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Abstract—The Internet of Things holds huge promises to enhance 
collaboration in multiple application domains. By bringing 
Internet connectivity to everyday objects and environments it 
promotes ubiquitous access to information and integration with 
third-party systems. Further, connected “things” can be used as 
physical interfaces to enable users to cooperate leveraging multiple 
devices via parallel and distributed actions. Yet creating 
prototypes of IoT systems is a complex task for non-experts 
because it requires dealing with multi-layered hardware and 
software infrastructures. We introduce RapIoT, a software toolkit 
that facilitates prototyping IoT systems providing an integrated set 
of developer tools. Our solution abstracts low-level details and 
communication protocols allowing developers to focus on the 
application logic, facilitating rapid prototyping. RapIoT supports 
the development of collaborative applications by enabling the 
definition of high-level data types primitives. RapIoT primitives 
act as a loosely-coupled interface between generic IoT devices and 
applications; simplifying the development of systems that make 
use of an ecology of devices distributed to multiple users and 
environments. We illustrate the potential of our toolkit by 
presenting the development process of a IoT system for crowd-
sourcing of air quality data. We conclude discussing strength and 
limitations of our platform highlighting further possible uses for 
collaborative applications.  

Keywords—Internet of Things, IoT, Ubiquitous Computing, 
Development, Toolkit.  

I.  INTRODUCTION 
The Internet of Things (IoT), holds huge promises to 

enhance computer-supported collaboration in several 
applications domains. By enabling seamless interconnection of 
people, computers, everyday objects and environments it 
promotes collaboration off the screen, into our everyday 
routines. By increasing the amount and quality of information 
captured by connected objects it might ultimately improve 
collaboration among people using those objects [1].  

Research works have shown how IoT systems can leverage 
connected objects in collaborative applications; for example, to 
support patient/physician dialogue in chronic disease treatments 
[2], to foster social communication among friends and relatives 
[3], to enhance collaboration in crisis management [4] and to 
support citizens’ participation in public administrations [5].  

Yet, since the term Internet of Things was coined in 1999 by 
technologist Kevin Ashton [6], research has mainly focused on 

developing machine-centric infrastructures to enable connected 
things to exchange information over the Internet.  

Few works [1], [7] have investigated how IoT can enable 
collaboration and how HCI theory could drive the development 
of IoT collaborative systems. Likewise, only few works have 
investigated collaborative IoT application authoring [8] and how 
to involve non-experts in design activities [9], [10].  

We summarise the characteristics of IoT systems that can 
support the development of collaborative applications in four 
areas. 

• Ubiquitous access to information - IoT’s focus on 
connecting everyday objects using short-range wireless 
net- works multiplies the number of point of access for 
information that could be used to support collaboration  

• Integration with third-party systems - IoT make use of 
web standards and cloud computing as base 
technologies [11], enabling integration with established 
information systems and knowledge bases  

• Physical user interfaces - IoT can leverage physical and 
embodied interaction approaches to interact with the 
“Things”. Using physical affordances to interact with 
computer systems has been proved successfully in 
supporting collaboration [12, p. 97]  

• Interactions spread among multiple things - The user 
experience with IoT is usually distributed on an ecology 
of devices, providing more opportunities for 
collaboration via distributed users’ actions performed 
on multiple interfaces.  

Notably, while the first two characteristics focus on the 
internet and low-level technology aspects of the IoT, the latter 
focus on the thing aspects; in terms of behaviors and user 
interfaces.  

Prototyping IoT systems is challenging because it requires 
dealing with a heterogeneous mix of hardware and software 
components arranged in a multi-layer architecture. 

A popular design pattern consists in three layers: 

• an embedded layer implemented as a physical object 
augmented with sensors, actuators and short-range 
wireless connectivity to provide sensing and user 
interface capabilities  
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• a gateway layer, implemented as a device such as 
smartphone or WiFi router, provide connectivity to the 
embedded layer enabling ubiquitous access to 
information  

• a server layer implemented as a cloud service enables 
for data storage and integration with third-party 
services.  

As an example, popular wearable fitness tracker products 
feature a pedometer sensor with a simple user interface to show 
the number of steps counted or calories burned (embedded 
layer), a cloud service for aggregating data from multiple users 
(server layer); and a smartphone app acting both connecting the 
device to the server layer and as an extended user interface to 
compare data with other users (gateway layer) (Figure 1). This 
architectural pattern could be used to implement applications 
that support collaboration at multiple layers, e.g. by means of 
both personal or shared multiple devices; which are granted 
ubiquitous access to information via an infrastructure of multiple 
gateways. 

 
Figure 1. System architecture for a wearable activity tracker, example of an 

IoT system 

Implementing such architecture in working prototypes has 
for long time required large efforts together with a 
multidisciplinary team.  

Our research aims at supporting rapid prototyping and 
enabling non-experts in building IoT systems. On one end we 
aim at lowering the thresholds of skills required to build 
prototypes; on the other end, we point at raising the ceiling 
providing extended tools and hacking opportunities to build 
complex ecosystems.  

Although there are a number of tools available to support IoT 
development, those tools often (i) do not offer an integrated 
support to multiple architectural layers, (ii) require pre-exiting 
knowledge in hardware development or embedded 
programming, (iii) are often bounded to a specific hardware and 
vendor-lock technologies. This results in a steep learning curve 
for the tools and large time for integration; obstructing the ability 
and rapidity to explore design choices by iterating implementing 
functioning prototypes.  

In this paper we present RapIoT: an integrated set of tools to 
support rapid prototyping of IoT applications.  

RapIoT does not explicitly support a specific application 
domain, acting as an enabling technology for the development 
of collaborative applications by non-experts such as makers, 
designers and students. In this perspective, RapIoT enables the 
definition, implementation and manipulation of high-level data 
type primitives. RapIoT primitives allow to abstract low-level 
implementation details and provide a loosely-coupled interface 
between different architectural layers. Data types primitive 
facilitate the development of collaborative applications in two 
ways.  

First they act as a loosely coupled interface between devices 
and applications, allowing devices to serve different applications 
without need for reprogramming the embedded layer.  

Second, they allow for centralising the application logic in 
the server layer, offering a platform as a service, thus simplifying 
the development of systems that make use of an ecology of 
devices distributed to multiple users/environments.  

In the following sections an analysis of existing IoT 
frameworks and toolkits is provided, the RapIoT approach is 
then described in detail addressing the technical implementation 
and flexibility in relation to different application domains. We 
discuss strengths and weakness of our approach and we conclude 
the paper highlighting future works. 

II. RELATED WORKS 
Several works have provided tools to facilitate the 

development of IoT systems by non-experts. Besides relying on 
standard protocols and APIs that allow mutual integration, each 
tool often focuses on supporting a specific architectural layer. 
The knowledge required to use each tool also vary according 
with the level of abstraction they provide and complexity of the 
applications that can be achieved. In the remaining of this 
section we survey development toolkits that can be used for IoT 
prototyping, considering the barriers that hinder their adoption 
by non-experts.  

A. Development toolkits 
In this section we review tools that can be used to support the 

development of the embedded, gateway and server layer of an 
IoT infrastructure. 

1) Embedded layer: Embedded devices often requires to be 
programmed with low-level procedural languages which are 
usually oriented towards production rather than prototyping. On 
the other side, designers and software developers are usually 
familiar with high-level, object-oriented programming 
languages (for example web scripting). For these reasons 
development tools often provide high-level programming 
abstractions in the form of proprietary simple textual or visual 
language or as APIs. 

Arduino is a popular prototyping platform which includes 
both a microcontroller-based board to which sensor and 
actuators can be wired to; and a software library created to 
simplify writing code without limiting flexibility [13]. The 
Arduino library hides developers from learning microcontroller-
specific instructions or electronic knowledge. Modkit [14] 
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extends the Arduino platform providing a block-based visual 
programming language based on the Scratch project [15], further 
expanding Arduino target users to non-professional developers 
such as kids and artists. Focusing on developing interfaces based 
on simple input/output feedbacks, Bloctopus [16] provides a 
plat- form based on modules with sensors/actuators couplings 
and a hybrid visual and textual programming language. 
Developers can model the behavior of the system taking 
advantage of both simple visual abstractions and powerful 
textual commands. 

2) Gateway layer: Several research works focused on the 
gateway layers of the IoT infrastructure. Developing gateways 
to provide internet connectivity to resource-constrained 
embedded devices is particularly limiting for non-experts, 
because it requires pre-existing knowledge of low-level 
technologies like transport protocols and wireless networks.  

McGrath et al. [17] simplify the development and 
deployment of internet gateways for Bluetooth Low Energy 
(BLE) devices by abstracting the complexity of dealing with 
multiple languages and networking aspects. Rather than 
invoking BLE commands to each local device, their platform 
provides a proxy to access multiple devices via a centralised 
API. Yet this approach still requires pre-existing knowledge 
about the BLE protocol. Also the development of firmware for 
the embedded layer, to provide custom abstractions or primitives 
to the programmer is not specifically addressed.  

Zhu et al. [18] addresses the development of a gateway for 
ZigBee wireless devices. Their system is based on three layers: 
perception, transmission, and application. IoT devices can be 
controlled and accessed remotely and the gateway handle 
conversion between different data protocols. Yet this solution 
implies that only the parent node is connected to the network, 
and child nodes are not directly accessible through an unique IP 
address. 

3) Server layer: The server layer is the core element that 
takes care of managing IoT devices connected via multiple 
gateways as well as interaction with third-party web services 
such as data providers or social networks.  

The framework PatRICIA [19] leverages a programming 
model and a cloud-based execution environment for reducing 
complexity and supporting scalable development of IoT 
applications. The solution however focuses on providing sensor 
management in a cloud environment and storing data received 
from connected devices; neglecting interaction with other third-
party solutions. They also neglect the management of connected 
devices through an API, and rather focus on reading and 
combining data from different sources. Each device is directly 
connected to the cloud through the MQTT protocol1 excluding 
mobile and low-powered IoT devices.  

Similarly, the framework developed by Khodadadi et al [20] 
focuses on connecting data sources by managing querying and 
filtering of data, and facilitating sharing with third-party 
platforms. Their work take into account data-gathering from 
multiple sources, both from sensor networks, and from other 

                                                             
1 MQTT protocol specifications - http://mqtt.org  

 

web applications (blogs, social media, databases). Users are 
provided with an API for configuring data sources and to trigger 
actions within stand-alone applications. Kovatsch et al. [21] 
describes a similar higher-level architecture. They address the 
need of an API for connected devices for pushing and retrieving 
data. The proposed solution, which builds on the CoAP 
protocol2, enables devices to publish data to third- party servers, 
but doesn’t support bi-directional exchange of events in real-
time.  

B. Non-experts as IoT developers 
RapIoT builds on top of Arduino strengths and extend a 

similar approach to the IoT world. Developers interested in 
building applications are offered with a set of primitives that are 
tailored and specific for the affordances of the IoT hardware in 
use, but at the same time they share a common semantic structure 
and are used in the same way when coding the application logic. 
Another point in common is the abstraction of vendor-specific 
programming mechanisms: like the Arduino user, which is not 
required to know type and producer of the microcontroller, 
RapIoT users are not required to know any hardware- or 
software-related detail of the IoT devices. The user only need to 
be aware of the set of primitives defined and available to be used 
for development.  

III. RAPIOT FUNDAMENTALS 

A. Design goals 
RapIoT aims at providing a holistic support to the 

development of IoT systems. The following design goals 
constitute the foundation of our platform.  

Support both novice and expert developers – Provide basic, 
simple to use functionalities without hindering expert users in 
building complex systems  

Decoupling infrastructure from application – IoT 
infrastructure is provided as a service to applications. In this way 
the infrastructure (IoT devices, gateways and server) can be 
reused across different applications with no or little changes  

Hide hardware complexities – Provide high-level 
representations of low-level embedded hardware complexities  

Hide networking details – Spare developers from 
implementing connection and data transfer protocols  

Generic embedded devices – Enable the development of 
applications that make use of a wide range of devices no matter 
of manufacturer  

Multiple embedded devices – Enable the development of IoT 
systems that make use of multiple devices which collaborate as 
a structured ecology  

Mobile devices – Support development of IoT systems with 
mobile devices, e.g. wearables.  

We believe that those design goals can be achieved by 
empowering data primitives. We provide tools to support 
development and use of primitives across different layers.  

2CoAp protocol specifications - http://coap.technology  
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B. Input/Output Primitives 
RapIoT supports the development of collaborative 

applications by enabling the definition, implementation and 
manipulation of high-level data type primitives. A RapIoT input 
primitive is a discrete information sensed by an IoT device; for 
example a data-point captured by a sensor or a manipulation 
performed via a user interface. An output primitive is an action 
that can be performed by the IoT device via output features such 
as actuators or displays, for example a motor spinning or a LED 
(Light Emitting Diode) blinking (Figure 2). 

Primitives act as a loosely coupled interface between 
embedded devices and one or more application logics. Each 
primitive encapsulates a data type plus up to two optional 
parameters as payload. Example of an input primitive is 
“AirQuality (primitive name), city center (parameter 1), low 
(parameter 2)” in case of an air quality sensor device or 
“FrontDoor, knocked” in case of a smart home equipped with an 
accelerometer device on the front door. Otherwise “Necklace, 
vibrate” represents an output primitive that issues a vibrate 
command to a necklace equipped with an haptic motor device.  

The role of primitives is twofold. On one side they provide 
an event-driven approach to programming, on the other side they 
facilitate collaboration among developers working on different 
IoT layers by providing simple constructs to be used to describe 
the data exchanged between embedded devices and applications. 
Furthermore they allow non-experts to think in terms of high-
level abstractions without dealing with hardware complexities 
e.g. “shake, clockwise rotation, free fall” for physical 
manipulations recognised by accelerometer data.  

The definition and implementation of primitives is 
performed by programming the firmware of an Arduino-
compatible device in order to register the primitives. The 
primitives are then available to the framework and it is possible 
to implement low-level hardware details; for example, dealing 
with accelerometer or GPS sensors as well as motor or display 
actuators.  

Primitives not only support simple input/output operations, 
they can also encapsulate more complex behavior to support the 
development of physical interfaces; as illustrated in [10]. An 
example of HCI primitive introduced in [10] is the “proximity” 
input primitive. The primitive does not encapsulate any sensor-
data from the surrounding environment, it is triggered when one 
or more IoT devices are moved close to one another. It is 
available to be used for devices that have the on-board hardware 
to support the functionality (i.e. RFID antennas and tags).  

Primitives specific for each device can be implemented by 
using RapEmbedded library running on Arduino boards. 
Instances of primitives are propagated using RapGateway 
smartphone app and accessible from client applications via a 
simple API provided by RapCloud.  

C. Architecture 
RapIoT composed by: 

• RapEmbedded: an Arduino library to support definition 
and implementation of input and output primitives on 
embedded hardware devices;  

• RapMobile: a cross-platform mobile app that acts as 
internet gateway and allows to discover and configure 
IoT devices;  

• RapCloud: a cloud service, API and javascript library 
that support the development of applications that 
interact with IoT devices.  

In the following section we illustrate how RapIoT can be 
employed to create a simple IoT application.  

 
Figure 2. Structure of input and output primitives. 

IV. CREATING RAPIOT APPLICATIONS 
The development of an IoT application using RapIoT is a 

five-step process. The first three steps entail application 
development. The last two steps involve application 
appropriation by end users.  

• Device development – it involves (i) building a hardware 
prototype of a IoT device using electronic components 
on an BLE-enabled, Arduino-compatible board and (ii) 
use the RapEmbedded library to register and implement 
input/output primitives  

• Application development – it entails coding application 
features by using APIs and libraries provided by 
RapCloud, input and output primitives are here 
employed as programming constructs  

• Application deployment – it involves uploading an 
application code on RapCloud using a web interface  

• Device appropriation – it entails wireless discovery of 
the prototype built in step 1 using the RapMobile 
smartphone app  

• Application appropriation – it involves selecting an 
application previously uploaded on RapCloud and 
running it using the RapMobile app.  
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The list of steps and their relation with RapIoT components 
is reported in Figure 3.  

To describe the development process of RapIoT applications 
we introduce as running example the development of Breath 
Better Air, an IoT system to engage citizens in monitoring air 
quality in their neighbourhoods. This is a collaborative 
application that relies on individual contributors to generate a 
community-wide awareness about air quality in the city.  

The Breathe Better Air (BBA) system makes use of a IoT 
device to sense air quality information and provide visual 
feedbacks to the users (prototype in Figure 4). The device sends 
data to a server (developed with RapCloud) which computes the 
average air quality in a city using the data furnished by all BBA 
users. Eventually, the BBA device provides visual warnings 
using a green and red LEDs to display whenever the air quality 
captured by the device is over or above the average value 
provided by other users.  

In the following we describe the BBA application 
development and deployment process.  

A. Device development 
Device development involves hardware and firmware 

development.  

Hardware development involves plugging together 
electronic components using an Arduino-compatible board 
(Figure 4). To date, RapEmbedded supports a number of 
development platforms that feature an Arduino-compatible 
microcontroller and a Bluetooth Low Energy (BLE) chip; such 
as RFDUINO3 and Simblee4 boards. RapEmbedded does not 
pose limitations on the type of sensors and actuators connected.  

Firmware development requires writing Arduino code that 
interfaces with hardware to generate and consume primitives. 
The RapEmbedded library provides functions to: (i) register 
device types to enable dynamic application/devices couplings 
and thus simple application appropriation by end-users, (ii) 
register primitive definitions according with name of the 

                                                             
3 http://rfduino.com 

primitive, type (input or output) and name of (up to two) optional 
parameters and; (iii) code conditions under which primitives are 
triggered, in case of input primitives, or consumed, as for output 
primitives.  

According with our example the BBA prototype is 
assembled using a air quality sensor, a RGB LED (Light 
Emitting Diode) device and an RFDUINO board. (Figure 4).  

After having installed the RapEmbedded library in the 
Arduino IDE, the device developer registers the BBAdevice 
device type and defines one input primitive, AirQuality, and one 
output primitive, LED. The AirQuality primitive models air 
quality levels, it is triggered by sensor readings continuously 
provided by the sensor and has one QLevel parameter that can 
assume “Low Quality” or “High Quality” states. The LED 
output primitive provides the color parameter that can assume 
the “green” and “red” states and control a LED to light up in 
different colors.  

RIOTe.regDeviceType("BBAdevice"); 
RIOTe.regPrimitive(in,"Air", "Quality"); 
RIOTe.regPrimitive(out,"LED", "Color"); 

Finally the developer codes the loop of conditions under 
which the input primitives are triggered according with readings 
from the air quality sensor, and implements how to consume the 
output primitives by issuing commands to control the LED 
device to light up in different colors. 

if(CO2Sensor.read() > threshold) 
    RIOTe.trigger("Air", "Low"); 
else 
    RIOTe.trigger("Air", "High"); 
 
RIOTe.when("LED", "green", callbG()); 
RIOTe.when("LED", "red", callbR()); 
callbG(){digital.write(greenPin,HIGH);}
callbR(){digital.write(redPin,HIGH);} 
 

4http://simblee.com  

Figure 3.   The RapIoT toolkit and development process 

442442



 
Figure 4.   BBA Hardware prototype 

After the firmware is developed and deployed, each BBA 
device is autonomous and ready to establish a connection with 
RapCloud to send and receive primitives (via the RapMobile app 
acting as gateway, as described later).  

B. Application development and deployment 
After primitives are defined and implemented in a (Arduino- 

compatible) firmware, they are available to application 
developers from a centralised cloud environment via the 
RapCloud API. In order to facilitate writing applications, we 
also developed a javascript library acting as a wrapper for the 
functionality provided by the RapCloud API.  

Back to our BBA example, the application developer 
proceeds coding the application logic. First she registers the 
application name and the type of device required. Then she 
proceeds coding the application logic: whenever the AirQ 
primitive is received, its QLevel value is stored in a database 
(DB). The DB is then queried for average air quality values 
computed from reading provided by multiple BBA devices. If 
the current QLevel value is lower than the QLevel average an 
output primitive is issued to turn the LED on the BBA device to 
the green state; otherwise to the red state (current air quality 
lower than the average): 
 RapIoTApplication bba; 
 bba = rIoT.regApp("BBA","BBAdevice"); 
 bba.when("Air",DB.add(bba.Air.Quality)); 
 if(bba.Air.Qiality > DBStore.Average) 

 bba.trigger(LED.green); 
 else 

 bba.trigger(LED.red); 

As a final step the application developer proceeds uploading 
the source code to the RapIoT cloud server using a dedicated 
web form. The BBA application is now available to end users. 

C. Device and Application appropriation 
End users are provided with RapMobile app, compatible 

with Android and iOS devices. RapMobile mainly acts as a 
gateway layer between IoT devices (implemented with 
RamEmbedded) and the RapCloud service; yet it also allows to 
select and activate applications previously registered with 
RapIoT.  

In order to run the BBA application, the user performs four 
steps. First the user installs the RapMobile app on her 
smartphone. Second, she selects the BBA application among the 
ones available. Third, she discovers and selects the BBA device 
she wants to associate to the BBA application among the list of 
Bluetooth devices available nearby. Fourth, she starts the 
application. Whenever the application is running the phone can 
be set in standby mode but should remain within a 10 meters 
reach from the BBA device to ensure reliable data transfer. The 
GUI supporting appropriation and execution of BBA is shown 
in Figure 5.  

 
Figure 5.   RapMobile Application 

V. IMPLEMENTATION 
RapIoT is built on top of MQTT and CoAP protocols. 

Primitives are coded in JSON-formatted messages that contain a 
unique identifier of a device, currently implemented as MAC 
address, followed by the identifier of a primitive and the two 
optional parameters.  

Primitives are exchanged between IoT devices and 
applications on a event-driven basis. The event protocol is very 
lightweight and designed for low-resource embedded devices, 
since the information required to route primitives from each 
device to applications is offloaded by the gateway and server 
layers. This design choice spares hardware and application 
developers from implementing event routing, since each 
hardware module can be unequivocally controlled by an 
application connected to the API; no matter where the 
application or the hardware are deployed. Application 
developers only need to handle input primitives received from 
the hardware modules and send output primitives to those 
devices, without the need to know how the modules implement 
the actual recognition and actuation of primitives.  

Our platform employs a broadcast-based architecture in 
which all embedded devices interact with a common (wireless) 
communication channel where messages are broadcasted over 
the MQTT protocol.  

This architecture enables the reuse of deployed devices for 
different applications without changing the firmware. 
Furthermore, hardware modules can be discovered, attached or 
removed to the platform while clients are still running. Special 
system-wide events inform connected clients of the availability 
of new devices in real time.  
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The current implementation has several limitations. The web 
interface for uploading application code on RapCloud is still 
under development, yet it is possible to launch applications 
manually from a command line interface. Likewise, RapMobile 
does not yet fully support selection and execution of applications 
(steps 1 and 3 in Figure 5); requiring developers to hard-code 
devices’ MAC addresses. 

VI. DISCUSSION 
In this section we analyse how RapIoT could drive the 

development of collaborative applications and we discuss its 
strengths and limitations.  

A. Support for collaboration 
Our approach to IoT system development embeds 

mechanisms that facilitate the authoring of collaborative 
applications. Primitives demonstrated to be a flexible construct 
that allow to break down interaction routines and data flows into 
simpler blocks that can be combined when writing the 
application logic. The RapIoT toolkit presents three fundamental 
features that help developing collaborative systems:  

• Support for multiple devices – RapIoT supports 
applications that make use of several devices connected 
to the same gateway (RapMobile app). This allow 
multiple users to interact with several devices placed in 
the same environment, which are then ruled by a 
centralised application logic running on the RapCloud 
server. Collaborative applications are then a concrete 
possibility: users can cooperate interacting with 
different devices for a common goal;  

• HCI primitives for physical interaction – some of the 
primitives rely on composite actions and events, which 
involve more than one physical device. It is possible to 
design and implement applications that support time 
coordination, sequential actions, proximity and other 
forms of cooperative practices that characterize 
coordinated ecologies of devices;  

• Distributed gateways and devices – applications 
developed with RapIoT can use several gateways 
physically located in different places, each of which can 
control a group of devices. This open to several possible 
scenarios: (i) groups of users can move from site to site 
where different groups of IoT devices are located and 
perform collaborative tasks that involve IoT devices on 
the site, i.e. a collaborative treasure hunt game, (ii) users 
can carry one or more IoT devices connected to their 
smartphone and perform some tasks or collecting data 
in the environment, remotely cooperating with other 
users that are following the same workflow but on a 
different site, (iii) users can move from gateway to 
gateway performing a subset of tasks involving different 
IoT devices, remotely collaborating with other users that 
follow the same process in other sites, with different IoT 
devices.  

B. Limitations 
The RapIoT architecture does not comprehend any coded 

application logic embedded into IoT devices (embedded layer). 
Since the primitives have to follow a complete round trip from 

the embedded layer to the application layer, network latency can 
be a significant factor affecting performance and application 
responsiveness. Network quality and availability is crucial for 
the entire period when the application is in use.  

This limitation can be particularly amplified when the 
application layer deals with batches of primitives in rapid 
sequence. In these cases, most of the execution time is spent 
waiting for the network, which can hinder the user experience.  

Another possible limitation is connected to the concept of 
primitive: for some applications the behavior to encapsulate in a 
primitive can be too complex to be exposed with a simple 
interface like the one provided by input/output primitives. This 
restriction could be partially mitigated splitting the logic into 
two or more primitives, with the drawback of delegating more 
work to the network. 

VII. CONCLUSIONS 
In this paper we presented the RapIoT toolkit for rapid 

prototyping of IoT applications. The development process of a 
RapIoT application has been demonstrated by describing how 
the provided tools have been applied to the development of a 
system for crowdsourcing air quality data.  

RapIoT leverages the concept of data primitives as a 
communication block and interface between generic devices and 
application layers. Further, we highlighted how RapIoT 
primitives can support the development of collaborative 
applications via multiple embedded devices, physical interfaces 
and distributed gateways.  

RapIoT takes advantage and builds on top of the most recent 
technological evolutions in the field like the Arduino platform, 
cloud computing, BLE radios and mobile applications; reducing 
complexity and entry barriers for non-experts.  

Future works will be oriented towards testing and refinement 
of the tools composing the system, as well as development of 
more complex applications and collaboration-specific 
primitives.  
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