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Abstract

A large amount of mobile applicatio, 3 (n ,  are uploaded, distributed and
updated in various Android markets, 2., Google Play and Huawei App-
Gallery every day. One of the ong .. = chc lenges is to detect malicious Apps
(also known as malware) among tho: » m.. ;sive newcomers accurately and effi-
ciently in the daily security m. -5~ © of Android App markets. Customers
rely on those detection results in “he selection of Apps upon downloading,
and undetected malware may result in great damages. In this paper, we pro-
pose a cloud-based malr are a. *ection system called SaaS by leveraging and
marrying multiple app. ~aches fr m diverse domains such as natural language
processing (n-gram) image ~v cessing (GLCM), cryptography (fuzzy hash),
machine learning (- andr .n forest) and complex networks. We firstly extract
n-gram features an’  LCM reatures from an App’s smali code and DEX file,
respectively. W next 1. - those features into training data set, to create a
machine learn’ 1g '~tect model. The model is further enhanced by fuzzy hash
to detect whether insy,. cted App is repackaged or not. Extensive experiments
(involving ~49: samples) demonstrates that the detecting accuracy is more
than 98.Z “ o .d support a large-scale detecting and monitoring. Besides,
our pre sosed . stem can be deployed as a service in clouds and customers
can ar cess _loud services on demand.
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1. Introduction

In recent years, smart phones have become increas agly pc ~ular. In An-
droid market, a large number of Apps are uploaded or 'pdated by hundreds
or thousands of individual developers for App dist~" utio.. _veryday. A re-
cent report shows that the number of Apps in x00¢’. | ‘ay has increased
nearly 30% since 2017 [1]. While various Apps bri.  conv nience and enter-
tainment to our daily life, Apps with malevolen. nteunwons (e.g. malicious
deductions) also inflict troubles and risks to custome. . Indeed, the growing
amount of malware has become an urgent pi1.~lem. According to a report
released by the QIHU 360 security center, tu. “umoer of malware samples in
the Android platform had surged to nearlv 18 7+ iillion by December 2015,
which was 27.9 times and 5.7 times hign. - than that in 2013 and 2014, re-
spectively [2]. The report also point< out tha over 370 million devices were
infected. The above results give us a. int” auve emergence on the severity of
malware rampant on the Android platt. m.

Recently, detecting Android n.~u. ~ve .ias been intensively studied [3, 4,
5, 6, 7, 8, 9], which are divided int. two major categories: dynamic anal-
ysis [8, 9] and static analysis 'X. 4, 2, 6, 7]. The former refers to obtain
dynamic behavior features of Apps . hen executing Apps in real devices over
sandbox environment. Hew~ver, it usually time costly to find malicious be-
haviors, and may lose ,ome h. rmful behaviors in a limited scope. Thus,
dynamic analysis is no. not su’ able for detecting malware among massive
Apps. In other worc ,, the ac * ed solution should be able to detect malware
automatically, effic.ent] anc accurately. In contrast, static analysis affords
higher efficiency. fas. »woc ssing, and full code coverage without relying on
the compiler or executio.. environment, thus it is more scalable for massive
malware dete cion. Nevertheless, static analysis may not be able to detect
harmful dyr-—ic behaviors, and possibly results in relatively lower accuracy
when extr’ cted features are not sufficient.

To tacs ~ *aese limitations, we propose to obtain dynamic behavior fea-
tures b using >. me methods that can be conducted automatically and scal-
ably, ..g., .-grem sequences, GLCM features, and so on, to extract sufficient
feature. "1 de’ ection to improve the accuracy.

vuar design goal is to build a malware detection system for processing
1 assive ¢ »ps, with high processing throughput and high accuracy. This




paper makes following contributions: We propose a machine '-arnin, hased
Android malware detection system. The system can autome .icall _-awl new
samples from App markets, which guarantees the training ~et is fresh and
realistic. Even the most recently upcoming malware ce~ thus . ~ detected.
To further improve detection accuracy, we employ co aprehe. “ive methods
including n-gram, fuzzy hash, GLCM (Gray-level Co-oc "urrence Matrix) and
complex networks. Furthermore, we conduct extens® - exp . _.uents to evalu-
ate system performance. The experimental results shov . 1t the system can
achieve 98.5% detection accuracy. For repackaged .. _ps, 0’ r system achieves
96% detection accuracy.

The rest of the paper is organized as follows. Previ us works are reviewed
in Section 2. We present the pre-processing me.nds iv Section 3 and propose
the scheme design in Section 4. Evaluation "~ conaucted in Section 5, and
the paper is concluded in Section 6.

2. Related Work

Android App malware detection n. hods fall into two categories: dy-
namic analysis [8, 9], and static a i sis 3, 4, 5, 6, 7]. As intensive compu-
tation resources are required, some ( ~teccion systems are deployed in clouds
[10, 11, 12, 13, 14, 15], in wi. ™ o static analysis and dynamic analysis
methods are used.

The basic idea of dynamic analysis methods [8, 9] is to obtain runtime
features of Apps and t- rely v ose features in detection. M. Apel et al.[§]
proposed a dynamic a.. 'vsis sc ieme to optimize distance measurement for
grouping malware s .nples. ™ .eir scheme can gain satisfactory results, but
its long analyzing 1me over 2 minutes) may not be acceptable for a large
scale malware analy. . L. ".eng et al. [9] proposed to encode a matrix with
a low rank into 1 wateriw. rk graph and to embed the graph statements into
smali code.

Static an=lvsis mevaods [3, 4, 5, 6, 7] leverage specific information from
inspected .pp, such as information from AndroiManifest.xml file or some
special A, " ¢ is. The syntactic approach can be used for detecting mal-
ware. 1. Kai. ~ et al. [3] investigated the frequency of n-gram from the
Opco’ e of mstruction in the binary code, which can distinguish standard
vector - sed <ustance. The n-perm are utilized as features to differentiate
tw .aalwai. samples, which, however, is unavailable due to the existence of
r any mo. >hing techniques beyond instruction permutation. Similarly, based




on Kolmogorov Complexity of malware, S. Wehner [4] levera- s noi.. «lized
compression distance (NCD) to assess the similarity of v alwe . ~amples,
where the complexity is approximated by the compressi. it of malware
samples. Nevertheless, such clustering approach is vulne=-ble t. “he morph-
ing techniques due to its syntactic nature.

Apart from the syntactic-based approach, P. Faruk et al. ['| proposed a
malware detection system based on improbable fe-" :re s.._..ture database
of known malicious Apps. Regardless of their g ven - us. “ive results, their
scheme may not be preferable for the large scale .ata ¢aalysis, and may
not be able to find out newest malware. The ~alww.e detection system
proposed by Y. Zhang et al. is based on the vetting , =rmission in Apps [6],
and their scheme could effectively examine t.. inter .al sensitive behaviors
of Apps by monitoring permission behavioi. K. rueck et al. developed an
automatic classification system for malware con leg where classifier labels
samples by using anti-virus products [7]. ™ the scheme, samples unknown
to the anti-virus products are classifed as un..aown. On the other hand, it
also renders their scheme to be appli 1 fc = cacegorizing malwares. V. Kelesj
et al. proposed a method for authorship attribution based on character-level
“n-gram” author profiles [16]. The'r . =thud is based on byte-level “n-gram”
and thus the generated author profi, s are subjected to size limitation. The
internal connection are lost in  “eu o...eme and thus it may result in failing
to detect malwares. The study pro, osed by Patodkar Vaibhavi et al. uses
information from Twitter ~~ a corpus for sentiment analysis [17]. The “n-
gram” is also used to a* alyze v e messages together with some classifiers to
sort out the message ty, ~

S. Yerima et al [1 .| emplo, - A Bayesian classification to characterize App’s
type with 58 featu  os. 7 he training set included 1000 malware samples from
49 families and 100v " enig . samples. They further improved their work by
using static me* 10d with casemble machine learning [13]. They extracted 179
features from At - which include API calls, commands, and permissions.
They tested #263 applications (2925 malware and 3938 benign samples) with
multiple o~ :tho s such as naive Bayes, simple logistic, and random tree. The
experimen. ~ ults showed a detection rate up to 97-99%.

F. "arudin * al. used public dataset and private dataset to evaluate
malw re ¢ stect’on with machine learning classifier [14]. Based on the eval-
uation . «ults Bayes network and random forest classifier both have more
ac aiacy readings with a 99.97% true-positive rate, and multi-layer percep-
t on with nly 93.03% on MalGenome dataset. Besides this, they found that
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k-nearest neighbor classifier efficiently detected the latest Ar '-oid 1. ~Iware
with 84.57% true positive rate, which is higher than other - .assi *_ ~

Overall, above schemes [8, 9, 3, 4, 5, 6, 7] suffer froi. sc ne problems
in processing massive Apps with high accuracy, so in **is pw, °r, we use
comprehensive static analysis methods together with machi. ~ learning to
detecting malware. Besides, we deploy the system in cl uds to ¢ :celerate the
speed of processing massive data.

3. Preliminaries

In our system, inspected App is pre-processed by hree algorithms in the
preparation stage:

e Fuzzy hash algorithm: We use fuzzy he«. ™ algorithm to distinguish
whether the evaluated App is rep.. <aged.

e N-gram: We extract App’s n-¢ .. eatures from App’s smali code and
feed features to train models to ‘et :ct App’s characteristics.

e GLCM: We extract App’s U'u "M-u features from the graph created
from App’s Dex file as model 1~ decect App’s characteristics.

8.1. Fuzzy Hash Algorithm

Fuzzy hash algorithm -~'-o known as Context Triggered Piecewise Hash-
ing (CTPH), firstly are ased as a weak hash algorithm to calculate content,
and the hash value of « ~h pie e is calculated by a strong hash algorithm
again. Afterwards, *.ae piece. Jf hash values are combined together to form
a fuzzy hash strin ,. T .e similarity comparison algorithms can be used to
assess the similarity . twe objects, i.e., documents, by comparing the fuzzy
hash values. W employ .. to evaluate the similarity of files (e.g. the differ-
ences among “.les .. “*h content addition or content deletion). In our system,
we compare “= data extracted from related Apps to evaluate their similarity
for determr ning whether those Apps are repackaged.

3.2. Sr ali anw. N-gram

Sr.ali i a teol for studying bytecodes in Dalvik Virtual Machine (DVM).
Note ti.  al’aough Smali language is not an official standard, almost all
st wements .. Apps follow this syntax specifications. As there are over 200
t pes of 1 structions in Dalvik Opcode, we need to classify and streamline




the instructions. Thus, we remove the non-essential instructi--s. 1. ~e are
only 7 core instructions (i.e., M, R, G, I, T, P, V) left ar « the , -enresent
the operations of “move”, “return”, “goto”, “if”, “get data = “r at data” and
“invoke”, respectively.

Table 1: Different n-gram features from an assembly file 'm Smali .ormat
Smali Format Instruction Classify = ! Desc. ¢
iput-object p1,p0...  P(input-object)

Invoke-direct {p0}... V(invoke-direct)

Return-void.... R(return-void)

T(

V(

iget-object V0,PO.... iget-object)
Invoke-static{V0}... invoke-sts *ic)

Return-void... R(return-void)
Opcode 1-gram Opcode 2-gram Opcou. 2-gram Opcode 4-gram
P PV PVR PVRT
\Y% VR VRT VRTV
R RT 1V RTVR
T TV TVR
\Y% VR
R

N-gram is used in natura! langu. e processing and it assumes that the
probability of a word showing « ~1v reues on its previous n — 1 words. This
probability can be obtained by a su.’icient amount of sentences in a corpus.
For example, the word o “ —~vle” or “pizza” is more likely to appear after
“eating” than the worc of “roa . We could perceive that n-gram remains
some linguistic features. Ther :fore, n-gram can be exploited for analyz-
ing malicious code 18], who. - method was based on the bytecodes. But,
it is supposed the Oy ode based method was better than bytecode-based
method [19]. We incc. ~ors e the Opcode-based method in our scheme. The
Opcode n-grar -~an be excracted from instruction Opcode and n can be as-
signed as 2, © or 4. Tab. 1 gives an example of Opcode n-gram from an
assembly fil-

In the systr n, we extract features from DVM Opcode to constitute a
training sev, » «ving which machine learning is conducted to create a detection
model or a larg. scale malware detection.

3.8. G, -sca’: image and GLCM
ror a buary file, each byte is ranged from 00 FF, it corresponds to gray
v ilues fro 1 0 to 255 (0 represents black pixel and 255 denotes white pixel).
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We can convert a binary file into a matrix, whose elements ar~ ~orres, ~nded
with bytecodes in the file and the size can be adjusted e corc .. 'v The
matrix can then be easily transformed into a gray-scale in.. ~¢ ~omposed by
pixels.

Gray-scale image of an App can show features on  ode exc "ution, which
can be used to explore code similarity and related pe “‘terns. Mig. 1 shows
two gray-scale images in the same malware familv Boti. .. created from
DEX file, and we can see the similarity in image pe terr v, vision intuitively.
Certainly, diverse image processing methods can be ppliec for further image
analysis for similarity and pattern recognition.

Fig. 1: Comp - on of two gray-scale images in the same malware family. Some similarity
in image patterns ~m be observed.

G evel :o-occurrence matrix (GLCM) is defined as the tabulation of
o¢” ..cing v. es for different combinations of pixel brightness values (grey
I vels) in n image. The GLCM is usually used for a series of “second order”




texture calculations. First order texture measures are statis*’~s anc ~alcu-
lated from original images. Second order measures consider the .. tionship
between groups of two (usually neighboring) pixels in orig.. ~1 “nages.

GLCM-6 represents the six largest eigenvalues of chars ~*2risti. - in GLCM,
i.e., Contrast, Homogeneity, Correlation, Dissimilarits ASM, wnd Entropy.
We can extract the data from DEX file to form a gi ‘v-scale image, from
which GLCM-6 values can be extracted as featur~ to v.ll.ng a training
set.

4. Proposed Scheme - SaaS

The proposed scheme consists of three ~ajor fu ctions: network data
capture and feature extraction, repackage ~tect.. = and code classification.
The input process output (IPO) model of the 5, “tem is depicted in Fig. 2.

PROCESS

{ Get the app’s fingerprinte byj ‘( Find if the app was i
fuzzing hasl repackaged
! ] A
i - ! Gettheapy .. _ "=h’s o \
; y i feature by usn._ “LCM E Find if the app was i
H ] i malwared !
H ] Find if the app has 4 }

malicious behavior | | TTTTTTTTTTTTTTmmmmeeeeet

S i ¢ :ttheapp’s. ~ode N-
GRAM fez ire

Fig. © The 1. © nput process output) model of the system.

4.1. App Corture ana Feature Extraction
4.1.1. Apr cap ure

We cus. v tailor crawling codes via python for a large scale App crawling
from A .droid a, ~lication markets. The crawled Apps will further be decom-
piled .o o' cain their n-gram sequences and GLCM information. We prefer
to colle.” mor : samples in this procedure to establish a better training set
(i .. more te.tures of Apps can be learned), which can improve the accuracy
ir future nachine learning procedure.




4.1.2. App fingerprint recording

App fingerprint is recorded by following major steps: Ex ract ... instruc-
tion sequences of DEX files; Attain a sequence of simpl. ~d imstructions;
Process sequence via fuzzy hash algorithm to record Ap~ “nger, “nt. Fuzzy
hash algorithm outputs the hash value of each section relatea “o sequences,
which will not be influenced by most modification oper tions 1 ch as adding
or deleting instructions. The specific tool can be se! _ied iv. providing fuzzy
hashing function, e.g., SSDEEP, which can comy we ¢ .. rity strength be-
tween candidate files.

4.1.3. N-gram extraction

We use Baksmali to process APK file « outpu corresponding smali
source code. All smali files will firstly be ~xam....d and then seven criti-
cal instructions, i.e., M, R, G, I, T, P, V, are . lected and extracted. We
code a Python program to slice the list v. nroduce the corresponding n-gram
sequences. In our system, we assign N = 3 a> "he length of feature sequence.
Some samples of 3-gram are illustrar 4w " 1.

More specifically, extracting n-grai. characteristics mainly presents fol-
lowing functions: Decompile AP, ' o1 x1n APP; Create an ALLsmali file
which encloses the contents of all si. ali .les in each folder (those folders are
all come from one APK); G. . “'» named F.smali (here F is the index
of the order, which is identical w."h App order in decompiling) to extract
the simplified instructions: Generate file named FSEQ.txt by converting in-
structions into instructi- a coa. ; Create file named n-gram.txt that contains
n-gram features of de. -mated .pp by extracting n-gram from instruction
codes.

4.1.4. Feature ext ~cti n fre.n gray-scale image

As we have r ention. 1 reviously that a binary file can be easily converted
into a gray-scr .. ‘mage, we convert the data extracted from DEX file to a
gray-scale image. N.'TLAB’s GLCM funtion in Java environment will be
invoked to ou »ute GLCM-6 values from the gray-scale image.

The ¢ .CM 6 values describe following six features for a given gray-scale
image [20].

e _on’ rast reflects intensity difference between a pixel and its neighbors

¢ ~ the whole image, which is defined as

Con=3_ % (i=)*P(i.j) (1)
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where ¢ and j represent gray value of pixels in an imag~ ~ud 1 [* j) is
the probability that both pixel ¢ and j are at specific posit ..

e Homogeneity reflects the closeness of element distribu,. n in GLCM
to GLCM diagonal, which is defined as

P(i,5
HOﬂ:;;l—&—(ﬁ?)] (2)

e Correlation reflects the statistical measur. ~n he . a pixel is correlated
to its neighbors over whole image, which is den. ed as

i, (0, Ll
Corr = E E LThd) et (3)
— L 0,
i

where p = Zl Zj 7:P(Z'7j)7 Mo = :7 Lj N D(i>j)> 01 = Zi(i_ul)z Zj P(7])
and 09 = Z](j - /4‘2)2 Zz P(Z'yJ,\

e Dissimilarity reflects the .. <imu rity between two pixels, which is
defined as
N DI e [F (%) (4)

u J

e Angular Second ™ Z_ ~ent (ASM) reflects the summation of squared
elements in GLC” (, whicL is defined as

AAsm:ZZP(i,j)Q (5)

e Entropy -eflects tne complexity and the inhomogeneous degree of an
image, * hicu "~ defined as

Ent = ZZP(i,j)log P(i, §) (6)

A c¢rai’ ng -st is constructed by combining the data from n-gram and
GLCM-" Re! vant procedure is illustrated in Fig. 3.
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Fig. 3: The flow chart of fori.."~e the train set.

4.2. Repackage Detection

Repackage detection is employ > ‘" ou - system, in which two folders are
considered: the similarity of App . ge1print between inspected two Apps,
and the certificate of App. Alv. ~ug.. -~ _ackaged App has different certificates
from original App, most functions .~ it remain similarity.

Our system collects manvy certificated App’s fingerprint. When a raw
App sample from mark: os is c. wled, App fingerprint will be computed and
stored. The fingerprin.. will th n be compared with the other fingerprints
which are stored before. 1t . e exists a fingerprint which is highly similar
to the detected fir ;erp .t and the certificate is distinct with the detected
one, the detected A > s ver y likely to be repackaged one and will be assigned
a score denotec as scorc.,. The fingerprint of the repackaged App will be
removed.

4.3. Code las ification

The co ~ ¢ assification process intends to identify Apps that contain mali-
cious cr des. A . ~spected strength in percentage that indicates the possibility
of an App o b~ malware is assigned to each evaluated App. It will be au-
tomatic .y la'eled as “normal” or “malware” by the classifier according to
pr octting  wreshold. Two thresholds are assigned in our system based on
¢ ir empi -al results from experiments on code classification. A specific App
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is regarded to be malware, if its strength percentage is lare~~ than ~; An
App is probably to be malware, if that percentage is larger nan 7 "t lower
than a.

The classification method is based on random forest. ™ our . meriments,
the test of binary classification reports an accuracy 9.5987," (Correctly
Classified Instance 1489, Incorrectly Classified Instan = 6, K¢ ppa statistic
0.992, Mean absolute error 0.0293, Root mean sc~ red ..o 0.0775, Rel-
ative absolute error 5.866%, Root relative squa od e .o, 15.5187%) After
above detections, each App will be assigned a sc. - den ted as scorec =
scorey + scoreq, where scorey is a n-gram score, ~nd ocoreg is a gray-scale
image score. If an App is labeled by classifier as “n.\lware”, socrey is set
to a negative value, whose absolute value equ.. - brol .bility calculated from
machine learning results. In contrast, if a. App 1s labeled by classifier as
“normal”, scorey will be set a positive valne <~ e is set similarly.

We hereby briefly give an example o. classifier by n-gram. Firstly, all
Smali files are obtained from an APK hv using .”aksmali, and they are merged
into a new file named AllSmali. The s, ~ter . vuen retrieves all Opcodes orderly
from AllSmali and these Opcode~ will « » simplified. The n-gram method is
employed to count the amount of « 4. ~ma sequences, which will be dumped if
the amount is larger than 300. The s _rstem then obtains the n-gram features
of the APP as a file. We furthc creacc a test model that learns from n-gram
features of other Apps, using ranu.m forest technique to classify the App
(“malware” or “normal”) -~orex of the App will be assigned according to
the results of classifier. Featur s of analyzed App will be included into the
test model for model u,. _rading

4.4. Enhancement Met! od

To better anslyz. reha 10rs of an APP, we further propose an enhance-
ment method } 1sed on cumplex networks to characterize features on func-
tion calling gr «ph, . ~d then combine the n-gram information of features with
multiple met-*~s borrowing from complex networks, e.g., degree, average clus-
tering coef icier ,, average path length, to contribute features set in classifier
model.

4.4.1 Fur tion calling graph

We e FliwDroid to create a graph about an App’s function calling.
F1 wDroid 1. an open source static analysis tool for Android Apps, which can
¢ itput a ; ~aph which starts at function named “dummyMain”, and connects
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all invoked functions in the App. The file named graph.gex® ‘s crec'»d by
Flowdroid, which is a graph containing nodes and edges Nc . nresent
API names and function names. Edges present source node mf rmation and
target node information.

An App may call some safe SDK (Software Develoy ment K *) to simplify
the coding process, same development time, and redu e bugs. However, it
increases the difficulties in analyzing internal behs “ors .. ..pps. Because
certain SDK libraries may call sensitive APIs, f Ise » us. ive may increase
due to auditing those sensitive APIs. Thus, we = _ed tc reduce the false
alert from SDK libraries, such as Alipay SDK, . ‘dui.ap SDK, and so on.
Besides, we also need to remove common advertiseme 1t libraries to increase
the accuracy of the detection. In our expern. "mts, * e remove 75 common
advertisement libraries, such as com.google.a. 1roia.gms.ads, net.cavas.show,
com.adsmogo.adview, net.youmi.android et =1

The specific method to remove some ». ‘@ SDK libraries and common ad-
vertisement libraries is show in Alg. 1 Tt take. as input 3 files - graph.gexf,
node_sdk.dot and node_sensiti.dot. 1 =re sraph.gexf file is created by using
FlowDroid, node_sdk.dot lists th~ nan. s of safe SDK libraries and adver-
tisement libraries, and node_sensiv’ «.* co.itains names of sensitive APIs. In
graph.gexf the names of safe SDK 1. hraiies and advertisement libraries are
shown in nodes and edges, S0 .. 'S ca., to remove nodes or edges which pos-
sess those names. By using Alg. ., we obtain a simplified function calling
graph.

4.4.2. Get sensitive A.'"s infor: wation

In this section, ~,e deh.. .ensitive APIs that will be used in complex
networks. We use ” F-I" F (Term Frequency - Inverse Document Frequency)
method to define se. “ive (Pls.

Definition 1 >c <itive API. The API that occurs more in malware but less
in normal Anns will ve regarded as a sensitive APL

In An roid environment, developers need to write some permissions in
Androic Manu. t.xml file to call some specific APIs. Thus, we can comb

sensit’ ve p’ rmissions in AndroidManifest.xml to reveal sensitive APIs.

De#fnitio.. 7. Sensitive Permission. The permission that occurs more in
r alware “ut less in normal Apps will be regarded as sensitive permission.
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Algorithm 1 Remove some safe SDK libraries and common ~dver.. ment
libraries
Input: graph.gexf, node_sdk.dot, node_sensiti.dot
Output: edge.dot

1. function RmW ght(graph.gexf)

2 for each node from edge in graph.gexf do

3 if node contains node_sdk.dot then

4: erase(node); // erase the node infor nati~ . “om original file
5: function SimlifyEdges(node)
6
7
8
9

erase(edge);
node < node.target,;
SimlifyEdges(node);
: end function

10: elsenode contains node_sensiti.dot

11: edge.weight < 2;

12: end if

13: end for

14: end function

We use APKtool to dig r --missic s from 757 malware and 346 normal
Apps. Partial permissions and .“eir percentages in two types are listed in
Tab. 2. The percentage is calculatea by the number of permission divide the
number of Apps in normr . . malware.

Table 2: Par ial of | v ssions and their percentages in two types

Pe nissio Percent in malware (%) | Percent in normal (%)
ACCES ,_WIF STAT™ 26.81 43.93
CHANG. W ISTA E 12.29 27.17
BROADCA" [_PAC.. " =<E (EMOVED 2.38 0
CONTR L_LOCATIO:. UPDATES 1.45 0
T ke TE_PACKAGES 17.97 0
DEVic = POWER 1.98 0
INTTRNAL_SYS'1 £SM_-WINDOW 2.77 0
UN TSTALL_SHORTCUT 7.13 0
“/RITF 1ISTORY_BOOKMARKS 7.79 0
" AJ" U_.LOCATION_SERVICE 0 2.02
BROAL. "AST_PACKAGE_CHANGED 0 2.31
BROADCA.. _PACKAGE_REPLACED 0 2.31
IM V"ERACT_ACROSS_USERS_FULL 0 4.34
“ENIT DOW! LOAD_COMPLETED_INTENTS 0 1.16
SYS” EM_OVERLAY WINDOW 0 2.02
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By using TF-IDF we summarize some permissions with st~ mg in, ~tions
in Tab. 3. By analyzing those permissions with strong indic .tion , e finally
confirm 35 sensitive APIs, e.g., android.telephony.SmsMana, ~r.c cndDataMessage,
android.telephony.SmsManager.sendMultipart TextMess» -,
android.telephony.SmsManager.send Text Message, and yid.con. *nt.ContentResolver.query,
et al. Those sensitive APIs will contribute to complex etwork modeling.

Table 3: Permission with strong inc icati- s

Permission intends to malware Permissior. ~ ..ends ) normal
UNINSTALL_SHORTCUT INTERAC. ACRC ™" _JSERS_FULL
WRITE_HISTORY_BOOKMARKS | BROADCAST k.. "KAGE_REPLACED
INTERNAL SYSTEM _WINDOW BA™U_LOCA’ [ON_SERVICE
CONTROL_LOCATION_UPDATES SYSTk:.” OVF .LAY WINDOW

Relying Alg. 1 and sensitive APIs, wo #-=*--- fine a graph that contains
function calling relations, removes safe SL.”" and advertisement nodes, edges
that link one or both nodes related “~ <ensitive APIs are labeled a specific
weight, namely, 2. The output of Alg. 1 is a nie named edge.dot that saves all
edges and nodes. To create a con ~lex n. “work, we propose Alg. 2 that takes
as input edge.dot to output a file (1 « ~mplex networks data. The algorithm
denotes sensitive APIs as leaf nodes « d inverses source nodes within 5 layers
for complex networks. The saw.>le 15 wustrated in Fig. 4 and Fig. 5.

Sensitive API layer 1

layer 4 or 5

Fig. 4: original graph

The vi- aal ¢ cchange is shown in Tab. 4. The left table on edge informa-
tion matcu. ~ "1g. 4 and right table matches Fig. 5.

Lay r deptu "= 5 is due to following reasons: 1) retain the features about
callin | ser sitive. APIs in malware, and 2) reduce the combine probability
with se.. tive APIs in normal App.

1ne grapa we created by using Alg. 1 and Alg. 2 is complex networks,
I scause ti = graph matches the features of complex networks such as 1) short
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Algorithm 2 Construction of complex networks
Input: edge.dot
Output: cple_ntw.dot
1. if edge.weight==2 then
2 vector < edge.targetinedge.dot
3: end if
4: 1 =4
5: function ConstC N (vector)
6
7
8

for each node from vector do
while i > 0&&edge.source! = empty,, 1o
new_vector < edge.source; //new-buu. vector, different from
the previous

9: put The edge into cplx ntw.ac -
10: ConstCN (vector);
11: 1= —;
12: end while
13: end for
14: 1 =4;
15: edge.source < ort;
16: eged.source < newyector;

17: put The edge into cplx_tw.ucl,
18: end function

Sensitive API layer 1

Fig. 5: complex graph

path lengtl ., .\ scale-free and 3) power-law degree distributions. Tab. 5
lists some sam.le data from original graph, simplified graph, and complex
networks. 'L.. first column in Tab. 5 is sample name. The second and third
colum’ s ar’ origiaal node number (ONN) and original edge number (OEN).
The . ~ut'y and fifth columns are simplified graph node number (SNN) and
simnlifieq ~r# ph edge number (SEN) by calling Alg. 1. It shows that Alg. 1
is useful o simplify the graph. The sixth and seventh columns are network
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Table 4: From original graph to complex networks.

label | weight | source | targe ID [ label | weight ~ sou ce | ‘arge
1 2 2 1 L] 1 2 | 2 1
2 1 4 2 2 2 ] 4 2
3 1 6 2 3 4 K 2
4 1 6 3 4 5 1 4 6
5 1 7 6 5 6 1 | 8 6
6 1 6 5 6 7 0 L 8 7
7 1 8 6 7 o |1 9 8
8 1 8 7 8 0 1 origin 4
9 1 9 8 9 0 1 origin 8
10 1 10 9 10 L 1 origin 9

node number (NNN) and network edg. number(NEN) by calling Alg. 2.
It shows that node number and edee numu. - decrease again. The last 3
columns in Tab. 5 are features of 1. twu. .. average degree (AD), average
clustering coefficient (ACC), and avera_ . path length (APL).

Table 5: Some simple’s few ures about complex network

Sample label [ ONN JOEN | ‘~iv | 77 "TNNN[NEN [AD [ACC [APL
1 204 [418 [19z '390 [4l [58 |1.4150.039 [ 3.021
2 387 | 811 | 373 |53 |82 |139 |1.695|0.027 | 3.259
3 394 | & 378 | 731 | 104 |156 |1.500|0.031 |3.252
4 425 1068 |55 | 827 |65 |93 | 1.431|0.026 3144
5 656 | "627 | 502 | 1399|126 | 188 |1.492|0.021 |3.287
6 711 | 17a 17359 | 1521|236 | 324 | 1.373|0.024 | 3.272
7 24,4 | 7516 | 2035 | 5788 | 308 | 429 | 1.597 | 0.036 | 3.331
8 185 | 12705 | 3148 | 6290 | 317 | 427 | 1.347 | 0.033 | 3.168

We observe -hat the average path length is much less than sample net-
work edge nu.nbei, ~ud this matches the feature on short path length in
complex net  +ks. Fig. 6 shows that network degree distribution matches
power-law degy -e distribution. Base on above observation, we claim that
our createu ~ tworks are complex networks, and we may apply features of
comple  networsw , to detect malware.

4.4.8. " asitic e API n-gram constructing and vector creating
1 ais secv.on explains how to obtain sensitive API n-gram from App com-
I ex netw rks. Firstly, we define what is sensitive API n-gram.
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Degree Distribution Degree Distribution

Value Value

Degree Distribution [ gree Dir .out.
Vawe ' ’ U7 Ve
Fig. 6: Degree dis " *ion of « samples.
Definition 3. In complex netwc "~ if 1. 2re exist identical nodes among the

paths from original node to distin -t . ~sitive API nodes within the depth
less than 5 layers, those diffe —~* sen.itive APIs construct a sensitive API’s
n-gram.

Base on above definiti~~ and the file named cplx_ntw.dot, we propose
Alg. 3 as follows:

Base on Alg. 3, if .. ve exis some paths from original node to sensitive
API nodes, and the e exisu "~ entical nodes in those paths, we can collect
those sensitive AP" s int , n-g~am, where n represents the number of sensitive
APIs. In the Fir. (, tnere are 3 paths from original node to sensitive API
nodes (node_1. node_2, ..0de_3). Because branch_1 and branch 2 are two
different nodr », ai. ' in the paths from original to node 2 and node_3 there
exist same r~e - brauch 2, we say that node_1 is sensitive API 1-gram or
1-gram, ar 4 no .e_ 2 and node_3 are called 2-gram.

Base o.. A4 3, we can obtain App sensitive n-gram features. We extract
757 me ware awn ' 356 normal App’s sensitive n-gram features and use TF-
IDF t, get som~ n-gram sequences that have the greatest difference between
those v, tyr :s of Apps. In Tab. 6 there exist some functions in n-gram
se ,ucnces, a..d each function represents more than one sensitive APIs. There
a e 22 fui ~tions and we can finally form 242 n-gram sequences from those
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Algorithm 3 Extraction n-gram sequence
Input: cplz_ntw.dot
Output: n_gram.dot

1. if edge.weight==2 then

2 vector < edge.target in cplz_ntw.dot;
3: end if
4
5

: for each node; in vector do
List; value <—noeds on the road from ori to » «c in the order by
layer;
6: List;_key < node;;
7: end for
8: for each List; do
9 add node; to n-gramg;

10: for eachList; do

11: if have common element betw. m List; and List; then
12: add node; to n-gram;

13: end if

14: end for

15: put n-gram,; into n-gram.d e,

16: end for

lav 5 layer 4 m layer 3 m layer 2 @
" ers :\ / S N -

Fig. 7: Sensitive APl .. ram:' node_1)(node_2,node_3)]. Here (node_1) is l1-gram and
(node_2,node_3) a- : 2-gram

function co” * ‘nations, and those n-gram sequences are stored in the file
named ng’.r.tx .

After ea - cting n-gram from an App, we further extract features with
respect to comp.. x networks including average degree, average clustering co-
efficir 1t, 2 «d av crage path length. The complex networks is create by Alg. 1
and Alg.  frr.n the graph created by FlowDroid. After all required features
ar - availnble, we create a vector containing those n-gram features and com-
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Table 6: The functions in n-gram from complex netwo’ s

Label | Type Argument 1 Argument 2 Argument 3 e ment 4
1 delete function e
2 call telephone function
1-gram
3 send message |
4 capture broadcast \
5 read short message |
6 file access |
7 Send short message access address list
8 receive broadcast
9 get location information
10 read short message A & |
11 2-gram file access
13 send by nternet | et
14 get location informatior
15 capture broadcast | -
16 call telephone access address list |
17 capture broadcast send broadcast '
18 equipment’s IMEI I “ipment’s IMSI
19 3-gram send by internet receive restart L -ucasy | read short message
20 receive restart broaw. f | get location information
21 Lo cend by internet read short message | access address list call telephone
22 gram send by mterne get locatio. .. B equipment’s IMEI equipment’s IMSI

plex network features. That is, v =2 @ = (g1, 92, g3, e e 9n, D, J, L, M/N),
where g; (i = 1,2,...,n) are n-gram ‘cavures; If the App has this feature, g;
will be set as 1; Otherwise, it .. 1. = = wverage degree; J is average clustering
coefficient; L is average path lengu. - M represents “malware”; N represents
“normal”. In the enhancement experiments, vector information are feeded
into WEKA to train de’ action model and accuracy results are evaluated.

4.4.4. Experiment F aluav.

We use WEKA .o tr .in model by vector information from 8364 malware
and 5318 normal A, < Thr se vectors contain n-gram features, complex net-
work features, 7 ad App - pe in terms of “M” or “N”. In the experiments,
we use K cro s . lidation to obtain the average accuracy of the proposed
method. Tab. 7 lists « :tection performance in terms of Time, True Positive
(TP) rate, vals Positive (FP) rate, Precision, Recall, and Receiver Operat-
ing Charc *eri tic Curve (ROC) by evaluating 5 different machine learning
method  with "9 cross validation in WEKA.

Fr m T .b. 7, we observe that the accuracy of 5 machine learning methods
are aL. ~ epte ., since all TPRs are greater than 0.94 and all FPRs are lower
the 0.06 \ . ROCs approach 1). Among them, J48 and NavieBayes cost
I 3s time wnd Random Forest and Bagging cost more time. But, TPRs of
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Table 7: The results of different machine learning metb s

Algorithm | Time(s) | TP Rate | FP Rate | Precisior | Re _an. | ROC
J48 2.49 0.961 0.048 0.961 7,961 | 0.974
RandomForest | 18.74 0.963 0.038 0.97, 0.9.3 | 0.992
SMO 14.45 0.945 0.052 0. 46 L 945 | 0.946
NaiveBayes 0.23 0.942 0.06 0.9.° 7.942 | 0.98
Bagging 11.64 | 0.965 0.045 | v.96~ | 0.965 | 0.985

J48, RandomForest and Bagging are all greater “an C Zo. Thus, J48 is the
best method to this vector data set in WEKA.

To justify our method, we choose the same "~ta as a1 the paper written by
N. Peiravian et al. [21]. The data performs . ~ a beuchmark in comparisons,
which are shown in Tab. 8. Perm represents tn. mermission information in
AndroidManifest.xml, API represents A1 " alling graph features, and Com+
represents combinative features with both Pe. n1 and APIL.

Table 8: "he bei. hmark data
Data Set | Algo. 1..n | Lrecision | Recall

Perm Ja8 0.898 0.866
API 146 0.894 | 0.903
Com+ Jac 0.906 0.928

Perm Bagging 0.92 0.882

AP” | b gging 0.936 | 0.907
Com-, B gging 0.949 0.941

Comparison re ults witk benchmark data are depicted in Fig. 8. It
shows that our propu. *d 1 :thod outperforms others in terms of accuracy in
the detection ¢ malware.

5. Experi’ .. 't and Performance Evaluation

5.1. Moa. ~ Faluation

As .n integ. ! system with multiple modules, we prefer to evaluate the
perfor man e of ‘ndividual component first and then evaluate the overall per-
forman.  Th major function modules to be tested include crawling module,

fer vure extr.ction module, classifier module, and repackage detection mod-
Ue.
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Fig. 8: Performance comparison in acc. ~cy with nenchmarks

5.1.1. App crawling module test

In this module, we examine whether v. ~ designed crawling program can
download Apps so fast as to sense ~»d momni.or third-party App markets
(Wandoujia market!, Mumayi market A-.zni market®, Android market* and
Huawei market®), which are 5 mc -t pop lar Android markets in China. The
speed of downloading under norn w PC Client is about 0.4 Mbps at first,
which certainly is not suitahle for . rge-scale App analysis. We next de-
ploy our system at clouds, it .\ »u ca. reach nearly 1.6 Mbps downloading
throughput, e.g., obtaining 3GB a.‘a in half an hour. The downloading
speed in clouds is four ti~ - faster than that in PC end.

5.1.2. App feature exti. ~tion m «dule test

In this module te .t, we ni.* .ly test n-gram feature extraction and GLCM-
6 feature extractic .. Fr. n-gram test, we test the performance of two steps:
Decompile APK file., nd ’set n-gram features.

It takes 37 ainutes te decompile 100 sample APK files firstly. It seems
not to be effic’2nt. * fter analyzing the reason, we observe that the decompile
speed is relat~1 to AP size. If APKs that are larger than 100M are removed,
the speed .f de ompiling increases from 2.7 APKs/min to 475 APKs/min.

Thtt s://v ww.wandoujia.com/
2w =htt ,://w rw.mumayi.com/
3url=.. m:// /ww.anzhi.com/
"wi=http:,, apk.hiapk.com/
Surl=hu >://app.hicloud.com/
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After decompiling the APK file, we further test n-gram fee* -re ex.. ~ction
performance. Our experiments spend 1500s to process 1000 aalw . <samples
for extracting n-gram features. In experimental results w. fr 1 there exist
some n-gram feature files with size less than 1k, which ir“*zates hat feature
extraction is unsuccessful. We further analyze the re son - . ~ads of some
APKs are damaged in decompiling procedure in Wind. ws.

Some features we obtained (e.g., 18 3-gram featr~ 5 fro... Lue n-gram file)
in this module test are shown in Tab. 9.

Table 9: 3-gram features extracted fron. ~rma. Apps

MGR GRG RGT GIP IPT PTV
VP VPP PPM PM1 MTP TPM
PMV MVM VMI ML Ils IGI

5.1.8. App classifier module test

To build training set, we choose 145 A Hp samples including 754 malicious
Apps and 741 normal ones to ex*ract 1. sram features and GLCM-6 values.
We label them with “Normal” or “: "a. mare ', and write them into CSV format
file. After that, the data in training set are processed by WEKA, in which
a classifier can be created fina.~ Au. e procedure takes about 270 seconds
in the experiments. It shows that «™er ten-fold cross validation, TP rate of
the model is 0.989 and FP ~ate is 0.054, it justifies that the classifier model
has high accuracy for d tecting malware.

To classify unknown. APKs, we build a testing set by including 200 mal-
ware and normal sa aples ¢’ cted from online BBS. The establishment of
the testing set is s” nila- to the training set, except that the former excludes
the attribute label \“ Vorr al” and “Malware”). We can classify the test-
ing set by usin classifier model, whose results will be compared with BBS
declaration r mua. to evaluate the accuracy of the classifier. The experi-
mental resul*~ are given in Fig. 9, in which there are 5 columns - The first
column di- play: sample sequences; The second column indicates actual class
of sample e ause we exclude attribution labels in the test set, all they
are 1 :°, " presents default label and ? presents actual label); The
third -olu in otputs predicted results by using classifier model (“Normal”
or “Ma. are”’, The fourth line shows whether there are some errors (nothing
sb wed) or vot; The fifth column presents the probability of predict results
t at is in he range of 071.

where
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By checking the results manually, our system can achier an ac racy
with nearly 98.5% in detecting malware.

=== Predictions on test data ===

inst# actual predicted error prediction ()
1:?  2:normal 7

o
02
5

?  1:malware
1:malware

2:normal
2:normal

1
b
)
4
5
6
7
8
9

normal
normal
normal
2:normal
:normal
2:normal
normal
normal
normal
alware
2:normal

normal
2:normal

Fig. 9: The results of classii.  Jon by classifier model.

5.1.4. Repackaging detection ~odule ‘est

In this module test, SSDEL. ‘s selected to provide fuzzy hash algorithm
to get an App’s fingerprint, which is shown in Tab. 10. The first line shows
the brief information of *’.c . =ults, which are blocksize, hash, hash, and file
name.

Ta' 1e 10 The ungerprint of App by using ssdeep

ssder ,,1.1-) ocksiz .hash:hash,filename

17 ,008:
m3WGPKh,kOiCh6Mm05Y0YjM81F+RAaCbLm7w2BV:
sWo "“RKY0Y71F+0DmLiw2BV, /Users/idF TPClienttestnew.zip

Some ¢ omp rison results by using SSDEEP’s command “-m”and judge-
ment on A, © _ertification are given in Tab. 11 and Tab. 12. In the former
table, “nere ex. * multiple Apps possessing identical certificates, and the
simils -ity s 10"%. Those Apps are the same from one publisher, and are
compile for v .any times. In the latter table, there exist multiple Apps that
he'a sow sinadarity (lower than 50%) but possess the same certificate. The
r ason is ¢ 1e to the different versions of the same App. Sometimes there exist
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some Apps that match with others with similarity more than °*%, a. “ough
they do not hold the same certificate. Such situation can } e re: .. ~ed from
two aspects as follows: 1) Either or both is (are) repackay - .) A number
of same third-party libraries are called in source code of “~th A, »s.

Table 11: Some Apps have same certificates wit. others
Number of App  Similarity with others If h= _ ame ceo
No.0

matches No.2 49%

matches No.11 100% same cer
matches No.21 50%

matches No.25 49%

matches No.30 100% sanr  cert
matches No.181 1% _.ne cert

Table 12: Some App is lower similarity wit" ~ther App ,ut have same cert with other App

Number of App  Similarity vith - .ue..  If have same cert
NO.7
mat. ~ No.25 54%
matche No "R7 38% same cert
matches 1 .290 49% same cert
L otenes 0T 291 54% same cert

In the experiments, 340" malware samples include 50 repackage samples
are included. The reps xage 1. ndule detects 48 repackaged samples among
50, which justifies the . nackage detection method is sound.

5.2. Integral Evalv .tior

We conduct the ' ud-F ised real-time monitoring on large-scale Apps in
this section. M alware s..aational awareness curve will be created, shown,
updated for 2 pp . ~rkets with multiple applications, e.g., massive filtering,
supervision. i<k management, trend alter and so on. It can also be provided
as a third part service for network governance. Fig. 10 depicts malware
trends in . ™s nstream markets for a given period. It shows that in those 3
market from ., ~il 23 to April 29, 2017, there exist some new malware that
are dr .ectr A by our proposed system but not aware by App markets.

A" asse sment on App markets are also sorted for five major markets.
T* . .netrics .s based on the proportion of malware and repackaged applica-
t ons in t. e market, which is normalized into a score range in [0,100]. The
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Fig. 10: Malicious code trends.

results (Fig. 11) shows that all scores are nov “igh. It means that in those
markets there exist contain malware or vausaged applications that are not
detected.

100
80

60

\=\

h

huawei andoujiaanzhuo mumayi anzhi
Markets name

40

The quality score

Fig. "1: he r' ok assessment for major App markets.

6. Conclusinrn

In this napr ., we propose a comprehensive system that can automatically
crawl Andro.. Apps and detect malware in a large-scale at real-time. The
featur s of App are extracted by n-gram and GLCM-6 values. Fuzzy hash
algor. hmr s ut iized for detecting repackag. The model of complex networks
are anplic ¥ ¢ extracting characteristics in calling function graph. The de-
tr ction ¢ ~curacy of our system is evaluated over a large amount of Apps
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crawled from top 5 popular App markets in China. The resu’ ~ vali.. *e the
scalability of our system. Our system can detect malware ‘a th .. markets
unaware. Moreover, it can evaluate the risk of those mar. *s n portion of
malware.
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Highlights

In this paper, we have some highlights, such as :

1) Employing comprehensive methods to cooperatively improve the accurac, - detection
2) Using machine learning method instead of artificial, increase detec oun efficiency.

3) Cloud-based, it can be used across platforms.




