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A B S T R A C T

The goal of this paper is to promote the use of Non-Parametric Regression (NPR) for hypothesis testing in
hospitality and tourism research. In contrast to linear regression models, NPR frees researchers from the need to
impose a priori specification on functional forms, thus allowing more flexibility and less vulnerability to mis-
specification problems. Importantly, we discuss in this paper a Bayesian approach to NPR using a Gaussian
Process Prior (GPP). We illustrate the advantages of this method using an interesting application on inter-
nationalization and hotel performance. Specifically, we show how in contrast to linear regression, NPR decreases
the risk of making incorrect hypothesis statements by revealing the true and full relationship between the
variables of interest.

1. Introduction

Despite the increased popularity of non-parametric regression
(NPR), its use in the tourism and hospitality literature remains very
limited. We aim in this note to highlight the advantages of NPR, and
illustrate how it can be used to provide a more accurate reflection on
the true relationship between a set of variables. We show through an
example that hospitality researchers might be missing some important
input for hypothesis testing when estimating the traditional linear re-
gression model.

NPR, like linear regression, estimates mean outcomes for a given set
of covariates. However, unlike linear regression, NPR is not subject to
misspecification error arising from potentially wrong functional forms
as it does not impose a priori a functional form on the regression model
(Müller, 2012; Mammen et al., 2012). The linear model
(y= β0+ βx+ u) is generally assumed for convenience, and not be-
cause we truly believe that the model is linear in reality.

Researchers in the field often model nonlinearities using extensions
of the linear model, for example, y= β0+ β1x+ β2x2+ u. It is clear,
however, that this model accounts only for limited types of nonlinearity
of U or inverted U shape, and cannot capture more complicated patterns
in the data. When more than one regressor is available, nonlinearities
are often modeled using interactions: y= β0+ β1x+ β2z+ β3xz+ u.
The interpretation is that the effect of x on y depends on z:

= +∂
∂ β β zE y

x
( )

1 3 . This is, of course, a deviation from the simple linear
model where the main assumption is that the effect of x on y is constant
across all values of x or other explanatory variables. However, the effect
of x on y depends on z in a linear way, an assumption that may or may
not hold in practice.

Let us illustrate here the above with a small example: we generate
for instance, 100 observations from the model: yi=exp(−sin
(xi))+ 0.5εi, where the εis are standard normal random variables. The
xis are generated as a sequence in the interval [−3, 3] with step 6/99.
The results (Fig. 1) illustrate nicely what happens when a linear model
is fitted to data, which have been generated through a nonlinear model.
It is a complete miss. As mentioned, the linear model is only an ap-
proximation to an unknown regression function of the form: y= f
(x)+ u. The non-parametric regression does not assume that f () is
linear; it can in fact be non-linear. NPR does not also assume that f () is
linear in the parameters. It could be actually anything. In nonpara-
metric analysis, we seek to estimate directly the unknown function f(x)
when observations =x y i n{ , , 1,..., }i i are available. The model for each
observation is yi= f(xi)+ ui or yi= fi+ ui, i=1, ..., n where fi= f(xi).
The unknown function values f1, ..., fn are then treated as parameters.
Clearly, the number of parameters in this instance, rises with the
sample size. However, it is possible to obtain consistent estimates if we
assume that the regression function is sufficiently smooth (i.e. possesses
continuous derivatives of a certain order).
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Some popular non-parametric techniques include the Nadaraya –
Watson estimator, kernel smoothing, local linear estimation etc. The
situation is more difficult when the underlying model is: yi= f(xi)+ ui,
where ∈xi

k is a vector of explanatory variables. This situation is of
interest because rarely if ever we have only one explanatory variable.
The problem of non-parametric regression with multiple explanatory
variables is a difficult problem. One approach is additive non-para-
metric regression: yi= f1(xi1)+ f2(xi2)+ ... + fk(xik)+ ui, where f1, f2,
..., fk are unknown functional forms. In this model, however, the effect
of any regressor on the dependent variable does not depend on the
values of the other regressors; an assumption that is unlikely to be met
in practice.

In this paper, we describe a Bayesian approach to NPR, using a
Gaussian Process Prior (GPP), which is a popular and effective way of
dealing with the problems of non-parametric multivariate regression
(Williams and Rasmussen, 1996; Williams, 1998; MacKay, 1998;
Vivarelli and Williams, 1999). We elaborate more on this method in the
next section. We also present an application from the hotel literature.

2. Bayesian nonparametric regression through Gaussian process
prior

Let us assume we have a dataset =y x i n{ , ; 1,..., }i i where ∈xi
d is a

vector of predictors and yi is the dependent variable. It is customary to
use a linear regression model to perform statistical inferences:

= ′ + =y x β u i n, 1,..., ,i i i (1)

where ∈β d is a vector of fixed coefficients. The linear regression
model is, in reality, only an approximation to a true regression model of
the form

= + =y f x u i n( ) , 1,..., ,i i i (2)

where f(xi) is an unknown functional form. We assume ∼u iidN σ(0, )i
2 .

We use here a Gaussian Process Prior (GPP) to approximate the true
but unknown functional form. Suppose = ′y y y[ , ..., ]n1 and

= ′f f f[ , ..., ]n1 represent, respectively, the vector of observations for the
dependent variable and the vector of unknown function values at the
observed regressors. Denote also = ′ ′ ′X x x[ , ..., ]n1 be the n× d matrix of
observations on the regressors. The model can be written in the form:

∼y f N f σ I( , ).2 (3)

The GPP places a prior upon the class of unknown functional forms:

∼f N (0, ), (4)

where K with double bars is n*n matrix whose elements are defined by:

 = =κ x x i j n( , ), , 1,..., ,ij i j

where κ x x( , )i j is a certain kernel function that measures the distance
between different points. A popular choice is

= − − ′ −κ x x τ e( , ) ,i j
x x x x η2 ( ) ( )/i j i j 2

(5)

where τ and η are hyperparameters to be selected along with σ.
It is instructive to consider what types of functions can be delivered

through a GPP. Samples from a GPP with τ=2, η=1 are shown in
Fig. 2a and in Fig. 2b when τ=3, η=3 in which case the resulting
functions are closer to what we would expect in typical economic and
management studies.

Typically, we are interested in evaluating (and presenting graphi-
cally) the unknown functional form at a different set of points, say

= ′ ′X x x* [ *, ..., *]m1 where ∈ =x i m* , 1,..., .i
d Let =f f f* [ *, ..., *]m1 denote

the function values at these points. Therefore, we are interested in the
posterior distribution p(f*|y). The model then is as follows:
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where =K κ x x( ) ( , )xx ij i j , =K κ x x( ) ( , *)xx ij i j* , =K κ x x( ) ( *, *)x x ij i j* * . It is
simple to show that we have:

∼f y N f V* ( * , ), (7)

where

 = ′ +f σ I y* ( ) ,xx xx*
2 (8)

   = − ′ +V σ I( ) .x x xx xx xx* * *
2

* (9)

Based on (8) we can plot the unknown function at selected points.
The log marginal likelihood of the model is:

 = − − − ′ −M y π y ylog ( ) log(2 ) log ,n
θ θ2

1
2

1
2

1

(10)

where = ′θ η τ σ[ , , ] and Kθ shows explicitly the dependence of matrix K
on the hyperparameters in θ. The log marginal likelihood can be
maximized numerically with respect to the hyperparameters to provide
the best possible choices that can, in turn, be used in (8) to provide the
function values at the desired points.

3. Application

We illustrate the Bayesian non-parametric regression using an in-
teresting application on the relationship between the degree of

Fig. 1. NPR vs. Linear Regression: Results from Artificial Data.
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internationalization and hotel performance. We use data on 45 inter-
national hotels companies over a 5-year period (2008–2012).

In line with the literature (Assaf et al., 2016), we measure the de-
gree of internationalization for each company as the percentage of hotel
brand properties operating in foreign countries divided by the total
number of properties. For hotel performance, we use the Revenue per
available room (RevPAR)2 (Canina et al., 2005; Ismail et al., 2002). In
our model we also controlled for firm size (total number of rooms) and
the purchasing power partity (PPP) of the destination where the hotel is
located.

The data for this study were mainly collected from three databases:
(1) the Euromonitor, (2) the Smith Travel Research (STR), and (3) the
World Bank’s Data Bank.

4. Results

Table 1 provides some descriptive statistics of the model variables.
We estimate the Bayesian NPR using the Gauss software. For compar-
ison, we also estimate a simple linear regression. Table 2 presents the
marginal effects results we obtained from both models. In Figs. 3–5 we
also present the kernel densities for each variable obtained from the
non-parametric regression. As mentioned, the key advantage of the
non-parametric regression is that it provides much richer information
than OLS. For instance, Figs. 3–5 reflect the entire relationship and not
just the average effect.

Table 2 clearly highlights the differences between the linear

regression and non-parametric results. For instance, while linear re-
gression shows a negative effect of internationalization and size on firm
performance, the non-parametric results indicate the opposite (though
both effects are not significant). The size of the coefficients is also
different between the two methods.

Why such differences? Because, it is clear from Figs. 3 and 5 that the
effect of internationalization and size is not linear. Performance and
internationalization, for instance, are related through an inverted-U
relationship; performance first rises and then declines (but not rapidly).

Fig. 2. a) Samples from a Gaussian Process Prior (τ=2, η=1). b) Sbamples from a Gaussian Process Prior (τ=3, η=3).

Table 1
Descriptive Statistics of Model Variables.

Variable Mean St.Dev Median

RevPAR 4.355 0.477 4.323
Internationalization 0.511 0.404 0.417
PPP 2195.56 3626.89 134.908
Size 51.569 67.880 23.600

Table 2
Marginal Effects: Non-Parametric Regression vs. Linear Regression.

Variable NPR Linear Regression

Internationalization 0.055 (0.101) −0.085(0.077)
PPP 0.463 (0.078) 5.01E-05 (9.23E-06)
Firm Size 0.860 (0.130) −0.003 (0.000)

Numbers in parentheses represent the standard deviations. Bold values re-
present signifcant coefficients.

2 We use the log of RevPAR due to the highly skewed nature of this variable.
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The relationship between performance and size is more complicated.
There is an inverted-U shape followed by a rapid increase of perfor-
mance after a certain point signifying that large size is beneficial for
better performance. The relationship between performance and PPP is
monotonic and only slightly nonlinear.

In fact, this should help explain why the linear regression yields
very different results as it is assuming a linear relationship and is only
considering the average effect. The non-parametric regression, on the
other hand, does not impose in advance a functional form and reflects
the overall and true relationship between two variables. In fact, our
non-parametric results seem also to be more in line with the literature
(Lu and Beamish, 2004) which, for the most part, clearly indicate a non-

linear relationship between internationalization and firm performance.

5. Concluding remarks

The goal of this note was to promote the use of NPR in hospitality
and tourism research. NPR models are not subject to misspecification
error of the functional form and “provide a means of assessing a broad
range of hypotheses such as whether the sign of the slope of a re-
lationship changes or whether the relationship is additive, concave, or
homothetic” (Yatchew, 1998, p.715). There are many applications in
the field where researchers are misspecifying the true functional forms
between the hypothesized relationships. We clearly showed through

Fig. 3. Functional Form between Internationalization and Performance.

Fig. 4. Functional Form between PPP and Performance.

Fig. 5. Functional Form between Firm Size and Performance.
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this application the risk of assuming a linear relationship on a re-
lationship that is not linear. As the literature indicates that inter-
nationalization and firm performance are related in a nonlinear way,
the use of linear regression would be inappropriate and this is some-
thing we know in advance. Indeed, our application shows that the re-
lationship is nonlinear in interesting ways and the use of linear re-
gression would have been misleading. We presented a particularly well
suited approach to nonparametric analysis in hospitality and tourism
research, known as Gaussian Process Priors (GPP). GPPs can deal ef-
fectively with the problem of multivariate regression (i.e. in the pre-
sence of many covariates) and Bayesian computations are straightfor-
ward, requiring only matrix manipulations that can be performed in
standard and widely available software.

One can also estimate NPR in a non-Bayesian framework. For in-
stance, STATA can provide such estimates through the “npregress”
command. Unlike Bayesian estimation, however, the non-Bayesian
framework requires a larger sample size than linear regression to lead
consistent estimates. For instance, in the model used in our application,
around 500 observations should be at least needed to provide consistent
estimates.
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