
Accepted Manuscript

A machine learning framework for investigating data breaches based on
semantic analysis of adversary’s attack patterns in threat intelligence
repositories

Umara Noor, Zahid Anwar, Asad Waqar Malik, Sharifullah Khan,
Shahzad Saleem

PII: S0167-739X(18)30670-8
DOI: https://doi.org/10.1016/j.future.2019.01.022
Reference: FUTURE 4715

To appear in: Future Generation Computer Systems

Received date : 28 March 2018
Revised date : 27 November 2018
Accepted date : 13 January 2019

Please cite this article as: U. Noor, Z. Anwar, A.W. Malik et al., A machine learning framework for
investigating data breaches based on semantic analysis of adversary’s attack patterns in threat
intelligence repositories, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.01.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.01.022


A Machine Learning Framework for Investigating Data
Breaches Based on Semantic Analysis of Adversary’s Attack

Patterns in Threat Intelligence Repositories

Umara Noor a, c , Zahid Anwar a, b , Asad Waqar Malik a , Sharifullah Khan a , Shahzad
Saleem a

aNational University of Sciences and Technology (NUST), Islamabad, Pakistan

b Mathematics and Computer Science, Fontbonne University, St. Louis, MO USA

c Department of Computer Science and Software Engineering, Faculty of Basic and applied Sciences,
International Islamic University, Islamabad, Pakistan

Abstract

With the ever increasing cases of cyber data breaches, the manual process of sift-
ing through tons of security logs to investigate cyber-attacks is error-prone and time-
consuming. Signature-based deep search solutions only give accurate results if the threat
artifacts are precisely provided. With the burgeoning variety of sophisticated cyber
threats having common attack patterns and utilizing the same attack tools, a timely
investigation is nearly impossible. There is a need to automate the threat analysis pro-
cess by mapping adversary’s Tactics, Techniques and Procedures (TTPs) to attack goals
and detection mechanisms. In this paper, a novel machine learning based framework is
proposed that identifies cyber threats based on observed attack patterns. The framework
semantically relates threats and TTPs extracted from well-known threat sources with as-
sociated detection mechanisms to form a semantic network. This network is then used to
determine threat occurrences by forming probabilistic relationships between threats and
TTPs. The framework is trained using a TTP taxonomy dataset and the performance
is evaluated with threat artifacts reported in threat reports. The framework efficiently
identifies attacks with 92% accuracy and low false positives even in the case of lost and
spurious TTPs. The average detection time of a data breach incident is 0.15 seconds for
a network trained with 133 TTPs from 45 threat families.

Keywords: Cyber Threat Intelligence, Data Breach Investigation, Tactics Techniques
and Procedures, Indicators of Compromise, Belief network, Latent Semantic Indexing

Email addresses: 13phdunoor@seecs.nust.edu.pk (Umara Noor a, c),
zahid.anwar@seecs.nust.edu.pk (Zahid Anwar a, b), asad.malik@seecs.nust.edu.pk (Asad Waqar
Malik a), sharifullah.khan@seecs.nust.edu.pk (Sharifullah Khan a),
shahzad.saleem@seecs.nust.edu.pk (Shahzad Saleem a)

Preprint submitted to Elsevier November 23, 2018



1. Introduction

The pervasiveness of high-speed Internet connectivity has attracted a large majority
of businesses to move their sensitive and confidential information and transactions to the
clouds. This transition has made business operations flexible and easy for the customers
at the cost of making them vulnerable to cyber data breach attacks. In 2016 alone, over
1.4 billion data records were breached in a total of 1792 incidents targeting financial,
banking and retail outlets [1]. The situation is getting worse as in the first half of the year
2017, over 1.9 billion records were breached in 918 incidents [2] including the massive data
breach of Equifax where 148 million consumers had their personal information accessed
[3]. The detailed analysis of these cyber incidents reveals that the adversaries use common
attack patterns to compromise their target. Due to this reason, the security community
is paying more attention towards sharing and consuming Cyber Threat Incident Reports
(CTIR) as a measure of proactive defense against data breach incidents.

The massive size of CTIR and the constant onslaught of new Advanced Persistent
Threats (APT) make it nearly impossible for the security analyst to identify a relevant
attack’s behavioral signature. Currently, there are approximately 1 billion threat indica-
tors publicly available on Hail-a-TAXII [4]. Similarly, IBM X-Force [5] reports thousands
of malware on a weekly basis. The Verizon’s Data Breach Investigations Report (DBIR)
[6] reports millions of data breaches including stolen credit card credentials. Along with
these reports, a network administrator has locally available log files [7] containing useful
threat data, e.g., DNS [8], packet capture [9], email [10] and IP logs [11]. Among these
different types of reports, Structured Threat Information Expression (STIX) [12] en-
coded CTIRs are more comprehensive because they record the details of cyber breaches
as attack observables, indicators, TTPs, incidents, threat actors, campaigns, exploit tar-
gets and Course of Actions (COAs). To investigate data breach incidents, so far, a
major focus of the security community has been on sharing and identifying indicators
and observables. These are low-level threat artifacts comprising of IP addresses, domain
names and file hashes. Unfortunately, they have a very short lifespan with respect to
threat defense as they are susceptible to change having fewer chances of being reused.
The attacker constantly changes IP addresses by buying new attack servers and domain
names. While cyber data breach incidents are caused by such malware and APTs that
share attack patterns as TTPs. The TTPs represent the attacker’s actions for breaching
an organization’s network. As the indicators and observables change rapidly, similarly
the goals and targets of attackers also change frequently. Ironically the attackers’ TTPs
remain the same and are re-used over and over again with little innovation. This problem
was observed in the data breach incidents of some notable organizations like Sony [13],
Target [14] and Home Depot [15] where millions of customers were affected. In these
incidents, the adversaries’ employed the same TTPs to breach into the network. The
greatest amount of pain can be inflicted upon the attacker by identifying TTPs in the
network and thereby achieving a timely investigation.

In this research work, we propose a novel and automated data breach investigation
framework that exploits adversary’s attack patterns, i.e., TTPs in CTIR. The framework
generates a Threat-TTP-Detection (TTD) network by semantically correlating threat
incidents among themselves to identify the existence of a TTP in a network. The TTD
semantic network is further augmented to investigate the most probable threat incident
family, based on detected TTPs in a network, by adopting a machine learning based
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Figure 1: Pyramid of Pain Model [16]

probablistic analysis. The proposed framework reliably detects data breach incidents
with an accuracy of 92% and low false positives even in the case of lost and spurious
TTPs.

The organization of the paper follows this sequence: The problem statement is dis-
cussed in the second section. Based on the problem statement we describe our research
methodology and contributions in section three. Section four discusses the related work.
The proposed framework design is detailed in the fifth section. The working of this
framework is explained in the sixth section with the help of a financial RAM scrapping
malware family data breach case study. The effectiveness and efficiency of the framework
are evaluated in the seventh section. Finally, in the eighth section, the research work is
concluded along with future perspectives.

2. Problem Statement

Cyber data breach incidents are caused by such malware and APTs that share attack
patterns as IOCs. There are six levels of IOCs as defined in the Pyramid of Pain model
[16, 17] shown in figure 1. The IOCs present in the first three levels are atomic indicators
comprising file hashes, IPs, domain names, network and host artifacts. Low-level IOCs,
also termed technical threat intelligence, are consumed by technical resources such as
firewall, Intrusion Detection System (IDS) and spam filters on email servers. In the upper
part of the pyramid, there are more generalized threat indicators related to the behavioral
attack signatures of threats such as exploit toolkits, malware and TTPs. The high-level
IOCs, also termed as tactical threat intelligence is consumed by incident responders
for investigation, hardening defenses by upgrading systems and policies. Interestingly
the indicators in the lowest part of the pyramid can be easily identified and extracted
from the threat reports due to their fixed format. Therefore, they can also be easily
defended by applying intrusion detection and firewall rules. Currently, the emphasis of
the security community is to employ low-level IOCs for sharing and investigating a data
breach incident. Unfortunately, these low-level IOCs are only useful for a short time or
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Figure 2: Credential Compromise TTPs for Three Threat Groups

for immediate use. The attacker constantly changes IP addresses by buying new attack
servers and domain names. On the other hand high-level IOCs are for a long-term use
and provide sophisticated defense against cyber threats. Thus by identifying high-level
IOCs, i.e., TTPs the attacker is forced to change his attack patterns.

To illustrate the significance of TTPs in the investigation process, in figure 2 an ex-
ample of three famous threat groups, i.e., TG-1314 [18], TG-3390 [19] and TG-4127 [20]
is provided. All these groups compromise victims’ credentials but using different attack
TTPs. The threat group TG-1314 uses the victim’s remote access tools by compro-
mising credentials of the network’s endpoint management platform. The threat group
TG-3390 installs a keylogger and employs a publicly available credential dumper tool
to get password hashes. The threat group TG-4127 compromises credentials via spear
phishing. A well-known example related to TG-4127 is the Democratic National Com-
mittee’s Gmail-based email account hack during the presidential campaign. Similarly,
the goals and targets of these threat groups are also different. The goal of the threat
group TG-1314 is to log into the victim’s remote access facility while the threat group
TG-3390 steals industrial intellectual property. The threat group TG-4127 targets gov-
ernment and military networks for espionage and cyber warfare. This shows that by
identifying the presence of a particular threat group related TTP in a network provides
a distinct advantage to the analyst in explicitly identifying the cyber threat family.

Our problem statement is thus as follows. Current techniques to diagnose a data
breach incident use low-level IOCs which are not useful due to their short life span.
On the other hand if high-level IOCs, i.e., TTPs are used to investigate a data breach
incident, they can allow more accurate detection. Therefore our problem is to identify
TTPs based on the low level threat artifacts observed in a network with the help of
appropriate machine learning algorithms.

3. Research Methodology and Contributions

To address the problem statement presented in the previous section, here we describe
our research methodology from which we will derive our solution and accomplish our
research challenges. To accurately investigate cyber threats using adversary’s TTPs,
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two main challenges need to be addressed. The first challenge is that to identify TTPs
of an attack, the security analyst has to perform certain detection mechanisms that
are frequently not specified in the CTIR. The second challenge is that TTPs are rarely
referenced using standard identifiers in CTIR. They are mostly reported as unstructured,
human understandable textual descriptions that make it difficult to correlate attack
incidents of same threat group based on similar TTPs due to synonyms and polysemous
words. Manual searching for correlated TTPs is a tedious, time consuming and error
prone process which is nearly impossible due to the massive size of CTIR.

The first step of the methodology addresses the challenge of identifying the existence
of TTPs. The detection mechanisms of our framework are obtained from the publicly
available (ATT&CK) taxonomy provided by MITRE [21] that documents adversarial
Tactics, Techniques and Common Knowledge. The framework generates a semantic
network of Threats, TTPs and Detection menchanisms (TTD) by correlating threat
incidents among themselves to identify the existence of a TTP in a network. The second
step of the methodology addresses the challenge of referencing TTPs in CTIR. The
TTPs in the CTIR are semantically mapped into the TTD using their appropriate labels
in the ATT&CK taxonomy using Latent Semantic Indexing (LSI). LSI, not only groups
documents using semantically similar words but also groups semantically similar words in
a document to identify themes or topics of the documents. The TTD is further augmented
to diagnose the most probable threat family, based on detected TTPs in a network, by
adopting a probablistic machine learning based analysis using belief networks between
threats and TTPs. The advantage of this approach is that it outperforms sophisticated
classification methods, treats all predictor attributes independently and is useful for very
large datasets with missing data [22].

To evaluate the working of the proposed framework, we constructed a benchmark
dataset from the ground truth data (threat, TTP and detection mechanisms) available
on ATT&CK taxonomy [21]. Threat artifacts were compiled based on the threat inci-
dents reported by multiple sources, i.e., IBM X-Force [5], Symantec [23], FireEye [24]
and CrowdStrike [25]. These artifacts were populated into the prototype system and
automated investigation was performed to determine the presence of attacks.

Our research has the following contributions:

1. This work is the first of its kind that presents a case for emphasizing the analytics
of high-level adversarial TTPs. Previous work has primarily focused on the identi-
fication of low-level atomic indicators that are trivial for the attacker to change.

2. The results presented highlight the important relationship between security inci-
dents, tactics and artifacts in a way that machines can identify these connections
with certain probabilities. Henceforth this research paves the way for cyber security
investigations with partial or incomplete information.

3. A well-known standard dataset of unstructured cyber threat incidents has been
thoroughly studied and dissected to construct a comprehensive vocabulary of struc-
tured TTPs. The existing threat taxonomies are either too specific to a particular
domain, e.g., web attacks or are too verbose and descriptive to be useful for machine
learning.

4. Our research motivates the development and usage of a common vocabulary for
TTPs in CTIR. The SIRS module allows security analysts to identify common
TTPs in different documents even if they have different texts but have the same
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meaning. At the same time, this also gives SIRS the ability to discover TTPs
mentioned in one document but not the other. We illustrate this in the evaluation
section by showing how the proposed system identifies missing TTPs in three docu-
ments (ATT&CK, IBM X-Force, Symantec) that concern the same threat (AXIOM
Group). These TTPs can be derived or essentially imported from one dataset into
the other thereby automatically “augmenting” the latter. This is hence an impor-
tant contribution to our work.

5. The results prove that the cyber threat classes and their associated incidents utilize
a finite and typically deterministic collection of TTPs, which characterize them. If
this set of TTPs can be systematically documented then the threat groups can be
automatically profiled and ultimately stopped. Machines can help investigate these
“telltale” threat group signatures. This is not surprising as threat groups constitute
real people who specialize in particular tactics and techniques which evolve over
time.

4. Related Work

Cyber threat diagnosis based on learning patterns from CTIR is a relatively new
domain. We did not find any directly related research work that can be compared
to the proposed scheme. However, our research benefits from several existing research
domains. First, we studied the different state of the art solutions that deal with cyber
threats. Second, we studied research works where CTIR have been used to forecast
cyber incidents, suggest investment in data security and operational risk management
in financial sectors. Third, we studied how cyber and network security operations can
be enhanced by extracting security concepts from unstructured sources and enriching
intrusion detection knowledge bases to detect attacks and vulnerabilities. Fourth, we
studied the most state-of-the-art solutions for malware, APT and intrusion detection
using machine learning techniques.

A machine learning based cyber threat detection model to identify the seven top
security threats in cloud computing and their remediation is proposed in [26]. The
presence and type of attack is determined by training the machine learning model with
a limited set of artifacts that depict the activity pattern of the cloud. The artifacts are
performance logs of CPU, storage media, network usage patterns of the hypervisor and
the guest operating system. In [27], the authors propose an abstraction layer over the
Internet to record events from different information systems, and correlate and share
these among the partners in order to detect and monitor frauds. A limited set of cyber
threats belonging to inter-domain port scans are considered. An automated framework
to respond to cyber threats with appropriate response plans is proposed in [28]. It works
by integrating and evaluating operational, financial and threat impact models. The
data employed is network inventory, security policies, mitigation actions, reachability
matrix and vulnerability inventory. The data is local to the network and based on pre-
established security guidelines. The proposed framework does not employ CTI data for
dynamic risk management. In [29], a fog-based storage approach is proposed for the
integrity, availability and confidentiality of users data stored in clouds from a limited set
of cyber threats such as malicious modification and data loss.

Publicly available CTIR repositories such as VERIS incident database, Hackmaged-
don, and the Web Hacking Incidents Database have been used by Liu et al [30]. The
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purpose is to forecast the cyber security incidents based on the network state. This state
is depicted with externally detected properties i.e mismanagement symptoms, DNS or
BGP misconfigurations and a time series of malicious activity including scanning, phish-
ing and spam. The VERIS incident database and Alexa Web Information Service AWIS
is used by Sarabi et al [31] to devise a categorization metric. It suggests the investment
a business should do on achieving targeted and effective resource allocation for security
incidents dealing with critical data of that business. The incidents are categorized based
on the type, the originating source, motive, and assets used related to that incident.
Similarly, Vasily [32] used the VERIS incident database to investigate data breaches in
financial sectors. To manage operational risk a belief network is formed. The results
obtained from the model assist management in understanding the problem areas rele-
vant to their businesses and make decisions for future betterment. In [33], the authors
propose the use cases of cyber threat intelligence sharing using STIX to gain informa-
tion about the disruptive consequences of cyber threats and data breaches on society.
A threat analytics framework to contextualize the massive Cyber Threat Intelligence
(CTI) is proposed in [34]. The CTI standards, network configurations, and Common
Vulnerabilities Exposure (CVE) are represented using ontological formal specification
The ontology developed is employed to semantically reason about the cyber threat rel-
evance to a network their likelihood and the vulnerable and affected assets. The focus
is on the network relevance towards a cyber threat instead of detecting or correlating
existing threats with new cyber threats. In [35], the authors performed a comparative
analysis of the STIX, IODEF, VERIS and X-ARF cyber security incident reporting for-
mats. The study reveals that STIX is the most comprehensive and practicable cyber
security incident reporting format. In [36], the authors describe threat intelligence use
cases with STIX. The purpose is to improve the automated management of threats. The
information from different threat intelligence providers and network elements is corre-
lated. A comprehensive survey of the existing CTI standards in the context of cyber
threat information sharing is given in [37].

Security concepts extracted from unstructured online web sources proved to be really
helpful in enhancing traditional knowledge bases of intrusion detection systems. More et
al. [38] proposes an intrusion detection system which extracts security concepts from text.
These concepts are compared with monitoring sensors’ logs with the help of a reasoner
for generating security alerts. The security concepts are extracted from heterogeneous
sources. The extracted threat is used to populate a security ontology borrowed from
[39]. In a related research, Mulwad et al [40] present a framework for vulnerability
extraction and cyber-attack related information from web text and compare it with
wikitology concepts [41]. A model proposed by Joshi et al [42] takes text, vulnerability
descriptions, blog posts and security bulletins as input and automatically extracts entities
and populates concepts in DBpedia [43]. In DBpedia, these concepts are matched and
assigned corresponding class values. Similarly Bridges et al. [44] present a maximum
entropy model for automatic labeling of security text. An approach for early detection of
real-world exploits and vulnerabilities from Twitter is proposed by Sabottke et al [45]. It
observes tweets of security vendors, hackers, and administrators. More vulnerabilities can
be detected using Twitter security forums than actually present in the proof of concept
public repositories. To extract useful content from news stories Ryan et al. [46] use a text
mining approach. To measure relatedness between concepts collected from news stories
Latent Semantic Analysis (LSA) is used. To semantically contextualize IoT data, Mário
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et al. [47] proposes an approach for extracting semantic features from publicly accessible
web services to facilitate M2M based communication. A cyber security ontology called
CRATELO is introduced by Oltramari et al. [48]. It consists of three levels that use
a simplified version of Dolce named Dolce spray as first level ontology. The proposed
cyber security related ontology SECO as a middle level and domain level ontology OSCO
for cyber operations. The research considers spatial and temporal properties of attacks
and the attacker’s host and network artifacts are not considered. In the related research
the same authors [49] introduced the concept of trust management in CRATELO, e.g.,
any value delay which is out of an acceptable network delay range will be unreliable.
Details of acceptable delay for different networks are not given. To investigate APTs via
artifacts collected from cloud apps, Christian et al. [50] developed a taxonomy of security
mechanism circumvention techniques by analyzing case studies of iOS cloud apps.

A Support Vector Machine (SVM) based signature free malware detection based on
the selection of filter based malware feature is given in [51]. The features employed are
Application Program Interface (API) call statistics. Similarly, a machine-learned model
based malware detection system is provided in [52]. The malware features are obtained
from both benign and malicious executables. The features considered are file hashes,
malicious IP addresses and malicious external calls. The machine learning techniques
used are SVM and decision trees. In [53], the authors propose a machine learning based
malware detection engine. The malware features considered are static, behavioral and
permission related. The static features are obtained from APK files. The behavioral
features are obtained by executing the Apps in an emulator. The permissions are selected
using information gain. The J48 (open source Java-based implementation of the decision
tree) classifiers outperforms other techniques. In [54], a machine learning based approach
is used to detect and predict APT. The features of APT considered are low-level IOCs,
i.e., executable files, malicious file hashes domain names, IPs and SSL.

The aforementioned works introduced the groundwork for cyber security related infor-
mation retrieval and set the stage for investigating cyber data breach incidents. However,
the models and ontologies employed are very basic and do not cover all aspects of threats
both low-level artifacts and TTPs. They only capture vulnerabilities exploited and their
needs. The proposed threat investigation is based on semantic analysis of adversary’s at-
tack patterns by employing machine learning techniques for predicting the threat family
class. In order to identify cyber threats, security analysts must perform adequate inves-
tigations to identify threats in the context of recent data breaches and exploits found in
CTIR.

5. Data Breach Investigation Framework

A high-level architecture of the proposed framework is shown in figure 3. It can be
broadly divided into three segments: Semantic Indexer and Retrieval System (SIRS),
TTD Semantic Network and Cyber Threat Prediction. The input to the system is CTIR
and ATT&CK documents. A CTIR corresponds to a single cyber threat or incident
while an ATT&CK document may correspond to many detection mechanisms related
to a TTP. The SIRS segment semantically indexes CTIR and ATT&CK documents,
maintains a TTP dictionary extracted from threat documents and retrieves a ranked list
of CTIR and ATT&CK documents for each TTP present in the dictionary. The list of
ranked documents is combined to connect cyber threats, TTPs and detection mechanisms
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based on a higher rank specified by the ranking function. A belief network is further
trained between the TTPs and the cyber threat incident to predict cyber threats based
on detected threat artifacts. The last segment, i.e., Cyber Threat Prediction takes as
input the TTD and the detected threat artifacts to produce a reliable threat prediction.
The functional details of each segment are given in the following subsections. The details
of notations used are given in Table 1.

5.1. Semantic Indexer and Retrieval System

Table 1: Data Breach Investigation Framework Notations and Definitions

Notation Definition

Ali A ATT&CK documents set, associated with the TTP ttpi
TTPti A TTPs set, associated with a threat ti
Tsi A threats set, associated with the TTP ttpi
Ddi A set of detection mechanisms, associated with di
TIndex Latent Semantic Indexed threat documents
AIndex Latent Semantic Indexed ATT&CK documents
TRank A list of ranked threat documents associated with ttpi
ARank A list of ranked ATT&CK documents associated with ttpi
TTPD A detected ttps set
TTPDti A set of detected ttps due to threat ti
TTPUti A set of undetected TTPs due to threat ti
pi A set of predicted threats based on TTPD
S(ti) Threat support function to measure the maximal support of

TTPD towards ti
P ′ A new set of threat predictions, pi based on TTPD
TTPM A set of correlated but missing TTPs associated with threat in

a prediction
TTPE A subset of TTPM that are present
TTPN A subset of TTPM that are not present

The structure of a general CTIR document is shown in figure 4. In the case of this
example, it is an excerpt of a STIX encoded CTIR document reporting the Backoff mal-
ware belonging to the financial systems-breach threat family [55]. Each CTIR document
is assigned a unique identification number using the id attribute in the STIX Package
element. The low-level IOCs are represented by the Indicator STIX element. The high-
level IOCs are represented by the TTPs STIX element. Both kinds of IOCs have unique
IDs to distinguish them. Each TTP is also assigned a unique identification number using
the id attribute in the TTP element. The details of the TTPs are given in the Descrip-
tion sub-element of the TTP element. The STIX standard does not directly support the
specification of detection mechanisms, which are typically not found in cyber threat re-
ports. Thus in order to enable security administrators to identify TTPs in their network,
those found in the CTIR must be mapped to their associated detection mechanisms.
The detection mechanisms are provided in the ATT&CK repository by MITRE [21]. In
this repository, ten tactic categories are defined i.e Persistence, Privilege Escalation, De-
fense Evasion, Credential Access, Discovery, Lateral Movement, Execution, Collection,
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Figure 3: Data Breach Investigation Framework
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Exfiltration and Command and Control. Each category specifies the adversary’s tech-
niques with threat examples and actions for detection and mitigation. An example of an
ATT&CK document describing Application Deployment Software technique is shown in
figure 5. Each technique has its own unique identification number. The technique’s title
is a generalized taxonomic label which is difficult to map to comprehensively described
TTPs in the CTIR.

The SIRS algorithm is provided in listing 1 and it’s detailed explanation is pro-
vided here. In addition, its working with respect to a specific case study of finan-
cial malware is provided in section 6.2.1. The SIRS segment constitutes a main func-
tion SEM INDEX RETRIEVE whose job is to retrieve ranked CTIR and ATT&CK
documents for each TTP. The function takes as input a set of m CTIR documents
T=t1, t2, ..., tm and a set of l ATT&CK documents A= a1, a2, ..., al. T represents individ-
ual attack instances, malware families or software tools. A set of k detection mechanisms
D=d1, d2, ..., dk can be used to verify existence of a set of n TTPs TTP=ttp1, ttp2, ..., ttpn.
The first step, shown in line number 2 to 4 extracts TTPs from the CTIR and archives
them in a dictionary. As mentioned in the introduction section, we have used STIX en-
coded CTIR documents. STIX uses the commonly used XML format to import, export
and share data between different platforms. However, to analyze XML encoded data,
these files can be converted into different flexible formats. A common practice is to im-
port the XML encoded data into spreadsheets. To extract TTPs from the STIX encoded
CTIR, a dictionary is created on line number 4 whereby the CTIR files are imported as
separate rows into a spreadsheet and the columns constitute the CTIR ID, TTP ID and
TTP Description. An excerpt of the data structure of the TTP dictionary is shown in
figure 6.

Figure 4: An excerpt of STIX encoded CTIR document reporting Backoff financial malware [55]
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Figure 5: An ATT&CK MITRE document specifying adversary’s TTP, threat example, mitigation and
detection mechanisms

Figure 6: An Excerpt of TTP Dictionary

The second step shown on line number 6, is to semantically correlate the TTPs in the
CTIR among themselves (line number 7) and with the TTPs in the ATT&CK documents
(line number 8). In figure 7, the semantic relevance among TTPs in ATT&CK documents
and CTIR is shown. On the left-hand side, there are five ATT&CK documents. The
document’s title is the label of the TTP. On the right hand side, there are three different
threats of financial malware family, i.e., Backoff, Treasure Hunt and FastPOS. It can
be seen that there are some common TTPs, e.g., key logging functionality and Deliver
keylog data but due to different textual descriptions, it is hard for a machine to correlate
them using a simple keyword matching technique. Similarly, It can be seen that the titles
of relevant ATT&CK TTP documents represent the general labels or taxonomic classes
of the TTPs, which is again hard to correlate with the textual TTP description in the
CTIR. For this purpose, we use LSI to semantically map TTPs with each other. In figure
7, the TTPs are numbered on both sides. This numbering represents their semantic rele-
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vance which is the desired outcome of using LSI. In the past, researchers have successfully
used LSI for enhancing the semantic understanding of text documents in web search [56],
recommendation systems [57], personality identification [58] and automatic assignment
of multi-level security labels [59]. The traditional keyword-based lexical matching tech-
niques retrieve information by matching query terms with the terms in the text corpora.
However, they can be erroneous matches due to inaccurate concept matching caused by
synonyms and polysemous words. Thus instead of using the simple keyword search, we
index CTIR and ATT&CK documents using LSI. The TTPs are searched for semanti-
cally relevant concepts or topics in statistically derived conceptual indices (line number
11-24).

LSI assumes a latent pattern in document terms which is hidden due to variable ways
to represent a concept. The dimensionality of the sparse (with more zero entries) term-
document matrix (representing the frequency of terms in the documents) is reduced
using Singular Value Decomposition (SVD) to figure out the hidden word patterns in
the documents. The relevance between the TTP query and the indexed documents is
calculated by taking the cosine of the two vectors. The documents are ranked by the
distance to the TTP queries. A smaller angle leads to a large cosine value that means the
document has high relevance to the given TTP query. A larger angle leads to a smaller
cosine value that means the document is low in relevance to the given TTP query.

To connect TTPs in the dictionary among themselves, the TTP descriptions in column
3 of the dictionary are provided one by one as search terms in the CTIR corpora. If
there is a match then a new row is created in the dictionary with the same TTP ID
as the ID of the TTP that was matched. Similarly, to connect TTPs in the dictionary
with the detection mechanisms, the TTP descriptions are provided as search terms in
the ATT&CK corpora. If a match is found, the corresponding detection mechanism is
fetched and added as a new column in the dictionary.

The Latent semantic indexer indexes CTIR and ATT&CK documents. The Semantic
retrieval system retrieves a ranked list of CTIR and ATT&CK documents for each TTP
present in the TTP dictionary. The ranked results against each TTP are merged and
further provided to the second segment, i.e., TTD network where TTPs are semantically
linked to their corresponding detection mechanisms.
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Figure 7: Semantic correlation among TTPs in CTIR and with TTPs of ATT&CK documents

Algorithm 1 Semantic Indexer and Retrieval System

Input: CTIR T, ATT&CK documents A
Output: An n-element array of Ranked CTIR and ATT&CK documents (TRank,

ARank) for each TTP
1: function Sem Index Retrieve(T, A)
2: TTP Dictionary= Extract Relevant Fields(T ) . Populate TTP Dictionary from

CTIR
3: LSI Indexer(T, A)
4: Semantic Retrieval(TTP Dictionary, TIndex, AIndex )
5: end function
6: function LSI Indexer(T, A)
7: TIndex=LSI(T )
8: AIndex=LSI(A)
9: end function

10: function Semantic Retrieval(TTP Dictionary, TIndex, AIndex )
11: for i = 1 to m do . m = count(ttpi) where ttp1, ttp2, ......, ttpm ∈

TTP Dictionary
12: Search ttpi in (TIndex,AIndex)
13: TLi= Rank(TIndex) for ttpi . Where Rank - LSI document ranking
14: Select tli ∈ TLi > Threshold
15: for j = 1 to n do . n = count(tlj) where tl1, tl2, ......, tln ∈ TLi
16: TRank= add Record(tlj , ttpi)
17: end for
18: ALi= Rank(AIndex) for ttpi
19: Select ali ∈ ALi > Threshold
20: for k = 1 to r do . r = count(alk) where al1, al2, ......, alr ∈ ALi
21: ARank= add Record(alk, ttpi)
22: end for
23: end for
24: return TRank, ARank
25: end function
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5.2. TTD Semantic Network

The SIRS segment retrieves semantically relevant cyber threat reports and adversary’s
techniques documents. The next step is to link threats to their respective TTPs and
detection mechanisms. A dependency table PT×S = p(ttpi/ti) is built between the threat
incidents and the TTPs. Thus TTD represents semantic relations of three independent
concept sets, i.e., threat set, TTP set and detection mechanisms set. TTPs and threats
are connected through links to show that the two are dependent. TTPs and detection
mechanisms are also similarly connected to show dependencies between the TTPs and
the detection mechanisms as described in the ATT&CK taxonomy.

Algorithm 2 Threat-TTP-Detection Semantic Network

Input: TRank, ARank
Output: TTD Semantic Network

1: function TTD Semnet(TRank, ARank)
2: TTD NETWORK(ttpi, TRank, ARank)
3: BELIEF NETWORK(TTD Network)
4: end function
5: function TTD Network(ttpi, TRank, ARank)
6: for (ttpi ∈ TTP ) do
7: add (ti ∈ TRank)
8: add (di ∈ D ∈ ARank)
9: end for

10: return TTD Network
11: end function
12: function Belief Network(TTD Network)
13: for ti ∈ T do
14: ω(ttpi/ti) = p(ttpi/ti)∑

ti∈Tttpi

p(ttpi/ti)

15: µ(ti/ttpi) = ω(ttpi/ti)p(ti)∑
ti∈Tttpi

ω(ttpi/ti)p(ti)

16: end for
17: return TTD Semantic Network
18: end function

The stepwise details to build a TTD semantic network are given in algorithm 2. The
working of the TTD is explained in section 6.2.2 with the financial malware case study.
After initial mapping between threats, TTPs and detection mechanisms, a belief network
is trained between threats and TTPs in order to predict threats based on the presence of
certain artifacts. It is based on a threat support function S(ti) to measure the maximal
support of the detected TTPs towards a threat occurrence. The algorithm assumes that
all predictor TTPs are independent of each other. The historical artifacts signifying the
existance of a cyber attack are gathered to calculate conditional probability between
TTPs and threats, i.e., p(ttpi/ti) ∈ (0, 1). These probabilities are based on historical
data that forms a frequency table in the Threat-TTP mapping. The frequency table
may need to be normalized to eliminate null values. This is done by adding 1 to all
entries of the mapping table and thus eliminating entries with “0” or null value. The
normalized table is used to calculate the normalized likelihood or normalized conditional
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probability ω(ttpi/ti) to show the support of each threat ti to their detected ttpi shown
in equation 1.

ω(ttpi/ti) =
p(ttpi/ti)∑

ti∈Tttpi
p(ttpi/ti)

(1)

Using the above normalized likelihood table, the normalized posterior probability
µ(ti/ttpi) can be computed by using Naive Bayes in equation 2 [22]:

µ(ti/ttpi) =
ω(ttpi/ti)p(ti)∑

ti∈Tttpi
ω(ttpi/ti)p(ti)

(2)

The predicted class is the one that has the highest posterior probability. All the
detected TTPs are considered for such support and for each attack for a different kind so
in order to extract a threat prediction all such support values are combined to find a best
candidate threat prediction set with maximum support value S(ti) shown in equation 3.

S(ti) =

∑
ttpi∈TTPDi

µ(ti/ttpi)∑
ttpi∈TTPti

µ(ti/ttpi)
(3)

The output of the second segment is a TTD network which is provided as input to
the third segment, i.e., cyber threat prediction.

5.3. Cyber Threat Prediction

The cyber threat prediction segment can be further divided into three functional
modules: 1) Threat Investigation (TD), 2) Reliability Assessment (RA) and 3) Detection
Mechanism Selection (DMS). The stepwise details of the cyber threat prediction segment
are given in algorithm 3. The working of each functional module is explained in section
6.2.3 with POS malware case study.

The responsibility of the threat investigation module is to produce a predicted threat
set P ′ given a set of detected TTPs i.e TTPD. P ′ may contain a set of attack predictions
(p1, p2, ..., pn). pi is a threat set that characterizes the TTPs detected. Next, the relia-
bility module determines if any of the predictions pi(pi ∈ P ′) is reliable. The first reason
for reliability assessment is that a prediction with low reliability can lead to an incorrect
prediction and thus waste the time and resources of an organization. The second reason
for assessing reliability is to determine the presence of poisoned or spurious symptoms,
i.e., detected TTPs. The Reliability Assessment (RA) equation used to measure the
reliability of prediction pi is given in equation 4. The TTPDti represents a set of all
detected TTPs due to threat ti. The TTPti represents a set of all TTPs, associated with
threat ti.

RA(P ′) =

∑
ti∈pi(TTPDti/TTPti)

pi
(4)

The threat investigation is deemed complete if a high reliability is determined. If
the relevant TTPs related to the threat prediction pi were not detected then, TTPM,
the set of undetected TTPs that most reliably contribute to explaining pi are considered
by the Detection Mechanism Selection module. This outputs a set of existing TTPs,
i.e., TTPE and non-existing TTPs TTPN based on the least cost detection mechanisms
and the prediction pi reliability value is recalculated. If the reliability value increases
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Algorithm 3 Cyber Threat Prediction

Input: TTD Network, TTPD
Output: Reliable Prediction

1: function Threat Prediction(TTD Network, TTPD)
2: THREAT INVESTIGATION(ttpi, TTD Network, TTPD)
3: RELIABILITY ASSESSMENT(P ′)
4: end function
5: function Threat Investigation(TTD Network, TTPD)

6: S(ti) =

∑
ttpi∈TTPDi

µ(ti/ttpi)∑
ttpi∈TTPti

µ(ti/ttpi)

7: P ′ = Max(Sti)
8: return P ′

9: end function
10: function Reliability Assessment(P ′)

11: RA(P ′) =

∑
ti∈pi

(TTPD/TTP )

pi

12: return P ′

13: end function
14: if P ′ > Threshold then
15: Reliable Prediction
16: else
17: if TTPMexists then
18: Threat Investigation(TTD, TTPE)
19: else
20: select low cost di
21: Reliability Assessment(P ′ = TTPE, TTPN)
22: end if
23: end if
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sufficiently then the prediction procedure terminates, otherwise the threat investigation
module receives TTPD, TTPU for a new threat prediction.

6. Financial Malware Case Study

The working of the data breach investigation framework is elaborated with the case
study of financial memory scrapping malware [60]. The malware steals identity and
payment records by reading device memory at the retail checkout. The TTPs of a
few malware instances extracted from multiple sources [24], [15], [13] are mapped to
their appropriate cyber kill-chain stages to understand the data theft process. The
TTD map is built by semantically mapping TTPs extracted from multiple sources to
financial malware classes and their corresponding detection mechanisms as defined in
the ATT&CK repository. The TTD network and the detected threat artifacts are given
as input to the cyber threat prediction segment to investigate threat occurrence and
the presence of more TTPs by applying appropriate detection mechanisms. A detailed
working is explained in the following subsections.

Table 2: Financial Malware TTP mapping to Cyber Kill Chain Phases

Reconaissance Weaponize &
Deliver

Exploit Install Command and
Control

Actions and
Objectives

Phishing Hardcoded
CnC addresses

Handle Ser-
vice Control
Request

Use Enum Pro-
cess

Use HTTP
POST

Collect System
Information

Drive by
Download

Hardcoded
Process Names

Use Toolhelp
32Snapshot
method

Custom Search
Function

Use HTTP
GET

Injects Code

Luring Attack Hardcoded File
Names

Use Blacklist Use Regexes Use FTP
Server

Exfiltrates
data as Hex
digits

BOT Function Hooks API Encodes data
as Base64

Use SMTP Manually data
exfiltrated

Socially En-
gineered File
names

Encodes data
as RC4

Use TOR

Pretends to be
JAVA

Store Results
in logs

Use Interne-
tOpen URL

Coded in VB-
Script

Performs Luhn
Validation

Send PHP()
subroutine

Code Obfusca-
tion

Installs Watch-
dog

Grab Browser
Form

RDP Brute
Force
Source Code
Updated
Exploit Auto
Start Runkey
Copy files in
%APPDATA%
Registers to by-
pass firewal
Has a Kill
Switch
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6.1. Mapping Financial Malware to Cyber Kill Chain Phases

Different TTPs have been used over the ages to steal payment cards’ data. One
technique is to target victims by downloading keylogging tools on their systems. But
unfortunately, keyloggers are not capable of retrieving data stored on cards’ tracks. The
attackers concentrated on victimizing corporations rather than individuals that employ
POS terminals to handle transactions conducted through cards. The vulnerability tar-
geted involves stealing cards’ information temporarily held in the memory of point of
sale terminals as clear text. Therefore, a specialized malware is developed for harvesting
the data stored in the memory. This specialized malware is typically called a ‘RAM
scraper’ and presently there are over 50 different families of RAM scrapers that exist
for stealing payment card details in various ways. To accurately diagnose the family of
RAM scraper, the security analyst has to perform certain investigative actions to dis-
cover the behavior and TTPs of the malware. Thus the TTPs are mapped to the phases
of the cyber kill chain model to elaborate the theft incident. TTPs of eleven financial
malware samples, i.e., Rdasrv, Alina, VSkimmer, Dexter, BlackPoS, Decebal, JackPOS,
Soraya, Chewbacca, BrutPOS, and Backoff are collected and compared. The TTPs for
each cyber kill chain phase are discussed below with a summary provided in Table 2.

In the reconnaissance phase, phishing techniques are often adapted to break into the
victim’s account in a network. Other techniques used are to discover the structure of the
network and their exploitable vulnerabilities. The purpose of the adversary in this phase
is to identify the victims and vulnerable resources of the target network.

The detection mechanisms related to this phase comprise all those proactive measures
that should be taken to avoid attackers giving a chance of identifying network structures
and selecting vulnerable targets. This includes user training, enforcing the principle of
least privilege for all the users at every access and constantly assessing the network for
risks associated with each vulnerability [61].

Once the intruder gets to know about his target, the malicious content is prepared
based on the type of vulnerabilities present. This phase is known as Weaponize & Deliver.
Once the malware is prepared it is sent to the target network bypassing the security
controls. Malware is formulated as either single components or multiple components
performing different functions. The processes to be searched in the RAM of the POS
device are hardcoded in the binary. The file names used to store malware on the system
are also sometimes hardcoded in the binary. The file names are carefully selected using
social engineering techniques to avoid detection. In the same way, the Command and
Control (CnC) addresses to transfer the stolen content are also hardcoded. Again the
investigation doesn’t start at this point. It starts when the malware is finally delivered
to the target. So these two phases also depend on the proactive measures taken by the
target as discussed in the previous step.

The next phase is the exploit phase in which the malware actually begins to exploit
the vulnerabilities. The TTPs used in this phase register the POS malware as a service.
The execution of the malware is controlled by the service control handler. To detect
this TTP, the security analyst performs certain detection mechanisms. In the first step,
changes to the service registry are monitored. Secondly, the frequency of modification to
existing services is checked. Thirdly, the security analyst looks for any abnormal change
to service binary path location which is not conventionally meant for that service and is
also irrelevant to software updates. After successful registration, the POS malware starts
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scanning the RAM. The malware uses the CreateToolhelp32Snapshot method for scanning
the active RAM processes. A list of blacklisted processes can help in identifying tracks
1 and 2 card data. Some malware uses regular expressions to do this, but it is a slow
process. An efficient way for scanning processes is “process enumeration” in which all the
processes in the POS RAM are scanned to search track 1 and 2 data. The adversary uses
the Windows Management Instrumentation (WMI) [62] tool for process enumeration. To
detect process enumeration, the security analyst should monitor process executions. To
obfuscate the malware’s extracted content, the adversary uses Base64 encoding [21].

The next phase is the installation phase in which the malware tries to be persistent.
There are multiple steps followed to achieve persistence, e.g., malware code may be ac-
tively developed and regularly updated by installing latest code versions from the Internet
during execution. It can be detected by carefully examining triggers from antivirus and
other security tools. The malware may add a file path to auto start run key that boots it
each time the system is turned on. This can be checked by detecting irrelevant changes
to registry run keys and checking the start folder for changes and additions. Similarly,
the malware may add itself to a firewall as an authorized application via registry keys or
install a keylogger in the current working directory. This can be detected by monitoring
irrelevant changes made to the accessibility utility binaries or binary paths. Keylogger
installation can be tracked through changes made to DLLs [21].

The next phase is the command and control phase in which the malware establishes a
covert connection with the CnC server to give the attacker a direct control over the target
network. This connection may be established using HTTP POST/ GET requests, con-
necting to FTP servers, using emails through SMTP protocols and bots. To detect CnC
communication the detection mechanisms used by the security analyst include analyzing
network data for uncommon data flows via unseen processes, processes communicating
over the network that do not require that function and irrelevant ports for application
layer data. Similarly, the security analyst can monitor the processes for their file access
patterns and network behavior. As there can be unwanted network communications and
network access without a user-driven request.

Action and objectives is the final cyber-kill chain phase in which the attacker steals
payment card data, temporarily stores it on the disk and then exfiltrates that data.
To collect system information, host enumeration techniques are used. To detect host
enumeration, the security analyst investigates the execution of processes and detect the
time when programs are doing system enumeration. The presence of keyloggers can be
detected by observing modification in the DLLs. To detect code injection, the process
registries should be analyzed for changes. Similarly, data encryption can be detected by
finding high data entropy that is an indication of data encryption [21].

Thus we have seen that for each phase of the intrusion kill chain model there exist
adversary patterns in the form of TTPs that can be mapped to their particular attack
and detection mechanisms.

6.2. Threat Diagnosis for Financial Ram Scrapper Malware

The working of the data breach investigation framework is detailed here with the
help of a case study of financial RAM scraping malware. The details of each segment are
given in the following subsections.

20



6.2.1. SIRS for financial Malware

The process of threat diagnosis for data breach incidents caused by financial malware
starts with building a TTD network by extracting TTPs from financial malware related
CTIR and semantically indexing them using LSI. Once when all the TTPs are extracted,
semantic relevance among every single TTP and all the financial malware attacks men-
tioned in CTIR are found by searching the TTP in the LSI indexed financial malware
CTIR. In figure 8, the search result of financial malware TTP related to establishing
command and control connection using email or SMTP protocol is shown. The keyword
“use email or SMTP for exfiltration” is searched in semantically indexed CTIR docu-
ments and we get relevance probability for each. Based on the results it can be seen that
the TTP is present in BlackPOS, Dexter, and Vskimmer. This means that the TTP is
used by the adversary of that particular attack campaign. The results of such semantic
relevance can be mapped in the form of a Threat-TTP frequency table as shown in Table
3 where the table entries specify the frequency of threat incident occurrence. Similarly,
we indexed all the cyber attack techniques mentioned in ATT&CK framework using LSI.
Each TTP is searched against the indexed documents to look for the relevant detection
mechanisms. In figure 9, the search result of financial malware TTP related to estab-
lishing command and control connection using email or SMTP is shown. The keyword
“use email or SMTP for exfiltration” was searched in semantically indexed ATT&CK
documents and we get relevance probability for each.

Figure 8: Search results for “use email or SMTP for exfiltration” TTP in LSI indexed CTIR
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Table 3: Financial Malware Threat-TTP Frequency Table

TTP
ID

Description RDASRV Alina Vskimmer Dexter BlackPOS

TTP1 Credential Compromise 2 4 3 6 5
TTP2 Known POS System 2 1 1 1 1
TTP3 Hardcoded Filenames 1 5 3 2 1
TTP4 Changes registry as le-

gitimate Firewall App
1 1 5 1 1

TTP5 Hooks WH KEY
BOARD LL

1 1 1 3 1

TTP6 CreateToolHelp 31
Snapshot Method

1 2 2 5 1

TTP7 Use Email or SMTP 1 1 3 6 2

Figure 9: Search results for “use email or SMTP for exfiltration” TTP in LSI indexed ATT&CK docu-
ments

Based on the results it can be seen that most relevant detection mechanisms related
to the mentioned TTP are present in ATT&CK document termed as “Email collection”.
The detection mechanisms from this document are enumerated as follows:

1. Check for processes utilizing network communication that should not require this
function

2. Check for processes accessing network without user-driven events

6.2.2. TTD Network for Financial Malware

After retrieving semantically relevant financial malware related CTIR and ATT&CK
documents, a TTD network is built shown in Table 4. The associated detection mech-
anism details are given in Table 5. Here five malware instances are considered, i.e.,
RDASRV, Alina, Vskimmer, Dexter, and BlackPOS. A belief network between threats
and TTPs is formed by calculating posterior probabilities based on the incident fre-
quency. The posterior and prior probabilities are shown in Table 6. For a predictor
attribute, the financial malware class, TTP, that boasts the highest posterior probability
is considered the prediction output. For instance, “Alina” has the highest occurrence
probability for TTP3. The prior probabilities for the malware threat class, and predictor
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attribute, i.e., TTP before seeing any real-world data are also given. It can be seen that
“Dexter” has the highest prior probability which is also evident from historical data of
financial malware incidents. Similarly, it can be seen that among all TTPs, TTP1 is
the most prevalent TTP as its prior probability is high. The TTD network predicts the
threat incident based on the detected threat symptoms provided in the form of host and
network artifacts.

Table 4: Financial Malware Threat-TTP-Detection Semantic Network

Threat TTP ID Detection
Mechanism

RDASRV, Alina, Vskimmer, Dexter TTP1 d1
RDASRV TTP2 d2, d3
Alina, Vskimmer, Dexter TTP3 d4, d5, d6
Vskimmer TTP4 d7, d8
Dexter TTP5 d9
Alina, Vskimmer, Dexter TTP6 d10
Vskimmer, Dexter, BlackPOS TTP7 d11, d12

Table 5: Detection Mechanisms for Financial Malware TTP

Detection
Mechanism

Description Weight

d1 Look for suspicious account behavior 5
d2 Audit file system access logs for failed attempts 2
d3 Monitor process capturing the arguments 4
d4 Analyze file read, write and modify method for malicious ac-

tivity
2

d5 Monitor anti-virus and IDS alerts 1
d6 Acquire IP and port 1
d7 Monitor changes in utility arguments and binaries 4
d8 Monitor command line invocations modifying registry 3
d9 Monitor registry for key stroke interception driver installation 3
d10 Monitor program for process enumeration 4
d11 Check for out of context network communication 5
d12 Check network access without user driven event 5

Table 6: Financial Malware Threat-TTP Posterior and Prior Probabilities

TTP
ID

RDASRV Alina Vskimmer Dexter BlackPOS Prior
(TTP)

TTP1 0.1 0.2 0.15 0.3 0.25 0.26
TTP2 0.33 0.17 0.17 0.17 0.17 0.08
TTP3 0.08 0.42 0.25 0.12 0.08 0.15
TTP4 0.11 0.11 0.56 0.11 0.11 0.12
TTP5 0.14 0.14 0.14 0.43 0.14 0.09
TTP6 0.09 0.18 0.18 0.45 0.09 0.14
TTP7 0.08 0.08 0.23 0.46 0.15 0.17

Prior
(Class)

0.12 0.19 0.23 0.31 0.15
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6.2.3. Financial Malware Threat Prediction

After generating the TTD network, the process of cyber threat investigation starts
with threat prediction. This happens when the network administrator observes certain
artifacts. The artifacts, that can be seen, are low-level indicators such as IPs, CnC
servers, and ports or it can be unseen high-level indicators such as TTPs. These indica-
tors are either obtained directly or through certain detection mechanisms. Suppose the
network administrator observes a suspicious account behavior, changes in registry with
the installation of a driver intercepting keystrokes and a process accessing the network
without any user-driven event. Based on the derived TTD semantic network, the detec-
tion mechanisms selected are d1, d9, and d12. These detection mechanisms are mapped
to TTP1, TTP5, and TTP7 which become our detected TTPs, i.e., TTPD. Based on
the TTPD, the belief network predicts the probability of occurrence for each malware
instance as shown in figure 10. It can be seen that “BlackPOS” has the highest proba-
bility of occurrence. The second highest probability is that of “Dexter”. Now we have
to select a threat prediction set P ′. A problem that arises concerns determining exactly
which malware instances should be included in the prediction set P ′. For this purpose,
a threshold must be defined based on expert opinion, e.g., suppose for this example we
set threshold as above as 20%. Thus the prediction set comprises two threat instances,
i.e., “BlackPOS and Dexter”. Setting a high threshold leads to a more reliable threat
prediction as a low threshold compromises the reliability of the threat prediction.

Figure 10: Probability Prediction for Financial Malware Instances

We assess the reliability of the prediction using equation 4 given in the design section.
In this case, the total number of TTPs for the BlackPOS malware are “2” and that for
Dexter are “5”. The detected TTPs, i.e., TTPD for BlackPOS are “2” and that for
Dexter are “3”. There are two malware in the threat prediction set P ′. After inserting
the values in equation 4, we get equation 5

RA(P ′) =

∑
ti∈pi(2/2) + (3/5)

2
(5)

Thus the reliability of this prediction set becomes 80% which is quite high. This
shows that the prediction is reliable. The reliability of threat prediction increases more
if we increase the threshold for threat selection in the prediction set, e.g., we include
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all those malware in the threat prediction set who has a prediction greater than 25%,
then there will be only one malware selected, i.e., BlackPOS. The reliability for this
prediction set is a 100% greater. On the other hand, if the threshold for selecting threats
in the prediction set is decreased the reliability also decreases, e.g., we include all those
malware in the prediction set that have a prediction greater than 16%, then there will
be three malware selected, i.e., BlackPOS, Dexter, and RDASRV. The reliability of this
prediction set is 70% less than the previous prediction set.

Suppose that the reliability assessment of the threat prediction is low. Then the
undetected TTPs of the malware in the prediction set, i.e., TTPM must be considered.
To check the existence of TTPM, the security administrator performs their associated
detection mechanisms. This may be hard to accomplish if the number of TTPs in TTPM
is large. Thus, there is a need to find the least cost detection mechanisms that can verify
the undetected TTPs, i.e., TTPM of the threat prediction with a high reliability. One
solution is to let the security administrator decide which detection mechanisms should
be performed based on his knowledge, expertise, environment and the resources. In the
capacity of this research work, we have assigned weights to actions based on the security
expert opinion. The complexity of detection mechanism selection increases as the size
of TTPM grows large. Therefore, detection mechanisms are assigned weights based on
their complexity as shown in Table 5. The weights lie in the range [1-5]. The detection
mechanisms with a weight closer to ‘0’ are considered less costly than those with a weight
near to ‘5’.

For example, one of the malware’s TTP is to use RC4 to encode the contents for
exfiltration. The detection mechanisms related to this TTP are:

1. Use samples to acquire the key and the algorithm and employ the same for decrypt-
ing network traffic for determining the communications signatures for malware.

2. Inspect SSL/ TLS to determine if encrypted traffic contains the presence of a C&C
or in other words a Command and Control channel.

It is clear that detection mechanisms for getting the encryption algorithm and its key
is a more difficult process as compared to inspecting SSL and TLS. Thus the weight of
SSL/ TLS inspection is low as compared to finding the encryption key.

7. Evaluation and Results

The effectiveness and efficiency of all the segments of the data breach investigation
framework were evaluated.

The effectiveness of SIRS was evaluated using the financial malware TTP dataset
compiled in the case study using the parameters f-measure, recall and precision. The
effectiveness of the TTD network was evaluated by constructing a benchmark training
dataset from the threat, TTP and detection mechanisms data available in the ATT&CK
taxonomy [21]. This benchmark data serves as a ground truth regarding cyber threats
associated with different threat families for training our model by building a TTD network
and provides a baseline for future comparisons. The TTD network is evaluated using a
hold-out cross validation method [63]. The evaluation parameters, in this case, are the
accuracy of detection and the false discovery rate. The accuracy of the threat detection
process was monitored for two kinds of situations. The first situation was when certain
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threat artifacts were lost. The second situation was when certain spurious threat artifacts
were added to poison the threat investigation process. The effectiveness of the cyber
threat prediction segment was evaluated through the factors that impact the reliability
of the prediction. These factors include varying levels of probability thresholds of the
prediction set and the number of detected artifacts and types of TTPs (either disjoint or
overlapping) controlled by attack type selection. Whereby having the same attack family
provides more overlapping TTPs and using data about more recent attacks provides
disjoint TTPs.

The efficiency was evaluated based on the time taken to detect an attack for dif-
ferent dataset sizes and threat records. The TTP coverage for the threat incidents of
the ATT&CK dataset and the capability of our prototype system in data augmenta-
tion is discussed in the light of well-known threat incidents related to particular threat
actors reported in multiple sources. Finally, a feature based comparative analysis of
the threat investigation framework was performed with existing intrusion and attack de-
tection techniques to elaborate on the benefits of the proposed approach to the overall
security measurement and management infrastructure.

7.1. Benchmark Dataset

To construct a benchmark dataset, ground truth data related to cyber threat inci-
dents, encompassing the details of TTPs and detection mechanisms, was required. For
this purpose, we conducted a thorough survey of literature available on standardized
cyber threat taxonomies. The three most well-known are the Open Threat Taxonomy
[64], the Enisa Threat Taxonomy [65] and the ATT&CK Taxonomy [21]. Among these,
we found that the Open Threat and Enisa did not serve our purpose because they simply
list threats along with their descriptions but do not distinguish the TTPs and detection
mechanisms. On the other hand, ATT&CK lists threat incidents and connects them to
the TTPs and detection mechanisms, and is, therefore, the closest to the requirements
of our training model.

Table 7: ATT&CK Taxonomy Dataset Statistics [21]

TTP Classes Documents Threat Actors Documents Software Tools Documents

Persistence 28 Chinese 17 Malware 65
Privilage Escala-
tion

14 Russian 3 Backdoor 37

Defense Evasion 33 Iranian 2 Bot 3
Credential Access 8 Indian 2 Web Shells 3
Discovery 16 Portuguese 1 Toolkit,

Bootkit
4

Lateral Movement 14 Unattributed 20 Rootkit 4
Execution 17 Credential

Dumper
4

Collection 11 Credential
Harvester

1

Exfiltration 9 Remote Access
Tools

9

Command and
Control

17 System Utili-
ties

16
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Figure 11: TTP distribution for Threat Incidents

Figure 12: Threat incident distribution for ATT&CK TTPs

To establish the reliability of the ATT&CK data we investigated its sources. “ATT&CK”
is created and maintained by MITRE Corporation [21]. It covers adversary’s TTPs en-
countered in pre-attack as well as post-attack stages proposed by Lockheed Martin [66].

At the time of writing, there exist 133 adversary’s technique documents classified un-
der 10 tactic classes. A technique may belong to more than one class. We have compiled
some key statistics for the interest of the reader in Table 7. Each technique document has
a short description along with its mitigation, detection mechanism, and threat incident
example. Threat incident examples are either threat actors or software tools used by
them. At the time of writing, there are 45 threat actors and 123 software tools in the
ATT&CK taxonomy. Figure 11 shows the TTP distribution of threat incidents. The
minimum number of TTPs encountered in a threat incident is 1 and the maximum is 34.
An average TTP count for each threat incident is 6. Similarly, figure 12 shows the other
side of the picture, i.e., threat distribution for TTPs. The range of TTPs lies between 0
and 49. An average threat incident count for each TTP is 7.

The ATT&CK TTP taxonomy at any snapshot in time does not always encompass
all TTPs of any given threat mainly because the website is constantly being updated as
more information about a threat is uncovered. One can observe cases of threats where
connections are obviously missing between threat incidents and TTPs. For instance,
consider the case of threat incidents caused by a hacking group known as Axiom or
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Hidden Lynx [67] extracted from ATT&CK. This group offers hacker hiring services and
is known to have launched highly targeted campaigns against diverse business domains
including multiple sectors and can run multiple campaigns simultaneously. It is observed
that only three TTPs are listed for this group in the ATT&CK repository as shown in
Table 8 while there are several more TTPs that can be related to this group obtained
from other sources such as IBM X-Force STIX reports and Symantec blog reports. A
comprehensive list of Axiom group’s TTPs obtained through the SIRS segment of the
threat diagnosis framework is shown in Table 8. This also illustrates that an added
contribution of our framework is that it is capable of data augmentation. Meaning it can
connect threats to TTPs from different data sources in the case of missing connections
and provides a comprehensive TTP coverage for each threat incident.

Table 8: Axiom hacker group TTP Coverage by ATT&CK, IBM X-Force and Symantec

TTP ATT&CK IBM X-
Force

Symantec

Zero-day exploits in Internet Explorer 10 to transfer malware

Remote Access Trojan

Credential Dumping

Accessibility using RDP

Supply Chain Attacks

Strategic Web Compromise through waterhole attack

Deposits malware signed with stolen Bit9 keys

Payload Obfuscated using XOR encoding

Direct injection of attack code into the Internet Explorer pro-
cess without writing it to disk

The User-Agent header for CnC communication is “lynx”

CnC traffic as HTTP POST and non-HTTP protocol traffic

Sometimes uses HTTPS (port 443)

SQL Injection attack on an Internet-facing Web server

Oracle Java SE Runtime Environment Hotspot code execution

The ATT&CK taxonomy has been used as a baseline to model adversary’s attack
patterns in multiple research works. In [68], the ATT&CK taxonomy is used as a baseline
to collect historical knowledge of the threat agent for automating the comparison of post-
compromise actions of adversaries. Similarly, in [69], the ATT&CK taxonomy is used to
design and implement an automated red teaming system by employing TTPs to drive
the atomic actions of an intelligent decision-making system. To aggregate analysis of
the enterprise’s log data, [70] uses the ATT&CK taxonomy to model malicious threat
scenarios based on adversary’s attack patterns. It helps select useful audit log data from
massive raw logs. In [71], a visual analytic tool that integrates the analytics of a cyber
attack with the data required by the security analyst is proposed. The analytics of cyber
attacks are taken from ATT&CK taxonomy which is used to establish an appropriate
baseline against which to compare anomalies.

As such, ATT&CK serves as the best candidate to construct our required training
dataset. We, therefore, extracted all the relevant threats, TTPs and artifacts from the
online ATT&CK and constructed a dataset, a small excerpt of which is shown in table
9. The highlighted data fields represent the presence of the TTP in a threat. The data
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fields are normalized to remove zero entries. A TTD network is then built between threat
incidents, TTPs and detection mechanisms.

Table 9: An excerpt of constructed ATT&CK MITRE benchmark dataset

TTP
ID

T1001 T1002 T1003 T1004 T1005 T1006

TTP
Title

Data Ob-
fuscation

Data
Com-
pressed

Credential
Dumping

Winlogon
Helper
DLL

Data
from
Local
System

File Sys-
tem Logi-
cal Offset

Cyber
Threat
Class

1 0 1 0 0 0 Axiom
1 0 1 0 1 0 Patchwork
1 1 0 0 0 0 Duqu
1 0 0 0 0 0 S-Type
1 0 1 0 0 0 Oldrea
1 1 1 0 0 0 Prikorma
0 1 1 0 0 0 Ke3chang
0 1 1 0 1 0 APT2
0 1 1 0 1 0 TG-3390
0 1 0 0 0 0 Lazarus
0 1 1 0 0 0 Fin6

7.2. Effectiveness of SIRS

The effectiveness of the SIRS module is evaluated with financial malware TTP dataset
and ATT&CK Taxonomy. A TTP dictionary for 11 different kinds of malware is created
using threat reports of [60], [24], [15] and [13]. The TTPs related to different phases of
cyber kill chain are given in Table 2. These TTPs are stored in the TTP dictionary and
are queried against the indexed malware and ATT&CK documents. The effectiveness of
the SIRS is evaluated by measuring precision and recall for each TTP in the dictionary.
Precision measures the number of correctly retrieved documents shown in equation 6.
While recall measures the number of correct items collected by the retrieval system
given in equation 7[72].

Precision =
TruePositive

TruePositive+ FalsePositive
(6)

Recall =
TruePositive

TruePositive+ FalseNegative
(7)

The average of precision and recall for all TTPs is calculated. A weighted harmonic
mean of both the parameters, measured using F-measure, is shown in equation 8[72].

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

(8)

The results related to the TTPs of each phase of the cyber kill chain are shown in
Table 10. It can be seen that the overall effectiveness of the SIRS for financial malware
documents is quite good with an average F-measure of 0.94.
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Table 10: Effectiveness evaluation results of SIRS

Precision Recall F-measure

TTP Queries (Kill
Chain Phases)

POS
Malware

ATT&CK POS
Malware

ATT&CK POS
Malware

ATT&CK

Reconaissance 95% 22% 100% 33% 0.97 0.26
Weaponize and De-
liver

94% 48% 87% 46% 0.90 0.47

Exploit 97% 50% 98% 27% 0.97 0.35
Install 93% 85% 96% 80% 0.94 0.82
Command and
Control

95% 90% 90% 84% 0.92 0.87

Actions and Objec-
tives

94% 82% 89% 78% 0.91 0.79

7.3. Effectiveness of TTD Network

To check the sensitivity of methods towards data, we evaluated the TTD Semantic
Network using the hold-out cross validation method [63]. In this method, the given
dataset is split into separate parts, i.e., a training set and a testing set. In our case,
we are using the threat-TTP ground truth data provided by ATT&CK MITRE to train
our cyber threat prediction model. For the test set, we examined a set of recent cyber
threat incidents listed in ATT&CK MITRE and we determined their threat actors. We
searched and downloaded more recent attacks of these threat actors from four different
well-known cyber threat sources, i.e., IBM X-Force [5], Symantec [23], FireEye [24] and
CrowdStrike [25]. These new threat incidents thereafter comprised our test set. These
threat sources were chosen so that they differ to some extent in the level of abstraction,
the vocabulary used and the level of specialization in the type of threat. Out of these,
IBM X-Force supports STIX encoded CTIR, while for the rest the reports are encoded
in STIX before importing them into the TTP dictionary.

We experimented with several machine learning algorithms for determining the best
prediction accuracy. The results are shown in table 11. The results depict that the
belief network outperforms the other techniques which is clearly suggestive that it is
more suitable to our problem. It is easy to see why. When a data breach occurs,
security analysts analyze them from multiple aspects. For recently occurred incidents
the data is likely to contain conflicting or missing feature values as various vendors
begin to study it. For data breaches that have been well studied the features are likely
to be well established and complete. Our dataset has a mix of both new and well
studied data breaches. Therefore, we required a classifier that can reliably predict a
cyber threat family in the presence of erroneous or missing features. Furthermore, we
observed that the belief network is less sensitive to irrelevant features (i.e., noisy data)
that an adversary can intentionally insert to poison the cyber threat prediction. Finally,
a belief network considers all the features independently and trains in linear time as
compared to other iterative expensive approximation approaches. We evaluated the
accuracy of the TTD network for each threat source separately. As a result, we observed
a varying accuracy between the ranges of 53%-100% based on the cyber threat source
chosen as the test subject as shown in table 11. The results demonstrate the sensitivity
of the TTD semantic network to the amount of TTPs that exist in the test data, which
is an essential requirement of our model to achieve accurate classification. It is to note
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that our results are not a reflection of the data quality of these threat sources as they are
based on a very selective CTIR test set and their use of the TTP labels defined in our
ATT&CK training dataset. Not all cyber threat sources follow the same TTP vocabulary
because of the reasons quoted above. The TTP statistics for cyber threats in the training
and test datasets are shown in figure 13. It can be seen that since the IBM X-force test
dataset has the highest number of TTPs, it also has the highest cyber threat prediction
accuracy (100%). The Fireeye test dataset has the next highest number of TTPs, thus
the prediction accuracy is slightly lower (95%), followed by CrowdStrike and Symantec
that are at respectively 67% and 53%. Also it is worth noting that even when there is
a misclassification due to missing TTPs the model picks the next relevant threat, e.g.,
in one case “Carbanak”, was misclassified as “GCMAN” both of which target banks for
financial fraud.

Table 11: Accuracy of the TTD Semantic Network for test data compiled from different threat sources

IBM X-
Force

Symantec FireEye CrowdStrike

Belief Network 100% 53% 95% 67%
Decision Tree 30% 18% 33% 33%
Random Forest 45% 35% 57% 33%
Deep Learning 20% 12% 14% 17%
SVM 60% 59% 85% 67%

Figure 13: TTP statistics for the under consideration cyber threat sources

Further, we evaluated the accuracy of the TTD Semantic Network for two kinds of
situations, i.e., lost TTP ratio and spurious TTP ratio. The results are shown in figure 14
and 15. In both situations, accuracy is compared with the three types of lost and spurious
TTP ratios, i.e., random, overlap and disjoint. The random TTP ratio represents an
unbiased approach of attack injection encountering both the best case and the worst case
of threat artifact identification. While the overlap and disjoint TTP ratios are biased
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based on attack injections representing the worst case and best case of threat artifacts
identification respectively. The worst case is the one in which the attacker’s aim is to
misguide the security analyst in threat identification. The overlap in the lost TTP ratio
represents that the disjoint TTPs of the threat are intentionally removed or disguised
to increase the number of false positives in the prediction results. While the disjoint
lost TTP ratio represents that the overlapped TTPs of the threat are ideally removed
or disguised to increase the detection accuracy in the presence of a minimum number of
detected threat artifacts. Similarly, the overlap in spurious TTP ratio represents that the
overlapping TTPs of other similar threat incidents are intentionally added to increase the
number of false positives in the prediction results. While the disjoint spurious TTP ratio
represents that the disjoint TTPs of the threat incident are ideally added to increase the
detection accuracy in the presence of a maximum number of spuriously detected threat
artifacts.

Figure 14: Accuracy Results for Lost TTP Scenario

Figure 15: Accuracy Results for Spurious TTP Scenario

The results show that the overall accuracy for spurious TTPs is high as compared
to lost TTPs. The average accuracy of a random unbiased situation in case of spurious
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TTPs is 95% and in the case of lost TTPs is 87%. For an ideal situation where all the
spurious TTPs are disjoint, the accuracy becomes 100%. While for the worst case when
TTP overlap is high the average accuracy is 92%. Similarly, in the case of lost TTPs
an ideal situation where the left over TTPs are disjoint the average accuracy becomes
94%. While for the worst case when the left over TTPs have high overlap, the average
accuracy is nearly 76%.

Similarly, the ratio of false positive aka type I errors is measured by False Discovery
Rate (FDR) for lost TTP and spurious TTP ratio [73]. FDR is defined in equation 9:

FDR =

∑
FalsePositive∑

PositiveExperimentOutcome
(9)

The results are shown in figure 16 and 17. In both situations, FDR is compared for
the three types of lost and spurious TTP ratio, i.e., random, overlap and disjoint. The
results show that the overall FDR of spurious TTPs is low as compared to lost TTPs.
For an unbiased random situation, the average FDR for spurious TTPs is 6% while the
average FDR for lost TTPs is 19%. For an ideal situation where all the spurious TTPs
are disjoint, the FDR becomes 0. While for the worst case when TTP overlap is high
the average FDR is 10%. Similarly, in the case of lost TTPs an ideal situation where
the left over TTPs are disjoint the average FDR becomes 8%. While for the worst case
when the left ones TTPs have high overlap, the average FDR is nearly 30%.

Figure 16: FDR Results for Lost TTP Scenario
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Figure 17: FDR Results for Spurious TTP Scenario

7.4. Effectiveness of Cyber Threat Prediction

The goal of the proposed threat investigation framework is to achieve a highly reli-
able threat prediction. During the experiments, there are certain factors observed that
affect the prediction’s reliability. These factors are the prediction selection probabil-
ity threshold, the number of detected threat artifacts (TTPD) and the overlap between
TTPs.

7.4.1. Threshold Impact on Prediction Reliability

Cyber threat investigation results in threat prediction by assigning an appropriate
probability value to the threat incident. Among those threat incidents, a prediction set
above a certain probability threshold needs to be selected. For this purpose, we analyzed
the impact of increasing and decreasing probability threshold values over the prediction
reliability. We evaluated prediction reliability using the probability thresholds: 25%,
50%, 75% and 100%. In figure 18, an example of one such scenario is given. It can be
seen that according to the observed TTPs, Decebal malware has the highest probability,
i.e., 10.93% that becomes 100% after normalizing the probability using equation 10.

xn =
x− xmin

xmax − xmin
∗ 100 (10)

If the system has to select only one threat incident with the highest probability based
on the observed TTPs, then the Decebal malware will be selected. However, in our case,
the framework selects a set of threat incidents above a certain probability threshold. In
figure 19, the prediction reliability for 10 different threat scenarios is shown. The series
represents the threat scenarios. The results show that when we increase the threshold
value the prediction reliability increases but there were certain scenarios where no attack
classes were identified above 90%. Therefore, there was a need to select a threshold value
that always generates a prediction set for all threat scenarios and also provides one with
high reliability. Based on experimentation, this threshold value is selected as 75%.
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Figure 18: An example of cyber threat prediction

Figure 19: Impact of increasing and decreasing Probability threshold value over Prediction Reliability

7.4.2. TTPD Impact on Prediction Reliability

The number of detected TTPs, i.e., TTPD also has a great impact on prediction
reliability. During experiments, it is observed that the prediction reliability is high if
there are more detected TTPs related to the threat. In figure 20, the prediction reliability
and TTPD ratio are shown. The graph shows that the reliability of the prediction is
above 60% if there exists TTPD 50%.
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Figure 20: The impact of number of detected artifacts, i.e., TTPD over reliability

7.4.3. Disjoint and Overlapping TTPs Impact on Prediction Reliability

There are certain TTPs that are more common than others, e.g., the data obfuscation
TTP is more frequently used than routing command and control traffic over a non-
standard custom port bypassing security tools [74]. Hence, a significant overlap is usually
observed across multiple threats for these common TTPs. We will refer to TTPs that do
not occur across different threats in our threat prediction set as disjoint. This particular
section details the effect of overlapping as well as disjoint TTPs on the threat prediction
reliability. A subset of the dataset is divided into two classes, where one class has threat
incidents having mostly disjoint TTPs and the other class has threat incidents having
mostly overlapping TTPs. It is observed that the prediction reliability for threat incidents
having disjoint TTPs is about 20% higher than the threat incidents having overlapping
TTPs. The reason behind the fact is disjoint TTPs depict the distinguishing features of
a threat incident that help a threat to be identified quite easily and with a high reliability
as compared to the overlapping TTPs that share less distinguishing features. Figure 21
illustrates the results.

Figure 21: The impact of disjoint and Overlapping TTPs on Prediction Reliability
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7.5. Efficiency of Data Breach Investigation Framework

The TTD semantic network is constructed offline or as a background process so we
are not interested in the time taken in training. However, to study the impact of the
dataset size on the time for threat detection, we performed experiments with different
dataset sizes. We performed our experiments on a PC with Intel Core i5-4210U processors
and 1.7 GHz and 2.4 GHz processing speed, 4 GB of RAM running a 64 bit Windows
10. The results can be seen in figure 22. We observed the threat detection time by
partitioning the dataset into four equal parts. The observations are recorded for 25%,
50%, 75% and 100% instances of the dataset. Then for each dataset division, the number
of observed threat artifacts were incrementally increased. The division of observed threat
artifacts ranged from 10% to 100%. The results show that the size of the dataset does
not have a significant impact on the threat detection time. The factor that matters
most is the threat detection time provided the threat artifacts are fed into the threat
investigation framework. The experimental results in figure 23 for threat prediction
time with increasing number of threat artifacts show that our system can predict threat
incidents for 6 detected TTPs in an average time of 0.04 seconds. The results do not show
any significant difference in the detection time when the number of TTPD increases. The
detection time for 34 TTPD is approximately 0.3 seconds and the average detection time
is 0.15 seconds. Considering that data breach incidents remain undetected for months or
even years [15] and attacks such as DDOS last for 9-12 hours [75], the running time of
our system is quite practical. Moreover, we can claim that the threat detection time of
our proposed data breach investigation framework is low as compared to existing threat
detection mechanisms.

Figure 22: Impact of TTPD size on Threat Detection Time
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Figure 23: Impact of Dataset size on Threat Detection Time

7.6. Feature Based Comparative Analysis

The performance of the proposed data breach investigation framework cannot be di-
rectly compared with any existing threat detection mechanism due to its novelty. How-
ever, a comparative feature analysis was conducted. The existing threat detection ap-
proaches fall under (1) signature-based, (2)anomaly (behavior) based and (3) stateful
protocol analysis [76]. In Table 12, a feature based detailed comparison of each approach
is given.

Table 12: Feature based comparative analysis of threat diagnosis framework with existing threat detec-
tion techniques

Features Signature Anomaly Stateful
Protocol

Proposed
Framework

Fixed Signatures

Dynamic Signatures

Known Attack

Unforeseen Attack

Semantic Mapping

Statistical Prediction

The signature-based threat detection approaches work with fixed format signatures
that need to be regularly updated to cope with new threats. They can efficiently detect
known attacks provided the same previously known signatures are used for future attacks.
As discussed earlier, the signatures are susceptible to change and have a very short life,
thus signature-based approaches cannot detect unknown attacks or the same family of
attacks using different signatures. On the converse, anomaly-based detection approaches
are heuristic or rule-based and are capable of detecting new threats by classifying behav-
iors as normal or abnormal using machine learning and artificial intelligence techniques.
They use a fixed format in the sense that the threat data sources are fixed patterned.
Also, the false alarm rate is high due to weak normal and abnormal behavior profile of the
attack traffic. The alarm system alerts an abnormal activity without providing further
contextual information to guide the security analyst towards further threat investiga-
tions. The stateful protocol analysis is the specification based approach that identifies
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abnormal sequences of commands in protocol functional trace. This technique falsely
classifies threats that have the correct protocol execution sequence as benign. The ex-
isting threat detection approaches are not capable of mapping the detected network and
host artifacts to the adversary’s TTPs. The proposed data breach investigation frame-
work works with both semantic and statistical procedures to investigate threat incidents.
It does not follow any fixed pattern for threat detection rather it maps semantically
the detected network and threat artifacts to the adversary’s attack behavior quoted as
TTPs in the structured CTIR and unstructured security documents. The mapping helps
in identifying both known and unforeseen attacks. The framework either classifies the
unforeseen attacks to an existing attack family or suggests further investigations to the
security analyst to help discover the root cause of the underlying threat activity.

8. Conclusions

In this paper, a novel data breach investigation framework is presented that investi-
gates cyber threat incidents using high-level adversary’s TTPs from cyber threat intelli-
gence documents. At the core of the framework lies the TTD semantic network that is
based on the idea of semantically mapping low-level threat artifacts to high-level adver-
sarial attack techniques and employs them to reason about an incident occurrence. The
methodology and results presented highlight that security incidents can be mapped to
tactics, that are further mapped to artifacts in a way that machines can identify these
connections with certain probabilities. Henceforth this research paves the way for cy-
ber security investigations with partial or incomplete information. The system extracts
TTPs from CTIR and employs them to find semantic relevance (using LSI) between the
threats and the detection mechanisms. The TTD semantic network is enriched by train-
ing a belief network that maps threats to TTPs to predict the most probable set of threat
incidents based on the detected threat artifacts provided by the security analyst. In the
case of an unforeseen threat, the system helps the security analyst investigate the threat
artifacts against the most probable attack family by suggesting the most optimized and
cost-effective detection mechanisms. This mapping of the threat artifacts to the TTPs
was able to detect the threat incidents with high accuracy and low false positives in
the case of lost and spurious detected threat artifacts. The TTD semantic network is
extensible as more threat documents arrive they can be indexed and ranked using LSI.
Similarly, the detection mechanisms can also be dynamically updated as the ATT&CK
taxonomy updates. The evaluation results demonstrate that the detection time of the
framework is quite low as compared to the considerable time it typically takes to investi-
gate data breach incidents. In the future, we will integrate and automate the mitigations
for the identified threat incidents.
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human rights during the process of digital forensics. The focus is to extend digital forensics on 
the abstract level to include preservation and protection as umbrella principles (2PasU).  

 



Highlights 

 A novel framework for cyber data breach investigation. 
 Predicts cyber-threat with high accuracy. 
 Employs high-level Tactics Techniques and Procedures for cyber threat investigation. 
 A first of its kind framework that uses a comprehensive vocabulary for structured TTP 

analysis. 
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