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Abstract

With the ever increasing cases of cyber '~ta breaches, the manual process of sift-
ing through tons of security logs to investig te cyver-attacks is error-prone and time-
consuming. Signature-based deep search lutic s only give accurate results if the threat
artifacts are precisely provided. With t. e " nrgeoning variety of sophisticated cyber
threats having common attack patterns and utilizing the same attack tools, a timely
investigation is nearly impossible. The. is a need to automate the threat analysis pro-
cess by mapping adversary’s Tactics, Techniques and Procedures (TTPs) to attack goals
and detection mechanisms. In t+F. . mer, a novel machine learning based framework is
proposed that identifies cyber t'.reats b: sed on observed attack patterns. The framework
semantically relates threats and 1 7Ps  xtracted from well-known threat sources with as-
sociated detection mechanis as t- forn. a semantic network. This network is then used to
determine threat occurren. < b, for aing probabilistic relationships between threats and
TTPs. The framework i train.? using a TTP taxonomy dataset and the performance
is evaluated with three . . ~tifacts reported in threat reports. The framework efficiently
identifies attacks with 92% ac -iracy and low false positives even in the case of lost and
spurious TTPs. Thr av. -age detection time of a data breach incident is 0.15 seconds for
a network trained -ith (33 TTPs from 45 threat families.
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1. Introduction

The pervasiveness of high-speed Internet connectivity has attractea . - rge majority
of businesses to move their sensitive and confidential information and . ~nsac. ons to the
clouds. This transition has made business operations flexible and e~ __- for .. = customers
at the cost of making them vulnerable to cyber data breach attacs. J. 716 alone, over
1.4 billion data records were breached in a total of 1792 incidew - .argeting financial,
banking and retail outlets [1]. The situation is getting worse as ".. the tu. ¢ half of the year
2017, over 1.9 billion records were breached in 918 incidents [2 includi g the massive data
breach of Equifax where 148 million consumers had their per. ~nal ir ;ormation accessed
[3]. The detailed analysis of these cyber incidents reveals t'.a. the aaversaries use common
attack patterns to compromise their target. Due to this ~ea,n, he security community
is paying more attention towards sharing and consumi~g Cyber ".'hreat Incident Reports
(CTIR) as a measure of proactive defense against data b. ~ch incidents.

The massive size of CTIR and the constant or “laught « f new Advanced Persistent
Threats (APT) make it nearly impossible for the ~ecu.. .nalyst to identify a relevant
attack’s behavioral signature. Currently, there are app ~ximately 1 billion threat indica-
tors publicly available on Hail-a-TAXII [4]. Sin. -1y, 1t8M X-Force [5] reports thousands
of malware on a weekly basis. The Verizon’s Data .”~each Investigations Report (DBIR)
[6] reports millions of data breaches includi. o sv.” = credit card credentials. Along with
these reports, a network administrator has loc 'y available log files [7] containing useful
threat data, e.g., DNS [8], packet captw = ™. er ail [10] and IP logs [11]. Among these
different types of reports, Structured Thr.at .aformation Expression (STIX) [12] en-
coded CTIRs are more comprehensive oo they record the details of cyber breaches
as attack observables, indicators, TTPs, 1. dents, threat actors, campaigns, exploit tar-
gets and Course of Actions (COA<). To investigate data breach incidents, so far, a
major focus of the security cor munn, has been on sharing and identifying indicators
and observables. These are low- " ~vel th' 2at artifacts comprising of IP addresses, domain
names and file hashes. Unfr stunatc’-, they have a very short lifespan with respect to
threat defense as they are ,usc ptible to change having fewer chances of being reused.
The attacker constantly chai._ s IF addresses by buying new attack servers and domain
names. While cyber da’ + breach .ncidents are caused by such malware and APTs that
share attack patterns - s 1 . ™s. The TTPs represent the attacker’s actions for breaching
an organization’s net ~rk. As the indicators and observables change rapidly, similarly
the goals and targe s of ittackers also change frequently. Ironically the attackers’ TTPs
remain the same anu e re-used over and over again with little innovation. This problem
was observed in che data breach incidents of some notable organizations like Sony [13],
Target [14] ar « Hr me "Jepot [15] where millions of customers were affected. In these
incidents, the aav ~sa i1es’ employed the same TTPs to breach into the network. The
greatest ar ount ¥ pain can be inflicted upon the attacker by identifying TTPs in the
network a1 1 therel y achieving a timely investigation.

In this re. -~ work, we propose a novel and automated data breach investigation
framer ork th t exploits adversary’s attack patterns, i.e., TTPs in CTIR. The framework
genera es a T reat-TTP-Detection (TTD) network by semantically correlating threat
incidents . ung themselves to identify the existence of a TTP in a network. The TTD
sel anw,  _ twork is further augmented to investigate the most probable threat incident
fami, - based on detected TTPs in a network, by adopting a machine learning based
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probablistic analysis. The proposed framework  ~liably detects data breach incidents
with an accuracy of 92% and low false pos **es even in the case of lost and spurious
TTPs.

The organization of the paper follow this . ~quence: The problem statement is dis-
cussed in the second section. Based on th. p. blem statement we describe our research
methodology and contributions in sec**~n th. ~e. Section four discusses the related work.
The proposed framework design is deu led 1n the fifth section. The working of this
framework is explained in the sixth section with the help of a financial RAM scrapping
malware family data breach case ..u._ -~ The effectiveness and efficiency of the framework
are evaluated in the seventh se tion. F ally, in the eighth section, the research work is
concluded along with future nersp -tiv :s.

2. Problem Statemen*

Cyber data breach "aci’ "nts are caused by such malware and APTs that share attack
patterns as IOCs. Thore are si< levels of IOCs as defined in the Pyramid of Pain model
[16, 17] shown in fig «re . The IOCs present in the first three levels are atomic indicators
comprising file hasi. ~ (Ps, domain names, network and host artifacts. Low-level IOCs,
also termed tecl nical ti. ~at intelligence, are consumed by technical resources such as
firewall, Intruson T ctec’ ion System (IDS) and spam filters on email servers. In the upper
part of the pyram.. * tb re are more generalized threat indicators related to the behavioral
attack sign- cures »f viareats such as exploit toolkits, malware and TTPs. The high-level
10Cs, alsc termea as tactical threat intelligence is consumed by incident responders
for investiga ‘on iardening defenses by upgrading systems and policies. Interestingly
the ins icatore in the lowest part of the pyramid can be easily identified and extracted
from ihe thre: t reports due to their fixed format. Therefore, they can also be easily
defende.. v .pplying intrusion detection and firewall rules. Currently, the emphasis of
the scc. v community is to employ low-level IOCs for sharing and investigating a data
brea.n cident. Unfortunately, these low-level IOCs are only useful for a short time or
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for immediate use. The attacker constantly changes "P addresses by buying new attack
servers and domain names. On the other han ' '_. 1. ¢l IOCs are for a long-term use
and provide sophisticated defense against cyber . veats. Thus by identifying high-level
I0Cs, i.e., TTPs the attacker is forced to ¢’ .. =~ his attack patterns.

To illustrate the significance of TTPs in 1 e nvestigation process, in figure 2 an ex-
ample of three famous threat groups, i.e. TG-1.14 [18], TG-3390 [19] and TG-4127 [20]
is provided. All these groups compromise <cv. s’ credentials but using different attack
TTPs. The threat group TG-1314 _-~ the victim’s remote access tools by compro-
mising credentials of the network’s ena ~int management platform. The threat group
TG-3390 installs a keylogger and employs a publicly available credential dumper tool
to get password hashes. The tb eat _~oup TG-4127 compromises credentials via spear
phishing. A well-known exam; ‘e relate | to TG-4127 is the Democratic National Com-
mittee’s Gmail-based email - ccou..” b .ck during the presidential campaign. Similarly,
the goals and targets of th se t'ireat groups are also different. The goal of the threat
group TG-1314 is to log in. *ae v'ctim’s remote access facility while the threat group
TG-3390 steals industris . intelle. * aal property. The threat group TG-4127 targets gov-
ernment and military iev orks for espionage and cyber warfare. This shows that by
identifying the presence of a porticular threat group related TTP in a network provides
a distinct advantag: to he analyst in explicitly identifying the cyber threat family.

Our problem su. *e’ ient is thus as follows. Current techniques to diagnose a data
breach incident use low 'evel IOCs which are not useful due to their short life span.
On the other Fand .f hizsh-level IOCs, i.e., TTPs are used to investigate a data breach
incident, they ca. alle v more accurate detection. Therefore our problem is to identify
TTPs base” uvn the .ow level threat artifacts observed in a network with the help of
appropriat : machii = learning algorithms.

3. Researchh Methodology and Contributions

To au. = .5 the problem statement presented in the previous section, here we describe
ou. resw .. 1 methodology from which we will derive our solution and accomplish our
resea. -4 challenges. To accurately investigate cyber threats using adversary’s TTPs,
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two main challenges need to be addressed. The first challenge is that tc .’ ~ntify 1TPs
of an attack, the security analyst has to perform certain detection -.iecb .nisms that
are frequently not specified in the CTIR. The second challenge is that 1+ ™ ?s are rarely
referenced using standard identifiers in CTIR. They are mostly reportea < unscructured,
human understandable textual descriptions that make it difficu’, .y coriclate attack
incidents of same threat group based on similar TTPs due to syr onyr s a.. 1 polysemous
words. Manual searching for correlated TTPs is a tedious, time . nsuming and error
prone process which is nearly impossible due to the massive s ze of C1.R.

The first step of the methodology addresses the challenge of ident ‘ying the existence
of TTPs. The detection mechanisms of our framework are o. “aine . from the publicly
available (ATT&CK) taxonomy provided by MITRE [t th~* documents adversarial
Tactics, Techniques and Common Knowledge. The fi ' worl generates a semantic
network of Threats, TTPs and Detection menchani. »s (TT7.) by correlating threat
incidents among themselves to identify the existence of a 1+ "P in a network. The second
step of the methodology addresses the challenge ¢ refere «cing TTPs in CTIR. The
TTPs in the CTIR are semantically mapped into v. »~ T'1 = uasing their appropriate labels
in the ATT&CK taxonomy using Latent Semantic Ina. -ing (LSI). LSI, not only groups
documents using semantically similar words buu . 'so groups semantically similar words in
a document to identify themes or topics of the documc ~ts. The TTD is further augmented
to diagnose the most probable threat family bas - on detected TTPs in a network, by
adopting a probablistic machine learnin~ base analysis using belief networks between
threats and TTPs. The advantage of this o, ~ro«ch is that it outperforms sophisticated
classification methods, treats all predictor a. ribates independently and is useful for very
large datasets with missing data [22].

To evaluate the working of the propos.1 framework, we constructed a benchmark
dataset from the ground truth d-* ‘threat, TTP and detection mechanisms) available
on ATT&CK taxonomy [21]. 7 areat « “tifacts were compiled based on the threat inci-
dents reported by multiple sow. s, i.e , IBM X-Force [5], Symantec [23], FireEye [24]
and CrowdStrike [25]. The ¢ artifac.s were populated into the prototype system and
automated investigation w s pr -forr .ed to determine the presence of attacks.

Our research has the “ollov. mg _ontributions:

1. This work is the ursv fits kind that presents a case for emphasizing the analytics
of high-level ad--~rsarial 1 TPs. Previous work has primarily focused on the identi-
fication of lov -leve . atomic indicators that are trivial for the attacker to change.

2. The results pic - ated highlight the important relationship between security inci-
dents, tac’.cs »nd w._tifacts in a way that machines can identify these connections
with cert «in v robe ilities. Henceforth this research paves the way for cyber security
investigation. w’.h partial or incomplete information.

3. A we -knov 1 standard dataset of unstructured cyber threat incidents has been
thorc 1ghly st 1died and dissected to construct a comprehensive vocabulary of struc-
tur~d 'L 77 .. The existing threat taxonomies are either too specific to a particular
< omain, =.g., web attacks or are too verbose and descriptive to be useful for machine
1 arning

4 Our .csearch motivates the development and usage of a common vocabulary for
'L'_1 in CTIR. The SIRS module allows security analysts to identify common
" TPs in different documents even if they have different texts but have the same
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meaning. At the same time, this also gives SIRS the ability to .. ~over 1'TPs
mentioned in one document but not the other. We illustrate this a tb . evaluation
section by showing how the proposed system identifies missing TTt. " three docu-
ments (ATT&CK, IBM X-Force, Symantec) that concern the samc “hrea. (AXIOM
Group). These TTPs can be derived or essentially imported o 1 one Jlataset into
the other thereby automatically “augmenting” the latter. ™ his “s he..ce an impor-
tant contribution to our work.

5. The results prove that the cyber threat classes and their .ssociatea incidents utilize
a finite and typically deterministic collection of TTPs, vhich cl wracterize them. If
this set of TTPs can be systematically documented thewn “he +"ireat groups can be
automatically profiled and ultimately stopped. Mar aines ~an help investigate these
“telltale” threat group signatures. This is not surpr «ir _ as 1 areat groups constitute
real people who specialize in particular tactics . ~d te-* .iques which evolve over
time.

4. Related Work

Cyber threat diagnosis based on learning . “tterns from CTIR is a relatively new
domain. We did not find any directly related res.rch work that can be compared
to the proposed scheme. However, our rese. rch oe..efits from several existing research
domains. First, we studied the different state t the art solutions that deal with cyber
threats. Second, we studied research w.v.  wiaere CTIR have been used to forecast
cyber incidents, suggest investment in data security and operational risk management
in financial sectors. Third, we studie. how . /ber and network security operations can
be enhanced by extracting security concep's from unstructured sources and enriching
intrusion detection knowledge b2~ - to detect attacks and vulnerabilities. Fourth, we
studied the most state-of-the-¢ .t soluv ons for malware, APT and intrusion detection
using machine learning techniqu.

A machine learning bas' d cvber .hreat detection model to identify the seven top
security threats in cloud omr atin , and their remediation is proposed in [26]. The
presence and type of atts ck 15 ‘et rmined by training the machine learning model with
a limited set of artifact “hat depict the activity pattern of the cloud. The artifacts are
performance logs of C.’U, su. ~age media, network usage patterns of the hypervisor and
the guest operating .y. em. In [27], the authors propose an abstraction layer over the
Internet to record =ver .s from different information systems, and correlate and share
these among the narv. ~rs in order to detect and monitor frauds. A limited set of cyber
threats belongi’ g tc inter-domain port scans are considered. An automated framework
to respond to « he thr ats with appropriate response plans is proposed in [28]. It works
by integratir~ anu ~ aluating operational, financial and threat impact models. The
data empl yed is etwork inventory, security policies, mitigation actions, reachability
matrix ana vulner: oility inventory. The data is local to the network and based on pre-
establis™ 1 sec...vy guidelines. The proposed framework does not employ CTI data for
dynan 1c risk management. In [29], a fog-based storage approach is proposed for the
integri. 7. avail .bility and confidentiality of users data stored in clouds from a limited set
of ~vber tuicats such as malicious modification and data loss.

Pub w1y available CTIR repositories such as VERIS incident database, Hackmaged-
don, « \d the Web Hacking Incidents Database have been used by Liu et al [30]. The
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purpose is to forecast the cyber security incidents based on the network s* ..~ This state
is depicted with externally detected properties i.e mismanagement sy’ ipto as, DNS or
BGP misconfigurations and a time series of malicious activity including s. 1ning, phish-
ing and spam. The VERIS incident database and Alexa Web Informat.. ~ Se1 vice AWIS
is used by Sarabi et al [31] to devise a categorization metric. It sv g 'ts the investment
a business should do on achieving targeted and effective resourcs allc atic. for security
incidents dealing with critical data of that business. The incidents .. > categorized based
on the type, the originating source, motive, and assets use’ related vo that incident.
Similarly, Vasily [32] used the VERIS incident database to i westiga = data breaches in
financial sectors. To manage operational risk a belief netwo.’- is f.rmed. The results
obtained from the model assist management in underst .ndir~ the problem areas rele-
vant to their businesses and make decisions for future L ~tt rme t. In [33], the authors
propose the use cases of cyber threat intelligence sha.ng usi» | STIX to gain informa-
tion about the disruptive consequences of cyber threats «. 4 data breaches on society.
A threat analytics framework to contextualize the massive Cyber Threat Intelligence
(CTI) is proposed in [34]. The CTI standards, .. twoi.. configurations, and Common
Vulnerabilities Exposure (CVE) are represented usine -ntological formal specification
The ontology developed is employed to semanu. =lly reason about the cyber threat rel-
evance to a network their likelihood and the vulnei. ble and affected assets. The focus
is on the network relevance towards a cybe th’ca. instead of detecting or correlating
existing threats with new cyber threats. In |o71, the authors performed a comparative
analysis of the STIX, IODEF, VERIS anc .. AR cyber security incident reporting for-
mats. The study reveals that STIX is the most comprehensive and practicable cyber
security incident reporting format. lu 'Xo|, ... authors describe threat intelligence use
cases with STIX. The purpose is to improve *he automated management of threats. The
information from different threat = “elligence providers and network elements is corre-
lated. A comprehensive survey of the =xisting CTI standards in the context of cyber
threat information sharing is giv. ~ in [* 7].

Security concepts extract :d from . astructured online web sources proved to be really
helpful in enhancing tradit” ma' knor ledge bases of intrusion detection systems. More et
al. [38] proposes an intrus ‘on . *ac’.on system which extracts security concepts from text.
These concepts are con , ared witn monitoring sensors’ logs with the help of a reasoner
for generating security aleru. The security concepts are extracted from heterogeneous
sources. The extrar.c. threat is used to populate a security ontology borrowed from
[39]. In a related rese .rch, Mulwad et al [40] present a framework for vulnerability
extraction and cvber ttack related information from web text and compare it with
wikitology conc pts [41]. A model proposed by Joshi et al [42] takes text, vulnerability
descriptions, L. = v osts «nd security bulletins as input and automatically extracts entities
and populate conc ~ s in DBpedia [43]. In DBpedia, these concepts are matched and
assigned c rrespo. ling class values. Similarly Bridges et al. [44] present a maximum
entropy mc lel for : utomatic labeling of security text. An approach for early detection of
real-wor' " exp....s and vulnerabilities from Twitter is proposed by Sabottke et al [45]. Tt
obsery s twee.  of security vendors, hackers, and administrators. More vulnerabilities can
be det. ~ted us .ng Twitter security forums than actually present in the proof of concept
puhlic repusicories. To extract useful content from news stories Ryan et al. [46] use a text
mirng pproach. To measure relatedness between concepts collected from news stories
Laten Semantic Analysis (LSA) is used. To semantically contextualize IoT data, Mério
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et al. [47] proposes an approach for extracting semantic features from pu’ 2. 'y accessible
web services to facilitate M2M based communication. A cyber securit- ont logy called
CRATELO is introduced by Oltramari et al. [48]. It consists of three . vels that use
a simplified version of Dolce named Dolce spray as first level ontolog, The proposed
cyber security related ontology SECO as a middle level and domair .. 2l onvclogy OSCO
for cyber operations. The research considers spatial and tempor .l pr .pe:.ies of attacks
and the attacker’s host and network artifacts are not considered. 1.. he related research
the same authors [49] introduced the concept of trust manag .ment in CRATELO, e.g.,
any value delay which is out of an acceptable network dele 7 range will be unreliable.
Details of acceptable delay for different networks are not given. To i- vestigate APTs via
artifacts collected from cloud apps, Christian et al. [50] d- velor~4 a taxonomy of security
mechanism circumvention techniques by analyzing case . *1".es ¢ "iOS cloud apps.

A Support Vector Machine (SVM) based signatur. free r~"ware detection based on
the selection of filter based malware feature is given in [5., The features employed are
Application Program Interface (API) call statistics. Similar y, a machine-learned model
based malware detection system is provided in [5.] The .aalware features are obtained
from both benign and malicious executables. The fe. “ires considered are file hashes,
malicious IP addresses and malicious externai ~lls. The machine learning techniques
used are SVM and decision trees. In [53], the autho.. propose a machine learning based
malware detection engine. The malware fe. "ure, ..nsidered are static, behavioral and
permission related. The static features are o. .ained from APK files. The behavioral
features are obtained by executing the Ap, s .~ an emulator. The permissions are selected
using information gain. The J48 (open sourc > Java-based implementation of the decision
tree) classifiers outperforms other tecn.. ~ues. .n [54], a machine learning based approach
is used to detect and predict APT. The fe. ures of APT considered are low-level IOCs,
i.e., executable files, malicious filc ' ~<hes domain names, IPs and SSL.

The aforementioned works ir .roduce 1 the groundwork for cyber security related infor-
mation retrieval and set the stage “or in- estigating cyber data breach incidents. However,
the models and ontologies er ploved a. 2 very basic and do not cover all aspects of threats
both low-level artifacts anc TT ’s. " hey only capture vulnerabilities exploited and their
needs. The proposed thre at i1, ~sti Jation is based on semantic analysis of adversary’s at-
tack patterns by emplo’ g machine learning techniques for predicting the threat family
class. In order to idenufy cy. ~r threats, security analysts must perform adequate inves-
tigations to identify ... -ats in the context of recent data breaches and exploits found in
CTIR.

5. Data Bres :h T avestigation Framework

A high-lew~l arc # scture of the proposed framework is shown in figure 3. It can be
broadly di 1ded i. “o three segments: Semantic Indexer and Retrieval System (SIRS),
TTD Semc ~tic Ne work and Cyber Threat Prediction. The input to the system is CTIR
and AT %Ci Jocuments. A CTIR corresponds to a single cyber threat or incident
while i AT, &CK document may correspond to many detection mechanisms related
to a 1 TP. T} SIRS segment semantically indexes CTIR and ATT&CK documents,
meintains o 1'TP dictionary extracted from threat documents and retrieves a ranked list
of UTL}, and ATT&CK documents for each TTP present in the dictionary. The list of
ranke. documents is combined to connect cyber threats, TTPs and detection mechanisms
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based on a higher rank specified by the ranking function. A belief net ..k is further
trained between the TTPs and the cyber threat incident to predict cy} er t! reats based
on detected threat artifacts. The last segment, i.e., Cyber Threat Prew. ion takes as
input the TTD and the detected threat artifacts to produce a reliable . “eat prediction.
The functional details of each segment are given in the following su’.sc tions. The details
of notations used are given in Table 1.

5.1. Semantic Indexer and Retrieval System

Table 1: Data Breach Investigation Framework Not- .ions and Definitions

Notation Definition

Ay A ATT&CK documents set, asso. ~ted  .ch the TTP ttp;

TTPy; A TTPs set, associated with a threat

T A threats set, associated with e T'TT tip;

Da; A set of detection mechanis.. =. ass. _.ated with d;

TIndex Latent Semantic Indexed threat [ ~cuments

Alndex Latent Semantic Indexe.. a1 1&CK documents

TRank A list of ranked threat docui. ~nts associated with ttp;

ARank A list of ranked ATT . -" '~~uments associated with tip;

TTPD A detected ttps set

TTPDy; A set of detected . ~s du. to threat t;

TTPUy; A set of undetectea T'1 s due to threat ¢;

i A set of predi~*~d thr.ats based on TTPD

S(t:) Threat support " nction to measure the maximal support of
TTPD towards t;

P’ A new set " *hreat predictions, p; based on TTPD

TTPM A set of correla. °d but missing TTPs associated with threat in
a predic,

TTPE A su'set of . 7 2M that are present

TTPN A s ubse’ of TTPM that are not present

The structure of a r_~eral C1IR document is shown in figure 4. In the case of this
example, it is an exce1 pt ot « STIX encoded CTIR document reporting the Backoff mal-
ware belonging to th . .. ~ancial systems-breach threat family [55]. Each CTIR document
is assigned a uniqr = idr atification number using the id attribute in the STIX_Package
element. The low-leve. TOCs are represented by the Indicator STIX element. The high-
level IOCs are v -pre entea by the TTPs STIX element. Both kinds of IOCs have unique
IDs to distingi. “h “aemr Each TTP is also assigned a unique identification number using
the id attrib*= in >« TTP element. The details of the TTPs are given in the Descrip-
tion sub-el ment « “ the TTP element. The STIX standard does not directly support the
specificatic * of det :ction mechanisms, which are typically not found in cyber threat re-
ports. T is 1 c.uer to enable security administrators to identify TTPs in their network,
those ound 1. the CTIR must be mapped to their associated detection mechanisms.
The de ection mechanisms are provided in the ATT&CK repository by MITRE [21]. In
this reposiwury, ten tactic categories are defined i.e Persistence, Privilege Escalation, De-
fen. 2 Foas.on, Credential Access, Discovery, Lateral Movement, FExecution, Collection,
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Figure 3: Data Breach Investigation Framework
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Ezxfiltration and Command and Control. Each category specifies the ar . -sary’s tech-
niques with threat examples and actions for detection and mitigation. ’.n e> ample of an
ATT&CK document describing Application Deployment Software techni, - is shown in
figure 5. Each technique has its own unique identification number. The “echn.que’s title
is a generalized taxonomic label which is difficult to map to comr .c. *nsive.y described
TTPs in the CTIR.

The SIRS algorithm is provided in listing 1 and it’s detaile. xplanation is pro-
vided here. In addition, its working with respect to a sp ciuc case study of finan-
cial malware is provided in section 6.2.1. The SIRS segmei t consti utes a main func-
tion SEM_INDEX RETRIEVE whose job is to retrieve ran.~d (" IR and ATT&CK
documents for each TTP. The function takes as input a se* of m CTIR documents
T=tq,ts,...,t,, and a set of | ATT&CK documents A= ay a-...,c¢ . T represents individ-
ual attack instances, malware families or software tool. A set -~ k detection mechanisms
D=d;,ds, ..., d; can be used to verify existence of a set of n » "Ps TTP=ttp1, ttps, ..., ttpn,.
The first step, shown in line number 2 to 4 extract. TTPs f om the CTIR and archives
them in a dictionary. As mentioned in the introdw *ion ...tion, we have used STIX en-
coded CTIR documents. STIX uses the commonly use.” XML format to import, export
and share data between different platforms. r. wvever, to analyze XML encoded data,
these files can be converted into different flexible fo._~ats. A common practice is to im-
port the XML encoded data into spreadshee. . "1, c..cract TTPs from the STIX encoded
CTIR, a dictionary is created on line number - whereby the CTIR files are imported as
separate rows into a spreadsheet and the « 2. mn: constitute the CTIR ID, TTP ID and
TTP Description. An excerpt of the data s ructure of the TTP dictionary is shown in
figure 6.

_»CTIRID

<stix:STIX_P- _kage xmIn stix="http://stix.mitre.org/stix-1" id:"ibm:F—eed-— _wThreat title
4170e5e758. “429934ade2 19cd0c02"><stix:STIX_Header> <stix:Titlé>Backoff POS
Malware</sti;
<stix:Df cription>Ti.  ame Attacks first detected in October, 2013, and continued until
at least /Aarch, J16. This memory-scraping Point-of-Sale (POS) malware goes one step
furthr hyinc' ding ke .ogging capability that is used to capture streams of "keyboard input"
pro-ucec nagnet card stripe readers that integrate with the computer by emulating a
ke soard. </s. T :scription></stix:STIX_Header>

“ix:Incidents><stix:Incident id="example:incident-081d344b-9fae-d182-9cc7-
d2dic ~7c64f">

H I

STIX <inciden. “*le>Backoff POS malware</incident:Title>
Report “stix:Indicators> <stix:Indicator id="ibm:Indicator-5c93aSfebac1c6582940f2ec6dd205dd"
From 1BM [E2¥-Leve > ID5 927AE15DBF549BD60EDCDEAFBA9B829E<indicator:Title>Malware risk high</
XForce |IMdicat: " dicator:Title>
Hi - ° <indicator:Type>File Hash Watchlist</indicator:Type></stix:lndicators>’ _»TTPID
el < "aTTPs>  <stix:TTP id="ibm:TTP-eaaebcfe-de71-4b13-55fb-87bccc092fc6"> _-=-YTITP

<ttp:Title>Back off</ttp:Title><ttp:Description> Use publicly accessible caméTas, or Description
< ploited them to get IP of POS terminal</ttp:Description>
<ttp:Short_Description>P0OS Malware</ttp:Short_Description>

< </stix:TTPs>
<stix:Exploit_Targets><et:Title>Javascript vulnerability in MSIE 6-11</et:Title>
<et:Vulnerability><et:CVE_ID>CVE-2013-3893</et:CVE_ID></et:Vulnerability></
stix:Exploit_Targets>

_4 </stix:STIX_Package>

I dicatc

Figu 2 4: An xcerpt of STIX encoded CTIR document reporting Backoff financial malware [55]

11




— ATT&CK 3

Application Deployment Software TTP |
1D: 1017 -1

Adversaries may deploy malicious software to systems within a

network using application deployment systems employed by Tactic: Laters
enterprise administrators. The permissions required for this Movemnet
action vary by system configuration; local credentials may be

Platform:

sufficient with direct access to the deployment server, or
specific domain credentials may be required. However, the
system may require an administrative account to log in or to
perform software deployment

System Require. nt:

Ex 1 » Threat Family Example

APT32 compromised McAfee ePO to move laterally by distributing malw e as a s¢ .ware
deployment task

Mitigation

Grant access to application deployment systems only to a limited um’ r of a1 ‘horized

administrators. Ensure proper system and access isolation for critic . networ' systems
through use of firewalls, account privilege separation, group , “cy, and - (factor

authentjcation.

X Detection Mechanisms

Monitor application deployments from a seconda: system. P rform application
deployment at regular times so that irregular deploymen. <tivity :(ands out. Monitor
process activity that does not correlate to known go. ~ softw. .onitor account login

activity on the deployment system.

Figure 5: An ATT&CK MITRE document specifying adver. ~v’s TTP, threat example, mitigation and
detection mechanisms

CTIRID TTP I TTP Description
Feed-
TTP-b500€.. ~-4955 .. ¢3-
UsesTOR hidd i
4170e5e758e50d29934ad 48]2-8c3d4b3040. ses en services
€2e19cd0c02
Zi‘;?)- 5e758e50429934ad T »f9d6ea =-a7d6-0094- Encrypts every file it can find that isn't
evelose 3¢ 2gc-535f8ct 1d73 an EXE or DLL

€2e19cd0c02

Zi;(:)_ Se758e50d20004ad T7 -006e0a14-677b-dfed- Downloads the encryption key from its
eoe/o0e M 4470 59298c6272 CnC server

€2e19cd0c02

r._ire 6: An Excerpt of TTP Dictionary

The second ster sho n on line number 6, is to semantically correlate the TTPs in the
CTIR among themse, s (line number 7) and with the TTPs in the ATT&CK documents
(line number 8) [n fgure /, the semantic relevance among TTPs in ATT&CK documents
and CTIR is ¢ "ow 1. Ca the left-hand side, there are five ATT&CK documents. The
document’s title is e 1abel of the TTP. On the right hand side, there are three different
threats of inanci.! malware family, i.e., Backoff, Treasure Hunt and FastPOS. It can
be seen th. t there are some common TTPs, e.g., key logging functionality and Deliver
keylog d~*2 bu. ue to different textual descriptions, it is hard for a machine to correlate
them - sing a . ‘mple keyword matching technique. Similarly, It can be seen that the titles
of rele ant AT [&CK TTP documents represent the general labels or taxonomic classes
of the T'1. ., which is again hard to correlate with the textual TTP description in the
C1 "R. r u. Jhis purpose, we use LSI to semantically map TTPs with each other. In figure
7, the ('TPs are numbered on both sides. This numbering represents their semantic rele-
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vance which is the desired outcome of using LSI. In the past, researchers b . successfully
used LSI for enhancing the semantic understanding of text documents ir wel search [56],
recommendation systems [57], personality identification [58] and autom. ' assignment
of multi-level security labels [59]. The traditional keyword-based lexic.” matcaing tech-
niques retrieve information by matching query terms with the terr ., .. the vext corpora.
However, they can be erroneous matches due to inaccurate concr ot 1 atci.lng caused by
synonyms and polysemous words. Thus instead of using the simpi. eyword search, we
index CTIR and ATT&CK documents using LSI. The TTPs are searcaed for semanti-
cally relevant concepts or topics in statistically derived conc ptual i1 dices (line number
11-24).

LSI assumes a latent pattern in document terms whic'. is hi*den due to variable ways
to represent a concept. The dimensionality of the sparsc (v .ch 1 ore zero entries) term-
document matrix (representing the frequency of ter. = in *k* documents) is reduced
using Singular Value Decomposition (SVD) to figure out he hidden word patterns in
the documents. The relevance between the TTP ( ~ry an . the indexed documents is
calculated by taking the cosine of the two vector. The wocuments are ranked by the
distance to the TTP queries. A smaller angle leads to a *~rge cosine value that means the
document has high relevance to the given TTt mery. A larger angle leads to a smaller
cosine value that means the document is low in rele. nce to the given TTP query.

To connect TTPs in the dictionary among “her i>c.ves, the TTP descriptions in column
3 of the dictionary are provided one by one ¢ search terms in the CTIR corpora. If
there is a match then a new row is crea <’ in .he dictionary with the same TTP ID
as the ID of the TTP that was matched. S’milarly, to connect TTPs in the dictionary
with the detection mechanisms, the .t uc.criptions are provided as search terms in
the ATT&CK corpora. If a match is foun’ the corresponding detection mechanism is
fetched and added as a new colur  in the dictionary.

The Latent semantic indexe’ indexe, CTIR and ATT&CK documents. The Semantic
retrieval system retrieves a ranke ' list « £ CTIR and ATT&CK documents for each TTP
present in the TTP dictions ry. The anked results against each TTP are merged and
further provided to the sec nd < 2gm' at, i.e., TTD network where TTPs are semantically
linked to their correspon‘’ing « ~ter .ion mechanisms.
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TTPs in

Financial
TTPs in Malware
ATT&CK CTIR
pm—————— AN “ e —————————————————— Nt e
| @ ' |
TTP Labels in
ATT&CK @ Backoff POS Treasure Hunt POS JFast Pus

May have used publicly accessible .
. This actor may access can = and
cameras and security systems or : <
. . security systems over the intc.  *~
exploited them as part of surveillance
to identify IP address blocks likely to
contain POS malware

Application Window
Discovery

identify IP addresses associated wi.
POS terminals

Brute force attacks on publicly
- available "remote desktop"
pratform... @ applications like Microsoft remote
desktop, Apple remote desktop,

| Cir . PAe terminals
Chrome remote desktop, Splashtopz  [Preducts I -alled on crminals

Stolen credential atta.  and brut
force attacks mote ac..

and logmein

Malware includes keylogging
@ functionality to capture data from

magnetic stripe readers that emulate
keyboards

Also performs keylogging

Exfiltrates with HTTP GET requests.
The server does not respond to these
HTTP transactions. This also leaves the
exfiltration data behind in the caches
and web browsing history on infected
end points, but FastPOS tries to delete
those traces

@ (Command and Control (CnC) via
HTTP POST request

Delivers scraped credit card data to the
(CnC server as soon as it passes
validation

@ Beacons to CnC server  ‘ery -
seconds

Figure 7: Semantic correlation among TTPs .1 « "TR and with TTPs of ATT&CK documents

Algorithm 1 Semantic Indexer and Reu. =val System

Input: CTIR T, ATT&CK documents A
Output: An n-element array £ Ra.ked CTIR and ATT&CK documents (TRank,

ARank) for each TTP

1: function SEM_INDEX_R.TRIE\."/ ., A)

2:
CTIR

25:

TTP Dictionary= F xtre t_Relevant_Fields(T) > Populate TTP_Dictionary from

LSI_Indexer(T, . )
Semantic_Retri .vai, "TP_Dictionary, TIndex, Alndex)
end function
function LSI_"wDF (ER(T, 4)
TIndex=L5: 7.
Alndex= .SI(A)
end funct on
function Sk. *NT.C_RETRIEVAL(TTP_Dictionary, TIndex, Alndex)
for =1tom do > m = count(ttp;) where ttpy, ttpa, ...... S ttpy, €
TTP_L ictionar -
Sc reb tp; in (TIndex, AIndex)

TTI = Rank(TIndex) for ttp; > Where Rank - LSI document ranking

Sele :t tl; € TL; > Threshold

£~ j=1tondo > n = count(tl;) where tiy,tls, ...... Jtl, € TL;
TRank= add_Record(tl;, ttp;)

end for

AL;= Rank(AlIndex) for ttp; 14
Select al; € AL; > Threshold

for k =1tor do > r = count(alg) where aly,als, ...... ,al, € AL;
ARank= add_Record(alg, ttp;)
end for
end for

return TRank, ARank
end function




5.2. TTD Semantic Network

The SIRS segment retrieves semantically relevant cyber threat repor? < ane adversary’s
techniques documents. The next step is to link threats to their resmect, ~ TTPs and
detection mechanisms. A dependency table Prygs = p(ttp;/t;) is built be. een the threat
incidents and the TTPs. Thus TTD represents semantic relations ot hree independent
concept sets, i.e., threat set, TTP set and detection mechanisms set. [Trs and threats
are connected through links to show that the two are dependent. ."TPs and detection
mechanisms are also similarly connected to show dependenc'es bet veen the TTPs and
the detection mechanisms as described in the ATT&CK taxc nomy.

Algorithm 2 Threat-TTP-Detection Semantic Networl
Input: TRank, ARank
Output: TTD Semantic Network
1: function TTD_SEMNET(TRank, ARank)
2 TTD_NETWORK( (ttp;, TRank, ARank)
3 BELIEF NETWORK(TTD Network)
4: end function
5: function TTD_NETWORK (ttp;, TRank, Ah. k)
6
7
8
9

for (ttp; € TTP) do
add (t; € TRank)
add (d; € D € ARank)
: end for

10: return TTD Network

11: end function

12: function BELIEF_NETWORK(TTD Network)

13: for t; € T do

14: w(ttp; Jt;) = 2t 1/t

S ery, T
S

. (ttp [tije i)
1o nlti/ttpi) = w(ttns /ti)p(t:)
16: end for
17: return TTD Se rantic Necwork

18: end function

The stepwise d- sails ¢o build a TTD semantic network are given in algorithm 2. The
working of the T'TD .. =xplained in section 6.2.2 with the financial malware case study.
After initial ma ,pin', between threats, TTPs and detection mechanisms, a belief network
is trained betw ~n .hres ¢s and TTPs in order to predict threats based on the presence of
certain artifr~*s. 1, '+ vased on a threat support function S(¢;) to measure the maximal
support of he det cted TTPs towards a threat occurrence. The algorithm assumes that
all predictc - TTPs are independent of each other. The historical artifacts signifying the
existanc  of a _,ver attack are gathered to calculate conditional probability between
TTPs and th. =ats, i.e., p(ttp;/t;) € (0,1). These probabilities are based on historical
data t. at forr.s a frequency table in the Threat-TTP mapping. The frequency table
mev neea w be normalized to eliminate null values. This is done by adding 1 to all
ent.‘es s wle mapping table and thus eliminating entries with “0” or null value. The
norme. ized table is used to calculate the normalized likelihood or normalized conditional
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probability w(ttp;/t;) to show the support of each threat ¢; to their dete .. 1 t¢p; shown
in equation 1.

p(ttpi/ti)
w(ttpi/ti) = (1)
T Ytiet,, P(tpi/t:)
Using the above normalized likelihood table, the normalize ' or sterior probability
u(t; /ttp;) can be computed by using Naive Bayes in equation 2 122

p(ti/ttps) = (2)
T Yem,, w(ttpi[t)r!t)

The predicted class is the one that has the highes. pr.ceri r probability. All the
detected TTPs are considered for such support and for ~ach att- ck for a different kind so
in order to extract a threat prediction all such support val. = are combined to find a best
candidate threat prediction set with maximum sup, ~rt valu S(¢;) shown in equation 3.

S(t;) = > ttpierTPD; P, 1tDi) 3)
;) = =hp el D o’

Dttpiertr,, Wi/ tpi)

The output of the second segment is a — ™ network which is provided as input to
the third segment, i.e., cyber threat predictic .

5.8. Cyber Threat Prediction

The cyber threat prediction seg: -... == be further divided into three functional
modules: 1) Threat Investigation (TD), =, Reliability Assessment (RA) and 3) Detection
Mechanism Selection (DMS). The stepwise details of the cyber threat prediction segment
are given in algorithm 3. The wrking »f each functional module is explained in section
6.2.3 with POS malware case s dy.

The responsibility of the *areat .. ~ stigation module is to produce a predicted threat
set P’ given a set of detecte « TTPsie TTPD. P/ may contain a set of attack predictions
(p1,P2, .-y Pn). Pi is a threay ~ t th .t characterizes the TTPs detected. Next, the relia-
bility module determine  if any o. che predictions p;(p; € P’) is reliable. The first reason
for reliability assessme .t 15 "hat a prediction with low reliability can lead to an incorrect
prediction and thus v~<te the vime and resources of an organization. The second reason
for assessing reliab’ ity ~; to determine the presence of poisoned or spurious symptoms,
i.e., detected TTPs. " he Reliability Assessment (RA) equation used to measure the
reliability of pre fiction , is given in equation 4. The TT PD;; represents a set of all
detected TTPs due co t} reat t;. The TT P;; represents a set of all TTPs, associated with

threat ¢;.
RrA(P) = Zticp TTPDu/TTP)

Di (4)

The ‘" reav _..vestigation is deemed complete if a high reliability is determined. If
the re evant . TPs related to the threat prediction p; were not detected then, TTPM,
the set ~f undr cected TTPs that most reliably contribute to explaining p; are considered
by the Devection Mechanism Selection module. This outputs a set of existing TTPs,
i.e., T'l -1» and non-existing TTPs TTPN based on the least cost detection mechanisms
and t. = prediction p; reliability value is recalculated. If the reliability value increases
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Algorithm 3 Cyber Threat Prediction

Input: TTD Network, TTPD
Output: Reliable Prediction

6:

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

1
2
3:
4
5

function THREAT_PREDICTION(TTD Network, T17D)
THREAT INVESTIGATION(ttp;, TTD Network, 1 TPD)
RELIABILITY_ASSESSMENT(P’)

: end function
: function THREAT_INVESTIGATION(TTD *-* ' .'TPD)

S(t7) = Z“’piETTPDi plti /ttpi)
Ettpi ETTPy, u(ti/ttpi)
P’ = Max(St;)
return P’
end function
function RELIABILITY_ASSESSN. . ("™
RA(P') = Ztiem (TTPD/TTP)

return P’ "
end function
if P’ > Threshold then
Reliable Prediction
else
if TTPMexists ' nen
Threat_Inve o tion(TTD, TTPE)
else
select lov cos * d;
Reliabil. v_A ssessment(P' = TTPE,TTPN)
end if
end if
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sufficiently then the prediction procedure terminates, otherwise the thre- . wvestigation
module receives TTPD, TTPU for a new threat prediction.

6. Financial Malware Case Study

The working of the data breach investigation framework is el .bor: o “with the case
study of financial memory scrapping malware [60]. The malwa. * steals identity and
payment records by reading device memory at the retail ¢* .ckout. The TTPs of a
few malware instances extracted from multiple sources [24  [15], |'3] are mapped to
their appropriate cyber kill-chain stages to understand the Jata ‘aeft process. The
TTD map is built by semantically mapping TTPs extr-.cved from multiple sources to
financial malware classes and their corresponding dete tio- me ‘hanisms as defined in
the ATT&CK repository. The TTD network and the Jetected * ireat artifacts are given
as input to the cyber threat prediction segment to inve. “igate threat occurrence and
the presence of more TTPs by applying appropria.~ detect: »n mechanisms. A detailed
working is explained in the following subsections.

Table 2: Financial Malware TTP mappu. - to Cyber Kill Chain Phases

Reconaissance Weaponize &  Exploit Insta.. Command and  Actions
Deliver Control Objectives
Phishing Hardcoded Handle Ser-  Use Enum Pro-  Use HTTP  Collect System
CnC addresses vice Ccw. ' less POST Information
Request
Drive by  Hardcoded Use .. '™el.  Custom Search Use HTTP  Injects Code
Download Process Names  32Snaps. °t Function GET
method
Luring Attack Hardcoded File 77  Blacklist Use Regexes Use FTP  Exfiltrates
Names Server data as
digits
BOT Functior 1. ~ks 1PI Encodes data Use SMTP Manually data
as Base64 exfiltrated
Socially n- Encodes data Use TOR
gineered k.. as RC4
names
Preten s ~ be Store  Results  Use Interne-
JAVA in logs tOpen URL
Cod . ‘n VB- Performs Luhn  Send PHP()
Sc .pt Validation subroutine
Cc ' “/bfusca- Installs Watch-  Grab Browser
.ion dog Form
RDP Brute
Force
Source Code
Updated
Exploit  Auto

Start Runkey
Copy files in
%APPDATA%
Registers to by-
pass firewal
Has a
Switch

Kill
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6.1. Mapping Financial Malware to Cyber Kill Chain Phases

Different TTPs have been used over the ages to steal payment ¢ «vds’ data. One
technique is to target victims by downloading keylogging tools on their . ~stems. But
unfortunately, keyloggers are not capable of retrieving data stored on ca. '<’ tracks. The
attackers concentrated on victimizing corporations rather than ir aw lnals vhat employ
POS terminals to handle transactions conducted through cards Th- vuluerability tar-
geted involves stealing cards’ information temporarily held in the . =mory of point of
sale terminals as clear text. Therefore, a specialized malware .s deve'oped for harvesting
the data stored in the memory. This specialized malware s typice ly called a ‘RAM
scraper’ and presently there are over 50 different families of .. *™" scrapers that exist
for stealing payment card details in various ways. To ac cura’ .. - diagnose the family of
RAM scraper, the security analyst has to perform cert.’- inver cigative actions to dis-
cover the behavior and TTPs of the malware. Thus the "TP. .re mapped to the phases
of the cyber kill chain model to elaborate the theft incide. . TTPs of eleven financial
malware samples, i.e., Rdasrv, Alina, VSkimmer, De. “er, B ackPoS, Decebal, JackPOS,
Soraya, Chewbacca, BrutPOS, and Backoff are con ~ted and compared. The TTPs for
each cyber kill chain phase are discussed below witk ~ - mmary provided in Table 2.

In the reconnaissance phase, phishing techniy =s are often adapted to break into the
victim’s account in a network. Other techni ~e< usea are to discover the structure of the
network and their exploitable vulnerabilities. Th : purpose of the adversary in this phase
is to identify the victims and vulnerable =sour =s of the target network.

The detection mechanisms related to ti.’s . ~ase comprise all those proactive measures
that should be taken to avoid attacke== oivin, a chance of identifying network structures
and selecting vulnerable targets. This . ~luaes user training, enforcing the principle of
least privilege for all the users at every access and constantly assessing the network for
risks associated with each vulner .o.l"v [61].

Once the intruder gets to } aow abc 1t his target, the malicious content is prepared
based on the type of vulnerabilitie. ~res .nt. This phase is known as Weaponize & Deliver.
Once the malware is prepa ed 3 is sent to the target network bypassing the security
controls. Malware is forn. -lat.d a either single components or multiple components
performing different fun: cions. T .e processes to be searched in the RAM of the POS
device are hardcoded ir . = binary. The file names used to store malware on the system
are also sometimes hardcoded ‘n the binary. The file names are carefully selected using
social engineering t' chi ques to avoid detection. In the same way, the Command and
Control (CnC) ad. ~ess s to transfer the stolen content are also hardcoded. Again the
investigation doe .n’t s. *t at this point. It starts when the malware is finally delivered
to the target. ¢ o tl :se two phases also depend on the proactive measures taken by the
target as discus. > in t e previous step.

The nex* _hase .. che exploit phase in which the malware actually begins to exploit
the vulner: bilities. The TTPs used in this phase register the POS malware as a service.
The execut.~u of ‘ae malware is controlled by the service control handler. To detect
this T, , the security analyst performs certain detection mechanisms. In the first step,
chang s to the service registry are monitored. Secondly, the frequency of modification to
existing <ervir :s is checked. Thirdly, the security analyst looks for any abnormal change
to ~~vice binary path location which is not conventionally meant for that service and is
also ‘rr’ 1ievant to software updates. After successful registration, the POS malware starts
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scanning the RAM. The malware uses the CreateToolhelp32Snapshot meth . for scanning
the active RAM processes. A list of blacklisted processes can help in i ienti ying tracks
1 and 2 card data. Some malware uses regular expressions to do this, v it is a slow
process. An efficient way for scanning processes is “process enumeration  ‘n wuich all the
processes in the POS RAM are scanned to search track 1 and 2 dat .. "he au versary uses
the Windows Management Instrumentation (WMI) [62] tool for p oces , en.meration. To
detect process enumeration, the security analyst should monitor p. ‘-ess executions. To
obfuscate the malware’s extracted content, the adversary use: pasefij encoding [21].

The next phase is the installation phase in which the ma ware tri 's to be persistent.
There are multiple steps followed to achieve persistence, e.g., ~alw’re code may be ac-
tively developed and regularly updated by installing latest code --ersions from the Internet
during execution. It can be detected by carefully exami. in- trig ers from antivirus and
other security tools. The malware may add a file path .~ aute <’ art run key that boots it
each time the system is turned on. This can be checked b, detecting irrelevant changes
to registry run keys and checking the start folder i - chang :s and additions. Similarly,
the malware may add itself to a firewall as an aut.. “izeu .pplication via registry keys or
install a keylogger in the current working directorv. 11."~ can be detected by monitoring
irrelevant changes made to the accessibility ut..*v binaries or binary paths. Keylogger
installation can be tracked through changes made t. DLLs [21].

The next phase is the command and cont. 7l p 1a.c in which the malware establishes a
covert connection with the CnC server to eive t. - attacker a direct control over the target
network. This connection may be establ. 1! us.ag HTTP POST/ GET requests, con-
necting to FTP servers, using emails throug.- SWTP protocols and bots. To detect CnC
communication the detection mechanis s usc.. by the security analyst include analyzing
network data for uncommon data flows vi. unseen processes, processes communicating
over the network that do not rec- "~ that function and irrelevant ports for application
layer data. Similarly, the secur’ y anal, st can monitor the processes for their file access
patterns and network behavior. ." - the' 2 can be unwanted network communications and
network access without a us r-driven equest.

Action and objectives i the fina’ cyber-kill chain phase in which the attacker steals
payment card data, tem yora. 'v <.ores it on the disk and then exfiltrates that data.
To collect system infor . ation, host enumeration techniques are used. To detect host
enumeration, the secu.1ty awn. 'vst investigates the execution of processes and detect the
time when programs «. doing system enumeration. The presence of keyloggers can be
detected by observ ng r.odification in the DLLs. To detect code injection, the process
registries should be a.. ‘lvzed for changes. Similarly, data encryption can be detected by
finding high da’a er'ropy that is an indication of data encryption [21].

Thus we he e - 2en nat for each phase of the intrusion kill chain model there exist
adversary pa*tterns "~ che form of TTPs that can be mapped to their particular attack
and detect on med anisms.

6.2. TP it Lvynosis for Financial Ram Scrapper Malware

Tt > worki g of the data breach investigation framework is detailed here with the
help ot case .tudy of financial RAM scraping malware. The details of each segment are
giv - n the following subsections.
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6.2.1. SIRS for financial Malware

The process of threat diagnosis for data breach incidents caused by * nan' :al malware
starts with building a TTD network by extracting TTPs from financial 1. ‘ware related
CTIR and semantically indexing them using LSI. Once when all the T'1."~ are extracted,
semantic relevance among every single TTP and all the financial - ..a. vare actacks men-
tioned in CTIR are found by searching the TTP in the LSI inc :xed fina.cial malware
CTIR. In figure 8, the search result of financial malware TTP re. *ed to establishing
command and control connection using email or SMTP protc ol is shown. The keyword
“use email or SMTP for exfiltration” is searched in semant cally in lexed CTIR docu-
ments and we get relevance probability for each. Based on the . ~«nl*, it can be seen that
the TTP is present in BlackPOS, Dexter, and Vskimme . Tr* weans that the TTP is
used by the adversary of that particular attack campaig = . he 1 3sults of such semantic
relevance can be mapped in the form of a Threat-TTP "~que--, table as shown in Table
3 where the table entries specify the frequency of threat 1. ident occurrence. Similarly,
we indexed all the cyber attack techniques mentione. ‘n AT” &CK framework using LSI.
Each TTP is searched against the indexed documec *s to .00k for the relevant detection
mechanisms. In figure 9, the search result of financia. malware TTP related to estab-
lishing command and control connection using « mail or SMTP is shown. The keyword
“use email or SMTP for exfiltration” was <earchea a1 semantically indexed ATT&CK
documents and we get relevance probability “or r acu..
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Figure 8: Search -esul’; for “use email or SMTP for exfiltration” TTP in LSI indexed CTIR
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Table 3: Financial Malware Threat-TTP Frequency Table

TTP  Description RDASRV  Alina Vskimmer Dexu. » BlackPOS
ID
TTP1 Credential Compromise 2 4 3 5
TTP2 Known POS System 2 1 1 1
TTP3 Hardcoded Filenames 1 5 3 2 1
TTP4 Changes registry as le- 1 1 5 1
gitimate Firewall App
TTP5 Hooks WHKEY 1 1 1 5 1
BOARD_LL
TTP6 CreateToolHelp 31 1 2 2 5 1
Snapshot Method
TTP7 Use Email or SMTP 1 1 3 6 2
an 80
-_; 70
5 60
° 28 37.63 3534
o N
§ 38 I 2i 19931895 4619
210 Y | O
5 5:9%s 3 % 35 3
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Figure 9: Search results for “use e 1 or SM" P for exfiltration” TTP in LSI indexed ATT&CK docu-
ments

Based on the results it an e sr 2n that most relevant detection mechanisms related
to the mentioned TTP a2 pres. -t m ATT&CK document termed as “Email collection”.
The detection mechani ... - from this document are enumerated as follows:

1. Check for procs -»s utilizing network communication that should not require this
function

2. Check for proce = es accessing network without user-driven events

6.2.2. TTD N +wc k fo Financial Malware
After retrieving ~e aantically relevant financial malware related CTIR and ATT&CK
documents a TT network is built shown in Table 4. The associated detection mech-
anism det:’ls are Jiven in Table 5. Here five malware instances are considered, i.e.,
RDASBY  Auw.. , Vskimmer, Dexter, and BlackPOS. A belief network between threats
and T (Ps is ‘ormed by calculating posterior probabilities based on the incident fre-
quency The sosterior and prior probabilities are shown in Table 6. For a predictor
attribute, ..c financial malware class, TTP, that boasts the highest posterior probability
is ¢ sy .. od the prediction output. For instance, “Alina” has the highest occurrence
proba’ ility for TTP3. The prior probabilities for the malware threat class, and predictor
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attribute, i.e., TTP before seeing any real-world data are also given. It ¢ .. be seen that
“Dexter” has the highest prior probability which is also evident from ’.sto .cal data of
financial malware incidents. Similarly, it can be seen that among all .7 Ps, TTP1 is
the most prevalent TTP as its prior probability is high. The TTD net.. ~vk p.edicts the
threat incident based on the detected threat symptoms provided ir u.» forn. of host and
network artifacts.

Table 4: Financial Malware Threat-TTP-Detection Ser .antic N ‘twork

Threat TTP ID Deter sion
Me- ;anism

RDASRYV, Alina, Vskimmer, Dexter TTP1 11
RDASRV TTP2 2, d3
Alina, Vskimmer, Dexter TTP2 d4, d5, dé
Vskimmer TTP4 d7, d8
Dexter TTP5 d9

Alina, Vskimmer, Dexter TTr -~ d10
Vskimmer, Dexter, BlackPOS 1L 7P7 dl1, d12

Table 5: Detection Mechanisi. s 1u. _~ ~ncial Malware TTP

Detection Description Weight
Mechanism

d1 Look for suspicious accoun. be. vior 5
d2 Audit file system ac - 'nos “or failed attempts 2
d3 Monitor process captu. -~ the arguments 4
d4 Analyze file read, write an. modify method for malicious ac- 2

tivity

d5 Monitor anti-" «rus an. ' IDS alerts 1
dé6 Acquire IP 7 'd port 1
d7 Monitor change. ‘n ut ity arguments and binaries 4
ds Monitor ¢ bmmrand 1. .e invocations modifying registry 3
d9 Monitor regis ry fo- key stroke interception driver installation 3
d10 Monitor . - ;ram .or process enumeration 4
d11 Chec’. for ouv  context network communication 5
d12 Chr .. ~etwork access without user driven event 5

Table 6: r . ancial Malware Threat-TTP Posterior and Prior Probabilities

TTP R /ASFV Alina Vskimmer Dexter BlackPOS Prior
D (TTP)
TTP1 0.1 0.2 0.15 0.3 0.25 0.26
TTP2 0.33 0.17 0.17 0.17 0.17 0.08
TTP. 0.08 0.42 0.25 0.12 0.08 0.15
TTP4 0.11 0.11 0.56 0.11 0.11 0.12
75 (o 0.14 0.14 0.43 0.14 0.09
"TP6  1.09 0.18 0.18 0.45 0.09 0.14

"TP7 .08 0.08 0.23 0.46 0.15 0.17
Pric. 0.12 0.19 0.23 0.31 0.15

oy
-
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6.2.3. Financial Malware Threat Prediction

After generating the TTD network, the process of cyber threat in- estis ation starts
with threat prediction. This happens when the network administrator o. =rves certain
artifacts. The artifacts, that can be seen, are low-level indicators su ™ as [Ps, CnC
servers, and ports or it can be unseen high-level indicators such as 1 ."Ps. ‘1 nese indica-
tors are either obtained directly or through certain detection me ‘har sms. Suppose the
network administrator observes a suspicious account behavior, cha. -es in registry with
the installation of a driver intercepting keystrokes and a prc .ess accessing the network
without any user-driven event. Based on the derived TTD sc mantic ~etwork, the detec-
tion mechanisms selected are d1, d9, and d12. These detectiol. mer' anisms are mapped
to TTP1, TTP5, and TTP7 which become our detecte . TT™~ i.e., TTPD. Based on
the TTPD, the belief network predicts the probability ¢ ccur ence for each malware
instance as shown in figure 10. It can be seen that “L'~ckP/™“ has the highest proba-
bility of occurrence. The second highest probability is tha of “Dexter”. Now we have
to select a threat prediction set P’. A problem thai ~ises ¢ ncerns determining exactly
which malware instances should be included in th. »rea.c.uon set P’. For this purpose,
a threshold must be defined based on expert opinion + . suppose for this example we
set threshold as above as 20%. Thus the predic.'»n set comprises two threat instances,
i.e., “BlackPOS and Dexter”. Setting a hirh thresi.ld leads to a more reliable threat
prediction as a low threshold compromises t. = v .u1aullity of the threat prediction.

W p— = —
26.403
24.752

25
20 17.602
15.842 15.402
N
JL)
5 '
0

RDASK ©  Alina  Vskimmer Dexter  BlackPOS
POS Malware

Probability
%3

Figr -e 10 Probability Prediction for Financial Malware Instances

We assess tl - rel*abilivy of the prediction using equation 4 given in the design section.
In this case, ti.~ tc.al r umber of TTPs for the BlackPOS malware are “2” and that for
Dexter are “5”. .7 = detected TTPs, i.e., TTPD for BlackPOS are “2” and that for
Dexter are “3”. There are two malware in the threat prediction set P’. After inserting
the values 1 equat on 4, we get equation 5

_ Tuen /2 + 3/5)
2

RA(P") (5)

Thus vue reliability of this prediction set becomes 80% which is quite high. This
sho s t v the prediction is reliable. The reliability of threat prediction increases more
if we "acrease the threshold for threat selection in the prediction set, e.g., we include
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all those malware in the threat prediction set who has a prediction gre .. ~ than 25%,
then there will be only one malware selected, i.e., BlackPOS. The 1’ dab’ ity for this
prediction set is a 100% greater. On the other hand, if the threshold for s.’ <ting threats
in the prediction set is decreased the reliability also decreases, e.g., we ~cluac all those
malware in the prediction set that have a prediction greater thar 1., thea there will
be three malware selected, i.e., BlackPOS, Dexter, and RDASRV. Th . re. ability of this
prediction set is 70% less than the previous prediction set.

Suppose that the reliability assessment of the threat pr- uiction 1s low. Then the
undetected TTPs of the malware in the prediction set, i.e., ' "TPM 1 ust be considered.
To check the existence of TTPM, the security administrator | =rfor.ns their associated
detection mechanisms. This may be hard to accomplish i” che »~mber of TTPs in TTPM
is large. Thus, there is a need to find the least cost detec io> mec 1anisms that can verify
the undetected TTPs, i.e., TTPM of the threat pred. “ion v+, a high reliability. One
solution is to let the security administrator decide which . ~tection mechanisms should
be performed based on his knowledge, expertise, en. ‘ronme t and the resources. In the
capacity of this research work, we have assigned w. ~hts .. actions based on the security
expert opinion. The complexity of detection mechani. ~ selection increases as the size
of TTPM grows large. Therefore, detection me hanisms are assigned weights based on
their complexity as shown in Table 5. The weights ..~ in the range [1-5]. The detection
mechanisms with a weight closer to ‘0" are co. siar .c.. less costly than those with a weight
near to ‘5.

For example, one of the malware’s 1. is v0 use RC4 to encode the contents for
exfiltration. The detection mechanisms rela.~d vo this TTP are:

1. Use samples to acquire the key and .. = algorithm and employ the same for decrypt-
ing network traffic for determining the communications signatures for malware.

2. Inspect SSL/ TLS to dete’ .nine 1. encrypted traffic contains the presence of a C&C
or in other words a Comi._~nd an' . Control channel.

It is clear that detection .nec’.anisms for getting the encryption algorithm and its key
is a more difficult process «. <. mp: red to inspecting SSL and TLS. Thus the weight of
SSL/ TLS inspection is "ow as ¢, ipared to finding the encryption key.

7. Evaluation and .. -sults

The effectiveness ~ .d efficiency of all the segments of the data breach investigation
framework were cvaluate..

The effecti ene s of 3IRS was evaluated using the financial malware TTP dataset
compiled in the c¢.~e <oudy using the parameters f-measure, recall and precision. The
effectivenes, of th» 1 I'D network was evaluated by constructing a benchmark training
dataset fro v the tl -eat, TTP and detection mechanisms data available in the ATT&CK
taxonomv [2.) T.is benchmark data serves as a ground truth regarding cyber threats
associs ced wi’h different threat families for training our model by building a TTD network
and pivides ¢ baseline for future comparisons. The TTD network is evaluated using a
hold-ouv =~ . validation method [63]. The evaluation parameters, in this case, are the
ac. raw  © detection and the false discovery rate. The accuracy of the threat detection
proce* was monitored for two kinds of situations. The first situation was when certain
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threat artifacts were lost. The second situation was when certain spurious .. =at artifacts
were added to poison the threat investigation process. The effectiver ass ¢ [ the cyber
threat prediction segment was evaluated through the factors that impac. ne reliability
of the prediction. These factors include varying levels of probability ."“reshcids of the
prediction set and the number of detected artifacts and types of T7 « . (either disjoint or
overlapping) controlled by attack type selection. Whereby having che - amc attack family
provides more overlapping TTPs and using data about more rec. 't attacks provides
disjoint TTPs.

The efficiency was evaluated based on the time taken t» detect an attack for dif-
ferent dataset sizes and threat records. The TTP coverage 1.~ the threat incidents of
the ATT&CK dataset and the capability of our protot,pe ¢~tem in data augmenta-
tion is discussed in the light of well-known threat incidc t< rela 2d to particular threat
actors reported in multiple sources. Finally, a featw. ~ bas~? comparative analysis of
the threat investigation framework was performed with ex.. "ing intrusion and attack de-
tection techniques to elaborate on the benefits of 1. ~ propc sed approach to the overall
security measurement and management infrastruc. “re.

7.1. Benchmark Dataset

To construct a benchmark dataset, gror~ truth data related to cyber threat inci-
dents, encompassing the details of TTPs an. dr.ection mechanisms, was required. For
this purpose, we conducted a thorough -urve, of literature available on standardized
cyber threat taxonomies. The three mos. w.'-known are the Open Threat Taxonomy
[64], the Enisa Threat Taxonomy [65' and t.» ATT&CK Taxonomy [21]. Among these,
we found that the Open Threat and En.. ~ dia not serve our purpose because they simply
list threats along with their descriptions bu. do not distinguish the TTPs and detection
mechanisms. On the other hand A . T&CK lists threat incidents and connects them to
the TTPs and detection mechs aisms, ¢ 1d is, therefore, the closest to the requirements
of our training model.

Tab)~ 7: . *T& K Taxonomy Dataset Statistics [21]

TTP Classes Doc ments ‘1 hreat Actors Documents  Software Tools Documents

Persistence 28 Chinese 17 Malware 65

Privilage Escala- 7. Russian 3 Backdoor 37

tion

Defense Evasion 23 Iranian 2 Bot 3

Credential Access 8 Indian 2 Web Shells 3

Discovery 6 Portuguese 1 Toolkit, 4
Bootkit

Lateral Movement 14 Unattributed 20 Rootkit 4

Execution L. Credential 4
Dumper

Collection 11 Credential 1
Harvester

Exfilt' «tion 9 Remote Access 9
Tools

Comm. ~d and 17 System  Utili- 16

Caontrol ties
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Figure 11: TTP distribution for Thrrat lucident

A e e . e e e e

Figure 12: Thres . e ‘ent distribution for ATT&CK TTPs

To establish the reliability of the .7 ['&CK data we investigated its sources. “ATT&CK”
is created and maintained )y M (TR Corporation [21]. It covers adversary’s TTPs en-
countered in pre-attack a- we. as v ost-attack stages proposed by Lockheed Martin [66].

At the time of writir = there exist 133 adversary’s technique documents classified un-
der 10 tactic classes. /. tecu. ‘«que may belong to more than one class. We have compiled
some key statistics fc e interest of the reader in Table 7. Each technique document has
a short description alor ; with its mitigation, detection mechanism, and threat incident
example. Threat inc. ent examples are either threat actors or software tools used by
them. At the t'.ne ~f wricing, there are 45 threat actors and 123 software tools in the
ATT&CK tax mor.y. Tigure 11 shows the TTP distribution of threat incidents. The
minimum number . ¢ T [Ps encountered in a threat incident is 1 and the maximum is 34.
An average ['TP < »unt for each threat incident is 6. Similarly, figure 12 shows the other
side of the »icture, L.e., threat distribution for TTPs. The range of TTPs lies between 0
and 49. An a. - e threat incident count for each TTP is 7.

Tt : ATT.-CK TTP taxonomy at any snapshot in time does not always encompass
all TT s of ar y given threat mainly because the website is constantly being updated as
more into....ation about a threat is uncovered. One can observe cases of threats where
COL. "€eCl u... are obviously missing between threat incidents and TTPs. For instance,
consi’ 1 the case of threat incidents caused by a hacking group known as Axiom or
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Hidden Lynx [67] extracted from ATT&CK. This group offers hacker hiri . ~ervices and
is known to have launched highly targeted campaigns against diverse ! usir .ss domains
including multiple sectors and can run multiple campaigns simultaneously. t is observed
that only three TTPs are listed for this group in the ATT&CK repos.. vy as shown in
Table 8 while there are several more TTPs that can be related t- . is group obtained
from other sources such as IBM X-Force STIX reports and Syr .antr: b..g reports. A
comprehensive list of Axiom group’s TTPs obtained through the " RS segment of the
threat diagnosis framework is shown in Table 8. This alsc wiustrate, that an added
contribution of our framework is that it is capable of data au, mentat: m. Meaning it can
connect threats to TTPs from different data sources in the c«. = of aissing connections
and provides a comprehensive TTP coverage for each th-cat i»~ident.

Table 8: Axiom hacker group TTP Coverage by ATT&Cr, "BM X-Force and Symantec
TTP AT &CK IBM X- Symantec

cess without writing it to disk

The User-Agent header for CnC communication is “lynx”
CnC traffic as HTTP POST and nr +-H'1 ."P protocol traffic
Sometimes uses HTTPS (port 447

SQL Injection attack on an Internet-.. ~ing Web server

Zero-day exploits in Internet Explorer 10 to transfer malwai. v’ v’
Remote Access Trojan v’ v’
Credential Dumping v’ v’
Accessibility using RDP v’ v’ v’
Supply Chain Attacks v’ v’
Strategic Web Compromise through waterho! attac: v’ v’
Deposits malware signed with stolen Bit9 keys v’ v’
Payload Obfuscated using XOR encoding v’ v’ v’
Direct injection of attack code into the Inv. mev ..  orer pro- v’ v’
v’ v’
v’ v’
v’ v’
v’ v’
v’ v’

Oracle Java SE Runtime Envir ame 't Hotspot code execution

The ATT&CK taxor omy he. oeen used as a baseline to model adversary’s attack
patterns in multiple res :a. » works. In [68], the ATT&CK taxonomy is used as a baseline
to collect historical knowledge « f the threat agent for automating the comparison of post-
compromise actions of a lversaries. Similarly, in [69], the ATT&CK taxonomy is used to
design and implen.. ~t . automated red teaming system by employing TTPs to drive
the atomic actic us of a. intelligent decision-making system. To aggregate analysis of
the enterprise’ log dates, [70] uses the ATT&CK taxonomy to model malicious threat
scenarios based « = adv rsary’s attack patterns. It helps select useful audit log data from
massive rav 1ogs. In 71], a visual analytic tool that integrates the analytics of a cyber
attack wit] the dai\ required by the security analyst is proposed. The analytics of cyber
attacks are aken rom ATT&CK taxonomy which is used to establish an appropriate
baselir . agairst which to compare anomalies.

As such, ATT&CK serves as the best candidate to construct our required training
dataset. We _herefore, extracted all the relevant threats, TTPs and artifacts from the
or. ... "TT&CK and constructed a dataset, a small excerpt of which is shown in table
9. 1 he nighlighted data fields represent the presence of the TTP in a threat. The data
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fields are normalized to remove zero entries. A TTD network is then built . “ween threat
incidents, TTPs and detection mechanisms.

Table 9: An excerpt of constructed ATT&CK MITRE benchmarl data. *

TTP | T1001 T1002 T1003 T1004 T1005 Tr.na
ID
TTP | Data Ob- Data Credential Winlogon Data . le Sys- | Cyber
Title | fuscation  Com- Dumping  Helper from tem Logi- | Threat
pressed DLL Loc:! al Offset | Class
Svatern.
1 0 1 0 0 0 Axiom
1 0 1 0 9 0 Patchwork
1 1 0 0 a 0 Duqu
1 0 0 0 0 0 S-Type
1 0 1 0 0 0 Oldrea
1 1 1 0 U 0 Prikorma
0 1 1 0 0 0 Ke3chang
0 1 1 0 1 0 APT2
0 1 1 0 1 0 TG-3390
0 1 0 U 0 0 Lazarus
0 1 1 L 0 0 Fin6

7.2. Effectiveness of SIRS

The effectiveness of the SIRS module is evaluated with financial malware TTP dataset
and ATT&CK Taxonomy. A TT" .. *ionary for 11 different kinds of malware is created
using threat reports of [60], [24., [15] a. d [13]. The TTPs related to different phases of
cyber kill chain are given in Tabic 2. T iese TTPs are stored in the TTP dictionary and
are queried against the inde .ed "ialware and ATT&CK documents. The effectiveness of
the SIRS is evaluated by 1. ~as’ ring precision and recall for each TTP in the dictionary.
Precision measures the » ambe. 2’ correctly retrieved documents shown in equation 6.
While recall measures .. ~ number of correct items collected by the retrieval system
given in equation 7[72|.

TruePositive

F ) y . . — 6
ecision TruePositive + FalsePositive ©

ocall TruePositive 1)
ecall =
’ TruePositive + FalseNegative

The av rage o. orecision and recall for all TTPs is calculated. A weighted harmonic
mean of bc h the v arameters, measured using F-measure, is shown in equation 8[72].

Precision * Recall
F— =9 8
measure * Precision + Recall (8)

The resuits related to the TTPs of each phase of the cyber kill chain are shown in
Tavr'e 1',. 1o can be seen that the overall effectiveness of the SIRS for financial malware
docur. >nts is quite good with an average F-measure of 0.94.
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Table 10: Effectiveness evaluation results of SIRS

Precision Recall F-pr sasure
TTP Queries (Kill POS ATT&CK POS ATT&CK PC. A\TT&CK
Chain Phases) Malware Malware Malwar.
Reconaissance 95% 22% 100% 33% 0.97 0.26
Weaponize and De-  94% 48% 87% 46% 0.¢, 0.47
liver
Exploit 97% 50% 98% 27% 0.97 0.35
Install 93% 85% 96% 80% 0.xt 0.82
Command and  95% 90% 90% 84% 0.€2 0.87
Control
Actions and Objec-  94% 82% 89% 8% 0.91 0.79
tives

7.3. Effectiveness of TTD Network

To check the sensitivity of methods towards . *a, we cvaluated the TTD Semantic
Network using the hold-out cross validation method =3]. In this method, the given
dataset is split into separate parts, i.e., a tran.'mg set and a testing set. In our case,
we are using the threat-TTP ground truth data pro. led by ATT&CK MITRE to train
our cyber threat prediction model. For the "est ,c., we examined a set of recent cyber
threat incidents listed in ATT&CK MITRE a. « we determined their threat actors. We
searched and downloaded more recent at. . = o1 these threat actors from four different
well-known cyber threat sources, i.e., IBM . -Force [5], Symantec [23], FireEye [24] and
CrowdStrike [25]. These new threat 1. ~daeu.. thereafter comprised our test set. These
threat sources were chosen so that they du. r to some extent in the level of abstraction,
the vocabulary used and the leve' € specialization in the type of threat. Out of these,
IBM X-Force supports STIX er coded 'TIR, while for the rest the reports are encoded
in STIX before importing them . *o th TTP dictionary.

We experimented with s veral ma.nine learning algorithms for determining the best
prediction accuracy. The -esv’¢s a e shown in table 11. The results depict that the
belief network outperfor is ti. ot aer techniques which is clearly suggestive that it is
more suitable to our r.~blem. 1t is easy to see why. When a data breach occurs,
security analysts anal,ze tu. ~ from multiple aspects. For recently occurred incidents
the data is likely tr ¢ wtain conflicting or missing feature values as various vendors
begin to study it. ~or ¢ ata breaches that have been well studied the features are likely
to be well establishe. and complete. Our dataset has a mix of both new and well
studied data br :ach :s. ‘therefore, we required a classifier that can reliably predict a
cyber threat f. il in ne presence of erroneous or missing features. Furthermore, we
observed that the . -V .f network is less sensitive to irrelevant features (i.e., noisy data)
that an ad- ersary -an intentionally insert to poison the cyber threat prediction. Finally,
a belief ne work c¢ nsiders all the features independently and trains in linear time as
compars ' to c..er iterative expensive approximation approaches. We evaluated the
accurs 2y of tr.» TTD network for each threat source separately. As a result, we observed
a vary. g acc' racy between the ranges of 53%-100% based on the cyber threat source
chreen as vue test subject as shown in table 11. The results demonstrate the sensitivity
of v e ! 1L semantic network to the amount of TTPs that exist in the test data, which
is an  ssential requirement of our model to achieve accurate classification. It is to note
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that our results are not a reflection of the data quality of these threat sov- ..~ as they are
based on a very selective CTIR test set and their use of the TTP labr.s de ined in our
ATT&CK training dataset. Not all cyber threat sources follow the same 1 7 2 vocabulary
because of the reasons quoted above. The TTP statistics for cyber threa - in ti.e training
and test datasets are shown in figure 13. It can be seen that since ... IBM X-force test
dataset has the highest number of TTPs, it also has the highest .ybe th._at prediction
accuracy (100%). The Fireeye test dataset has the next highest n. 'ber of TTPs, thus
the prediction accuracy is slightly lower (95%), followed by .owdStrine and Symantec
that are at respectively 67% and 53%. Also it is worth notig that ven when there is
a misclassification due to missing TTPs the model picks the . ~xt » :levant threat, e.g.,
in one case “Carbanak”, was misclassified as “GCMAN” ooth ~f which target banks for
financial fraud.

Table 11: Accuracy of the TTD Semantic Network for test data comp 'ed from different threat sources

IBM X- Symantec “ire’lye CrowdStrike
Force
Belief Network  100% 53% Yo% 67%
Decision Tree 30% 18% 33% 33%
Random Forest 45% 359 57% 33%
Deep Learning 20% 12% 14% 17%
SVM 60% "% 85% 67%

BATT&CK EIBM X-Force “1Symantec & FireEye CrowdStrike
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cigure 13: ['TP statistics for the under consideration cyber threat sources

Further, e ev.luated the accuracy of the TTD Semantic Network for two kinds of
situati ns, i.e lost TTP ratio and spurious TTP ratio. The results are shown in figure 14
and 1L In bot situations, accuracy is compared with the three types of lost and spurious
TTP ra.'~< ‘.e., random, overlap and disjoint. The random TTP ratio represents an
urn ae. | omproach of attack injection encountering both the best case and the worst case
of ti et artifact identification. While the overlap and disjoint TTP ratios are biased
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based on attack injections representing the worst case and best case of .. ~at artifacts
identification respectively. The worst case is the one in which the att «cke' s aim is to
misguide the security analyst in threat identification. The overlap in the . <t TTP ratio
represents that the disjoint TTPs of the threat are intentionally remc ~d o disguised
to increase the number of false positives in the prediction result . "Vhile che disjoint
lost TTP ratio represents that the overlapped TTPs of the thrrat a ¢ 1. ally removed
or disguised to increase the detection accuracy in the presence of & ‘inimum number of
detected threat artifacts. Similarly, the overlap in spurious T'T.- ratin represents that the
overlapping TTPs of other similar threat incidents are intenti nally ac ded to increase the
number of false positives in the prediction results. While the a. inint spurious TTP ratio
represents that the disjoint TTPs of the threat incident #.e ide~"ly added to increase the
detection accuracy in the presence of a maximum numb v <. spt riously detected threat
artifacts.
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Figure 14: . -~curacy Results for Lost TTP Scenario
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Figure 15: Accuracy Results for Spurious TTP Scenario

‘Lne .. ilts show that the overall accuracy for spurious TTPs is high as compared
to lo.” I'TPs. The average accuracy of a random unbiased situation in case of spurious
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TTPs is 95% and in the case of lost TTPs is 87%. For an ideal situatic . -here all the
spurious TTPs are disjoint, the accuracy becomes 100%. While for the wors , case when
TTP overlap is high the average accuracy is 92%. Similarly, in the cas. f lost TTPs
an ideal situation where the left over TTPs are disjoint the average a. nracy becomes
94%. While for the worst case when the left over TTPs have high o. »rlap, the average
accuracy is nearly 76%.

Similarly, the ratio of false positive aka type I errors is measurc.” by False Discovery
Rate (FDR) for lost TTP and spurious TTP ratio [73]. FDR .s definea in equation 9:

> FalsePositive

FDR = _ N
> Positive ExperimentC atcome

9)

The results are shown in figure 16 and 17. In both s." .tion , FDR is compared for
the three types of lost and spurious TTP ratio, i.e., ra. lom, _verlap and disjoint. The
results show that the overall FDR of spurious TTPs is low as compared to lost TTPs.
For an unbiased random situation, the average FDh “w spr cious TTPs is 6% while the
average FDR for lost TTPs is 19%. For an ideal si. "atiou where all the spurious TTPs
are disjoint, the FDR becomes 0. While for the worer  ase when TTP overlap is high
the average FDR is 10%. Similarly, in the case ~f lost TTPs an ideal situation where
the left over TTPs are disjoint the average "NDR becemes 8%. While for the worst case
when the left ones TTPs have high overlap, ‘e werage FDR is nearly 30%.
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Higure 16: FDR Results for Lost TTP Scenario
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7.4. Effectiveness of Cyber Threat Prediction

The goal of the proposed threat investigation fro~- -ork is to achieve a highly reli-
able threat prediction. During the experiments, here are certain factors observed that
affect the prediction’s reliability. These fe~+ors are the prediction selection probabil-
ity threshold, the number of detected threat ~rt*.acis (TTPD) and the overlap between
TTPs.

7.4.1. Threshold Impact on Predictio~ Relia ility

Cyber threat investigation results 1. threat prediction by assigning an appropriate
probability value to the threat incident. An.ong those threat incidents, a prediction set
above a certain probability thres' vi. ~eeds to be selected. For this purpose, we analyzed
the impact of increasing and d- creasing probability threshold values over the prediction
reliability. We evaluated predicu. » r iability using the probability thresholds: 25%,
50%, 75% and 100%. In fig ure “8, an example of one such scenario is given. It can be
seen that according to the . hse ved (TPs, Decebal malware has the highest probability,
i.e., 10.93% that become , 100%, ~‘.er normalizing the probability using equation 10.

o, = L Tmin g0 (10)
Tmaz — Tmin

If the system h. - to select only one threat incident with the highest probability based
on the observed "TPs, hen the Decebal malware will be selected. However, in our case,
the framework .elec s a set of threat incidents above a certain probability threshold. In
figure 19, the p. “.ctic « reliability for 10 different threat scenarios is shown. The series
represents t' . threa. scenarios. The results show that when we increase the threshold
value the 1 -edictio reliability increases but there were certain scenarios where no attack
classes were ‘denti ed above 90%. Therefore, there was a need to select a threshold value
that al-.ays generates a prediction set for all threat scenarios and also provides one with
high r liability Based on experimentation, this threshold value is selected as 75%.
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Figure 19: Impact of iu. asing and decreasing Probability threshold value over Prediction Reliability

7.4.2. TTPD =prct oo Prediction Reliability

The number o. ¢ ected TTPs, i.e., TTPD also has a great impact on prediction
reliability. Durin, experiments, it is observed that the prediction reliability is high if
there are n. »re dete :ted TTPs related to the threat. In figure 20, the prediction reliability
and TT™D ra. . are shown. The graph shows that the reliability of the prediction is
above 30% if here exists TTPD 50%.
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7.4.8. Disjoint and Overlapping TTPs Impact on Predic..on Reliability

There are certain TTPs that are more common thar. ~thers, e.g., the data obfuscation
TTP is more frequently used than routing co. mand and control traffic over a non-
standard custom port bypassing security tool< [74]. h.ce, a significant overlap is usually
observed across multiple threats for these co. *mc 1 . TPs. We will refer to TTPs that do
not occur across different threats in our threat rediction set as disjoint. This particular
section details the effect of overlapping as . " as disjoint TTPs on the threat prediction
reliability. A subset of the dataset is dividea into two classes, where one class has threat
incidents having mostly disjoint TTF. ~na v.e other class has threat incidents having
mostly overlapping TTPs. It is observed tha. the prediction reliability for threat incidents
having disjoint TTPs is about 2077 “igher than the threat incidents having overlapping
TTPs. The reason behind the f.ct is d. joint TTPs depict the distinguishing features of
a threat incident that help a thre.” to b . identified quite easily and with a high reliability
as compared to the overlapr .ng TTt. that share less distinguishing features. Figure 21
illustrates the results.
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7.5. Efficiency of Data Breach Investigation Framework

The TTD semantic network is constructed offline or as a backgrov 'd p ocess so we
are not interested in the time taken in training. However, to study the . ~vact of the
dataset size on the time for threat detection, we performed experimen.. with different
dataset sizes. We performed our experiments on a PC with Intel Cc e 12 -4210U processors
and 1.7 GHz and 2.4 GHz processing speed, 4 GB of RAM rur 'ing a 64 bit Windows
10. The results can be seen in figure 22. We observed the threa. detection time by
partitioning the dataset into four equal parts. The observaft ons ar~ recorded for 25%,
50%, 75% and 100% instances of the dataset. Then for each a taset d vision, the number
of observed threat artifacts were incrementally increased. The a. “~* .a of observed threat
artifacts ranged from 10% to 100%. The results show t'.at t' _ ~ize of the dataset does
not have a significant impact on the threat detection .~ e. Tae factor that matters
most is the threat detection time provided the threaiv rtifi._.s are fed into the threat
investigation framework. The experimental results in fig. "e 23 for threat prediction
time with increasing number of threat artifacts show hat o r system can predict threat
incidents for 6 detected TTPs in an average time ot v 4 seconds. The results do not show
any significant difference in the detection time when +-~ amber of TTPD increases. The
detection time for 34 TTPD is approximately 0.o . ~conds and the average detection time
is 0.15 seconds. Considering that data breac® incidenvs remain undetected for months or
even years [15] and attacks such as DDOS Lzt “or y-12 hours [75], the running time of
our system is quite practical. Moreover, ve ca. claim that the threat detection time of
our proposed data breach investigation fra e "org is low as compared to existing threat
detection mechanisms.
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igur 22: Impact of TTPD size on Threat Detection Time
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7.6. Feature Based Comparative Analysis

The performance of the proposed data breach inves. 2ation framework cannot be di-
rectly compared with any existing threat detec.’ ~n mechanism due to its novelty. How-
ever, a comparative feature analysis was conductea. The existing threat detection ap-
proaches fall under (1) signature-based, (2, 1oy .e., (behavior) based and (3) stateful
protocol analysis [76]. In Table 12, a feat'ire be. 2d detailed comparison of each approach
is given.

Table 12: Feature based comparative analysis ¢~ *hreat diagnosis framework with existing threat detec-
tion techniques

Features S ia. e Anomaly Stateful Proposed
Protocol Framework

Fixed Signatures v v’ v’

Dynamic Signatures v’ v’

Known Attack v v’ v’ v’
Unforeseen Attack v’ v’
Semantic Mapping v’
Statistical Predictic a v’ v’

The signature-! ased threat detection approaches work with fixed format signatures
that need to be regui. 'v updated to cope with new threats. They can efficiently detect
known attacks 1 .ovi 'ed the same previously known signatures are used for future attacks.
As discussed e. -lie , th signatures are susceptible to change and have a very short life,
thus signatu=~ basc ' .pproaches cannot detect unknown attacks or the same family of
attacks usi ig diffe. =nt signatures. On the converse, anomaly-based detection approaches
are heurist. - or rul' -based and are capable of detecting new threats by classifying behav-
iors as » ‘mau .. abnormal using machine learning and artificial intelligence techniques.
They se a fi. »d format in the sense that the threat data sources are fixed patterned.
Also, t.  false ilarm rate is high due to weak normal and abnormal behavior profile of the
attack tramuc. The alarm system alerts an abnormal activity without providing further
con =xt.a1 mformation to guide the security analyst towards further threat investiga-
tions. The stateful protocol analysis is the specification based approach that identifies
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abnormal sequences of commands in protocol functional trace. This te . ~ique falsely
classifies threats that have the correct protocol execution sequence as oeni n. The ex-
isting threat detection approaches are not capable of mapping the detecte ' network and
host artifacts to the adversary’s TTPs. The proposed data breach inv. “tigav.on frame-
work works with both semantic and statistical procedures to invest’za. 2 threut incidents.
It does not follow any fixed pattern for threat detection rathe it -.ap. semantically
the detected network and threat artifacts to the adversary’s attac.. nehavior quoted as
TTPs in the structured CTIR and unstructured security docv .ients. Tue mapping helps
in identifying both known and unforeseen attacks. The fraiiework ither classifies the
unforeseen attacks to an existing attack family or suggests fu. her * vestigations to the
security analyst to help discover the root cause of the ur derlvi—o threat activity.

8. Conclusions

In this paper, a novel data breach investigation 1. mewr ;k is presented that investi-
gates cyber threat incidents using high-level advers. v’s 1 I'Ps from cyber threat intelli-
gence documents. At the core of the framework linc +» TTD semantic network that is
based on the idea of semantically mapping low-ic =l threat artifacts to high-level adver-
sarial attack techniques and employs them *~ reason ubout an incident occurrence. The
methodology and results presented highlighy th-.¢ security incidents can be mapped to
tactics, that are further mapped to arti® ~ts i1. 2 way that machines can identify these
connections with certain probabilities. h nc forch this research paves the way for cy-
ber security investigations with parti~! or in. omplete information. The system extracts
TTPs from CTIR and employs them to “nd semantic relevance (using LST) between the
threats and the detection mechanisms. The T'TD semantic network is enriched by train-
ing a belief network that maps tb ca.. to TTPs to predict the most probable set of threat
incidents based on the detectec threat . rtifacts provided by the security analyst. In the
case of an unforeseen threat, the 5, “ter . helps the security analyst investigate the threat
artifacts against the most p oba’/le atvcack family by suggesting the most optimized and
cost-effective detection me.har .sms  This mapping of the threat artifacts to the TTPs
was able to detect the *areat .~ dents with high accuracy and low false positives in
the case of lost and sp 1. ~us detected threat artifacts. The TTD semantic network is
extensible as more threat doc. ments arrive they can be indexed and ranked using LSI.
Similarly, the detec’.on mechanisms can also be dynamically updated as the ATT&CK
taxonomy updates Tt : evaluation results demonstrate that the detection time of the
framework is qui’ e low . =~ compared to the considerable time it typically takes to investi-
gate data breac: inc dents. In the future, we will integrate and automate the mitigations
for the identific.” t irea’ incidents.
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Highlights

¢ A novel framework for cyber data breach investigation.

e Predicts cyber-threat with high accuracy.

e Employs high-level Tactics Techniques and Procedures for cyber u.-=.t investigation.

e A first of its kind framework that uses a comprehensive vocabulary for scructured TTP
analysis.
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