
RapIoT Toolkit: Rapid Prototyping of Collaborative
Internet of Things Applications

Simone Mora, Francesco Gianni and Monica Divitini
 Norwegian University of Science and Technology
Department of Computer and Information Science

Trondheim, Norway
Email: {simone.mora, francesco.gianni, monica.divitini}@idi.ntnu.no

Abstract—The Internet of Things holds huge promises to enhance
collaboration in multiple application domains. By bringing
Internet connectivity to everyday objects and environments it
promotes ubiquitous access to information and integration with
third-party systems. Further, connected “things” can be used as
physical interfaces to enable users to cooperate leveraging multiple
devices via parallel and distributed actions. Yet creating
prototypes of IoT systems is a complex task for non-experts
because it requires dealing with multi-layered hardware and
software infrastructures. We introduce RapIoT, a software toolkit
that facilitates prototyping IoT systems providing an integrated set
of developer tools. Our solution abstracts low-level details and
communication protocols allowing developers to focus on the
application logic, facilitating rapid prototyping. RapIoT supports
the development of collaborative applications by enabling the
definition of high-level data types primitives. RapIoT primitives
act as a loosely-coupled interface between generic IoT devices and
applications; simplifying the development of systems that make
use of an ecology of devices distributed to multiple users and
environments. We illustrate the potential of our toolkit by
presenting the development process of a IoT system for crowd-
sourcing of air quality data. We conclude discussing strength and
limitations of our platform highlighting further possible uses for
collaborative applications.

Keywords—Internet of Things, IoT, Ubiquitous Computing,
Development, Toolkit.

I. INTRODUCTION
The Internet of Things (IoT), holds huge promises to

enhance computer-supported collaboration in several
applications domains. By enabling seamless interconnection of
people, computers, everyday objects and environments it
promotes collaboration off the screen, into our everyday
routines. By increasing the amount and quality of information
captured by connected objects it might ultimately improve
collaboration among people using those objects [1].

Research works have shown how IoT systems can leverage
connected objects in collaborative applications; for example, to
support patient/physician dialogue in chronic disease treatments
[2], to foster social communication among friends and relatives
[3], to enhance collaboration in crisis management [4] and to
support citizens’ participation in public administrations [5].

Yet, since the term Internet of Things was coined in 1999 by
technologist Kevin Ashton [6], research has mainly focused on

developing machine-centric infrastructures to enable connected
things to exchange information over the Internet.

Few works [1], [7] have investigated how IoT can enable
collaboration and how HCI theory could drive the development
of IoT collaborative systems. Likewise, only few works have
investigated collaborative IoT application authoring [8] and how
to involve non-experts in design activities [9], [10].

We summarise the characteristics of IoT systems that can
support the development of collaborative applications in four
areas.

• Ubiquitous access to information - IoT’s focus on
connecting everyday objects using short-range wireless
net- works multiplies the number of point of access for
information that could be used to support collaboration

• Integration with third-party systems - IoT make use of
web standards and cloud computing as base
technologies [11], enabling integration with established
information systems and knowledge bases

• Physical user interfaces - IoT can leverage physical and
embodied interaction approaches to interact with the
“Things”. Using physical affordances to interact with
computer systems has been proved successfully in
supporting collaboration [12, p. 97]

• Interactions spread among multiple things - The user
experience with IoT is usually distributed on an ecology
of devices, providing more opportunities for
collaboration via distributed users’ actions performed
on multiple interfaces.

Notably, while the first two characteristics focus on the
internet and low-level technology aspects of the IoT, the latter
focus on the thing aspects; in terms of behaviors and user
interfaces.

Prototyping IoT systems is challenging because it requires
dealing with a heterogeneous mix of hardware and software
components arranged in a multi-layer architecture.

A popular design pattern consists in three layers:

• an embedded layer implemented as a physical object
augmented with sensors, actuators and short-range
wireless connectivity to provide sensing and user
interface capabilities

2016 International Conference on Collaboration Technologies and Systems

978-1-5090-2300-4/16 $31.00 © 2016 IEEE

DOI 10.1109/CTS.2016.81

438

2016 International Conference on Collaboration Technologies and Systems

978-1-5090-2300-4/16 $31.00 © 2016 IEEE

DOI 10.1109/CTS.2016.81

438

• a gateway layer, implemented as a device such as
smartphone or WiFi router, provide connectivity to the
embedded layer enabling ubiquitous access to
information

• a server layer implemented as a cloud service enables
for data storage and integration with third-party
services.

As an example, popular wearable fitness tracker products
feature a pedometer sensor with a simple user interface to show
the number of steps counted or calories burned (embedded
layer), a cloud service for aggregating data from multiple users
(server layer); and a smartphone app acting both connecting the
device to the server layer and as an extended user interface to
compare data with other users (gateway layer) (Figure 1). This
architectural pattern could be used to implement applications
that support collaboration at multiple layers, e.g. by means of
both personal or shared multiple devices; which are granted
ubiquitous access to information via an infrastructure of multiple
gateways.

Figure 1. System architecture for a wearable activity tracker, example of an

IoT system

Implementing such architecture in working prototypes has
for long time required large efforts together with a
multidisciplinary team.

Our research aims at supporting rapid prototyping and
enabling non-experts in building IoT systems. On one end we
aim at lowering the thresholds of skills required to build
prototypes; on the other end, we point at raising the ceiling
providing extended tools and hacking opportunities to build
complex ecosystems.

Although there are a number of tools available to support IoT
development, those tools often (i) do not offer an integrated
support to multiple architectural layers, (ii) require pre-exiting
knowledge in hardware development or embedded
programming, (iii) are often bounded to a specific hardware and
vendor-lock technologies. This results in a steep learning curve
for the tools and large time for integration; obstructing the ability
and rapidity to explore design choices by iterating implementing
functioning prototypes.

In this paper we present RapIoT: an integrated set of tools to
support rapid prototyping of IoT applications.

RapIoT does not explicitly support a specific application
domain, acting as an enabling technology for the development
of collaborative applications by non-experts such as makers,
designers and students. In this perspective, RapIoT enables the
definition, implementation and manipulation of high-level data
type primitives. RapIoT primitives allow to abstract low-level
implementation details and provide a loosely-coupled interface
between different architectural layers. Data types primitive
facilitate the development of collaborative applications in two
ways.

First they act as a loosely coupled interface between devices
and applications, allowing devices to serve different applications
without need for reprogramming the embedded layer.

Second, they allow for centralising the application logic in
the server layer, offering a platform as a service, thus simplifying
the development of systems that make use of an ecology of
devices distributed to multiple users/environments.

In the following sections an analysis of existing IoT
frameworks and toolkits is provided, the RapIoT approach is
then described in detail addressing the technical implementation
and flexibility in relation to different application domains. We
discuss strengths and weakness of our approach and we conclude
the paper highlighting future works.

II. RELATED WORKS
Several works have provided tools to facilitate the

development of IoT systems by non-experts. Besides relying on
standard protocols and APIs that allow mutual integration, each
tool often focuses on supporting a specific architectural layer.
The knowledge required to use each tool also vary according
with the level of abstraction they provide and complexity of the
applications that can be achieved. In the remaining of this
section we survey development toolkits that can be used for IoT
prototyping, considering the barriers that hinder their adoption
by non-experts.

A. Development toolkits
In this section we review tools that can be used to support the

development of the embedded, gateway and server layer of an
IoT infrastructure.

1) Embedded layer: Embedded devices often requires to be
programmed with low-level procedural languages which are
usually oriented towards production rather than prototyping. On
the other side, designers and software developers are usually
familiar with high-level, object-oriented programming
languages (for example web scripting). For these reasons
development tools often provide high-level programming
abstractions in the form of proprietary simple textual or visual
language or as APIs.

Arduino is a popular prototyping platform which includes
both a microcontroller-based board to which sensor and
actuators can be wired to; and a software library created to
simplify writing code without limiting flexibility [13]. The
Arduino library hides developers from learning microcontroller-
specific instructions or electronic knowledge. Modkit [14]

APPLICATION-SPECIFIC FUNCTIONS

IOT SYSTEM LAYERS

Manages sensors
and actuators

Connects to the
internet and

provide a GUI

Store data and
perform

computation

Captures and display
daily number of steps
and calories burned

Display historical data
and enable sharing of

achievements

Aggregate data
from multiple user

Embedded Gateway Server

(image: Fitbit)

439439

extends the Arduino platform providing a block-based visual
programming language based on the Scratch project [15], further
expanding Arduino target users to non-professional developers
such as kids and artists. Focusing on developing interfaces based
on simple input/output feedbacks, Bloctopus [16] provides a
plat- form based on modules with sensors/actuators couplings
and a hybrid visual and textual programming language.
Developers can model the behavior of the system taking
advantage of both simple visual abstractions and powerful
textual commands.

2) Gateway layer: Several research works focused on the
gateway layers of the IoT infrastructure. Developing gateways
to provide internet connectivity to resource-constrained
embedded devices is particularly limiting for non-experts,
because it requires pre-existing knowledge of low-level
technologies like transport protocols and wireless networks.

McGrath et al. [17] simplify the development and
deployment of internet gateways for Bluetooth Low Energy
(BLE) devices by abstracting the complexity of dealing with
multiple languages and networking aspects. Rather than
invoking BLE commands to each local device, their platform
provides a proxy to access multiple devices via a centralised
API. Yet this approach still requires pre-existing knowledge
about the BLE protocol. Also the development of firmware for
the embedded layer, to provide custom abstractions or primitives
to the programmer is not specifically addressed.

Zhu et al. [18] addresses the development of a gateway for
ZigBee wireless devices. Their system is based on three layers:
perception, transmission, and application. IoT devices can be
controlled and accessed remotely and the gateway handle
conversion between different data protocols. Yet this solution
implies that only the parent node is connected to the network,
and child nodes are not directly accessible through an unique IP
address.

3) Server layer: The server layer is the core element that
takes care of managing IoT devices connected via multiple
gateways as well as interaction with third-party web services
such as data providers or social networks.

The framework PatRICIA [19] leverages a programming
model and a cloud-based execution environment for reducing
complexity and supporting scalable development of IoT
applications. The solution however focuses on providing sensor
management in a cloud environment and storing data received
from connected devices; neglecting interaction with other third-
party solutions. They also neglect the management of connected
devices through an API, and rather focus on reading and
combining data from different sources. Each device is directly
connected to the cloud through the MQTT protocol1 excluding
mobile and low-powered IoT devices.

Similarly, the framework developed by Khodadadi et al [20]
focuses on connecting data sources by managing querying and
filtering of data, and facilitating sharing with third-party
platforms. Their work take into account data-gathering from
multiple sources, both from sensor networks, and from other

1 MQTT protocol specifications - http://mqtt.org

web applications (blogs, social media, databases). Users are
provided with an API for configuring data sources and to trigger
actions within stand-alone applications. Kovatsch et al. [21]
describes a similar higher-level architecture. They address the
need of an API for connected devices for pushing and retrieving
data. The proposed solution, which builds on the CoAP
protocol2, enables devices to publish data to third- party servers,
but doesn’t support bi-directional exchange of events in real-
time.

B. Non-experts as IoT developers
RapIoT builds on top of Arduino strengths and extend a

similar approach to the IoT world. Developers interested in
building applications are offered with a set of primitives that are
tailored and specific for the affordances of the IoT hardware in
use, but at the same time they share a common semantic structure
and are used in the same way when coding the application logic.
Another point in common is the abstraction of vendor-specific
programming mechanisms: like the Arduino user, which is not
required to know type and producer of the microcontroller,
RapIoT users are not required to know any hardware- or
software-related detail of the IoT devices. The user only need to
be aware of the set of primitives defined and available to be used
for development.

III. RAPIOT FUNDAMENTALS

A. Design goals
RapIoT aims at providing a holistic support to the

development of IoT systems. The following design goals
constitute the foundation of our platform.

Support both novice and expert developers – Provide basic,
simple to use functionalities without hindering expert users in
building complex systems

Decoupling infrastructure from application – IoT
infrastructure is provided as a service to applications. In this way
the infrastructure (IoT devices, gateways and server) can be
reused across different applications with no or little changes

Hide hardware complexities – Provide high-level
representations of low-level embedded hardware complexities

Hide networking details – Spare developers from
implementing connection and data transfer protocols

Generic embedded devices – Enable the development of
applications that make use of a wide range of devices no matter
of manufacturer

Multiple embedded devices – Enable the development of IoT
systems that make use of multiple devices which collaborate as
a structured ecology

Mobile devices – Support development of IoT systems with
mobile devices, e.g. wearables.

We believe that those design goals can be achieved by
empowering data primitives. We provide tools to support
development and use of primitives across different layers.

2CoAp protocol specifications - http://coap.technology

440440

B. Input/Output Primitives
RapIoT supports the development of collaborative

applications by enabling the definition, implementation and
manipulation of high-level data type primitives. A RapIoT input
primitive is a discrete information sensed by an IoT device; for
example a data-point captured by a sensor or a manipulation
performed via a user interface. An output primitive is an action
that can be performed by the IoT device via output features such
as actuators or displays, for example a motor spinning or a LED
(Light Emitting Diode) blinking (Figure 2).

Primitives act as a loosely coupled interface between
embedded devices and one or more application logics. Each
primitive encapsulates a data type plus up to two optional
parameters as payload. Example of an input primitive is
“AirQuality (primitive name), city center (parameter 1), low
(parameter 2)” in case of an air quality sensor device or
“FrontDoor, knocked” in case of a smart home equipped with an
accelerometer device on the front door. Otherwise “Necklace,
vibrate” represents an output primitive that issues a vibrate
command to a necklace equipped with an haptic motor device.

The role of primitives is twofold. On one side they provide
an event-driven approach to programming, on the other side they
facilitate collaboration among developers working on different
IoT layers by providing simple constructs to be used to describe
the data exchanged between embedded devices and applications.
Furthermore they allow non-experts to think in terms of high-
level abstractions without dealing with hardware complexities
e.g. “shake, clockwise rotation, free fall” for physical
manipulations recognised by accelerometer data.

The definition and implementation of primitives is
performed by programming the firmware of an Arduino-
compatible device in order to register the primitives. The
primitives are then available to the framework and it is possible
to implement low-level hardware details; for example, dealing
with accelerometer or GPS sensors as well as motor or display
actuators.

Primitives not only support simple input/output operations,
they can also encapsulate more complex behavior to support the
development of physical interfaces; as illustrated in [10]. An
example of HCI primitive introduced in [10] is the “proximity”
input primitive. The primitive does not encapsulate any sensor-
data from the surrounding environment, it is triggered when one
or more IoT devices are moved close to one another. It is
available to be used for devices that have the on-board hardware
to support the functionality (i.e. RFID antennas and tags).

Primitives specific for each device can be implemented by
using RapEmbedded library running on Arduino boards.
Instances of primitives are propagated using RapGateway
smartphone app and accessible from client applications via a
simple API provided by RapCloud.

C. Architecture
RapIoT composed by:

• RapEmbedded: an Arduino library to support definition
and implementation of input and output primitives on
embedded hardware devices;

• RapMobile: a cross-platform mobile app that acts as
internet gateway and allows to discover and configure
IoT devices;

• RapCloud: a cloud service, API and javascript library
that support the development of applications that
interact with IoT devices.

In the following section we illustrate how RapIoT can be
employed to create a simple IoT application.

Figure 2. Structure of input and output primitives.

IV. CREATING RAPIOT APPLICATIONS
The development of an IoT application using RapIoT is a

five-step process. The first three steps entail application
development. The last two steps involve application
appropriation by end users.

• Device development – it involves (i) building a hardware
prototype of a IoT device using electronic components
on an BLE-enabled, Arduino-compatible board and (ii)
use the RapEmbedded library to register and implement
input/output primitives

• Application development – it entails coding application
features by using APIs and libraries provided by
RapCloud, input and output primitives are here
employed as programming constructs

• Application deployment – it involves uploading an
application code on RapCloud using a web interface

• Device appropriation – it entails wireless discovery of
the prototype built in step 1 using the RapMobile
smartphone app

• Application appropriation – it involves selecting an
application previously uploaded on RapCloud and
running it using the RapMobile app.

441441

The list of steps and their relation with RapIoT components
is reported in Figure 3.

To describe the development process of RapIoT applications
we introduce as running example the development of Breath
Better Air, an IoT system to engage citizens in monitoring air
quality in their neighbourhoods. This is a collaborative
application that relies on individual contributors to generate a
community-wide awareness about air quality in the city.

The Breathe Better Air (BBA) system makes use of a IoT
device to sense air quality information and provide visual
feedbacks to the users (prototype in Figure 4). The device sends
data to a server (developed with RapCloud) which computes the
average air quality in a city using the data furnished by all BBA
users. Eventually, the BBA device provides visual warnings
using a green and red LEDs to display whenever the air quality
captured by the device is over or above the average value
provided by other users.

In the following we describe the BBA application
development and deployment process.

A. Device development
Device development involves hardware and firmware

development.

Hardware development involves plugging together
electronic components using an Arduino-compatible board
(Figure 4). To date, RapEmbedded supports a number of
development platforms that feature an Arduino-compatible
microcontroller and a Bluetooth Low Energy (BLE) chip; such
as RFDUINO3 and Simblee4 boards. RapEmbedded does not
pose limitations on the type of sensors and actuators connected.

Firmware development requires writing Arduino code that
interfaces with hardware to generate and consume primitives.
The RapEmbedded library provides functions to: (i) register
device types to enable dynamic application/devices couplings
and thus simple application appropriation by end-users, (ii)
register primitive definitions according with name of the

3 http://rfduino.com

primitive, type (input or output) and name of (up to two) optional
parameters and; (iii) code conditions under which primitives are
triggered, in case of input primitives, or consumed, as for output
primitives.

According with our example the BBA prototype is
assembled using a air quality sensor, a RGB LED (Light
Emitting Diode) device and an RFDUINO board. (Figure 4).

After having installed the RapEmbedded library in the
Arduino IDE, the device developer registers the BBAdevice
device type and defines one input primitive, AirQuality, and one
output primitive, LED. The AirQuality primitive models air
quality levels, it is triggered by sensor readings continuously
provided by the sensor and has one QLevel parameter that can
assume “Low Quality” or “High Quality” states. The LED
output primitive provides the color parameter that can assume
the “green” and “red” states and control a LED to light up in
different colors.

RIOTe.regDeviceType("BBAdevice");
RIOTe.regPrimitive(in,"Air", "Quality");
RIOTe.regPrimitive(out,"LED", "Color");

Finally the developer codes the loop of conditions under
which the input primitives are triggered according with readings
from the air quality sensor, and implements how to consume the
output primitives by issuing commands to control the LED
device to light up in different colors.

if(CO2Sensor.read() > threshold)
 RIOTe.trigger("Air", "Low");
else
 RIOTe.trigger("Air", "High");

RIOTe.when("LED", "green", callbG());
RIOTe.when("LED", "red", callbR());
callbG(){digital.write(greenPin,HIGH);}
callbR(){digital.write(redPin,HIGH);}

4http://simblee.com

Figure 3. The RapIoT toolkit and development process

442442

Figure 4. BBA Hardware prototype

After the firmware is developed and deployed, each BBA
device is autonomous and ready to establish a connection with
RapCloud to send and receive primitives (via the RapMobile app
acting as gateway, as described later).

B. Application development and deployment
After primitives are defined and implemented in a (Arduino-

compatible) firmware, they are available to application
developers from a centralised cloud environment via the
RapCloud API. In order to facilitate writing applications, we
also developed a javascript library acting as a wrapper for the
functionality provided by the RapCloud API.

Back to our BBA example, the application developer
proceeds coding the application logic. First she registers the
application name and the type of device required. Then she
proceeds coding the application logic: whenever the AirQ
primitive is received, its QLevel value is stored in a database
(DB). The DB is then queried for average air quality values
computed from reading provided by multiple BBA devices. If
the current QLevel value is lower than the QLevel average an
output primitive is issued to turn the LED on the BBA device to
the green state; otherwise to the red state (current air quality
lower than the average):
 RapIoTApplication bba;
 bba = rIoT.regApp("BBA","BBAdevice");
 bba.when("Air",DB.add(bba.Air.Quality));
 if(bba.Air.Qiality > DBStore.Average)

 bba.trigger(LED.green);
 else

 bba.trigger(LED.red);

As a final step the application developer proceeds uploading
the source code to the RapIoT cloud server using a dedicated
web form. The BBA application is now available to end users.

C. Device and Application appropriation
End users are provided with RapMobile app, compatible

with Android and iOS devices. RapMobile mainly acts as a
gateway layer between IoT devices (implemented with
RamEmbedded) and the RapCloud service; yet it also allows to
select and activate applications previously registered with
RapIoT.

In order to run the BBA application, the user performs four
steps. First the user installs the RapMobile app on her
smartphone. Second, she selects the BBA application among the
ones available. Third, she discovers and selects the BBA device
she wants to associate to the BBA application among the list of
Bluetooth devices available nearby. Fourth, she starts the
application. Whenever the application is running the phone can
be set in standby mode but should remain within a 10 meters
reach from the BBA device to ensure reliable data transfer. The
GUI supporting appropriation and execution of BBA is shown
in Figure 5.

Figure 5. RapMobile Application

V. IMPLEMENTATION
RapIoT is built on top of MQTT and CoAP protocols.

Primitives are coded in JSON-formatted messages that contain a
unique identifier of a device, currently implemented as MAC
address, followed by the identifier of a primitive and the two
optional parameters.

Primitives are exchanged between IoT devices and
applications on a event-driven basis. The event protocol is very
lightweight and designed for low-resource embedded devices,
since the information required to route primitives from each
device to applications is offloaded by the gateway and server
layers. This design choice spares hardware and application
developers from implementing event routing, since each
hardware module can be unequivocally controlled by an
application connected to the API; no matter where the
application or the hardware are deployed. Application
developers only need to handle input primitives received from
the hardware modules and send output primitives to those
devices, without the need to know how the modules implement
the actual recognition and actuation of primitives.

Our platform employs a broadcast-based architecture in
which all embedded devices interact with a common (wireless)
communication channel where messages are broadcasted over
the MQTT protocol.

This architecture enables the reuse of deployed devices for
different applications without changing the firmware.
Furthermore, hardware modules can be discovered, attached or
removed to the platform while clients are still running. Special
system-wide events inform connected clients of the availability
of new devices in real time.

443443

The current implementation has several limitations. The web
interface for uploading application code on RapCloud is still
under development, yet it is possible to launch applications
manually from a command line interface. Likewise, RapMobile
does not yet fully support selection and execution of applications
(steps 1 and 3 in Figure 5); requiring developers to hard-code
devices’ MAC addresses.

VI. DISCUSSION
In this section we analyse how RapIoT could drive the

development of collaborative applications and we discuss its
strengths and limitations.

A. Support for collaboration
Our approach to IoT system development embeds

mechanisms that facilitate the authoring of collaborative
applications. Primitives demonstrated to be a flexible construct
that allow to break down interaction routines and data flows into
simpler blocks that can be combined when writing the
application logic. The RapIoT toolkit presents three fundamental
features that help developing collaborative systems:

• Support for multiple devices – RapIoT supports
applications that make use of several devices connected
to the same gateway (RapMobile app). This allow
multiple users to interact with several devices placed in
the same environment, which are then ruled by a
centralised application logic running on the RapCloud
server. Collaborative applications are then a concrete
possibility: users can cooperate interacting with
different devices for a common goal;

• HCI primitives for physical interaction – some of the
primitives rely on composite actions and events, which
involve more than one physical device. It is possible to
design and implement applications that support time
coordination, sequential actions, proximity and other
forms of cooperative practices that characterize
coordinated ecologies of devices;

• Distributed gateways and devices – applications
developed with RapIoT can use several gateways
physically located in different places, each of which can
control a group of devices. This open to several possible
scenarios: (i) groups of users can move from site to site
where different groups of IoT devices are located and
perform collaborative tasks that involve IoT devices on
the site, i.e. a collaborative treasure hunt game, (ii) users
can carry one or more IoT devices connected to their
smartphone and perform some tasks or collecting data
in the environment, remotely cooperating with other
users that are following the same workflow but on a
different site, (iii) users can move from gateway to
gateway performing a subset of tasks involving different
IoT devices, remotely collaborating with other users that
follow the same process in other sites, with different IoT
devices.

B. Limitations
The RapIoT architecture does not comprehend any coded

application logic embedded into IoT devices (embedded layer).
Since the primitives have to follow a complete round trip from

the embedded layer to the application layer, network latency can
be a significant factor affecting performance and application
responsiveness. Network quality and availability is crucial for
the entire period when the application is in use.

This limitation can be particularly amplified when the
application layer deals with batches of primitives in rapid
sequence. In these cases, most of the execution time is spent
waiting for the network, which can hinder the user experience.

Another possible limitation is connected to the concept of
primitive: for some applications the behavior to encapsulate in a
primitive can be too complex to be exposed with a simple
interface like the one provided by input/output primitives. This
restriction could be partially mitigated splitting the logic into
two or more primitives, with the drawback of delegating more
work to the network.

VII. CONCLUSIONS
In this paper we presented the RapIoT toolkit for rapid

prototyping of IoT applications. The development process of a
RapIoT application has been demonstrated by describing how
the provided tools have been applied to the development of a
system for crowdsourcing air quality data.

RapIoT leverages the concept of data primitives as a
communication block and interface between generic devices and
application layers. Further, we highlighted how RapIoT
primitives can support the development of collaborative
applications via multiple embedded devices, physical interfaces
and distributed gateways.

RapIoT takes advantage and builds on top of the most recent
technological evolutions in the field like the Arduino platform,
cloud computing, BLE radios and mobile applications; reducing
complexity and entry barriers for non-experts.

Future works will be oriented towards testing and refinement
of the tools composing the system, as well as development of
more complex applications and collaboration-specific
primitives.

REFERENCES
[1] O. Eris, J. Drury, and D. Ercolini, “A collaboration-focused taxonomy of

the Internet of Things,” 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pp. 29–34.

[2] A. J. Jara, M. A. Zamora, and A. F. G. Skarmeta, “An internet of things–
based personal device for diabetes therapy management in ambient
assisted living (aal),” Personal and Ubiquitous Computing, vol. 15, no. 4,
pp. 431–440, 2011.

[3] M. Brereton, A. Soro, K. Vaisutis, and P. Roe, “The messaging kettle:
Prototyping connection over a distance between adult children and older
parents,” in Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, ser. CHI ’15. New York, NY, USA: ACM,
2015, pp. 713–716.

[4] L. Yang, S. H. Yang, and L. Plotnick, “How the internet of things
technology enhances emergency response operations,” Technological
Forecasting and Social Change, vol. 80, no. 9, pp. 1854–1867, Nov. 2013.

[5] N. Taylor, U. Hurley, and P. Connolly, “Making community: The wider
role of makerspaces in public life,” in Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’16. New
York, NY, USA: ACM, 2016, pp. 1415–1425.

[6] K. Ashton, “That ‘internet of things’ thing,” RFiD Journal, vol. 22, no. 7,
pp. 97–114, 2009.

444444

[7] T. L. Koreshoff, T. Robertson, and T. W. Leong, “Internet of things: A
review of literature and products,” in Proceedings of the 25th Australian
Computer-Human Interaction Conference: Augmentation, Application,
Innovation, Collaboration, ser. OzCHI’13. NewYork, NY, USA: ACM,
2013, pp. 335–344.

[8] M. Blackstock and R. Lea, “Iot mashups with the wotkit,” in 2012 3rd
International Conference on the Internet of Things (IOT), Oct 2012, pp.
159–166.

[9] D. De Roeck, K. Slegers, J. Criel, M. Godon, L. Claeys, K. Kilpi, and A.
Jacobs, “I would diyse for it!: A manifesto for do-it-yourself internet-of-
things creation,” in Proceedings of the 7th Nordic Conference on Human-
Computer Interaction: Making Sense Through Design, ser. NordiCHI ’12.
New York, NY, USA: ACM, 2012, pp. 170–179.

[10] S.Mora, J. Asheim, A.Kjøllesdal, and M.Divitini, “Tiles Cards: a Card-
based Design Game for Smart Objects Ecosystems,” in Proceedings of the
First International Workshop on Smart Ecosystems cReation by Visual
dEsign co-located with the International Working Conference on
Advanced Visual Interfaces (AVI 2016), vol. 1602. Bari, Italy: CEUR-
WS, Jun. 2016, pp. 19–24.

[11] J. Gubbi, R. Buyya, S. Marusic, and M.Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[12] O. Shaer and E. Hornecker, “Tangible User Interfaces: Past, Present, and
Future Directions,” Foundations and Trends in Human–Computer
Interaction, vol. 3, no. 1-2, pp. 1–137, Jan. 2009.

[13] D. Mellis, M. Banzi, D. Cuartielles, and T. Igoe, “Arduino: An open
electronic prototyping platform,” in Proceedings of CHI Extended Ab-
stracts. ACM, 2007.

[14] A. Millner and E. Baafi, “Modkit: Blending and extending approachable
platforms for creating computer programs and interactive objects,” in
Proceedings of the 10th International Conference on Interaction Design

and Children, ser. IDC ’11. New York, NY, USA: ACM, 2011, pp. 250–
253.

[15] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch Programming Language and Environment,” ACM Transactions
on Computing Education (TOCE), vol. 10, no. 4, pp. 16–15, Nov. 2010.

[16] J. Sadler, K. Durfee, L. Shluzas, and P. Blikstein, “Bloctopus: A Novice
Modular Sensor System for Playful Prototyping,” in TEI ’15: Proceed-
ings of the Ninth International Conference on Tangible, Embedded, and
Embodied Interaction. ACM, Jan. 2015.

[17] W. McGrath, M. Etemadi, S. Roy, and B. Hartmann, “Fabryq: using
phones as gateways to prototype internet of things applications using web
scripting,” in Proceedings of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems. ACM, 2015, pp. 164–173.

[18] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “Iot gateway:
Bridgingwireless sensor networks into internet of things,” in Embedded
and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International
Conference on, Dec 2010, pp. 347–352.

[19] S. Nastic, S. Sehic, M. Vo ̈gler, H.-L. Truong, and S. Dustdar,
“PatRICIA–A Novel Programming Model for IoT Applications on Cloud
Platforms,” in 2013 IEEE 6th International Conference on Service-
Oriented Computing and Applications. IEEE, 2013, pp. 53–60.

[20] F. Khodadadi, R. N. Calheiros, and R. Buyya, “A data-centric framework
for development and deployment of internet of things applications in
clouds,” in 2015 IEEE Tenth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), April
2015, pp. 1–6.

[21] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things,” in 2012 Sixth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing

445445

