
Future Generation Computer Systems 95 (2019) 502–510

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On using collaborative economy for test cost reduction in high
fragmented environments
Kenyo Abadio Crosara Faria a,∗, Raphael de Aquino Gomes b,
Eduardo Noronha de Andrade Freitas b, Auri Marcelo Rizzo Vincenzi c
a Instituto Federal de Goiás, Inhumas, Goiás, Brazil
b Instituto Federal de Goiás, Goiânia, Goiás, Brazil
c Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil

h i g h l i g h t s

• Mobile cloud test environment are expensive and not scalable.
• The collaborative economy may minimize total cost of mobile software testing.
• A new market may be created to device owners.

a r t i c l e i n f o

Article history:
Received 1 May 2018
Received in revised form 11 October 2018
Accepted 15 January 2019
Available online 19 January 2019

Keywords:
Collaborative economy
Android ecosystem
Software testing

a b s t r a c t

The grown adoption of mobile devices makes the development of applications a very attractive market.
On top of it, run tests is a crucial activity and a big challenge due to the high fragmentation on Android
ecosystem. In this paper, we discuss how a new platform based on Collaborative Economy could be used
to create a new alternative to software testing. We present an analysis of using this platform and we
confirm its advantages over existing cloud solutions, from a scalability and cost viewpoints. Our solution
can provide an average cost reduction upper to 85% and a potential increasing in scalability.

© 2019 Published by Elsevier B.V.

1. Introduction

The worldwide smart-phone market is significantly growing
annually. According to data from the Statista [1], 2017 finished
with 4.77 billion of mobile phone users worldwide, which were
up 3.4% over 2016, and a most recent projection showing 2018
shipments of 4.93 billion corresponding to 3.3% growth over 2017.

Actually, Android has around 85.9% of worldwide market share
[2], and the number of related apps grows to 3.5 million 2017 [3].
Also, to illustrate the complexity of that kind of market, Android
owns a proliferation of brands, screen sizes and screen densities,
resulting in more than 24 thousands of different devices [4]. These
devices have four generalized screen sizes (small, normal, large,
and extra-large), six generalized densities (ldpi, mdpi, tvdpi, hdpi,
xhdpi, and xxhdpi), and 27 operating system versions [5]. Such
characteristics present a significant challenge for developers and
testers because delivering a fault application in this context, in
general, has a profoundly negative impact [6].

∗ Corresponding author.
E-mail address: kenyo.faria@ifg.edu.br (K.A.C. Faria).

Even if the report provided by OpenSignal [4] points out that
ten manufacturers dominate 80% of the market, the variation of
the features on each model should be addressed in the validation
of the apps, as several situations may occur, e.g., some users do not
keep the operating system updated.

In addition, given the huge number of different device-setup
on Android ecosystem, another practical challenge Android devel-
opers face is the limited access to a reasonable number of those
real devices to verify the app behavior and compatibility. Basically,
there are two options to address it; buy a set of real devices or rent
devices in cloud services. In practice, both have been an expensive
process.

We realized that Android testing can be modeled and formu-
lated as a business based on Collaborative Economy. In this sense,
device owners freelymake their devices available under a financial
reward, and Android developers and testers demand those devices
in an attractive business model.

In this paper, we discuss how a new platform based on the
Collaborative EconomynamedDistributed Bug Buster (DBB) can be
used to both create a newmarket for mobile-device owners and to
provide a less expensive and effective way to increase Android app
quality cross-device. Our analysis shows the effectiveness of this

https://doi.org/10.1016/j.future.2019.01.023
0167-739X/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2019.01.023
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.01.023&domain=pdf
mailto:kenyo.faria@ifg.edu.br
https://doi.org/10.1016/j.future.2019.01.023


K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510 503

business in terms of cost and some existing weakness presented
by current mobile cloud test players. We confirm this hypotheses
through two research questions: RQ1: How the platform compares
with the other proposals in terms of scalability and variety? and
RQ2: What is the economic impact of adopting our platform in-
stead of alternative solutions? The results pointed that currently
cloud testing are expensive and does not provide substantial de-
vices in their catalogs, beyond scalability limitations. On the other
hand, the use of our solution may lead to a considerable cost
reduction.

The remain of this paper is organized as follows: In Section 2
we discuss the needed background to problem understanding. In
Section 3 we present an overview of proposed platform. In
Section 4 we present our results towards the raised research
questions. In Section 5 we analyze some related work. We also
discuss some threats of validity in Section 6 and we conclude with
final remarks.

2. Background

Typically, for that an Android app to be free of defects, mainly
these arising from incompatibility issues, developers make use of
devices and emulators to validate their apps (target-app). Consid-
ering that emulators does not provide a real environment to app
execution, tests using real devices is mandatory.

Due the high cost to acquiring real devices, some companies had
released services able to provide real devices to be used in the test
execution [7–11]. However there are problems about scalability,
variety of available devices and cost, arising from architecture
adopted.

For that mobile tests can work, some frameworks assist de-
velopers in both the writing [12–15] and execution tests [16,17]
processes. In this work we focus on UI Tests because it impacts on
the app compatibility cross-device, so wewill provide an overview
about Android instrumented tests with Google Espresso (the main
framework to perform UI Tests to Android apps).

2.1. Instrumented tests on android

Instrumentation controls the app under test an permits the
injection ofmock components required by the app to run. It implies
that when a developer compiles its app and related tests, the test
framework manages both app and tests.

Typically two apks are generated by Android SDK during the
compilation, one about app and one about tests, so the existing
runner in the framework is responsible to execute the tests in in-
deed devices. The issue is that the runner is dependent on Android
Debug Bridge (ADB) for accessing device. This characteristic repre-
sents a serious limitation regards scalability, once that the devices
under test is limited to a number of available USB connections. Our
platform eliminate this limitation through a new runner that we
built, which is presented in Section 3.

Following, we discuss how the collaborative economy can help
developers community in the cost reduction aswell as create a new
market using idle devices spread around the world.

2.2. Collaborative economy applied on software testing context

Several disruptive solutionsmake use of collaborative economy
concepts to make feasible their views. For instance, Uber [18] and
Turo [19] have revolutionized the way people transport, while
Airbnb [20] has significantly changed the hosting market. These
solutions have in common the goods sharing through a profitable
relationship.

As pointed out before, there is a high number of Android devices
around the world, potentially idle some hours per day. As devices

are valuable resources to validate apps, developers could use them
through a rental contract. Thus, a device owner could register its
device to be accessible to developers run their tests. This way, a
new market involving mobile devices, would be created in order
to reduce the cost of testing related to the execution process.

In the next section, we provide an overview of the proposed
platform to implement this partnership establishing.

3. Proposed platform

This section describes the proposed platform from a compo-
nent perspective considering native Android apps.We omit details
about platform implementation since our focus on this paper is the
analysis of advantages on using it.

As mentioned in Section 2.1 the problem with the traditional
test running approach is that target devices must be connected
to the developer host (through USB connection). This need brings
a serious limitation when facing a high fragmented environment
such as Android. To solve this problem we built a customized
runner based onAndroidJUnitRunner [16], able to execute espresso
tests in order to allow an execution of tests without the ADB. This
way, the developers must include our runner as a dependency of
their apps.

In addition, we built a platform named Distributed Bug Buster
(DBB) able to receive tests and distribute it around available de-
vices over Internet. Thus, making use of existing idle processing
capability and making it feasible through rental of devices. Fig. 1
illustrates how a tester can benefit from devices spread around
the world to run tests. Each device signed in DBB is cataloged in
the device farm and is shown as available to test according to its
owner convenience. At the end of the test run, a report is sent to its
respective testers, who had submitted tests to be executed on the
farm.

In order for developers/testers to submit their tests to runon the
devices registered on the platform, related to an app and related to
tests, they need only send the apks files to the platform. Through
the fantastic interface, they can choose onwhich devices theywant
to validate the app. The catalog of devices is organized by brand,
model, Android version and language. After submitting the test, the
developers/testers can trackwhichdevices have been accepted and
which ones have already returned the test execution report.

We built two components, an agent (DBB-agent) which is re-
sponsible to receive, execute and report accepted tests, and a web
app (DBB-web) which provides a way to allow testers to send their
apps and related tests to be executed on signed up devices. For that
developers can access their test reports, they must to pay device
owners through a service billing provided by platform.

We intend to take advantage of collaborative economy to solve
the problem of monetary cost on testing. The proposed approach
requires the engagement on the part of the device owner once the
operating systemsecurity policies donot allow that the installation
of apps occurs silently. Thus, peoplewhowant to rent their devices
in this platform need to install the DBB-agent, which provides
authentication and turns device available for running tests.

As soon as the developers/testers send the test set, the DBB-
agent notifies related device owners to accept or to deny test
set execution. For that acceptance occur, the device owners need
to install both, the app under testing and the UI-tests. For that,
it is necessary that the device owners accept installation from
unknown sources.

The simple acceptance of test execution does not guarantee
reward for device owners, because the value generated for testers
is in the test report, sent only after test execution. Multiple devices
of the same model receive the test and, even if test acceptance is
taken in all of it, technical issues (connectivity, charging, etc.) or
even lack of device idlenessmay break reporting test results. In this



504 K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510

Fig. 1. Tester site and physical location of devices available on the DBB farm.

scenario, billing is performed for the first device that returns the
report. This action is carried out to prevent that developers/testers
pay for runs of a test suite on devices of the samemodel, which for
UI testing purposes does not make sense.

Finally, once tests execution finished on the devices, their own-
ers can track performed tests as well as the associated billing
through both environments DBB-web and DBB-agent.

In the next section we provide an evaluation looking for impor-
tant issues about existingmobile cloud testing players. In Section 6,
we address some issues about remote tests execution and the
inherently limited control.

4. Evaluation

In this section,we conducted an analysiswhich aims to evaluate
our proposed platform against existing alternative solutions. We
did it through answering the research questions introduced in
Section 1. We first analyze the scalability capability, followed by
a cost comparison.

4.1. Scalability comparison

In our analysis we consider the major clouds of mobile devices
made available for testing: Google Firebase Test Cloud [9], AWS
Device Farm [7], Xamarin Test Cloud [8], Kobiton [11], and Per-
fecto [10]. By taking information about device availability on these
solutions we could conclude that test cloud players do not provide
a scalable platform and do not provide a big coveragewhat concern
diversity of devices. These players try to provide devices which
compose the main market share.

Typically there are two ways to contract cloud testing infras-
tructure, based on-demand, in which the users pay according to
their usage, and by reservation, in which users pay for a static
resource to be used in a determined time period. In the demand
model, developers are at risk of being overwhelmed by an expen-
sive pricing due to high resource utilization, on the other hand, in
the reservation model the inherent risk is to oversize the device
allocation.

Our analysis was carried out considering four variables which
impact on the scalability of platform and coverage ofmarket share:
number of devices, diversity of device models, contract model,
and concurrent devices. The device’s availability is an important
concern because it impacts on the scalability. We analyzed de-
vice diversity because as many devices models are provided, the
wider themarket share coverage. Concurrent devices usage is used
by some players to avoid devices unavailability due to the low
diversity and an incipient number of physical devices. Contract

model is considered by its direct impact on the cost. The results are
summarized in Table 1. The data were retrieved from the devices
catalog provided by each one of players.

The fact that current mobile test cloud players are based on the
acquisition of devices, is due the mobile devices cannot be used
on a shared basis due to technical limitations. This way, for that
these players, can support for example 10 testers running tests
simultaneously, it is necessary to buy 10 different devices. It is
clearly not scalable. Taking as example Kobiton cloud [11], it could
not support 500 testers running tests, because it provides only 300
devices in its cloud.

Even when the mobile cloud player has a large number of
devices, it may suffer from its low device diversity. For example,
taking Perfecto test cloud [10] which has the largest number of
devices, we can see 10,000 devices available to be used but just 62
differentmodels. It can clearly be a bottleneck on very crowded de-
vice models. This limitation is worked around through concurrent
devices allowed by test running so that a tester can run their tests
in a limited number of different models at the same time. It can be
viewed in AWS Device Farm [7] and Xamarin [8], Perfecto [10] and
Kobiton [11] which make use of this limitation although they offer
plans that allow testers to use all devicemodel in the catalog at the
same test running request.

Assuming that presented mobile test cloud players support
the existing demand generated by testers who use clouds to test
their apps regarding the availability of devices, another problem
to be addressed by RQ1 is about coverage. Considering a report
provided by Open Signal in 2016 [4], there were more than 24
thousands of different Android devices in the world, that is, the
catalog provided by players in Table 1 cannot help testers to ensure
a good compatibility checking, even if they have devices with the
highest market share in their catalogs, because there are apps that
must be validated against devices with low market share.

According to IDC [21], Chinese devices represent more than
20% of the global market share in the fourth quarter of 2017, this
data is presented in Table 2. Chinese vendors are represented by
Huwaei [22], Xiaomi [23] and OPPO [24]. The Fig. 2 shows themar-
ket share of main Chinese device models. Despite this important
market share, only XIOMI RedMI Note 4X is provided by one of
mobile test cloud players presented in Table 1. This lack of models
is an important problem of coverage, leading to testers the need of
buy devices or validate their apps using emulators.

DBB has total conditions to provide a scalable cloud platform
with a bigger catalog composed of all active models. Its strategy
can take advantage of idle devices around the world in order to
provide a large number and wide variety of devices since it makes
use of devices already acquired. In the next section, we compare,
from a cost perspective, the players discussed in this section.



K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510 505

Table 1
Mobile cloud players scalability.
Platform Available devices Device diversity Contract model Concurrent devices

Google firebase test cloud nd 69 On-demand only Devices on catalog
AWS device farm 1000 191 On-demand and reservation 5 devices
Xamarin test cloud 2000 250 Reservation 30 devices
Perfecto 10000 62 Reservation 3 device
Kobiton 300 95 Reservation 1 device

Table 2
Worldwide vendor market share.

Samsung Huwaei Xiaomi OPPO

2016Q4 18% 10.6% 3.3% 7.3%
2017Q1 23.3% 10% 4.3% 7.5%
2017Q2 22.9% 11.1% 6.2% 8%
2017Q3 22.1% 10.4% 7.5% 8.1%
2017Q4 18.9% 10.7% 7.2% 6.9%

Fig. 2. Chinese models global market share [25].

Table 3
Pricing on top cloud providers and limit of devices–hour included in the price.
Device provider Category Billing model Pricing DH

AWS device farm On-demand $0.17 minutely $10.2 1
Reservation $250 monthly $250 730

Firebase test lab On-demand $5 hourly $5 1
Xamarin test cloud Small startup $99 monthly $99 30
Kobiton Unique $0.1 minutely $6 1
Perfecto Monthly basic $129 monthly $129 5

4.2. Cost comparison

In the previous section, we analyzed the competitive advantage
generated by the potentially vast number of device types accessible
via DBB. However, is even more important to evaluate this advan-
tage from an economic viewpoint, as highlighted by RQ2.With this
inmind, we have conducted an economic feasibility study on using
DBB compared with the alternative solutions.

Our analysis is carried out by assuming that a tester user wants
to perform UI testing in a number of different devices. S/he wants
to do it for onehour long. The expected pricing ondoing this task on
the identified cloud platforms, as well as the limit of devices–hour
(DH) included in such price, are described in Table 3. For simplicity,
we use only the category of billing model more suitable for small
testers (except AWSdue to its high adoption). On this tablewehave
set the pricing as the minimum expense the user must pay to use
1 DH, although s/he can use more devices without price increases
in some cases (as shown in the table).

As can be seen, there is no pattern on billingmodel and the user
has to face a significant difference in pricing. Moreover, even some

providers adopting a monthly charging model there is a limit of
hours to be used, meaning that actually, the contract is not for a
full month (except for AWS1). Another problem is that the billing
models adopted by these providers make it difficult to perform
testing on a small scale. For instance, the use of providers with
monthly charging is subject to payment of the full price. This politic
makes them attractive alternatives only when the number of DH is
close enough to a multiple of the allowed limit.

In face of the highlighted limitations, we have estimated the
pricing of using one device through our solution. We use an hourly
billing model, which is calculated by the equation:

DBB pricing =
I∑
r

+ d + p (1)

where I is the platform deployment and execution cost for each
hour, r is the number of concurrent requests, d is the device reward
cost, and p is revenue gotten by us. To set I , we have estimated
the expenses for a 3-year life-cycle using the Total Cost of Own-
ership (TCO) approach [26], since it can provide reliable decision
support [27]. On top of it, we have included the following cost
components:

• Capital Expenses (CapEx): New purchases of infrastructure
and allocation of new datacenter build-outs.

• Operating Expenses (OpEx): Activities required to install,
setup, and keep the platform running.

• Indirect Business Costs (Ind): The potential impact of down-
time on productivity plus the time-to-market benefits of
increased agility.

The analysis of these cost components were carried out taking
five environment alternatives: (1) on-premises (ONP), our equip-
ment is at a location that we own; (2) colocation (COL), our equip-
ment is at a location that we rent; (3) outsource to Amazon cloud
(AWS) [28]; (4) outsource to Azure cloud (AZU) [29]; and (5) out-
source to Google cloud platform (GCP) [30]. We set these scenarios
targeting analysis of private infrastructuremodels and outsourcing
models using themarket-leading cloud vendors, according to Gart-
ner’s latest report on cloud Infrastructure as a Service [31]. Table 4
depicts the cost components, and presents the resulting values.

For calculating the capital expenses, we first set the hardware
requirements relying on capacity planning recommendations [32].
We estimated for 1000 concurrent requests the need for 4 ma-
chines CPU dual core, 2 GB RAM in the application layer and 1
machine CPU 16 cores, 16 GB RAM, 236 GB of storage, for the
database layer. For the ONP and COL solutions, we adopt the
assumptions used in the AWS TCO calculator [33]. Pricing is based
on the estimated costs of equipment from global infrastructure
vendors using São Paulo, Brazil as location. Cloud options require
no capital expenditures, as no equipment needs to be purchased.

The non-personnel operating expenses for the ONP and COL
scenarios were also estimated using the AWS TCO calculator, using
a ‘‘as a service’’ model for software licensing. For the cloud sce-
narios, we use the VM types c3.large and m4.4xlarge, for AWS;
and Standard_A2 and Standard_F16, for AZU since they closely

1 The number of DH is estimated setting a month with 730 h. The same assump-
tion is used in the remaining of the paper.



506 K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510

Table 4
TCO components and resulting values for a 3-year period.
Expense 3-year expense

ONP COL AWS AZU GCP

Capital expenses

Server Infra. $48,623.62 $48,623.62 – – –
Storage $1814.13 $1814.13 – – –
Backup $38.16 $38.16 – – –
Networking/Security $13,127.81 $28,629.04 – – –

Total: 3 years $63,603.72 $79,104.95 $0 $0 $0

Operating expenses

Personnel $403,491 $403,491 $100,872.75 $100,872.75 $100,872.75

Server maintenance $58,113.91 $58,113.91
$55,143.67 $46,183.56 $52,059.91Software licensing $10,255.39 $10,255.39

Space/Power $102,553.96 $203,323.75

Total: 3 years $574,417.28 $675,184.05 $156,016.42 $147,056.31 $152,932.66

Indirect costs

Estimated loss due to productivity $16,293.6 $16,293.6 $162.94 $814.68 $162.94
Estimated revenue lost due to delays $287,784 $287,784 $82,224 $82,224 $82,224

Total: 3 years $304,077.6 $304,077.6 $82,836.94 $83,038.68 $82,836.94

TCO $942,098.6 $1,058,366.6 $238,853.36 $230,095.29 $235,769.6

match our needs. For GCP we use customized VM types with the
aforementioned configurations. In order not to favor our approach
we use the on-demand pricing for these VM resources, which is
more expensive than the reservation.

People costs are the largest operational expense. The personnel
costs calculated in this model for the ONP and COL scenarios in-
clude salaries and benefits of one full-time infrastructuremanager.
For estimating this cost we use the average salary plus labor over-
head on Brazil [34]. One of the primary benefits of cloud scenarios
is the lower internal personnel staff required for the platform. For
this reason, we adopt that the employee is allocated only 25% of
the time in DBB’s infrastructure management.

Capital expenses and operating expenses are not the only things
to consider when evaluating TCO. A number of indirect costs affect
the business when infrastructure experiences downtime or takes
additional time to bring the resources up to support a new revenue
opportunity. While these costs are difficult to measure, we have
included a set of assumptions here to demonstrate the potential
impact. Our model assumes 99% uptime for the ONP and COL
scenarios (87.6 h annual unplanned downtime). For AWS and GCP,
system availability service levels are guaranteed to 99.99% (0.876 h
annual unplanned downtime) [35,36]. For AZU, system availability
service levels are guaranteed to 99.95% (4.38 h annual unplanned
downtime) [37]. For modeling lost labor productivity in this paper,
we estimated that 20 employees, with an average salary of $62 per
hour each one, could be impacted by application downtime either
directly as IT staff or indirectly as other functions for the platform.
We adopt that there is no significant impact on labor productivity
from unplanned downtime, setting a weighting factor of 5%.

One of our goals is improving time-to-market with additional
infrastructure for business growth or traffic spikes. Our model
adopts a $1M gross annual revenue, and conservatively a revenue
implication of 5% annual capacity growth against the time to de-
ploy additional capacity. For the ONP and COL scenarios, we adopt
an average time to procure additional infrastructure of 45 days per
year and an average time to building and deploying of 25 days per
year. For the cloud scenarios, there is no overhead of infrastructure
searching, but we set an average time to building and deployment
of 20 days per year.

As can be seen, using the Azure cloud is the less expensive
alternative. We use this option in the estimative of our platform
pricing. The second component in cost estimation (as depicted
on Eq. (1)) is the device reward cost. On our analysis, we set the

device reward proportionally the timing it is provided on DBB.
More precisely, we initially set the reward as the cost of acquiring
a new device divided by the number of hours in one year. This way,
if the device owner offers it to be used on DBB on a 24/7 basis, after
one year s/he is able to buy another device with the same pricing.
However, although it seems to be promising enough to persuade
device owners, we analyze an even more attractive option, which
is to pay three times this reward. In doing it, the device owner
can buy another of the same price by providing the original device
8 h per day on DBB. It is a very attractive strategy since the device
owner can choose to join DBB only in idle periods, such as during
the night. In our analysis, we set the device price as $800, which
is expensive enough to not invalidate our analysis. This way, the
device reward cost is calculated using $800

365×h , where h is the number
of hours joined DBB each day: 24 and 8, respectively.

Finally, for the revenue (third component in Eq. (1)), we analyze
scenarios with a Return of Investment (ROI) of 20%, 30%, and 40%
since it represent strong relationwithmarket-share [38]. Using the
three components, we can estimate our platform pricing on each
scenario. Fig. 3 describes the DBB cost breakdown.

To compare our approach with the alternative solutions, we
vary the number of requested devices per hour from 1 to 6000,
which is enough to cover 2̃5% of device models currently available
in the world. Fig. 4 presents the cost for each case, taking the
four scenarios of DBB pricing estimation. The vertical axis is in
logarithmic scale for better visibility.

In the four scenarios of DBB pricing estimation, the final cost
defeats the ones from other solutions in practically all cases. By
using the scenarios with revenue of 20% our solution is always
the best choice. On the other hand, when revenue is set as 30% or
40%, the DBB cost is more expensive than AWS by reservation, on
some individual cases (3.24% of all cases). However, we advocate
that this difference can be tempered by the other benefits of using
our solution. As we have discussed, even using high numbers of
devices as parameters in the comparison, AWS does not allow such
a number of simultaneous devices without previous request. An-
other disadvantage is the number of different models this provider
(as well as the others) offers, which is significantly smaller than
most of the given scenarios. To strengthen our arguments, we also
have compared the cost reduction on using our solution over the
others. Fig. 5 presents the results of comparison. Negative values
indicate an increasing on cost.

The use of our platform can provide an average saving of 85.67%
on total cost when compared with other solutions. Moreover, for



K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510 507

Fig. 3. DBB cost breakdown for one device–hour.

Fig. 4. Cost comparison of DBB with other solutions.

Fig. 5. Cost reduction of using DBB compared with other solutions.

75.67% of analyzed cases, the cost reduction is higher than 90%. To

reinforce the insignificance of cases where our platform cost is less

attractive, the cost difference is only of 6.41% in average, with a

maximum of 15.58%.



508 K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510

By relying on the presented results, we can advocate that our
approach is a very cost-effective solution. This affirmation can
be strengthen by the potential better results if we change the
premises we have taken in on this analysis. For instance, amore at-
tractive pricing can be achieved if we hold a less expensive reward
for device provision or if we adopt the reservation model on cloud
resource outsourcing. Having said that, we can affirm our solution
is a very attractive option not only from the device availability
viewpoint but also from an economical view. It is possible because
our proposal is based on the Collaborative Economy model, which
make feasible the utilization of existing third-part resources to
provide cheap and scalable services.

5. Related work

We focus our discussion related to tools which addressing test
cost reduction on mobile devices. For that we divided the works
into three categories: (A) Tools based on record and replay tests;
(B) Tools which provide input data generation; and (C) Tools based
on static analysis.

(A) Tools based on record and replay tests
In 2014 Gao et al. published a work [39] which aims to present

a new version of the MobileTest [40], which would be provided
through a service. Originally MobileTest was developed to assist
testers in high-level script generation about appusage and replying
it to different devices.

Others similar tools were proposed such as AMT in [41] and
Testdroid in [42]. AMT is composed of two components named
amt-capture, able to generate a JSON file regards app GUI usage,
and amt-replay, able to reply the execution recorded by amt-
capture in others Android devices. Testdroid is an online platform
for assist user interface testing on a variety of physical Android de-
vices. It allows developers to record test scripts, which along with
their application are automatically executed on physical devices in
parallel.

Approaches search by state-machine generation based on avail-
able properties in widgets used by app. Amalfitano et al. published
two works which use this approach. In [43] was presented An-
droidRipper, an automated technique that tests Android apps by
exploring apps’ GUI with aim of exercising the application in a
structuredmanner. AndroidRipper dynamically analyzes the appli-
cation’s GUI with the aim of obtaining sequences of events fireable
through the GUI widgets. Based on retrieved sequence, test cases
are created and a state machine model of each GUI is built. Later
activities can be exercised. In [44] was developed MobiGUITAR, a
tool able to generate test cases automatically, basing on a model
which performs a ripping that dynamically traverses an app’s GUI
and creates its state-machine model and record it to be run later.

In [45] was developed a very interesting system for generating
and replying Android tests. A tool namedDroidMatewas presented
as an automated GUI execution generator for Android apps. It
explores an app,monitoring its deviceGUI and calls toAndroidAPIs
methods for later reproduction it physically using a robot.

(B) Tools which provide input data generation
Another type of problemwhich exists in any kind of application

is about the input to tests. To address this type of problem we
cite two important works [46,47]. Machiry et al. [46] presented a
system called Dynodroid which generates inputs to Android apps.
It performs a monitoring of app events and monitors the reaction
of the app upon each event, using it to guide the generation of the
next event to the app.Mao et al. [47] presented a tool able to reduce
search space of input but without loss coverage of scenarios. The
authors used a multi-objective search-based testing model to do
it.

(C) Tools based on static analysis
Some work try to point defects prone without the necessity

of written test, i.e. through static analysis. Wei et al. published a

technique [48] and proposed FicFinder tool, which is able to indi-
cate defects prone based on the static code analyses. The technique
proves effective to 27 large-scale open-sourceAndroid apps. In [49]
was designed a mobile application compatibility test system for
Android fragmentation. Based on comparison code analysis result
and API pre-testing to detect android fragmentation, this tool is
able to statically check the compatibility of an app against desired
devices. Thus, through comparing the fragmentation in the code
level and the API level, the time and cost of mobile application test
could be reduced.

Since Google Espresso was released as the official framework
to build and run UI tests to Android apps, some authors had
addressed their questions using this framework. In [50] the authors
proposed a tool called Barista, able to support testers on Espresso
tests generation. This tool generates espresso test code like a test
recorder based on app usage, making ease the written of Espresso
tests. Taken advantage of Barista we discussed the collaborative
economy paradigms usage in the testing process of Android apps
and we first introduced DBB in [51]. The proposed platform is
based on distributing of Espresso test cases in idle devices spread
around theworld. Thiswork had as inspiration a paper published in
2015 [52], which posed the possibility of use of idle mobile devices
through the Femtocloud system, which is able to share devices
computing capability out of the clusters. The authors based on the
aggregation of devices in places such as public transportations,
coffee places, schools, etc.

Despite the fact of several works had been publishedwhich aim
to reduce inherent costs involved in mobile software testing, we
could not find any work focused in minimize the tests execution
costs.

6. Threats of validity

Although DBB contributes to reducing the cost of the UI test
execution process, through use of the distributed computing and
collaborative economy, there are some aspects that must be taken
into account.

It is not possible to guarantee that there is enough developers’
demand tomaintain the necessary infrastructure, described in Sec-
tion 4, to the operation of the platform. However, several published
reports give us the possibility to believe that there is significant
demand for this type of service. Although the report published by
Heavy Reading [53] contains optimistic predictions, a newer report
presented that thismarketmay achieve $46.90 Billion in 2019 [54].
Others similar estimates, made by Statista [55], predicts that the
number of cloud computing subscribers worldwide around 3.6
Billion in 2018.

The proposed model is based on third-party resources, so its
popularization is a risk and is subject to people acceptance i.e,
device owners must allow their devices to be used by an unknown
person/company, who wants to run a test. We intend to validate
this issue through extensive experimentation, involving real cases
of acceptance by device owners and their proper reward. Convinc-
ing a person to rent their device for testing is undoubtedly themost
challenging part. To do this, initially a large number of invitation
emails would be sent, as soon as the first users register and then
download and configure the DBB-agent, fake tests would be sent to
these users and run for at least 1 h. DBB also sends a fake report as
a confirmation of the completion of the execution, and the device’s
owner would receive a credit, monitored through the dashboard
(DBB-agent and DBB-web).

At the other end, developers could be encouraged to propagate
the existence of the platform through discounts held by possible
indications.

Some technical issues still need to be mitigated, in order to de-
liver a controlled environment to testers, who would remunerate



K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510 509

the platform. Moreover, despite the fact that DBB is prepared to
run instrumented testswritten in Espresso, there are several others
technologies regards mobile software testing which could com-
pose this solution, Robotium [56], UiAutomator [15], Calabash [14]
and Appium [13].

Another critical issue is regarding the device owner’s data pri-
vacy and other security functionalities. Currently, theDBBplatform
does not provide any security service. Thus, once submitted for
execution, apps and related test cases can access data available
in the file system only under the app behavior, so, in this case,
the user is relying on the app, and not in DBB. Therefore, we
advocate that this not be a problem because we notify the device
owner in advance about all permissions required by app under test.
The user can accept or deny the test execution according to their
convenience. This task is possible by analyzing the manifest file,
which is mandatory in any Android app.

In addition to the limitations above, another problem is the
compromising of test running due to app notifications triggered
by background processes in the remote device. Most of the time
this does not affect test execution because app usually displays
notifications on the notification bar. However, when an exception
is thrown due app notification our first solution is to attach to the
test report the caught exception and the corresponding screenshot.
Also, billing does not occur in this case.

Even that the DBB is a worldwide platform, there is a risk that,
for a substantial number of devicemodels, there is none equipment
registered on the platform, compromising the diversity of devices
available for testing. However, because DBB is a profitable platform
for device owners and an economical alternative for developers,we
believe that this minimizes the problem. Our argument on stating
it is that each region may have different predominant models, and
thesemodels can be included in the platform bymarketing actions,
achieving device diversity. Moreover, as mentioned in Section 4,
one limitation in the top cloud players is devices’ availability since
currently some of them enforce limits on concurrent usage of
devices to avoid monopolization.

7. Conclusion

In this paper, we presented a feasibility analysis about a disrup-
tive platform called DBB, designed for supporting testers/
developers run test cases in multiples real devices in an effective
and viable business.

One distinctive feature of our platform is that it creates a new
market for device-owners to rent their mobile devices while both
the cost for executing test cases in real devices decrease and
the compatibility tests are more effective. We implemented our
approach relying on CE principles. Our preliminary evaluation of
DBB shows that it can be useful and effective in practice in both
technical and business terms.

We need to address some issues in future works involving CE
applied on mobile software testing, such as security aspects about
private existing user data on remote devices, and devices used for
purposes other than the execution of tests.

Our platform is in the validation stage. Therefore, there are
numerous of improving aspects to be performed on DBB, such as
increasing the number of experiments, extends the scale of the
business validation, and explore deeper the integration ofDBBwith
more testing technologies. Finally, we intend to consider those
aspects in our next experiments.

Acknowledgment

The authors would like to thank IFG and CNPq for funding part
of this work.

References

[1] Statista Inc, Statista, https://www.statista.com/statistics/274774/forecast-
of-mobile-phone-users-worldwide/. Accessed on: 04/27/2018, 2018.

[2] Statista Inc, Statista, https://www.statista.com/topics/876/android/. Accessed
on: 04/27/2018, 2018.

[3] S. Inc, Statista, Project Web Page, https://goo.gl/g9EyZD. Accessed on:
02/28/2018, 2018.

[4] O. Inc, Opensignal, Project Web Page, https://opensignal.com/reports/2015/
08/android-fragmentation/. Accessed on: 02/28/2018, 2018.

[5] Google Inc, Android screen size, https://developer.android.com/about/
dashboards/. Accessed on: 04/27/2018, 2018.

[6] E.N. de Andrade Freitas, C.G. Camilo-Junior, A.M.R. Vincenzi, Scout: a multi-
objectivemethod to select components in designing unit testing, in: Software
Reliability Engineering (ISSRE), 2016 IEEE 27th International Symposium on,
IEEE, 2016, pp. 36–46.

[7] A. Inc, AWS device farm, Project Web Page, https://aws.amazon.com/pt/
device-farm/. Accessed on: 02/28/2018, 2018.

[8] X. Inc, Xamarin test cloud, ProjectWeb Page, https://www.xamarin.com/test-
cloud. Accessed on: 02/28/2018, 2018.

[9] G. Inc, Firebase test lab, Project Web Page, https://goo.gl/7GK9G9. Accessed
on: 02/28/2018, 2018.

[10] P.M. Inc, Kobiton, Project Web Page, https://www.perfectomobile.com. Ac-
cessed on: 02/28/2018, 2018.

[11] K. Inc, Kobiton, Project Web Page, https://kobiton.com/. Accessed on:
02/28/2018, 2018.

[12] G. Inc, Espresso, Project Web Page, https://goo.gl/pzjgQS. Accessed on:
02/28/2018, 2014.

[13] J. Foundation, Appium, Project Web Page, http://appium.io/. Accessed on:
02/28/2018, 2012.

[14] X. Inc, Xamarin, ProjectWeb Page, http://calaba.sh/. Accessed on: 02/28/2018,
2015.

[15] G. Inc, UI automator, Project Web Page, https://goo.gl/fw4bJV. Accessed on:
02/28/2018, 2018.

[16] Google Inc, Android junitrunner, https://developer.android.com/training/
testing/junit-runner. Accessed on: 04/27/2018, 2018.

[17] Square Inc, Spoon, http://square.github.io/spoon/. Accessed on: 04/27/2018,
2018.

[18] Uber Inc, Uber, https://www.uber.com. Accessed on: 04/27/2018, 2018.
[19] Turo Inc, Turo, https://turo.com. Accessed on: 04/27/2018, 2018.
[20] Airbnb Inc, Airbnb, https://www.airbnb.com. Accessed on: 04/27/2018, 2018.
[21] I. Inc, Idc, Project Web Page, https://www.idc.com/promo/smartphone-

market-share/vendor. Accessed on: 02/28/2018, 2018.
[22] H. Inc, Huawei, Project Web Page, http://www.huawei.com/. Accessed on:

02/28/2018, 2018.
[23] X. Inc, Xiaomi, Project Web Page, http://www.mi.com/. Accessed on:

02/28/2018, 2018.
[24] O. Inc, Oppo, Project Web Page, https://www.oppo.com. Accessed on:

02/28/2018, 2018.
[25] C. Inc, Counterpointer, Project Web Page, https://goo.gl/XZsbZF. Accessed on:

02/28/2018..
[26] B. Martens, M. Walterbusch, F. Teuteberg, Costing of cloud computing ser-

vices: a total cost of ownership approach, in: System Science (HICSS), 2012
45th Hawaii International Conference on, IEEE, 2012, pp. 1563–1572.

[27] L.M. Ellram, S.P. Siferd, Total cost of ownership: a key concept in strategic cost
management decisions, J. Bus. Logistics 19 (1) (1998) 55.

[28] Amazon, Amazon web services, https://aws.amazon.com. Accessed on:
04/27/2018, 2018.

[29] Microsoft, Microsoft azure, https://azure.microsoft.com. Accessed on:
04/27/2018, 2018.

[30] Google, Google cloud platform, https://cloud.google.com. Accessed on:
04/27/2018, 2018.

[31] L. Lydia, B. Raj, L. Craig, S. Dennis, Magic quadrant for cloud infrastructure as a
service, worldwide, https://www.gartner.com/doc/reprints?id=1-2G2O5FC&
ct=150519. Accessed on: 03/28/2018, 2017.

[32] Oracle, Capacity planning and deployment guide, Tech. Rep. 9.2.1, https://
docs.oracle.com/cd/E11116_04/otn/pdf/install/E11130_01.pdf. Accessed on:
03/28/2018, 2007.

[33] Amazon, AWS total cost of ownership (tco) calculator, http://
awstcocalculator.com/. Accessed on: 04/20/2018, 2018.

[34] Robert Half, Salary guide 2018, Tech. rep., https://www.roberthalf.com.br/
guia-salarial. Accessed on: 02/28/2018, 2018.

[35] AWS, Amazon compute service level agreement, https://aws.amazon.com/
compute/sla/. Accessed on: 04/27/2018, 2018.

[36] Google Cloud, Google compute engine sla, https://cloud.google.com/
compute/sla. Accessed on: 04/27/2018, 2018.

[37] Microsoft Azure, SLA for virtual machines, https://azure.microsoft.com/en-
us/support/legal/sla/virtual-machines/v1_8/. Accessed on: 04/27/2018, 2018.

[38] R.D. Buzzell, B.T. Gale, R.G. Sultan,Market share-a key to profitability, Harvard
Bus. Rev. 53 (1) (1975) 97–106.

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
https://www.statista.com/topics/876/android/
https://goo.gl/g9EyZD
https://opensignal.com/reports/2015/08/android-fragmentation/
https://opensignal.com/reports/2015/08/android-fragmentation/
https://opensignal.com/reports/2015/08/android-fragmentation/
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb6
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb6
https://aws.amazon.com/pt/device-farm/
https://aws.amazon.com/pt/device-farm/
https://aws.amazon.com/pt/device-farm/
https://www.xamarin.com/test-cloud
https://www.xamarin.com/test-cloud
https://www.xamarin.com/test-cloud
https://goo.gl/7GK9G9
https://www.perfectomobile.com
https://kobiton.com/
https://goo.gl/pzjgQS
http://appium.io/
http://calaba.sh/
https://goo.gl/fw4bJV
https://developer.android.com/training/testing/junit-runner
https://developer.android.com/training/testing/junit-runner
https://developer.android.com/training/testing/junit-runner
http://square.github.io/spoon/
https://www.uber.com
https://turo.com
https://www.airbnb.com
https://www.idc.com/promo/smartphone-market-share/vendor
https://www.idc.com/promo/smartphone-market-share/vendor
https://www.idc.com/promo/smartphone-market-share/vendor
http://www.huawei.com/
http://www.mi.com/
https://www.oppo.com
https://goo.gl/XZsbZF
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb26
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb27
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb27
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb27
https://aws.amazon.com
https://azure.microsoft.com
https://cloud.google.com
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
https://docs.oracle.com/cd/E11116_04/otn/pdf/install/E11130_01.pdf
https://docs.oracle.com/cd/E11116_04/otn/pdf/install/E11130_01.pdf
https://docs.oracle.com/cd/E11116_04/otn/pdf/install/E11130_01.pdf
http://awstcocalculator.com/
http://awstcocalculator.com/
http://awstcocalculator.com/
https://www.roberthalf.com.br/guia-salarial
https://www.roberthalf.com.br/guia-salarial
https://www.roberthalf.com.br/guia-salarial
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://aws.amazon.com/compute/sla/
https://cloud.google.com/compute/sla
https://cloud.google.com/compute/sla
https://cloud.google.com/compute/sla
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb38
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb38
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb38


510 K.A.C. Faria, R. de Aquino Gomes, E.N. de Andrade Freitas et al. / Future Generation Computer Systems 95 (2019) 502–510

[39] J. Gao, W.-T. Tsai, R. Paul, X. Bai, T. Uehara, Mobile testing-as-a-service
(mtaas)–infrastructures, issues, solutions and needs, in: High-Assurance Sys-
tems Engineering (HASE), 2014 IEEE 15th International Symposium on, IEEE,
2014, pp. 158–167.

[40] J. Bo, L. Xiang, G. Xiaopeng, Mobiletest: a tool supporting automatic black
box test for software on smart mobile devices, in: Proceedings of the Second
International Workshop on Automation of Software Test, IEEE Computer
Society, 2007, p. 8.

[41] E.N. Freitas, K.A.C. Faria, C.G. Camilo-Junior, A.M.R. Vincenzi, AMT: an android
mirror tool for instant feedback across platform, in: Congresso Brasileiro de
Software (CBSoft), 2016 7th Congresso Brasileiro de Software on, SBC, 2016,
pp. 429–440.

[42] J. Kaasila, D. Ferreira, V. Kostakos, T. Ojala, Testdroid: automated remote ui
testing on android, in: Proceedings of the 11th International Conference on
Mobile and Ubiquitous Multimedia, ACM, 2012, p. 28.

[43] D. Amalfitano, A.R. Fasolino, P. Tramontana, S. De Carmine, A.M. Memon,
Using gui ripping for automated testing of android applications, in: Proceed-
ings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ACM, 2012, pp. 258–261.

[44] D. Amalfitano, A.R. Fasolino, P. Tramontana, B.D. Ta, A.M. Memon, MobiGUI-
TAR: automatedmodel-based testing ofmobile apps, IEEE Softw. 32 (5) (2015)
53–59.

[45] K. Jamrozik, A. Zeller, Droidmate: a robust and extensible test generator for
android, in: Mobile Software Engineering and Systems (MOBILESoft), 2016
IEEE/ACM International Conference on, IEEE, 2016, pp. 293–294.

[46] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: an input generation system for
android apps, in: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ACM, 2013, pp. 224–234.

[47] K. Mao, M. Harman, Y. Jia, Sapienz: multi-objective automated testing for
android applications, in: Proceedings of the 25th International Symposium
on Software Testing and Analysis, ACM, 2016, pp. 94–105.

[48] L. Wei, Y. Liu, S.-C. Cheung, Taming android fragmentation: characterizing
and detecting compatibility issues for android apps, in: Automated Software
Engineering (ASE), 2016 31st IEEE/ACM International Conference on, IEEE,
2016, pp. 226–237.

[49] H.K. Ham, Y.B. Park, Mobile application compatibility test system design for
android fragmentation, in: International Conference on Advanced Software
Engineering and Its Applications, Springer, 2011, pp. 314–320.

[50] M. Fazzini, E.N.d.A. Freitas, S.R. Choudhary, A. Orso, Barista: a technique for
recording, encoding, and running platform independent android tests, in:
Proceedings of the 10th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2017), IEEE, 2017, pp. 01–11.

[51] K.A.C. Faria, E.N.d.A. Freitas, A.M.R. Vincenzi, Collaborative economy for test-
ing cost reduction on android ecosystem, in: Proceedings of the 8th ACM
SIGSOFT InternationalWorkshop onAutomated Software Testing, ACM, 2017,
pp. 11–18.

[52] K. Habak, M. Ammar, K.A. Harras, E. Zegura, Femto clouds: leveraging mobile
devices to provide cloud service at the edge, in: Cloud Computing (CLOUD),
2015 IEEE 8th International Conference on, IEEE, 2015, pp. 9–16.

[53] H. Reading, The mobile cloud market outlook to 2017, 2013.
[54] MarketsandMarkets, Mobile cloud market by application, https://goo.gl/

AUVMHA. Accessed on: 04/27/2018, 2018.
[55] Statista, Number of consumer cloud-based service users worldwide in 2013

and 2018, https://goo.gl/TrUv16. Accessed on: 04/27/2018, 2018.
[56] Robotium, Robotium, Project Web Page, https://github.com/RobotiumTech/

robotium/wiki. Accessed on: 02/28/2018, 2018.

Kenyo Abadio Crosara Faria concluded his bachelor in
Computer Science at Universidade Católica de Goiás -
UCG (2003) and hismaster (2006) in Computer Engineer-
ing at School of Electrical and Computer Engineering of
Universidade Federal de Goiás. Currently is PhD candi-
date in Computer Science at Instituto de Informática of
Universidade Federal de Goiás. Since 2008 he is professor
at Instituto Federal de Goiás. His current research inter-
ests include software testing and software architecture.

Raphael de Aquino Gomes is graduated (2006), master
(2009), and PhD (2017) in Computer Science from the
Universidade Federal de Goiás with internship period
at Institut National de Recherche en Informatique et en
Automatique (INRIA), France. Currently, he is professor
at Instituto Federal de Educação, Ciência e Tecnologia de
Goiás (IFG). His current research interests include cloud
computing, service-oriented solutions, Internet of Things,
and performance optimization.

Eduardo Noronha de Andrade Freitas received his de-
gree in Computer Science in 2000; his specialization in
Software Quality in 2003, hismaster’s degree in Electrical
and Computer Engineering in 2006, and his Ph.D. in Com-
puter Science from the Universidade Federal de Goiás in
2016. From 2013 to 2015, during his Ph.D. studies, he col-
laborated in the Checkdroid startup (www.checkdroid.
com) at the Georgia Institute of Technology in Atlanta,
GA. He served as Information Technology Manager at
the Secretariat of Public Security of the State of Goiás
from 2006 to 2010, participating in the development

and implementation of strategic processes. He also developed numerous strategic
planning projects and data analysis in the public and private sectors in diverse
areas: health, education, security, sports, politics, and religion. Since 2010, he has
served as a professor at the Instituto Federal de Goiás (IFG). He has extensive
experience in computer sciencewith a focus on computer systems, principally in the
following areas: systems development, software engineering with an emphasis on
search-based software engineering, Android testing, multiagent systems, strategic
management of technology, and computational intelligence. He can be reached at
eduardonaf@gmail.com.

Auri Marcelo Rizzo Vincenzi concluded his bachelor in
Computer Science at Universidade Estadual de Londrina
– UEL (1995) and his master (1998) and doctor (2004)
degree in Computer Science and Computational Mathe-
matics at Universidade de São Paulo – ICMC/USP. During
his doctor he visited the University of Texas at Dallas UT-
Dallas –USA. Since 2008hewasprofessor atUniversidade
Federal de Goiás – UFG and member of the Sociedade
Brasileira de Computação (SBC), Association for Comput-
ing Machinery (ACM), and the Institute of Electrical and
Electronics Engineers (IEEE). Since 2015, he is professor

at Universidade Federal de São Carlos, and his current research interests include
software testing, static and dynamic analysis of open-source applications, object-
oriented program analysis, and software evolution.

http://refhub.elsevier.com/S0167-739X(18)31041-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb39
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb40
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb41
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb42
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb43
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb44
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb45
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb46
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb47
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb48
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb49
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb50
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb51
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb52
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb52
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb52
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb52
http://refhub.elsevier.com/S0167-739X(18)31041-0/sb52
https://goo.gl/AUVMHA
https://goo.gl/AUVMHA
https://goo.gl/AUVMHA
https://goo.gl/TrUv16
https://github.com/RobotiumTech/robotium/wiki
https://github.com/RobotiumTech/robotium/wiki
https://github.com/RobotiumTech/robotium/wiki
http://www.checkdroid.com
http://www.checkdroid.com
http://www.checkdroid.com
mailto:eduardonaf@gmail.com

	On using collaborative economy for test cost reduction in high fragmented environments
	Introduction
	Background
	Instrumented tests on Android
	Collaborative Economy Applied on Software Testing Context

	Proposed Platform
	Evaluation
	Scalability comparison
	Cost Comparison

	Related Work
	Threats of validity
	Conclusion
	Acknowledgment
	References


