where TPR = True Positive Rate, FPR = False Positive Rate.

Abnormal tasks detection
LADRA Spark speculation

TPR FPR TPR FPR

WordCount 0.96 0.06 0.94 0.8

Sorting 0.96 0.16 0.96 0.7

K-Means 0.7 0.1 0.2 0.7

CPS K-Means 0.7 0.1 0.2 0.7

PageRank 0.6 0.517 0.9 0.48

5.37 5.372 5.374 5.376 5.378 5.38 5.382 5.384
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Figure 11: Abnormal task detection for K-means without interference injection.
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Table 5: Root cause analysis result of LADRA’s GRNN approach, TPR = True Positive Rate,

P = Precision

GRNN
WordCount Sorting K-Means CPS K-Means Pagerank

TPR P TPR P TPR P TPR P TPR P

CPU 1.000 1.000 1.000 0.940 0.857 0.835 0.866 0.837 0.951 0.826

Disk I/O 0.450 0.420 0.679 0.894 0.423 0.692 0.533 0.666 0.540 0.847

Network 1.000 0.955 1.000 0.853 0.679 0.730 0.700 0.750 0.688 0.564

Normal 0.919 0.837 0.965 0.924 0.733 0.686 0.732 0.632 0.602 0.640

(purple higher horizontal dash dotted line). However, Spark speculation (black

lower horizontal dash dotted line) detects stragglers (area above the speculation

line and beside red dotted vertical line) after 75% tasks (red dotted vertical

line) finish. In this way, Spark speculation may delay the normal execution, as585

it will reschedule the stragglers to other executors. Moreover, Spark speculation

will cause true negative problems as shown in Figure 6, because it only checks

the 25% slowest tasks. As shown in Table 4, LADRA has a better accuracy in

abnormal task detection than Spark speculation for all benchmarks. However,

LADRA has lower accuracy on K-Means and PageRank than WordCount and590

Sorting. We find that under normal execution, most tasks in the map stage or

sampling stage of K-Means and PageRank have an unexpected longer duration,

because these benchmarks have many iteration stages, and tasks in those stages

have data skew and cross-rack traffic fetching problems. LADRA cannot detect

data skew problem within normal detection results. Too many such kinds of595

tasks with unexpected duration will cause LADRA to report false positives.

TPR =
TP

(TP + FN)
(16)

FPR =
FP

(TP + TN)
(17)
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7.4. LADRA’s root cause analysis result

To test the accuracy of LADRA’s GRNN approach for root cause analysis,

we use cross validation strategy with 1/3 for test data and 2/3 for train data600

each time. Data in normal cases is also used in our training for improving the

accuracy. In order to demonstrate the effectiveness of our approach, we run the

GRNN 100 times and get the final accuracy result. We calculate the Precision

(P) and True Positive Rate (TPR) for each detected root cause type by Eq. (18)

and Eq. (16).605

P =
TP

(TP + FP )
(18)

We abandon memory root cause analysis in our experiments for three rea-

sons. First, injecting significant memory interference into one node may cause

the whole application to crash, as executors of Spark will fail if without enough

memory. For instance, injected memory interference in PageRank benchmark

not only causes Out-of-Memory (OOM) failures, but also makes executor keep610

quitting (executors are continuously restarted and fail). Secondly, memory in-

terference does not work for non memory-intensive benchmarks. For instance,

WordCount is not a memory-intensive program, and it will not evoke abnormal

tasks, even injecting significant memory interference. Thirdly, memory interfer-

ence could also consume CPU resources, and may mislead GRNN’s classifying.615

Table 5 summarizes the total P and TPR results of LADRA’s root cause anal-

ysis for four benchmarks. There are two issues to be noted. (1) LADRA has

the highest CPU analysis precision (1.000 in CPU root cause analysis for Word-

Count) and higher network analysis precision (0.9545 in network root cause

analysis for WordCount) results than disk I/O (0.4200 in disk I/O root cause620

analysis for WordCount) for three reasons. First, all four benchmarks are CPU-

intensive, and require large CPU resource for computing (map and sampling

stages), and network resource to transfer data (reduce stages). Secondly, ab-

normal tasks have longer duration after CPU interference is injected, and the

impact of network injection is significant (CPU stays idle). Thus, the synthe-625
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sized factors demonstrate their effectiveness. Thirdly, as disk hog is injected by

leveraging a bunch of processes to read and write disk, it consumes not only disk

I/O but also a certain of CPU resources. Therefore, disk I/O injections may be

wrongly classified into other root causes (e.g., CPU, network, or normal). (2)

As shown by Table 5, LADRA is more precise on one-pass benchmarks than630

iterative benchmarks, such as K-means and PageRank. The TPR of k-means

and PageRank’s disk I/O is lower than the other two benchmarks. It is because

that PageRank and k-means are not disk I/O-intensive benchmarks, if the inter-

mediate data is small enough to be caught in memory, it will not use disk space.

Therefore, the disk interference does not impact too much for these benchmarks635

that have small size intermediate data. Moreover, wrong classification of other

root causes in k-means and PageRank also impacts LADRA’s normal root cause

classification, it causes more FP problems, or less TP. So the normal cases in

k-means and PageRank also have lower precision and TPR. To compare with

the same approach with different data size in different domains, two K-means640

experiments are performed on our LADRA. One uses a generated dataset by

Hibench [30], and the other uses the dataset produced by a real-world CPS

application. We keep all the hyper-parameter setting to be identical. Theoreti-

cally, due to the workload data distribution is different, the Spark platform will

give a weakly different but similar result since data itself is not a critical role,645

as shown in our experiment.

To sum up, LADRA can analyze root causes via Spark log with high precision

and TPR for one-pass applications. However, there may be a few of limitations

for LADRA to analyze root causes by only using Spark logs. Although Spark

logs contain full information, but not so rich as monitoring data.650

It might be not possible to analyze all kinds of root causes by only lever-

aging log files. Some root causes such as code failures, resource usages, and

network failures, may rely on monitoring tools. LADRA’s goal is to mine useful

information and leverage limited log information to analyze resource root causes

without extra overhead.655
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8. Conclusions and future work

This paper presents LADRA, an off-line log-based root cause analysis tool

to accurately detect abnormal tasks for big data platforms.LADRA can identify

abnormal tasks by analyzing extracted features from Spark logs, which is more

accurate than Spark’s speculation-based straggler detection method. In addi-660

tion, LADRA is capable of analyzing the root causes precisely using a GRNN-

based method without additional monitoring. The experimental results using

realistic benchmarks demonstrate that the proposed approach can accurately

locate abnormalities and report their root causes. According to our experiment

results, we can effectively detect the resource abnormal and analyze root causes665

in Spark applications.

For the future work, we will consider more complex scenarios, such as multi-

ple interferences happening in parallel, to make our framework more robust for

root cause analysis.
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HIGHTLIGHTS  

 
• An abnormality detection tool is proposed for log analysis, named LADRA. 

 

• LADRA’s detection approach can accurately locate where and when abnormal 

tasks happen. 

 

 

• Effective features and abnormal factors are extracted in exposing the degree of 

abnormality from log analysis. 

 

• Root causes of detected abnormal tasks are analyzed by GRNN based neural 

network model.  

 

 

• The results are reasonable and outperform existing methods in precision. 

 


