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a b s t r a c t

Cyber-foraging is a technique to enable mobile devices to extend their computing power and storage by
offloading computation or data to more powerful servers located in the cloud or in single-hop proximity.
In previous work, we developed a set of reusable architectural tactics for cyber-foraging systems. We
define architectural tactics as design decisions that influence the achievement of a system quality. In
this article we present the results of three case studies to validate the application of the tactics to
promote their intended functional and non-functional requirements. The first two case studies focus on
the identification of architectural tactics in existing cyber-foraging systems. The third case study focuses
on the development of a new cyber-foraging system using the architectural tactics. The results of the case
studies are an initial demonstration of the validity of the tactics, and the potential for taking a tactics-
driven approach to fulfill functional and non-functional requirements for cyber-foraging systems.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cyber-foraging is a mechanism that leverages cloud servers,
or local servers called surrogates, to augment the computation
and storage capabilities of resource-limited mobile devices while
extending their battery life [1]. There are twomain forms of cyber-
foraging. One is computation offload, which is the offload of ex-
pensive computation in order to extend battery life and increase
computational power. The second is data staging to improve data
transfers between mobile devices and the cloud by temporarily
staging data in transit on intermediate, proximate nodes. While
cyber-foraging can take place between mobile devices and cloud
resources, our focus is on systems that use intermediate, proximate
surrogates.
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E-mail addresses: g.a.lewis@vu.nl (G. Lewis), p.lago@vu.nl (P. Lago),

sebastian.echeverria@gmail.com (S. Echeverría), pieter.simoens@ugent.be
(P. Simoens).

In previous work we conducted a systematic literature review
(SLR) on architectures for cyber-foraging systems [2,3]. The com-
mon design decisions present in the cyber-foraging systems iden-
tified in the SLR were codified into functional and non-functional
architectural tactics [3,4]. We define architectural tactics as de-
sign decisions that influence the achievement of a system quality
(i.e., quality attribute) [5]. However, these tactics needed to be
validated in real cyber-foraging systems. We therefore developed
case studies for three different cyber-foraging systems to validate
the application of the tactics to promote particular functional and
non-functional requirements. A summary of the architectural tac-
tics for cyber-foraging is presented in Appendix as a reference.
The tactics are divided into functional and non-functional tactics.
Functional tactics are broad and basic in nature and correspond
to the architectural elements that are necessary to meet cyber-
foraging functional requirements. Non-functional tactics are more
specific and correspond to architecture decisionsmade to promote
certain quality attributes.

The goal of the first case study is to discover the architectural
design decisions in the existing implementation of the Tactical
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Cloudlets system developed by the Carnegie Mellon Software En-
gineering Institute to support computation offload [6], and then
verify the mapping of the architectural design decisions to the
architectural tactics for cyber-foraging. Similarly, the goal of sec-
ond case study is to discover the architectural design decisions in
the existing implementation of the GigaSight system developed by
Ghent University, Aalto University, Intel Labs, and CarnegieMellon
University to support data staging of crowd-sourced video [7]. Fi-
nally, the goal of the third case study is to identify tactics that could
be used in the development of the AgroTempus system, targeted at
agricultural knowledge exchange in resource-challenged regions,
and then to validate if the implementation of each of the tacticsmet
its intended functional and non-functional requirements. Tactical
Cloudlets and GigaSight are academic systems developed in the
context of cyber-foraging research. As cyber-foraging is still an
emerging concept, we were not successful in finding industry
systems (or additional academic systems) that were full systems
and had source code available for analysis (mostly simulations, al-
gorithms, and experimentation code). AgroTempuswas developed
as part of a Masters Thesis at the Vrije Universiteit Amsterdam.

The rest of the paper is structured as follows. Section 2 presents
the design of the case studies. Sections 3, 4, and 5 show the results
of the Tactical Cloudlets, GigaSight, and AgroTempus case studies,
respectively. Section 6presents the threats to validity of the results.
Section 7 presents related work. Finally, Section 8 concludes the
article and outlines next steps.

2. Case study design

For the three case studies we followed the guidelines for con-
ducting case studies from [8] and [9].

2.1. Research questions

For the first two case studies, given the goal to discover archi-
tectural design decisions in an existing system (Tactical Cloudlets
and GigaSight), we defined the following research questions to be
answered in the execution of the case study.

RQ1: Which of the architectural tactics for cyber-foraging can be
identified in the system?

RQ2: How do the implemented tactics support their intended
functional and non-functional requirements?

For the third study, given the goal to determine if the iden-
tified architectural tactics for cyber-foraging can be used in the
development of the AgroTempus system, we defined the following
research questions to be answered in the execution of the case
study. These questions are slightly different from the previous
two case studies as the context is the use of the tactics in new
development, as opposed to the analysis of an existing system to
identify tactics.

RQ3: Which of the architectural tactics for cyber-foraging can be
used in the development of the system to fulfill its functional
and non-functional requirements?

RQ4: How do the selected tactics support their intended func-
tional and non-functional requirements?

2.2. Data collection procedure

Data collection involves identifying the data to be collected,
defining a data collection plan, and defining how the data will
be stored [8]. Given that the goal of the first two case studies
is to discover the architectural design decisions in an existing
system implementation, and both the system artifacts and system
developers are available, the data collection is executed with an

independent analysis ofwork artifacts (third degree data collection
method) combined with developer interviews for validation (first
degree data collection method) [9]. We therefore define the fol-
lowing steps to collect data about the design and implementation
of the Tactical Cloudlets system that will enable us to answer the
case study research questions:

1. Understand system requirements: System requirements are
gathered from the project Wiki, system documentation, and
publications. The identified requirements are documented
and confirmed by members of the development team.

2. Recover software architecture: The software architecture is
recovered from the project Wiki, system documentation,
and publications. The as-designed architecture is compared
to the as-is architecture through code inspection of the
code available at https://github.com/SEI-AMS/pycloud and
verification with the development team.

3. Map architectural design decisions to system requirements:
Architectural design decisions are mapped to system re-
quirements in order to fully understand how each require-
ment was met.

Given that the research questions identified for the GigaSight
system are the same as for the Tactical Cloudlets system, the data
collection procedure is the same. The main difference between
systems is that Tactical Cloudlets is targeted at computation offload
while the GigaSight system is targeted at data staging. The code
for the GigaSight system that is analyzed as part of the data col-
lection procedure is available at https://github.com/cmusatyalab/
GigaSight.

For the AgroTempus system, given that the goal of the case
study is to determine if the architectural tactics for cyber-foraging
canbeused in thedevelopment of a newsystem, thedata collection
is executed with direct observation of the development process
(first degree data collection method) combined with developer
and project stakeholder interviews for validation (first degree data
collection method) [9]. We therefore define the following steps to
collect data about the use of architectural tactics for cyber-foraging
in the development of the AgroTempus system that will enable us
to answer the case study research questions:

1. Gather system requirements: System requirements are gath-
ered by the system developer from the main project stake-
holder. The identified requirements are documented and
confirmed by the main stakeholder.

2. Map system requirements to architectural tactics for cyber-
foraging: The system developer maps system requirements
to functional and non-functional tactics for cyber-foraging
that could be used in the realization of the requirements.

3. Develop system architecture: The system developer designs
the software architecture for the AgroTempus system using
components derived from the identified architectural tac-
tics, combined with components to address requirements
that are outside the scope of the architectural tactics for
cyber-foraging. The system architecture is documented as a
component-and-connector diagram.

4. Map architecture components to system requirements: The
system developer maps architecture components to system
requirements to ensure that all system requirements are
assigned to components of the architecture.

5. Map architecture components to identified architectural
tactics: The system developer maps architecture compo-
nents and design decisions to elements of the identified
tactics.

6. Implement system based on system architecture: The sys-
tem developer implements the system according to specifi-
cations provided by the system architecture.

https://github.com/SEI-AMS/pycloud
https://github.com/cmusatyalab/GigaSight
https://github.com/cmusatyalab/GigaSight
https://github.com/cmusatyalab/GigaSight
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2.3. Analysis procedure

Once the system requirements and architectural design deci-
sions are fully understood we perform two activities as part of the
analysis.

1. Map architectural design decisions to architectural tactics:
The identified architectural design decisions are mapped
to elements of the tactics. We do this by (1) selecting tac-
tics that could meet systems requirements based on the
description of the tactic, and (2) mapping components of
the tactics to component(s) in the architecture that perform
each component role. Both matches and gaps are identified
in order to determine completeness of the tactics, as well as
variations of the tactics implemented in the system to fulfill
specific requirements.

2. Qualitatively and quantitatively (if feasible) determine if the
implementation of the tactics meets the corresponding sys-
tem requirements: Through system testing, data collected
(and published) by systemdevelopers, aswell as discussions
with the system developers, we determine if the implemen-
tations of the tactics meet their intended requirements.

3. Case study 1: Tactical Cloudlets

3.1. System context

Tactical environments, such as those in which first responders
and military personnel operate, are characterized by dynamic
context, limited computing resources, disconnected-intermittent-
limited (DIL) network connectivity, and high levels of stress.
Forward-deployed, discoverable, virtual-machine-based
surrogates called tactical cloudlets can be hosted on vehicles or
other platforms to (1) provide infrastructure to offload computa-
tion, (2) provide forward data staging for a mission, (3) perform
data filtering to remove unnecessary data from streams intended
formobile users, and (4) serve as collection points for data heading
for enterprise repositories.

The forward-deployed, single-hop proximity to mobile devices
promotes energy efficiency as well as lower latency (faster re-
sponse times). Given the uncertainty and dynamicity of tactical
environments, one of the main drivers for the Tactical Cloudlets
system is survivability, defined as the capability of a system to con-
tinue functioning in spite of adversity [6]. In particular, because a
mobile devicemight lose connectivity to a cloudlet given the highly
dynamic environment, a cloudlet should to be able to provide
the mobile device access to needed computation and data in the
shortest time possible, before themobile device loses connectivity.

3.2. System requirements

The requirements of the Tactical Cloudlets system can be di-
vided into functional and non-functional requirements.

3.2.1. Functional requirements
• FR1: Offload of Computation-Intensive Operations: Ap-

plications that are useful to first responders and military
personnel include speech and image recognition, natural
language processing, and situational awareness. These are
all computation-intensive tasks that take a heavy toll on
the device’s battery power and computing resources and
should therefore be offloaded to proximate, more powerful
cloudlets.

• FR2: Cloudlet Discovery: Due to the dynamic nature and
potential mobility of cloudlets in tactical environments (e.g.,
vehicle-hosted cloudlets), mobile devices need to be able to
discover nearby cloudlets.

• FR3: Disconnected Operations: In tactical environments it
is not possible to guarantee connectivity between cloudlets
in the field and the cloud. Therefore, offloaded capabilities
should be self-contained and pre-loaded so they do not re-
quire connectivity to the cloud in order to operate.

• FR4: Support for Separate Deployment of Mobile Devices
and Cloudlets: Cloudlets should be able to be used bymobile
devices already deployed or available in the field. Therefore
the cloudlet should enable mobile devices to be provisioned
with the required apps to use its capabilities.

• FR5: Optimal Cloudlet Selection: If more than one cloudlet
is available, the mobile device should offload computation to
the cloudlet that is likely to return a response in the shortest
amount of time, before the mobile device loses connectivity
to the cloudlet (relationship to the survivability driver).

• FR6: Cloudlet Management: In addition to being able to
provision the cloudlet with capabilities for use by mobile
devices, the cloudlet administrator should be able to seewhat
capabilities have been started frommobile devices as well as
start capabilities and stop capabilities as needed.

• FR7: Cloudlet Migration: Due to the potential mobility of
cloudlets in tactical environments, offloaded capabilities
should be able tomigrate between cloudlets when requested.

3.2.2. Non-functional requirements
• NFR1: Energy Efficiency: Energy consumption on the mo-

bile device when offloading computation-intensive opera-
tions (request, execution, and response) should be less than
energy consumed by local execution.

• NFR2: Scalability and Elasticity: Tactical cloudlets cannot be
serverswith huge computing power due to power availability
and size limitations of what can be carried into a tactical
environment to support a mission. Tactical Cloudlets there-
fore should only run capabilities when they are actively being
used by mobile devices.

• NFR3: Ease of Deployment and Re-Deployment: First re-
sponders and military personnel executing a mission cannot
rely on the availability of IT personnel in the field to helpwith
cloudlet setup. Therefore, tactical cloudlets should be easy to
set up by non-IT personnel.

3.3. System architecture and design

The Tactical Cloudlets system contains 7.7 KLOC of Java and 4.5
KLOC of Python. It had five non-full-time developers over three
years.. The as-is architecture for the system is shown in Fig. 1. The
main elements of the architecture are:

• Client: Mobile device running Android 4.x that hosts three
main components:

– Cloudlet-Ready App(s): Mobile apps that are set up to
offload computation to a cloudlet.

– Cloudlet Client GUI: Mobile app that is used to access
the app store capability.

– Cloudlet Client Library: Library that is used by the two
components above to discover cloudlets, retrieve
cloudlet metadata, select cloudlets, and offload compu-
tation. It interacts with the Cloudlet Host using HTTP.

• Cloudlet Host: Linux server that runs a tactical cloudlet. The
main components are:

– PyCloud Library: Python component that implements
the core cloudlet functionality.

– Cloudlet API: Python component that is used by the
Cloudlet Client Library to start Services as Service VMs.
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Fig. 1. High-level architecture of the tactical Cloudlets system.

– Cloudlet Manager: Python web application that is used
by an administrator to manage Services (along with
their VM Images) and Cloudlet-Ready Apps.

– Service Repository: Each capability that is made avail-
able to mobile apps is considered a service. A running
service is called a Service VM. Each service has asso-
ciated metadata (Service Metadata), the actual capa-
bilities packaged as VM disk and memory images (VM
Images), and one or more Cloudlet-Ready Apps that can
use the capability (Cloudlet-Ready App Packages). In
addition, the repository stores metadata related to run-
ning services (Service VM Metadata) and the available
Cloudlet-Ready Apps (Cloudlet-Ready App Metadata)

– QEMU-KVM Instance: Each Service VM runs inside a
QEMU-KVM virtual machine instance.

• Admin (PC): Browser that is used to access the Cloudlet Man-
ager web application.

3.4. Mapping of architectural design decisions to architectural tactics

The following subsections describe the tactics that were identi-
fied in the Tactical Cloudlets system, how they were implemented,
and how they map to system requirements.

3.4.1. Computation Offload
TheComputationOffload tactic enablesmobile clients to offload

expensive computation to surrogates, as shown in Fig. 2(a). This

tactic can be identified in the Tactical Cloudlets architecture as
shown in Fig. 2(b), with numbers to indicate the sequence of opera-
tions. The component names in Fig. 2(a) are used as stereotypes for
the components in Fig. 2(b) to indicate themapping between com-
ponents. Only the components that are relevant to the tactic are
included. This convention is followed for all the implementation
diagrams in this article. The computation offload operation takes
place as follows:

1–4. The Cloudlet-Ready App requests to offload service
Service ID.

5. The Pycloud Library retrieves Service Metadata and
VM Image Files for Service ID.

6. The Pycloud Library starts the Service VM as a
QEMU-KVM Instance.

7. The Pycloud Library saves Service VMMetadata in
the Service Repository.

8–11. The Pycloud Library returns the IP address and port
on which the Service VM is listening.

12. The Cloudlet-Ready App opens a socket to the given
IP address and port and starts interacting with the
Service VM.

The Computation Offload tactic supports the requirement to
offload expensive computation to nearby surrogates (FR1) as well
as the energy efficiency requirement (NFR1). The developers of the
tactical cloudlets system split applications into a very thin client
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Fig. 2. Tactical Cloudlets implementation of the Computation Offload tactic.

(Cloudlet-Ready App) and a very computation-intensive server
(Service VM) such that energy efficiency is reached on the mobile
device. The mapping between the tactic and the Tactical Cloudlet
implementation in Fig. 2 shows two differences:

1. The Tactical Cloudlets system does not use an external App
Metadata file in the offload process. This is because the
only metadata that is required is the Service ID which is
hard-coded in the Cloudlet-Ready App. An improvement for
a future version of the tactic is to mark the App Metadata
component as optional.

2. The Tactical Cloudlets system has an additional Service
Repository component from which offloaded code is fetched
and then started as a Service VM. This additional step would
be required of any system that implements the Computation
Offload tactic together with the Pre-Provisioned Surrogate
tactic, as is the case of the Tactical Cloudlets system (Sec-
tion 3.4.2). An additional improvement for the catalogwould
be to include variations of the Computation Offload tactic
when used with the different surrogate provisioning tactics.

3.4.2. Pre-Provisioned Surrogate
In the Pre-Provisioned Surrogate tactic surrogates are provi-

sioned before their deployment with the capabilities that are of-
floaded by mobile clients, as shown in Fig. 3(a). This tactic can
be identified in the Tactical Cloudlets architecture as shown in
Fig. 3(b). Provisioning a cloudlet with a service capability takes
place as follows:

1–3. The Admin Client requests to add a new service Service
ID to a cloudlet.

4. In order to provide a faster startup time for when service
capabilities are requested, the Pycloud Library first
starts the Service VM from the given VM Image Disk File.

5. The Pycloud Library then suspends the Service VM,
which generates a VM Image Memory File. The faster
startup time is because the Service VM will be started
from a suspended state instead of a cold state.

6. Both the VM image disk and memory file are saved as
VM Image Files in the Service Repository along with
Service Metadata.
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Fig. 3. Tactical Cloudlets implementation of the Pre-Provisioned Surrogate tactic.

This same general process is followed when adding a Cloudlet-
Ready App to the Service Repository. Cloudlet-Ready Apps are
linked to services by Service ID. At runtime, the Cloudlet-Ready App
uses the Service ID provided in steps 1–3 to start the computation
offload process.

The Pre-Provisioned Surrogate tactic supports the requirement
for disconnected operations (FR3) because cloudlets are pre-
provisioned with capabilities that are needed for a mission. In
addition, because cloudlets are also pre-provisioned with the apps
to use the capabilities, the tactic also supports the requirement
to enable mobile devices to be provisioned in the field (FR4). The
mapping between the tactic and the Tactical Cloudlet implemen-
tation is complete, as shown in Fig. 3.

3.4.3. Surrogate Broadcast
In the Surrogate Broadcast tactic surrogates advertise their

availability and selected metadata to mobile devices for discovery,
as shown in Fig. 4(a). This tactic can be identified in the Tactical
Cloudlets architecture as shown in Fig. 4(b). Cloudlet discovery

is based on the Avahi daemon1 that implements Zeroconf (Zero
Configuration Networking).2 Avahi uses DNS Service Discovery
(DNS-SD) along with Multicast DNS to enable a client to request a
service without knowing the IP address of the server that provide
the service. Cloudlet discovery by cloudlet-ready apps takes place
as follows:

0. When the cloudlet starts, its Discovery Service joins a spe-
cific Cloudlet Multicast IP Address as a listener.

1. The Cloudlet-Ready App requests to offload service Service
ID.

2. The Cloudlet Client Library sends a DNS-SD Query for
cloudlet services (defined as a _cloudlet._tcp service) through
Multicast DNS to the Cloudlet Multicast IP Address. The
query reaches the Discovery Service of any cloudlets in
the network through Multicast DNS. The Discovery Service

1 http://avahi.org.
2 http://zeroconf.org.

http://avahi.org
http://zeroconf.org
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Fig. 4. Tactical Cloudlets implementation of the Surrogate Broadcast tactic.

replies with a DNS-SD Response indicating the IP address
and port of the cloudlet server.

3–9. The Cloudlet Client Library sends a request for cloudlet
metadata and the list of available services to each cloudlet
that replied.

10. The Cloudlet Client Library selects the cloudlet that contains
the service Service ID and has the lowest load, based on
the assumption that it will have the fastest processing and
response time. The architecture enables other algorithms to
be plugged in.

11. The Cloudlet Client Library starts the computation offload
process (Section 3.4.1) with the selected cloudlet.

The Surrogate Broadcast tactic supports the requirement for
cloudlet discovery (FR2) as well as the requirement for optimal
cloudlet selection when more than one cloudlet is available (FR5).
The mapping between the tactic and the Tactical Cloudlet imple-
mentation in Fig. 4 shows two differences:

1. The cloudlet selection process is a two-step process inwhich
the Cloudlet Server IP Address and Port broadcast by the
Broadcast Component (Step 0) is used to query each cloudlet
for capabilities (Step 3). The reason for this is that the Zero-
conf protocol used by the Tactical Cloudlets implementation
has a size limitation for broadcast information. While not a

gap in the tactic itself, what this shows is that technology
selection can introduce variations in the implementation
of a tactic. An improvement for the catalog would be to
include variations of the Surrogate Broadcast tactic when
used with different technologies (or known limitations of
technologies).

2. For this same reason, the Surrogate Repository is added to
the implementation of the tactic. The cloudlet metadata and
service list is obtained from the repositorywhen the cloudlet
is queried for its capabilities. This component would be part
of the variation introduced by the broadcast protocol size
limitation.

3.4.4. Just-In-Time Containers
The Just-in-Time Containers tactic creates a container and/or an

instance of the offloaded code upon receipt of an offload request
and then destroys the instance of the offloaded code when the
offload request is completed, as shown in Fig. 5(a). In the Tactical
Cloudlets system, as shown in Fig. 2(b), the computation offload
process presented in Section 3.4.1, a QEMU-KVM Instance for a
Service VM is only created upon an offload request.

In addition, to promote greater scalability and elasticity, when
adding a service to a cloudlet (Section 3.4.2), one of the elements of
the Service Metadata is whether the service will be shared or non-
shared. A non-shared service will start a separate instance with
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Fig. 5. Tactical Cloudlets implementation of the Just-in-Time Containers tactic.

every request. However, a shared servicewill only start an instance
for its first request. All other requests will share the same instance.
A counter of active users for the service is maintained as Service
Metadata. This means that Step 6 in Fig. 2 only takes place if the
service is non-shared, or if it is the first request for a shared service.

The final step in the computation offload process presented in
Section 3.4.1 is that the Cloudlet-Ready App starts the interaction
with the Service VM. To implement the Just-in-Time Contain-
ers tactic, when the Cloudlet-Ready App is closed, the operations
shown in Fig. 5(b) take place, namely:

1–4. The Cloudlet-Ready App requests to stop service Service ID.
5. If the service is non-shared or the number of active users for

the service is one (i.e., last active user), the Pycloud Library
stops the instance of the service Service ID.

6. Service Metadata and Service VM Metadata are updated to
indicate that the service has stopped and/or the number of
active users for the shared service is one less.

The Just-in-Time Containers tactic supports the requirement for
capabilities to only be running when they are being used in order
to promote scalability and elasticity (NFR2). Themapping between
the tactic and the Tactical Cloudlet implementation in Fig. 5 shows
two differences:

1. The Tactical Cloudlets system introduces the concept of
shared and non-shared capabilities, which is not specified

in the original tactic. This is why the container is destroyed
only if is it is a non-shared capability or the number of
active users is one (i.e., only active user of the capability). An
improvement for the catalog would be to include a variation
of the Just-in-Time Containers tactic to support shared and
non-shared capabilities.

2. For the same reason, the Surrogate Repository is added to the
implementation of the tactic. Service Metadata and Service
VM Metadata needs to be updated based on the results
of the request to end the offload request. This component
would be part of the variation introduced by the support for
shared/non-shared capabilities.

Although not stated as a benefit of the tactic, and not stated
as a requirement for the system in Section 3.2, the Just-in-Time
Containers tactic also supports energy efficiency on the cloudlet,
which is critical in tactical environments where access to power
might not always be available.

3.5. Analysis

3.5.1. Mapping between tactics and requirements
The mapping between the identified tactics and the Tactical

Cloudlets functional and non-functional requirements is shown in
Table 1.

The requirement to provide a form of management console for
a cloudlet admin to use (FR6) does not map to any of the tactics,
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Table 1
Mapping of architectural tactics to functional and non-functional requirements.
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Computation Offload X X
Pre-Provisioned Surrogate X X
Surrogate Broadcast X X
Just-in-Time Containers X X

as shown in Table 1. This fact is expected as it relates to one of
the findings from the SLR that states a lack of focus on system-
level concerns that is required when moving from experimental
prototypes to operational systems. One of these concerns is man-
agement of deployed capabilities. Related to this fact, there is not
a tactic in the catalog that maps to ease of deployment and re-
deployment (NFR3). However, in the Tactical Cloudlets system, the
Admin component that implements the Admin Client in the Pre-
Provisioned Surrogates tactic (Fig. 3(b)) is a lightweight,web-based
interface that enables cloudlet management and easy deployment
and redeployment of capabilities (FR6 and NFR3). The extension of
the catalog with tactics for ease of deployment and management
would be useful for moving from experimental prototypes to op-
erational cyber-foraging systems.

The requirement to be able to migrate capabilities between
cloudlets when requested (FR7) does not map directly to any of
the tactics either. However, the functionality in the Pycloud Library
that enables this migration is very similar to that explained in
the Eager Migration tactic once themonitoring component detects
that the connection between the mobile device and the cloudlet
is deteriorating. The Admin component of the tactical cloudlets
system that implements the Admin Client in the Pre-Provisioned
Surrogates tactic (Fig. 3(b)) also contains functionality to manually
migrate a Service VM Instance to another connected cloudlet. An
improvement for the catalog would be to include a variation of the
Eager Migration tactic to support manual migration.

To determine if the tactics meet their intended functional and
non-functional requirements, the developers conducted extensive
system testing and collected data to support their design and
implementation decisions. In addition to successful test results,
data collected included cloudlet provisioning time, energy con-
sumption on the mobile device, payload size and response time.
All implementation details and supporting data are available in
several publications [2,6,10,11].

3.5.2. Findings
The analysis of the Tactical Cloudlets system identified four

architectural tactics for cyber-foraging. There were some gaps in
the identified tactics (Section 3.5.1) that create opportunities for
improvement of the tactics catalog:

1. Tactics should differentiate between core and optional com-
ponents and interactions. Each optional component/
interaction should contain rationale for when it is necessary
to include in the implementation of the tactic.

2. As tactics are implemented in operational cyber-foraging
systems it is likely that variations will arise. The Tactical
Cloudlets system introduced several potential tactic varia-
tions: (1) variations of the Computation Offload tactic based

on the surrogate provisioning tactic selected for the system,
(2) a variation of the Just-in-Time Containers tactic to sup-
port shared and non-shared capabilities, and (3) a variation
of the Eager Migration tactic to support manual migration.

3. Technology selection can also lead to tactic variations. As
tactics are implemented and evaluated in cyber-foraging
systems, technology limitations and constraintsmay require
the implementation of additional components or interac-
tions between components. The Tactical Cloudlets system
introduced a variation of the Surrogate Broadcast tactic due
to limitations in broadcast message size.

4. There is great potential for extending the catalogwith tactics
to support system qualities necessary for moving from ex-
perimental prototypes to operational systems. The Tactical
Cloudlets system showed the need for tactics to support Ease
of Deployment and Manageability.

5. Even if tactics are targeted at promoting a particular system
quality, the tactics may have an effect on other system
qualities. As an example, the Just-in-Time Containers tactic
is a tactic for scalability/elasticity but also promotes energy
efficiency on the surrogate. Even though the secondary ef-
fect of the tactic is positive, it could also have been a negative
effect.

6. Related to the previous point, energy efficiency in cyber-
foraging systems is mainly targeted at energy savings on
mobile devices because of battery limitations. However, the
Tactical Cloudlets system showed the need for tactics to sup-
port energy efficiency on surrogates, especially if deployed
in areas with power limitations.

The utility of the tactics was supported by the main developer
for the Tactical Cloudlets system in the following statement: ‘‘Hav-
ing a set of architectural tactics for cyber-foraging systems would
help considerablywhen starting the design of a newsystem. Cyber-
foraging software has very particular requirements, and it is not
easy to know how to create the architecture for the overall system
toproperly satisfy the appropriate quality attributes. A set of tactics
would be an invaluable guide to make decisions at this stage’’.

4. Case study 2: GigaSight

4.1. System context

GigaSight is a cyber-foraging system targeted at continuous
collection of crowd-sourced video from mobile devices and wear-
ables [7]. Given the potentially-sensitive nature of video, GigaSight
collects video on surrogates called cloudlets where privacy-
sensitive information is automatically removed from the video
based on user-defined privacy settings related to time, location,
and content — a process called denaturing. Denatured video is then
indexed and resulting tags and metadata are uploaded to a cloud
catalog where users can perform content-based searches on the
total catalog of denatured videos.

Use cases for crowd-sourced video systems such as GigaSight
includemarketing and advertising; location ofmissing people, pets
and things; creation of family vacation albums; public safety; and
fraud detection [12].

4.2. System requirements

The requirements of the GigaSight system can be divided into
functional and non-functional requirements.

4.2.1. Functional requirements
• FR1: Video capture: The mobile device captures and stores

video.
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• FR2: User-specified privacy settings: Users are able to spec-
ify privacy settings based on location, time, and image con-
tent. These settings are used by the denaturing process to
automatically remove privacy-sensitive content from videos.

• FR3: Video upload to cloudlets: When a cloudlet becomes
available, the mobile device uploads captured video and pri-
vacy settings.

• FR4: Offload of video denaturing and indexing processes:
The highly computation-intensive denaturing and indexing
operations are executed on the cloudlet according to user-
specified privacy settings.

• FR5: Index upload to cloud catalog: Video metadata and
tags generated by the indexing process are uploaded from the
cloudlet to a cloud catalog that can be queried by users.

• FR6: User requests for denatured videos: A user of the cloud
catalog can request denatured videos from cloudlets.

4.2.2. Non-functional requirements
• NFR1: Energy Efficiency: Energy consumption on themobile

device when offloading the computation-intensive denatur-
ing and indexing operations should be less than energy con-
sumed by executing them locally.

• NFR2: Scalability: One cloudlet should be able to process and
store video from multiple users.

• NFR3: Fault Tolerance: If a cloudlet is not available for up-
load, the mobile device should be able to cache video until a
cloudlet becomes available.

• NFR4: Privacy: Privacy-sensitive information should not be
made available to users of the cloud catalog.

4.3. System architecture and design

The GigsSight system contains 3.3 KLOC of Python and 8.4 KLOC
of Java. It had four non-full-time developers over one year.The as-is
architecture for the system is shown in Fig. 6. The main elements
of the architecture are:

• Mobile Device: The mobile device is an Android 4.0.4 device.
It leverages the device’s built-in camera for video capture.

– GigaSight App: Performs all the user and privacy setting
management. User settings include IP address and port
of its Personal VM. Privacy settings include time fil-
ters, location filters and object-based filters. The object-
based filters are currently limited to the faces present in
the training set of the face recognition algorithms.

– File Uploader: Connects to the user’s Personal VM and
uploads video files and metadata. Once files are suc-
cessfully uploaded, these are removed from the mobile
device to make space for more video content.

• Cloudlet: Cloudlets are data staging points for denatured
video data en route to the cloud. Cloudlets in GigaSight are
implemented as servers running Linux 3.2.0.

– Personal VM: Each mobile device user is associated to
a Personal VM that performs the customized denatur-
ing for that user according to the user-defined privacy
settings. The Denaturing Process that executes inside
this VM is implemented using C++ and OpenCV 2.4.23 as
a multi-step pipeline: video decoding, early-discard of
frames based on metadata and sampling rate, content-
based blurring, and video encoding. The output of the
denaturing process is a low-frame-rate denatured video
file. For additional privacy, an encrypted version of the

3 http://www.opencv.org.

original video is also created during the upload process.
Both files are stored in the DataManagement VM so that
they are accessible to other VMs on the cloudlet.

– Data Management VM: The Data Manager inside this
VMhandles all video andmetadata storage and retrieval
in the Storage and Metadata Database. It notifies the
Indexer when new denatured video is available for in-
dexing. In addition, each time the Indexer adds tags to
the database, these are automatically synchronizedwith
the Global Catalog running in the Cloud.

– Video Content Indexer VM: The Indexer inside this VM
is a background activity that extracts metadata about
denatured videos (e.g., owner (anonymized), location of
capture, start and end time of capture, cloudlet address
where stored, and tags) and sends it to theDataManager
which in turn pushes this information to the Global
Catalog in the Cloud. The metadata is also stored locally
for use by search algorithms that could be implemented
inside the Personal VM for personal use.

– Diamond Search Module: The Diamond Search Module
is a third-party component for interactive search of non-
indexed data.4

• Cloud: Cloud-based data center that aggregates video meta-
data from a set of associated cloudlets.

– Global Catalog: The Global Catalog is a web applica-
tion implemented using Django5 that stores and man-
ages the metadata from denatured videos available on
cloudlets. The front end to the application enables users
to browse through the metadata and select videos of
interest for viewing.

– Diamond Client: Once a user selects videos of interest,
the Diamond Client contacts the Diamond Server of
each cloudlet that contains a video of interest to initiate
content-based search.

4.4. Mapping of architectural design decisions to architectural tactics

The following subsections describe the tactics that were iden-
tified in the GigaSight system, how they were implemented, and
how they map to system requirements. Implementation diagrams
for tactics that have already been presented will not be included
due to space limitations. The full set of implementation diagrams
can be found in [13].

4.4.1. Out-Bound Pre-Processing
In the Out-Bound Pre-Processing tactic surrogates collect data

from mobile devices and pre-process the data – clean, filter, sum-
marize, or merge – such that the data that is sent on to the
enterprise cloud is ready for consumption and serves an immediate
need, as shown in Fig. 7(a). This tactic can be identified in the
GigaSight architecture as shown in Fig. 7(b). The out-bound pre-
processing takes place as follows:

1–3. GigaSight App uploads stored video and metadata to the
Personal VM identified by Personal VM IP Address and Port
using the File Uploader.

4. The GigaSight Server receives the video, metadata and pri-
vacy settings for the user and sends these to the Denaturing
Process for denaturing according to the user’s privacy set-
tings.

5–6. The GigaSight Server encrypts the original video and sends it
to the Data Manager for storage.

4 http://diamond.cs.cmu.edu.
5 http://www.djangoproject.com.

http://www.opencv.org
http://diamond.cs.cmu.edu
http://www.djangoproject.com
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Fig. 6. High-level architecture of the GigaSight system.

7. The GigaSight Server sends the denatured video and meta-
data to the Data Manager for storage and indexing.

8–9. The Data Manager sends the denatured video to the Indexer
for indexing, which returns the set of tags for elements
identified in the video.

10. The DataManager stores the denatured video, metadata and
tags.

11. The Data Manager sends the video metadata and tags to the
Global Catalog in the Cloud.

The Out-Bound Pre-Processing tactic supports all of the func-
tional requirements because it maps well to sensing applications
such as GigaSight. Because denaturing and indexing are extremely
computation-intensive activities that are executed on the cloudlet
and not on the mobile device (as demonstrated via experimen-
tation in [7]), the tactic also supports energy efficiency (NFR1).
Finally, the pre-processing that occurs on the cloudlet in the Dena-
turing Process, supports the privacy requirement (NFR4). Because
the Personal VM is assigned to one and only one mobile device,
there is a guarantee that the raw video is only processed by the
Personal VM. Because the video is encrypted before it is stored in
the Data Management VM, access to the raw video would only be
possible via the Personal VM which is the only system component
that knows the encryption key. The mapping between the tactic
and the GigaSight implementation in Fig. 7 shows three main
differences:

1. The GigaSight system has an additional User and Privacy Set-
tings file that is read by the GigaSight App to obtain settings
for uploading video to the cloudlet. This is reasonable and
equivalent to the App Metadata component in the Computa-
tionOffload tactic,which iswhere the settings for the offload
process are stored. An improvement for a future version of
the Out-Bound Pre-Processing tactic is to include a more
general Settings component that performs this role andmark
it as optional.

2. The GigaSight system has an additional Android Media Stor-
age component because video and metadata sent to the
cloudlet are read from internal storage. This component

makes sense for a system that stores data before sending it to
the surrogate, as opposed to sending data as it is received. An
improvement for a future version of the tactic is to include
a more general Data Storage component that performs this
role and mark it as optional.

3. The GigaSight system has an instance of the GigaSight Server
(CommunicationsManager) for eachuser, as opposed to a sin-
gle instance. This is done to support the privacy requirement
and will be discussed shortly when the mapping to the Pre-
Provisioned Surrogate tactic is analyzed.

4.4.2. Pre-Provisioned Surrogate
In the Pre-Provisioned Surrogate tactic surrogates are provi-

sioned before their deployment with the capabilities that are of-
floaded by mobile clients, as previously shown in Fig. 3(a).

In the GigaSight system all data processing capabilities are
provisioned on the cloudlet before deployment. However, this is a
manual process. There is not the equivalent of a SurrogateManager
component to help with the provisioning process as shown in
the tactic. In addition, because capabilities are not advertised, but
rather each mobile device stores the IP Address and Port of its
Personal VM as part of the User Settings, there is not the equiv-
alent of a Capability Metadata component, nor the equivalent of
a Capability Registry component. Prior to deployment the Termi-
nal program that comes with the Linux distribution is executed
locally or remotely to copy the Data Management VM Image File,
the Video Content Indexer VM Image File, and the Personal VM
Image File that contains the denaturing capabilities into the Linux
Filesystem. The KVM Manager program that also comes with the
Linux distribution is initially used to start one instance of the Data
Management VM and one or more instances of the Video Content
Indexer VM.6 A Personal VM is then started for each mobile device
that wants to use the GigaSight system for video offload. After
starting the Personal VM themobile device user is providedwith its
IP Address and Port, which needs to be added to the User Settings
using the GigaSight app shown in Fig. 6.

6 Deployment of more than one Video Context Indexer VM is an architectural
design decision for scalability, as discussed in Section 4.5.



130 G. Lewis, P. Lago, S. Echeverría et al. / Future Generation Computer Systems 96 (2019) 119–147

Fig. 7. GigaSight implementation of the Out-Bound Pre-Processing tactic.

The Pre-Provisioned Surrogate tactic supports computation of-
fload to the cloudlet (FR4) and video index upload to the cloud
(FR5). These are capabilities that are pre-provisioned on the
cloudlet in the form of VMs. Because the capabilities already exist
on the cloudlet, there is no need to transfer any extra computation
from the mobile device or the cloud, leading to energy efficiency
(NFR1). The mapping between the tactic and the GigaSight imple-
mentation shows two main differences:

1. The GigaSight system does not have the equivalent of the
Surrogate Manager. Adding this component to the system
would promote ease of deployment and manageability as
GigaSight moves from a prototype to an operational system.

2. The GigaSight system does not have the equivalent of the
CapabilitiesMetadata and Capability Registry components be-
cause (1) capabilities are not advertised and (2) capabilities
on all surrogates are the same. Therefore, an improvement
for a future version of the tactic would be to mark these two
components as optional.

Even though having a pre-provisioned surrogate by itself does
not support scalability (NFR2), in this particular system it does.
Mobile devices are assigned a specific Personal VM on a cloudlet
(by IP address and port) and therefore the number of mobile
devices supported by a cloudlet can be controlled. Once a defined
disk and memory threshold on a cloudlet has been reached, new
mobile devices would need to be assigned to a different cloudlet.
In essence, a pre-provisioned surrogate has more control over its
load.

4.4.3. Local Surrogate Directory
In the Local Surrogate Directory tactic, mobile devices maintain

a list of surrogates with their network addresses or URLs, in addi-
tion to any information that can help the mobile device to select
the best offload target in case more than one is available, as shown
in Fig. 8(a).

The process is much simpler in the GigaSight system, as shown
in Fig. 8(b). There is not a cloudlet selection process because every
mobile device is assigned a Personal VM on a single Cloudlet. The
location of a cloudlet for data upload takes place as follows:
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Fig. 8. GigaSight implementation of the Local Surrogate Directory tactic.

0. As indicated in the previous section, when a Personal VM is
started for a Mobile Device, the GigaSight App in its role as
Surrogate Directory UI is used to save the Personal VM IP
Address and Port to the User and Privacy Settings file.

1. When the video upload process is started by the GigaSight
App in its role of Offload Client, it reads the Personal VM IP
Address and Port from the User and Privacy Settings file.

2–3. Video and Metadata are uploaded to the Personal VM at the
provided IP Address and Port.

The Local Surrogate Directory tactic supports scalability as
defined for the system (NFR2) because a cloudlet can support
multiple users by instantiating multiple instances of a Personal
VM. However, it is important to note that each cloudlet has an
upper bound on the number of Personal VMs that it can run si-
multaneously. It also supports privacy (NFR4) because the Personal
VM is the cloud-based counterpart of the mobile device: an entity
that the user trusts to store personal content, but with much more
computational and storage resources [7]. The mapping between
the tactic and the GigaSight implementation in Fig. 8 shows two
main differences:

1. The GigaSight system has an additional Android Media Stor-
age component because video and metadata sent to the
cloudlet are read from internal storage. This is not a gap in
this particular tactic but an area for improvement for the
Out-Bound Pre-Processing tactic, as discussed earlier.

2. The GigaSight system does not have a Surrogate Metadata
component because there is not a cloudlet selection process.
An improvement for a future version of the tactic would be
to mark this component as optional, as well as the surrogate
selection process (Steps 3–6 in Fig. 8(a)).

4.4.4. Client-Side Data Caching
The Client-Side Data Caching tactic is a variation of the Cached

Results tactic. Data collected by a mobile client is cached on the
mobile device and sent to the surrogate upon connection or re-
connection, as shown in Fig. 9(a).

The Client-Side Data Caching tactic can be identified in the
GigaSight architecture as shown in Fig. 9(b). The only difference
between the implementation and the tactic is that the sensed data
(video + metadata) is saved in the cache upon capture, instead of
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Fig. 9. GigaSight implementation of the Client-Side Data Caching tactic.

upon disconnection. The client-side data caching takes place as
follows:

0. Video captured using the Camera on the Mobile Device is
stored in the Android Media Storage along with metadata
such as location.

1–4. The GigaSight App tries to upload video to its Personal VM to
be encrypted, denatured, and stored in theDataManagement
VM on the Cloudlet.

5–7. Only if the operation is successful, the just uploaded video
is deleted from the Android Media Storage to make room
for new video. If it is not successful the user gets an error
message and is asked to try the upload at a later time.

The Client-SideData Caching tactic supports video capture and
upload to a cloudlet (FR1 and FR2). It supports energy efficiency
(NFR1) because uploading longer segments (instead of uploading
as video is captured) requires the device towake up less frequently
from the sleep state, while the total number of bytes transmitted
remains constant [7]. Finally, it supports fault tolerance (NFR3)
because video is not uploaded until a cloudlet is available, and is
not deleted from the device until the cloudlet confirms the upload.

Themapping between the tactic and theGigaSight implementation
in Fig. 9 shows two differences:

1. The GigaSight system contains a Camera component as the
data source. An improvement for a future version of the
tactic would be to include a more general Data Source core
component to indicate the source of the data that is stored
in theMobile Cache.

2. Sensed data is saved in the cache upon capture, instead
of upon disconnection. This difference could be added as a
variation of the Client-Side Data Caching tactic.

4.5. Analysis

4.5.1. Mapping between tactics and requirements
The mapping between the identified tactics and the GigaSight

functional and non-functional requirements is shown in Table 2.
It is important to note that some non-functional requirements

in GigaSight are supported by specific technology selection as
opposed to the use of tactics. The use of VMs as containers for
data and computation on the cloudlet promotes scalability and
elasticity because of the ease for container creation, migration,
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Table 2
Mapping of functional and non-functional requirements to the architecture of the
GigaSight system.
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Out-Bound Pre-Processing X X X X X X X X
Pre-Provisioned Surrogate X X X X X
Local Surrogate Directory X X
Client Side Data Caching X X X X

and destruction provided by VM management tools. For example,
additional instances of the content indexer can be instantiated on
one or more cloudlets to handle increasing loads. A Personal VM
can also be easily moved to another cloudlet as long as the device
is informed of its new address. The use of VMs as containers also
promotes privacy in the system because Personal VMs are single-
user and VM isolation is a well-known property of VMs. Although
there are potential vulnerabilities and attacks, for the most part
this property can be guaranteed [14].

To determine if the tactics meet their intended functional and
non-functional requirements, the developers conducted extensive
system testing and collected data to support their design and
implementation decisions. In addition to successful test results,
data collected included system throughput, cloudlet performance,
algorithmaccuracy, and energy consumption on themobile device.
All implementation details and supporting data are available in
several publications [7,12].

4.5.2. Findings
The analysis of the GigaSight system identified four architec-

tural tactics for cyber-foraging. Similar to the Tactical Cloudlets
analysis, there were some gaps in the identified tactics (Sec-
tion 4.5.1) that create opportunities for improvement of the tactics
catalog:

1. Consistentwith the Tactical Cloudlets system (Section 3.5.2),
tactics should differentiate between core and optional com-
ponents and interactions. Each optional component/
interaction should contain rationale for when it is necessary
to include it in the implementation of the tactic.

2. Consistent with the Tactical Cloudlets system, even if tactics
are targeted at promoting a particular system quality, the
tactics may have an effect on other system qualities.

3. Consistent with the Tactical Cloudlets system, as tactics
are implemented in operational cyber-foraging systems it
is likely that variations will arise. The GigaSight system
introduced apotential tactic variation of the Client-SideData
Caching tactic that always caches data, as opposed to only
caching data when a surrogate is not found.

4. Functional and non-functional requirements in cyber-
foraging systems can also be met by technology selection,
rather than by the use of a particular tactic. In the GigaSight
system, the use of VMs as containers had a positive effect
on scalability/elasticity as well as privacy. Insights that are
gained from the implementation and evaluation of cyber-
foraging systems could be added as notes to the tactics to
provide even greater value to software architects.

The utility of the tactics was supported by the main developer
for the GigaSight system in the following statement: ‘‘It is helpful
for developers to have some ‘best practices’ in software architec-
ture for cyber foraging. Today, we already have many patterns
(e.g., Gang of Four [15]), but these are very focused on object-
orientation, rather than on taking into account the actual de-
ployment. Having a reference list of tactics, plus possibly coding
elements in the future, would, in my view, be very helpful in
designing production-grade cyber-foraging applications. So far,
cyber-foraging has not truly left the lab prototype phase and typ-
ically good software design practices are second hand during this
phase of the research. But with cloudlets, micro data centers, and
edge clouds appearing everywhere, there will emerge a need from
industry on this’’.

5. Case study 3: AgroTempus

5.1. System context

As many developing areas have to deal with the lack of proper
access to resources such as Internet and electricity, cyber-foraging
offers potential solutions to these resource challenges by lever-
aging proximate surrogates that can provide services that involve
heavy computation such as image processing, store large sets of
data collected in the field, or store information retrieved from data
centers during scarce moments of Internet connectivity.

The goal of the AgroTempus system is to enable people involved
in agriculture (e.g., farmers and non-governmental organization
(NGO) employees helping farmers), who work in environments
with little to no access to the Internet or electricity, to collect
and retrieve data about the weather in their area. AgroTempus
performs different types of computation on the collected data as
examples of valuable services for its users.

End users interact with the system with smartphones, the pro-
liferation of which is predicted to rise significantly in the com-
ing years in developing regions [16,17]. The capabilities of the
mobile applications running on the smartphone are extended by
surrogates in the form of single-board computers running on solar
power. To be able to eventually store all collected data in a cloud-
based back-end, a mobile hub carrying a computer system with
increased storage capabilities will connect to each surrogate pe-
riodically, and eventually connect to the Internet. This also makes
it possible to propagate data from the Internet to the surrogates
and mobile devices. This setup was inspired by the DakNet project
in India [18].

5.2. System requirements

5.2.1. Functional requirements
• FR1: Store weather data: NGO employees and farmers can

store weather data related to a certain area via a mobile app.
• FR2: Retrieve weather data: NGO employees and farmers

can retrieve weather data related to a certain area using a
mobile app. This data is derived from earlier reports (FR1),
as well as from a third-party weather API accessible via the
Internet.

• FR3: Perform regressions onweather data: NGO employees
can select a weather information data set and perform a
regression on it using the mobile app. A visualization of the
results will be available when the operation completes.

• FR4: Predict future weather data values: NGO employees
and farmers can obtain predictions of future values of vari-
ables related to the weather, based on data collected in the
field, up to a week in the future.
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• FR5: Surrogate setup: Surrogates are assigned to serve a cer-
tain region and as such need a setup procedure that enables
NGO employees to enter the correct settings before it can be
used.

• FR6: Forecast delivery: Weather forecasts for the region that
the user is in can be retrieved using a mobile app.

• FR7: Integration with cloud-based storage systems: The
system eventually stores all data collected from mobile de-
vices in a cloud-based system such as ERS [19].

• FR8: Voice interface: The user interface for the farmers can
support voice instructions to help users navigate the app.

• FR9: Synchronize weather data: Periodically, the latest
weather forecasts and data for relevant regions are retrieved
from a third-party weather API on the Internet. This data is
eventually stored on the surrogates.

• FR10: Surrogate registration on mobile hub: When new
surrogates are added to the system and are operational, their
identification and location information (as provided in FR5)
is stored on themobile hub so that it can collect relevant data
for this surrogate (FR9).

5.2.2. Non-functional requirements
• NFR1: Fault tolerance and reliability: The system should

be able to recover from failures such as crashes and loss of
connection between mobile devices and surrogates.

– Because it is expected that there will be few people
proficient in IT in the regions where the system will be
used, surrogates should be able to detect failures in the
services that they offer and restart them accordingly.

– Losing connection during the interaction between sur-
rogates and mobile hubs, as well as between surrogates
and mobile devices, should not cause the services run-
ning on the surrogates to stop functioning.

– Because it is expected that mobile app users will regu-
larly be moving in and out of range of surrogates during
use of the system, this should not cause users to lose
results of completed computations or lose data that they
have stored on the mobile app.

• NFR2: Ease of deployment: The system should be easy to
deploy.

– The mobile app can be installed through an app store
and does not have to be configured. It should detect and
connect to surrogates automatically.

– Surrogates have to be configured locally (FR5), and this
process should be able to be performed by NGO per-
sonnel with only basic IT knowledge. It should be a
simple process, comparable to entering data in a form
and confirming.

– Active surrogates should register with the mobile hub
automatically on first connection.

• NFR3: Usability: Literacy among users of mobile devices will
vary. Most end users will have low technical knowledge as
well. The interfaces to the functionality that they use should
be understandable to them.

– Text in English, including voice explanations.
– Text in French, including voice explanations (one of the

target languages, but will not be implemented in the
AgroTempus system).

• NFR4: Extensibility: Developing new functionality and
adding it to the system should be supported andmade easy. A
standard format for services that perform either computation
offload or data staging should be available to future develop-
ers, including documentation and an example.

• NFR5: Energy efficiency: The mobile device and surrogate
systems will run in an energy-challenged environment. Ac-
cess to electrical power is limited and not always available.

– Energy use on mobile devices should be minimized.
– Energy use on surrogates should be minimized, but en-

ergy efficiency for mobile devices has higher priority.

• NFR6: Capacity: Low-end smartphones have low storage ca-
pacity and therefore storage should, for the most part, be the
responsibility of the surrogates and mobile hubs.

– The surrogate should be able to provide computation
offload and data staging capabilities to multiple users at
the same time.

– Storage used on smartphones should be kept under 100
MB, not counting results for calculations that the user
has saved.

– Surrogates should be able to run 10 instances of services
at the same time.

• NFR7: Availability: Capabilities provided by surrogates
should, in principle, be available 24 h a day. However, because
surrogates will run on solar energy, it is expected that they
can run out of energy during heavy use, especially during
periods with no or little sunshine.

– Every 24-hour period, the surrogate should be able to
deliver services amounting to 4 h of surrogate activity.
This does not provide guarantees about unavailability
due to crashes (which is discussed in NFR1 and NFR9).

– When remaining battery life drops below10%of the bat-
tery’s capacity, computations that will take longer than
5min should be queued until the battery is recharged to
above 15%.

• NFR8: Performance: There are no hard performance require-
ments, except for the transfer of data between the mobile
hub and the surrogate. This is because the window during
which there is opportunity to interchange data is short and
infrequent.

– The transfer of data between the mobile hub and the
surrogate should be prioritized over other offloaded
computation or data staging operations that the surro-
gate is performing.

– The only operation with higher priority is the registra-
tion of a new surrogate.

– The mobile hub should check for a surrogate broadcast
signal at least 10 times per second, as long as it is not
interacting with one already.

– The surrogate should broadcast its presence at least 10
times per second.

• NFR9: Recovery: When a surrogate has crashed, restarting
the hardware should have it operational again within 10min.
Similarly, when amobile hub has crashed, resetting the hard-
ware should have it operational again within 10 min.

• NFR10: Data integrity: When weather data is entered on the
mobile app, it should be checked for valid values, e.g., temper-
ature values between certain valid limits. The same applies to
setup data during the setup process.

5.2.3. Constraints and assumptions
The following constraints for the development of the AgroTem-

pus system were identified:

• C1: Low cost infrastructure and hardware: End-users will
mostly use low-end mobile devices, while the rest of the
system will be deployed on hardware locally, for which the
cost should be as low as possible.
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• C2: Use of FirefoxOS: Agrotempus has to be developed for
the FirefoxOSmobile operating system [20]. FirefoxOS is open
source, based on standardWeb APIs, and targeted at low-end
smartphones and developing markets.

• C3: Use of open standards: There is a preference for open
source components and the use of open standards where
possible.

• C4: Use of Java: Because the implementation platform for
surrogates is still evolving, the preference is to use Java due
to its portability.

Only one assumption for the system was identified:

• A1: Concurrent access to multiple surrogates: Surrogate
signals do not overlap because there is only one surrogate per
village. This means the mobile devices and mobile hub can
connect to different surrogates, but never at the same time.

5.3. Mapping of system requirements to architectural tactics

Based on the functional and non-functional requirements for
the AgroTempus system, several tactics were identified by the
developer as feasible for their fulfillment. The mapping of system
requirements to architectural tactics is shown in Table 3. The ratio-
nale for the selection of each tactic, as indicated by the developer,
is provided in the following sub-sections.

5.3.1. Computation Offload
TheComputationOffload tactic enablesmobile clients to offload

expensive computation to surrogates. Regression and weather
value prediction using extrapolation (FR3 and FR4) are
computation-intensive operations that are initiated by the user
on the mobile device, but the computation is offloaded to the
surrogate. Data sets on which these operations are performed are
located at the surrogates and can be reasonably large, while the
input for the operations is a small set of variables of simple data
types. Offloading small input/output, energy-intensive computa-
tions to the surrogate is the main method to minimize energy con-
sumption on the mobile device (NFR5). Offloading from low-end
mobile devices to surrogates with more computational power and
data storage facilities increases the capacity of the system (NFR6).

5.3.2. Out-Bound Pre-Processing
In the Out-Bound Pre-Processing tactic surrogates collect data

from mobile devices and pre-process the data – clean, filter, sum-
marize, or merge – such that the data that is sent on to the
enterprise cloud is ready for consumption and serves an immediate
need. Weather data collected on mobile devices (FR1) is stored
locally until it has been successfully transferred to a surrogate.
The surrogates will store this data indefinitely, both to make it
accessible tomobile users in the future, but also tomake it available
to the mobile hub, which will collect all data eventually. This data
will not be saved on themobile device after it has been successfully
transferred to the surrogate because storage is limited on the low-
endmobile devices (NFR6). The mobile hub will eventually be able
to store new data that was entered on the mobile device in the
cloud when it connects to the Internet (FR7). In the AgroTempus
system there are therefore two levels of data staging: first at the
surrogate and then at the mobile hub.

5.3.3. Pre-Fetching
The Pre-Fetching tactic anticipates data needs in order to mini-

mize communication to the cloud and reduce latency. The mobile
hub, according to a defined pre-fetch algorithm, retrieves weather
data using a third-party weather API (FR9) based on the registered
location of all the surrogates that it serves. Data retrieved from the
mobile hub is stored on the surrogates and not the mobile devices

to address storage limitations of low-end mobile devices (NFR6).
Mobile devices that request weather data (FR2) will always obtain
it from a surrogate where this data is staged, unless it has been
explicitly saved on the mobile device by the user. The same is true
for forecasts (FR6), which are calculated based on data downloaded
from the mobile hub.

5.3.4. Pre-Provisioned Surrogate
In the Pre-Provisioned Surrogate tactic surrogates are provi-

sioned before their deployment with the capabilities that are of-
floaded by mobile clients. All required functionality will be avail-
able on the surrogate from the start (FR1, FR2, FR3, FR4, FR6, FR7,
FR9, FR10). Because all surrogates serving all regions have the
same capabilities, it is easier to provision them using the same OS
image (e.g., Raspberry Pi with cloned SD card) (NFR2). The only
difference between surrogates is the location and identification
settings provided during the setup procedure (FR5). Restarting a
pre-provisioned surrogate is easier to do if started from a common
OS image (NFR9).

5.3.5. Surrogate Broadcast
In the Surrogate Broadcast tactic surrogates advertise their

availability and selected metadata to mobile devices for discovery.
Mobile device users should be able to make use of system func-
tionality as soon as they install the app and come in range of a
surrogate. To increase the ease of deployment (NFR2), surrogates
broadcast their presence and mobile devices in need of surrogate
services can pick up on these broadcasts. Surrogate broadcast is
also key for the automatic registration of newly deployed surro-
gates with the mobile hub as soon as they are in communication
range (FR10). Lastly, because the opportunities for interaction be-
tween surrogates and the mobile hub are scarce, both the surro-
gate broadcasting its presence continuously and the mobile hub
continuously trying to discover surrogates are key to the system’s
performance (NFR8).

5.3.6. Cached Results
The Cached Results tactic enables a system to cache results and

state on a surrogate until themobile device is able to reconnect. The
interaction between mobile devices and surrogates is susceptible
to loss of connection in the AgroTempus system. When computa-
tion offload (FR3, FR4) has been correctly initiated, but the mobile
user moves out of range of the surrogate during the computation,
results should be cached (NFR1) so they can be sent to the user
as soon as the mobile device connects to the surrogate again to
promote availability (NFR7).

5.3.7. Client-Side Data Caching
The Client-Side Data Caching tactic is a variation of the Cached

Results tactic. Data collected by a mobile client is cached on the
mobile device and sent to the surrogate upon connection or re-
connection. Because mobile devices are not always in proximity
of a surrogate, when entering weather data (FR1) without an avail-
able connection, data is cached on themobile device (NFR1), which
will periodically try to resend the data. In this case, caching is used
to enable users to keepworkingwith the app, saving new readings,
and not having to worry about the data being saved immediately
on the surrogate, therefore promoting availability (NFR7).

5.3.8. Just-in-Time Containers
The Just-in-Time Containers tactic creates a container and/or an

instance of the offloaded code upon receipt of an offload request
and then destroys the instance of the offloaded code when the
offload request is completed. Data regression (FR3) and weather
value prediction (FR4) are heavy computations that will be used
infrequently. Therefore, as opposed to the other services offered
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Mapping of system requirements to architectural tactics.
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Computation Offload X X X X
Out-Bound Pre-Processing X X X
Pre-Fetching X X X X
Pre-Provisioned Surrogate X X X X X X X X X X X
Surrogate Broadcast X X X
Cached Results X X X X
Client-Side Data Caching X X X
Just-in-Time Containers X X X X

Fig. 10. High-level architecture of the AgroTempus system.

by surrogates, these services are better suited to run in their
own containers, such that small operations will not get queued
behind these large computations. To be able to handle multiple
computation offload requests at the same time, as well as to not let
these large computations cause small data transfers to have towait
for them (NFR6), each time a request for a computation offload is
received at the surrogate, a container with the necessary function-
ality is created. Because requests for computation offload will be
infrequent, often with long periods of time between requests, only

creating containers for these capabilities when they are needed is
a tactic that will save energy on the surrogate (NFR5).

5.4. System architecture and design

Based on the identified tactics, the developer created the high-
level architecture for the AgroTempus system shown in Fig. 10
as a UML component diagram. Some components of the architec-
ture were derived from the architectural tactics and others were
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added to fulfill requirements not addressed by the tactics. The
detailed components and mapping to the tactics are presented in
Section 5.6. The main elements of the architecture are:

• Mobile Device Components

– CD1: Voice Support Manager: Manages the voice snip-
pets that map to the user interface elements.

– CD2: Cyber-Foraging Enabled App User Interface: User
interface component of the mobile app.

– CD3: Mobile App Storage Manager: Manages storage of
all permanent data and user settings on the mobile app,
except for data that is being staged beforemoving to the
surrogate. Storing and retrieving data is done through
its interfaces: Store app data and Retrieve app data.

– CD4: Offload Client: Handles computation offload from
the mobile app to the surrogate, initiated through com-
ponent CD2.

– CD5:Mobile App Data Exchange Client: Handles staging
data and transferring it from the mobile app to the
surrogate after it has been entered via component CD2.
It also handles requesting and receiving data from the
surrogate.

– CD22: Surrogate Discovery Manager: Finds available
surrogate services.

• Surrogate Components

– CD6: Offload Server: Handles requests for computation
offload from mobile devices.

– CD7: Setup Manager: Implements the setup process for
newly deployed surrogates. Provides the interface Setup
surrogate, which is used by component CD10 when the
setup process is started.

– CD8: Data Request Server: Handles requests for data
stored on the surrogate from mobile devices, as well as
from the mobile hub.

– CD9: Offloaded ComputationManager: Creates contain-
ers that run offloaded computation and ensures that
results are eventually stored in component CD13.

– CD10: Surrogate User Interface: User interface compo-
nent for the surrogate, available when a screen and
mouse/keyboard are connected to the surrogate (e.g.,
during the setup process or to check console output).

– CD11: Broadcast Manager: Broadcasts the presence of
the surrogate and its capabilities through the interface
Broadcast services. It is key for all requirements in which
interaction between the surrogate and other system
nodes is involved.

– CD12: Data Storage Server: Handles requests from mo-
bile devices and the mobile hub for storing data on the
surrogate.

– CD13: Surrogate Storage Manager: Manages storage of
all permanent data, computation results, and settings on
the surrogate. The interfaces for data retrieval include
the possibility to delete data after a successful transmis-
sion.

• Mobile Hub Components

– CD14: Surrogate RegistrationManager:Handles the reg-
istration of surrogates that are new to the system by
picking up broadcasts from component CD11 and stor-
ing new surrogate data in component CD19.

– CD15: Mobile Hub Synchronization Client: Manages
synchronization of data between themobile hub and the
surrogate.

– CD16: Mobile Hub User Interface: User interface com-
ponent for the mobile hub.

– CD17: Cloud Synchronization Client: Ensures that data
stored in the system is backed up to a cloud repository
by interacting with component CD20.

– CD18: API Data Fetcher: Retrieves weather data from
a third party API and stores it on the mobile hub via
component CD19. It also periodically checks whether
the surrogate list stored by this component has new
entries.

– CD19: Mobile Hub Storage Manager: Handles storage
and retrieval of data on the mobile hub, including set-
tings, staged data, permanent weather data, and the list
of known surrogates.

• Cloud Repository Component (External)

– CD20: Cloud Repository Storage Manager: Third-party
component that interacts with component CD17 to en-
sure that data stored in the system is backed up to a
cloud repository.

• Internet Weather Service (External)

– CD21: Weather API: Third-party component that pro-
vides weather data and forecasts through a REST inter-
face.

5.5. Mapping of architectural components to system requirements

The mapping of functional and non-functional requirements to
components of the architecture is shown in Table 4 (see end of
manuscript). All requirements are implemented by one or more
components, with the exception of NFR4: Extensibility because this
requirement is related to the creation of artifacts to support devel-
opers, such as templates and documentation, and not to specific
runtime components.

5.6. Mapping of architectural components to identified architectural
tactics

The mapping between architecture components and the archi-
tectural tactics identified in Section 5.3 is provided in the following
subsections to show component details, as well as the mapping
to specific architectural tactic elements. All design decisions de-
scribed at this point correspond to the as-initially-designed sys-
tem. The final implementation decisions are described in Sec-
tion 5.7. Implementation diagrams for tactics that have already
been presented will not be included due to space limitations. The
full set of implementation diagrams can be found in [13].

5.6.1. Computation Offload
The Computation Offload tactic is designed in the AgroTempus

architecture for the offload operation to take place as follows. The
stereotypes from Fig. 2(a) are used.

1. The Cyber-Foraging Enabled App User Interface (Cyber-
Foraging Enabled Mobile App) requests to start an offloaded
computation with input Input.

2. The Offload Server (component of Offload Server) receives
the request and invokes the Offloaded Computation Man-
ager (component of Offload Server).

3. The Offloaded Computation Manager starts the offloaded
computation in a separate Java Thread (Offloaded Code) in-
side the JVM (Container).

The main difference between the Computation Offload tactic
and the AgroTempus architecture is how the offloaded computa-
tion is executed. In the tactic shown in Fig. 2(a), after the offloaded
computation is set up, the control returns to the Cyber-Foraging
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Table 4
Mapping of system requirements to architecture components.
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CD1: Voice Support Manager X X X
CD2: App User Interface X X X X X X X X X
CD3: App Storage Manager X X X X X X X X X
CD4: Offload Client X X X X X
CD5: App Data Exch Client X X X X
CD6: Offload Server X X X X X X X
CD7: Setup Manager X X X X X X X
CD8: Data Request Server X X X X X X X X X X
CD9: Offloaded Comp Manager X X X X X X X X
CD10: Surrogate UI X X X X X X
CD11: Broadcast Manager X X X X X X X X X X X X X X
CD12: Data Storage Server X X X X X X X X
CD13: Surrogate Storage Mgr X X X X X X X X X X X
CD14: Surrogate Reg Mgr X X X X X X
CD15: Mobile Hub Sync Client X X X X X X X X X
CD16: Mobile Hub UI X X
CD17: Cloud Sync Client X X X
CD18: API Data Fetcher X X X X X
CD19: Mobile Hub Storage Mgr X X X X X X X
CD20: Cloud Repo Storage Mgr X
CD21: Weather API X X X
CD22: Surrogate Discovery Mgr X X X X X X X X X

Enabled Mobile App, which then executes the offloaded computa-
tion via the operation 4:Execute(Input). This is because the
assumption is that the app interacts with the offloaded code in a
request/response manner until the app closes. In the AgroTempus
system, offloaded computation corresponds to a lengthy computa-
tion that is executed only once in an offload request. Therefore, the
Input to the offloaded computation is sent in the initial request to
offload.

5.6.2. Out-Bound Pre-Processing
The Out-Bound Pre-Processing tactic is designed in the Agro-

Tempus architecture to support data staging from the mobile de-
vices as follows. The stereotypes from Fig. 7(a) are used.

1. TheCyber-Foraging EnabledAppUser Interface (Mobile Sens-
ing App) captures weather data and sends it to the Mobile
App Data Exchange Client (Communication Manager on mo-
bile device).

2. The Mobile App Data Exchange Client queues the weather
data until a surrogate is in range and then sends it to the
Data Storage Server (Communications Manager on the surro-
gate) for storage on the surrogate via the Surrogate Storage
Manager (Cache on the surrogate).

3. The Data Request Server (Data Processing Application) on the
surrogate waits for a weather data request from the Mobile
Hub SynchronizationManager (CommunicationsManager on
the surrogate). This happenswhen themobile hub is in range
of the surrogate.

4. The Data Request Server retrieves the weather data and
sends it to the mobile hub for storage on the mobile hub via
theMobile Hub StorageManager (Cache on themobile hub).

5. Once the Cloud Synchronization Client (Data Processing Ap-
plication) on the mobile hub has connectivity to the cloud
repository, it retrieves the weather data from the Mobile
Hub Storage Manager and sends it to the Cloud Repository

Storage Manager for storage in the Cloud Repository (Cloud
Data Repository).

The difference between the AgroTempus architecture and the
Out-Bound Pre-Processing tactic is that the AgroTempus system
performs data staging at two levels to get data from the mobile
devices to the cloud: first at the surrogate and then at the mobile
hub. Therefore, the Data Request Server on the surrogate and the
Cloud Synchronization Client on themobile hubperform two roles:
data processing application for the cached data and communica-
tionmanager for passing the information to the next level en route
to the enterprise cloud.

5.6.3. Pre-Fetching
The Pre-Fetching tactic is designed in the AgroTempus architec-

ture as shown in Fig. 11(b), with numbers to indicate the sequence
of operations. The pre-fetching of data from the enterprise cloud to
the surrogates serving mobile devices takes place as follows:

1. When the Mobile Hub has access to the Internet Weather
Service, the Cloud Synchronization Client retrieves all
weather data for the surrogates that it serves from the
Weather API, based on the Surrogate Location List. It then
caches the retrieved weather data.

2–3. When the Mobile Hub is in proximity of a Surrogate that
it serves, the Mobile Hub Synchronization Manager reads
the data for the surrogate location and pushes it to the Data
Request Server on the Surrogate.

4. TheData Request Server caches the data on the Surrogate via
the Surrogate Storage Manager.

5–7. When the mobile app has a request for weather data, the
data is obtained from the Surrogate.

There are two differences between the AgroTempus architec-
ture and the Pre-Fetching tactic:
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Fig. 11. Mapping of the AgroTempus architecture to the Pre-Fetching tactic.

1. The AgroTempus system performs data staging at two levels
to pre-fetch data from the cloud and host it on the surro-
gates: first from the cloud to the mobile hub, and then from
the mobile hub to the surrogate.

2. The Pre-Fetch Algorithm and Pre-Fetch hints reside on the
mobile hub and not on the mobile client. This is because the
mobile hub needs to fetch data from the cloud at a point
in time when it is not likely that it will be near a surrogate
or a mobile device. The Surrogate Location List is populated
during Surrogate Registration (FR10).

5.6.4. Pre-Provisioned Surrogate
The Pre-Provisioned Surrogate tactic is designed in the Agro-

Tempus architecture to provision capabilities on the surrogate as
follows. The stereotypes from Fig. 3(a) are used.

1. A Terminal (component of Local User Interface) on the Sur-
rogate is used to load the Surrogate Component Code Files
(Capability) on the Surrogate.

2. The Terminal is used to start the Surrogate User Interface
(component of Local User Interface) to obtain setup param-
eters for the surrogate, such as location.

3. The Surrogate User Interface invokes the Setup Manager
(Surrogate Manager) to start the remaining surrogate com-
ponents.

Step 1 of the provisioning process is only executed once prior to
surrogate deployment. Step 2 is executed only once during surro-
gate deployment. Step 3 is executed manually during deployment,

and then automatically on start/restart of the surrogate. There is
not the equivalent of the Capability Metadata component nor a
Capability Registry component because the capabilities provided
to all mobile devices are the same and are not advertised. In
addition, there is not the equivalent of a Remote User Interface
because surrogates are envisioned to be low cost, low-end servers
that are set up on site.

5.6.5. Surrogate Broadcast
The Surrogate Broadcast tactic is designed in the AgroTempus

architecture for surrogate discovery as follows. The stereotypes in
Fig. 4(a) are used.

0. The Broadcast Manager (Broadcast Component) running on
the Surrogate broadcasts its address.

1. The Cyber-Foraging Enabled Mobile App User Interface
(Cyber-Foraging Enabled Mobile App) requests an offload
operation.

2. The Offload Client receives the request and obtains the sur-
rogate address from the Surrogate DiscoveryManager (com-
ponents of Offload Client).

3. The Offload Client sends the offload operation to the Offload
Server at the surrogate address.

The difference between the AgroTempus architecture and the
Surrogate Broadcast tactic is that there is no need to find an optimal
surrogate because only one surrogate is available for a mobile
device. The assumption as stated in Section 5.2.3 is that there is
only one surrogate per village, and surrogate signals donot overlap.
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Fig. 12. Mapping of the AgroTempus architecture to the cached results Tactic.

The surrogate also broadcasts its presence to themobile hub via the
same mechanism.

5.6.6. Cached Results
The Cached Results tactic is designed in the AgroTempus archi-

tecture as shown in Fig. 12(b). The caching of results on a surrogate
takes place as follows:

1–2. The Cyber-Foraging Enabled AppUser Interface requests to
start an offloaded computation with input Input.

3. The Offload Server receives the request and invokes the
Offloaded Computation Manager.

4–7. The Offloaded ComputationManager assigns the computa-
tion a unique identifier called a Ticket, starts the offloaded
computation in a separate Java Thread inside the JVM,
and returns an Acknowledgment to the Cyber-Foraging
Enabled App User Interface with the assigned Ticket.

8. The Offloaded Computation executes and saves the results
in the Surrogate StorageManager with the assigned Ticket.

9–10. The Cyber-Foraging Enabled App User Interface, via the
Mobile App Data Exchange Client, sends a request to the
Data Request Server on the Surrogate for the results for the
received Ticket.

11–12. The Data Request Server retrieves the results from the
Surrogate Storage Manager.

13. The Data Request Server returns the results to Mobile App
Data Exchange Client.

14–16. If the connection to the Mobile Device breaks during the
transmission, the results remain on the Surrogate until
they can be successfully sent to the Mobile Device.

17. After successful transmission the results associated with
the Ticket are deleted from the surrogate.

There are two differences between the AgroTempus architec-
ture and the Cached Results tactic:

1. Because the offloaded computation is expected to be a
lengthy operation, the Surrogate always saves the results in
the Results Cache instead of attempting the send the results
to the Mobile Device immediately.

2. The Surrogate Storage Manager resides outside the Con-
tainer because it is shared by all offloaded computation and
other surrogate components.
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5.6.7. Client-Side Data Caching
The Client-Side Data Caching tactic is designed in the AgroTem-

pus architecture to store data collected on the mobile device until
a surrogate is available as follows. The stereotypes in Fig. 9(a) are
used.

1. TheCyber-Foraging EnabledAppUser Interface (Mobile Sens-
ing App) requests the Mobile App Data Exchange Client
(Communications Manager and Mobile Cache) to add col-
lected weather data its outbound queue.
[Repeat Until Outbound Queue is Empty]

2. TheMobile AppData Exchange client tries to find a surrogate
(Section 5.6.5).
[If a Surrogate is Found]

3–4. Queued data is sent to the Data Storage Server Communica-
tionsManager) for storage on the Surrogate StorageManager
(Surrogate Cache).

5–6. If the storage operation is successful the sent data is deleted
from the queue.

There are two differences between the AgroTempus architec-
ture and the Client-Side Data Caching tactic:

1. Because the collection of weather data is likely going to be
in the field where there will not be a Surrogate in proximity,
the Mobile Device always queues the results in the Mobile
App Data Exchange Client instead of attempting to send the
results to the Surrogate immediately.

2. The Mobile Cache, implemented as a queue, is part of the
Mobile Data Exchange Client instead of a separate storage
component.

5.6.8. Just-In-Time Containers
The Just-in-Time Containers tactic is designed in the AgroTem-

pus architecture for creation and destruction of containers for
offloaded computation as follows. The stereotypes in Fig. 5(a) are
used as stereotypes.

1. The Cyber-Foraging Enabled App User Interface (Cyber-
Foraging Enabled Mobile App) requests to start an offloaded
computation with input Input.

2. The Offload Server receives the request and invokes the
Offloaded Computation Manager (components of Offload
Server).

3. The Offloaded Computation Manager starts the offloaded
computation in a separate Java Thread (Offloaded Code) in-
side the JVM (Container).

4. Upon finishing the execution of the offloaded computation,
the thread is terminated, therefore releasing allocated re-
sources.

As with the Computation Offload tactic (Section 5.6.1), the
main difference between the Just-in-Time Containers tactic and
the AgroTempus architecture is that because the offloaded com-
putation is only executed once, the Input to the offloaded compu-
tation is sent in the initial request to offload.

5.7. System implementation

A demo implementation of the AgroTempus system is avail-
able and documented at http://reuelbrion.github.io/AgroTempus/.
Only the mobile app and surrogate components were developed
as part of the demo because this is where the identified tactics
are mainly implemented. The mobile hub and cloud components
were simulated for the testing and evaluation of the system. The
surrogate software was packaged for Raspberry Pi as a Raspbian
OS imagewith an auto-start script. Raspbian is a Linux distribution

optimized for Raspberry Pi [21]. The image was tested on a Rasp-
berry Pi 2 Model B with a TP-Link TL-WN722N wireless adapter.

The mobile app (Mobile Device components in Fig. 10) is a
Firefox OS app, which is essentially a Web app consisting of HTML
pages, CSS style sheets, and Javascript code. Most of the app logic
is written in plain Javascript with minimal use of the JQuery li-
brary [22].

The surrogate (Surrogate components in Fig. 10) was imple-
mented in Java as a multi-threaded application. The component
CD9: Offloaded Computation Manager that performs weather data
regression and prediction makes use of the Java chart library
JFreeChart [23] that offers tools to perform regression on data
sets, as well as to generate plot images to visualize the results
in common image formats. The same component also makes use
of the Apache Commons Codec libraries [24] to convert images
generated by JFreeChart into Base647 binary string format.

For communication between components residing on different
nodes, JSON (JavaScript Object Notation) [25] was selected as the
standard message and data storage structure. This format is used
by free weather APIs such as OpenWeatherMap [26] and works
well with Javascript. To be able to use JSON objects in the surro-
gate code, the system makes use of the JSON.simple toolkit [27].
JSON is also used by IndexedDB, the selected data storage API for
FirefoxOS [28].

5.8. Analysis

5.8.1. System evaluation
The AgroTempus system implementation included seven of the

eight tactics listed in Table 3. At implementation time, no working
ad-hoc networking library was found for Firefox OS. Therefore, the
Surrogate Broadcast tactic could not be used for surrogate discov-
ery in the mobile app. The Local Surrogate Directory tactic was
instead used for surrogate discovery. A list of surrogates, including
connection details, is maintained on the mobile app. This way,
whenever a surrogate service is needed, the mobile app tries to
connect to each surrogate one by oneuntil it canmake a connection
to a surrogate that provides the needed capabilities.

Extensive testing of the system, based on the scenarios defined
for each requirement, was performed in order to verify that the
implemented system satisfied its intended functional and non-
functional requirements. Scenario details and test results are avail-
able at http://reuelbrion.github.io/AgroTempus/. The implementa-
tion details for each tactic are detailed below.

The Computation Offload tactic was implemented as designed
and tested successfully. It is used to perform data regression (FR3)
and prediction of future weather values (FR4), two computation-
intensive operations. In addition, the generation of the regression
chart images is another potentially computation-intensive opera-
tion that is also performed on the surrogate. Even though energy
consumption was not measured on the mobile device to demon-
strate energy efficiency (NFR5), these are two examples of oper-
ations that consume and produce small amounts of information
compared to their computational requirements, which is known
benefit from cyber-foraging [29]. The data regression operation
takes as input a weather variable name (Temperature, Humidity,
Pressure or Wind Speed), regression type (currently accepts only
Linear, but can be easily extended to support other types such as
Logistic and Polynomial), a start date, and the number of days to
extrapolate, and produces a graph (PNG image) showing all the
data points and the regression line. The weather value prediction
operation has a weather variable name as input and produces a
list of predictions for the variable for the next 7 days. Given that

7 Base64 is a set of binary-to-text encoding schemes commonly used when
sending binary data over a network.

http://reuelbrion.github.io/AgroTempus/
http://reuelbrion.github.io/AgroTempus/
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the mobile devices that the AgroTempus app is intended to run
on are low-end smartphones with limited computing and storage
capabilities, the Raspberry Pi surrogate, although limited as well,
still offers more computational power and data storage to increase
the capacity of the system (NFR6). The smartphone used for test
and evaluation was a ZTE Open C 4.0 with an MSM8210 Dual-Core
1.2 GHz CPU and 512 MB RAM [30]. The Raspberry Pi 2 Model B
has a 900 MHz quad-core ARM Cortex-A7 CPU and 1 GB RAM [31],
and supports SD cards up to 32 GB for storage. Given the successful
implementation of the tactic as designed, an improvement for the
tactics catalog would be to include a variation of the Computation
Offload tactic for cases where there is a single request to offload
instead of a continued request/response interaction between a
mobile device and a surrogate.

The Out-Bound Pre-Processing tactic is used for intermedi-
ate storage of weather data on the surrogate (FR1) and eventual
storage of weather data in the cloud (FR7). It was implemented
as designed between the mobile device and the surrogate. Data
captured on the mobile device was successfully transmitted and
stored on the surrogate. Transmission of the weather data to the
mobile hub and eventual storage on the cloud was simulated. As
indicated in the evaluation of the Computation Offload tactic, data
storage on the surrogate is larger than what is available on the
mobile device, therefore increasing the storage capability of the
system (NFR6). In addition, aswill be described in the implementa-
tion of the Client-Side Data Caching tactic, weather data is deleted
on themobile device after successful transmission to the surrogate
to also increase storage capacity. Although not tested end-to-end
with real data, there is potential for the Out-Bound Pre-Processing
tactic to implement more than one level of data staging as long
as the client and surrogate roles are replicated across levels. An
improvement for the catalog would be to include a variation of the
Out-Bound Pre-Processing tactic for multi-level data staging.

The Pre-Fetching tactic was simulated in the demo implemen-
tation by loading a static set of weather data on the surrogate
at startup time and tested successfully. The data was used and
retrieved by the mobile app (FR2). Because of the lack of a mobile
hub and cloud implementation, the complete fetching of data from
the cloud to the surrogate (FR9) was not tested. However, the
implementation of the fetch and store capabilities implemented in
surrogate components CD8: Data Request Server and CD13: Surro-
gate StorageManager would be equivalent to the discover and store
capabilities on the mobile hub that would act as an intermediary
between the cloud and the surrogate (CD17: Cloud Synchronization
Client and CD19: Mobile Hub Storage Manager). As indicated in
the evaluation of the previous two tactics, data storage on the
surrogate is larger than what is available on the mobile device,
therefore increasing the storage capability of the system (NFR6).
Similar to the Out-Bound Pre-Processing tactic, there is potential
for the Pre-Fetching tactic to implement more than one level of
data staging as long as the client and surrogate roles are replicated
across levels. An improvement for the tactics catalog would be to
include a variation of the Pre-Fetching tactic for multi-level data
staging.

The Pre-Provisioned Surrogate was implemented as designed
and tested successfully. It enables all the functional requirements
of the system, except for the voice interface (FR8) which was not
implemented in the demo. All offloaded computation (short and
long operations) is loaded on the surrogate upon setup and is
packaged inside a Raspbian OS image with auto-start capabilities,
as mentioned earlier, to support ease of deployment (NFR2). This
same auto-start capability enables surrogate recovery after crashes
(NFR9). Similar to the GigaSight system implementation of the Pre-
Provisioned Surrogate tactic (Section 4.5.1), the AgroTempus im-
plementation confirms that an improvement for a future version of
the tacticwould be tomark the CapabilitiesMetadata and Capability

Registry components as optional because they are not necessary
when capabilities are not advertised.

The Surrogate Broadcast tactic was not implemented in the
AgroTempus system as indicated earlier. The Local Surrogate Di-
rectory tactic was used for surrogate discovery and implemented
as indicated in the tactic. Ease of deployment (NFR2) is not as
strongly supported by this tactic as would have been with the
Surrogate Broadcast tactic. In the current implementation the list
of surrogates is hard-coded in the mobile app. The original intent
was to include surrogate metadata in a QR code on a sticker that
would be placed on the surrogate. Amobile device thatwouldwant
tomake use of the surrogate would read the QR code, whichwould
add the metadata to the list of available surrogates. However, as of
the time of implementation, there were no QR libraries available
for Firefox OS. Even though it was not tested with a mobile hub,
there are multiple options for surrogate broadcast for Java which
could be used by the surrogate to broadcast its presence to the
mobile hub, such as the ZeroConf protocol used by the Tactical
Cloudlets system (Section 3.4.3). To satisfy the performance re-
quirement (NFR8), once a surrogate is contacted by a mobile hub,
all running threads would be suspended until synchronization
with the mobile hub is complete.

The Cached Results tactic was implemented in the surrogate
as designed and tested successfully. Results of the data regression
(FR2) and weather value prediction (FR4) operations are always
stored on the surrogate and not sent to the mobile device until
requested in order to support fault tolerance (NFR1). This is in case
the mobile device moves out of the range of the surrogate before
the computation completes. The results are saved until the mobile
device connects to the surrogate, therefore promoting availability
(NFR7). The change made in the design to always saves results
on the surrogate when offloaded operations are expected to be
lengthy, instead of attempting to send results to the mobile device
immediately, could be added as a variation of the Cached Results
tactic.

The Client-Side Data Caching tactic was implemented as de-
signed and tested successfully. Data captured in the field (FR1)
is stored on the mobile device until a surrogate is available, to
promote fault tolerance (NFR1). The results are saved on themobile
device until it can connect to a surrogate, therefore promoting
availability (NFR7). Similar to the Cached Results tactic, the change
made in the design to always queue the results instead of attempt-
ing to send the results to the surrogate immediately could be added
as a variation of the Client-Side Data Caching tactic.

The Just-in-Time Containers tactic was implemented as de-
signed and tested successfully. When data regression (FR3) and
prediction of futureweather values (FR4) are offloaded, the system
starts the computation in a separate thread, which is destroyed
upon completion, therefore increasing the available capacity of the
system (NFR6). In addition, because the computation only runs
upon request, energy is saved on the surrogate (NFR5).

Based on this analysis, nine of the ten functional requirements
were successfully supported through one or more of the available
tactics, as shown in Table 3. The Voice Interface requirement (FR8)
was not implemented due to project constraints but also because
it was known that it would not be implemented through any of the
tactics.

Similarly, seven of the ten non-functional requirements were
successfully supported through one ormore of the available tactics,
as also shown in Table 3. The usability requirement to support
multiple languages (NFR3), similar to the voice interface require-
ment, was not implemented due to project constraints, but also
because it was known that it would not be implemented through
any of the tactics. The extensibility requirement to support the
development of new services (NFR4) was partially implemented
outside of the tactics, through the initial implementation of the
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projectwebsite that contains themobile app and surrogate code, as
well as documentation (http://reuelbrion.github.io/AgroTempus/).
The current documentation needs to be augmented to fully support
the requirement by providing more detailed guidance to develop-
ers (e.g., location of extension points, templates for new services).
Finally, the data integrity requirement to provide data checks
(NFR10)was not implemented due to project constraints, but could
be easily be implemented outside of the tactics through input
validation code in the user interface components.

5.8.2. Developer observation and feedback
Throughout the process we met with the developer once a

week to check on project status and observe how the tactics were
being used. The general development process that was followed
is consistent with the structure of this section: (1) requirements
elicitation, (2)mapping of requirements to tactics, (3) architecture,
(4) mapping of components to architecture, (5) design, (6) imple-
mentation, and (7) testing and evaluation. Because of the nature of
the case study, the developer was asked to document the project
during the entire process.

The developer found the tactics easy to understand and use. The
most difficult part for the developerwas determining, based on the
tactics, which of the components would be needed to implement
the requirements. Feedback for a future version of the tactics is
to provide differentiation between core and optional components
of the tactic, consistent with the findings from the previous two
case studies. Another recommendation from the developer was to
include sample code and potentially a list of libraries/platforms
that can be used to implement common requirements of cyber-
foraging systems. The inclusion of sample code with the tactics
is consistent with the feedback from the main developer of the
GigaSight system (Section 4.5.2).

The developer also found the tactics to be useful in the devel-
opment of the system. As stated by the developer: ‘‘The models
that were used as a blueprint during development were in large
constructed from the tactics; they were instrumental in providing
a good foundation for the application’’.

5.8.3. Findings
Eight tactics were identified in AgroTempus to satisfy system

requirements, of which seven were implemented in the system,
and one had to be replaced by an alternative tactic due to a tech-
nology constraint. All the tactics were implemented as designed,
but there were several changes that were made at design time
to better fulfill requirements. Even though the essence of each
tactic remained the same, these changes create opportunities for
improvement of the tactics catalog. In particular, variations to the
Computation Offload, Out-Bound Pre-Processing, Cached Results,
and Client-Side Data Caching tactics were identified.

The case study shows that there are different ways to im-
plement tactics, mainly determined by system constraints and
assumptions, but also by mobile device and surrogate computing
power and specifications, as well as usage contexts. For example,
VMs are used as data and computation containers in the Tactical
Cloudlets and GigaSight systems because of the flexibility that they
provide, but also because the surrogates are expected to be high-
end servers. For the AgroTempus system the selection of using
JVMs as computation containers is a better choice because they
have less overhead and consume less resources on the machine.
They do not provide the flexibility of VMs, but this is not required
in the more static usage context of AgroTempus.

The case study also showed that technology selection can some-
times be a barrier to the use of tactics and therefore effective
satisfaction of requirements. The use of Firefox OS as the mobile
device operating system did not allow the implementation of the
Surrogate Broadcast tactic because of the lack of libraries for dis-
covery in this platform. In addition, the lack of libraries for QR

code reading also affected the ease of deployment requirement
that was associated to the Local Surrogate Directory tactic that
replaced that Surrogate Broadcast tactic for surrogate discovery.
These technology insights that are gained from the implemen-
tation and evaluation of cyber-foraging systems could be added
as notes to the tactics to provide even greater value to software
architects.

Finally, asmore real cyber-foraging systems are deployed,more
tactics and non-functional requirementswill emerge. For example,
recovery was not a requirement that was identified as part of the
SLR on architectural tactics for cyber-foraging [3]. However, it is
highly likely that this will be a requirement for cyber-foraging sys-
tems in resource-challenged environments, such as the AgroTem-
pus usage context. Recovery in the AgroTempus systemwas imple-
mented via the use of Java threads combinedwith amonitoring ca-
pability. Because service instances run in separate threads after the
initial connection, a failed service thread will not affect the main
service thread. Passing data between threads happens through
thread-safe queues (java.util.concurrent.ConcurrentLinkedQueue).
Themain surrogate process periodically checkswhether all service
threads are alive, and crashed threads are restarted. A general-
ization of this approach could easily be codified as a Surrogate
Recovery tactic.

6. Threats to validity

There are two main threats to the validity of the results of the
case studies. The first is related to internal validity because the
data collection and analysis was conducted by a single researcher
and therefore subjective interpretations might exist. To mitigate
this threat for the Tactical Cloudlets and GigaSight case studies,
collected data was reviewed by system developers that confirmed
that the data collected was an accurate representation of the sys-
tem. The developers also confirmed that the identified tactics were
indeed present in the system. For the AgroTempus system, data
collected from several sources (evolving system documentation,
the code base, and ongoing developer interviews) was confirmed
by the developer such that we could have immediate feedback.

The second threat is related to external validity, specifically
whether the findings are generalizable given that the results re-
ported for each case study are drawn from the analysis of a single
system. To mitigate this threat we conducted three case studies.
In addition, the system developers of the Tactical Cloudlets and
GigaSight systems were provided the full set of tactics and asked
to identify tactics that could be used to enhance the current sys-
tem. The developers identified several tactics and recognized the
potential for the tactics to build a better system. The developer of
the AgroTempus system confirmed the usefulness of the tactics to
build cyber-foraging systems.

7. Related work

Case studies are commonly used in software engineering to
study aspects of real software systems, such as development pro-
cesses, software artifacts, and development teams [32]. We used
the case studymethodology to validate the identified architectural
tactics in real cyber-foraging systems.

The work that is most closely related to that presented in this
article are case studies related to the identification of architectural
tactics. Gesvindr and Buhnova [33] identify and evaluate a number
of architectural tactics for PaaS cloud applications anddemonstrate
their findings with a case study of a private, cloud-based social
network system. Although not targeted at the identification of
tactics, Mirakhorli et al. [34] present a technique for automating
the reconstruction of traceability links between classes and archi-
tectural tactics and validate their approach via a case study of the

http://reuelbrion.github.io/AgroTempus/
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Fig. A.13. Architectural tactics for cyber-foraging.

Table A.5
List of functional architectural tactics.
Computation Offload

Computation Offload Mobile clients offload expensive computation to surrogates. Computation is self-contained in the form of a module, class, service,
or complete application.

Stateful Computation Offload Mobile clients offload expensive computation to surrogates. Because the granularity of the offload operation is at the process or at
the method level, the state of the program or object that contains the process or method being offloaded has to be transferred to the
equivalent program or object on the surrogate to guarantee that state is equivalent on both the mobile device and the surrogate.

Data Staging

Pre-Fetching Surrogate anticipates mobile device data needs in order to minimize direct communication to the cloud and reduce latency.

In-Bound Pre-Processing Surrogate pre-processes the data that is retrieved or pushed from the enterprise cloud such that the mobile device receives data
that is ready to be consumed, or filtered such that it only receives data of interest or relevance.

Out-Bound Pre-Processing Surrogates collect data from mobile devices and pre-process the data – clean, filter, summarize, or merge – such that the data that
is sent on to the enterprise cloud is ready for consumption and serves an immediate need.

Surrogate Provisioning

Pre-Provisioned Surrogate Surrogates are provisioned before their deployment with the capabilities that are offloaded by mobile clients.

Surrogate Provisioning from the
Mobile Device

The mobile device sends the offloaded computation to the surrogate at runtime. The surrogate installs the computation inside an
execution container.

Surrogate Provisioning from the
Cloud

At runtime, the mobile device sends the location of the offloaded computation in the form of a URL for the surrogate to download
and install.

Surrogate Discovery

Local Surrogate Directory Mobile devices maintain a list of surrogates with their network addresses or URLs, in addition to any information that can help the
mobile device to select the best offload target in case more than one is available.

Cloud Surrogate Directory A centralized surrogate directory is maintained in the cloud and queried by mobile devices at runtime. All surrogate metadata is
populated and updated in this central repository.

Intermediary Cloud Surrogate
Directory

The cloud surrogate directory does not return the surrogate address to the mobile device, but rather forwards the offload request to
a selected surrogate and then returns the results to the mobile device, therefore acting as an intermediary.

Surrogate Broadcast Surrogates advertise their availability and selected metadata to mobile devices for discovery.

Apache Hadoop software framework. Our work uses a case study
protocol similar to these studies, but our focus on cyber-foraging
systems is novel. Finally, Koziolek et al. [35] propose an automated
approach guided by architectural tactics to search the design space
and help architects make decisions informed by quality tradeoffs.
While they focus on providing guidance for tactics selection, we
focus on how tactics can be integrated in architecture design and
implementation to effectively realize the target functional and
non-functional requirements.

Another area of related work is case studies and empirical
experiments that analyze system qualities that are highly-relevant

to cyber-foraging systems, such as energy efficiency. Jagroep et al.
[36] developed a software energy profiling method and validated
it via an empirical experiment on two consecutive releases of a
commercial software product. Procaccianti et al. [37] developed a
set of green architectural tactics for the cloud, and then empiri-
cally studied the energy impact of two best practices for energy-
efficient software based on the identified tactics by applying them
on MySQL Server and Apache Webserver [38]. These are just two
examples of a large amount of work in this area. Our work illus-
trates that the benefits of cyber-foraging go beyond just energy
efficiency.
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Table A.6
List of non-functional architectural tactics.
Resource Optimization

Runtime Partitioning Mobile devices make runtime decisions regarding the benefits of offloading. Computation is offloaded only if remote execution is
better than local execution according to a defined optimization function.

User-Guided Runtime
Partitioning

Mobile devices make runtime offload decisions based on user preferences or input regarding what to optimize.

Runtime Profiling Once the offload operation ends, or periodically, the system updates the profiling data and models that are used by the
optimization functions to account for current operational conditions.

Resource-Adapted Computation Mobile devices and surrogates have different versions of offloadable elements that match their resource characteristics, depending
on whether code executes locally or remotely.

Resource-Adapted Input Mobile devices and surrogates have identical versions of offloadable elements, but what varies is the input parameters depending
on whether code executes locally or remotely. The assumption is that different input parameters will lead to different resource
consumption.

Fault Tolerance

Local Fallback Mobile devices can revert to execution of the local copy of the offloadable computation in case the connectivity to the surrogate is
lost.

Opportunistic Mobile-Surrogate
Data Synchronization

Data is synchronized between mobile devices and surrogates during periods of connection such that data-reliant systems can
continue operating in periods of disconnection.

Opportunistic Surrogate-Cloud
Data Synchronization

Data is synchronized between mobile devices and the cloud during periods of connection such that data-reliant systems can
continue operating in periods of disconnection.

Cached Results Results are cached on the surrogate until the mobile device is able to reconnect.

Client-Side Data Caching Data collected by a mobile client is cached on the mobile device and sent to the surrogate upon connection or re-connection.

Alternate Communications Systems can switch to an alternate, potentially less energy-efficient communications mechanism, to continue serving mobile users
in spite of disconnection (even if in a degraded mode due to less amount of information or less timely responses).

Eager Migration Surrogates migrate offloaded computation to another connected surrogate when they detect that they might not be able to
continue serving the mobile device that generated the offload request.

Lazy Migration Surrogates retain execution of offloaded computation when they detect that they might not be able to continue serving the mobile
device that generated the offload request, but the interaction with the mobile device is handed off to another connected surrogate.
This means that all interaction between the mobile device and the original surrogate goes through the new surrogate that acts as
an intermediary.

Scalability and Elasticity

Just-in-Time Containers A container and/or an instance of the offloaded code is created upon receipt of an offload request and then destroyed when the
offload request is completed.

Right-Sized Containers A container is created on the surrogate for the offloaded code that is of the smallest size possible in order to run the offloaded
computation, based on computation requirements metadata related to the offloaded code, in order to optimize resource usage on
the surrogate.

Dynamically-Sized Containers If an error occurs at runtime that would indicate that the container does not have the necessary computing power for the offloaded
computation, a new container is started and the offload request is moved to the new container.

Surrogate Load Balancing Surrogates can send offloaded computation or data to other less-loaded, connected surrogates in order to provide a better user
experience to mobile devices.

Security

Trusted Surrogates Surrogates provide credentials to mobile devices, and mobile devices provide credentials to surrogates, that aim to guarantee a
trusted execution environment and interaction.

8. Conclusions and next steps

This article presented the results of three case studies to val-
idate the architectural tactics for cyber-foraging documented in
[10]. For the Tactical Cloudlets and GigaSight case studies, focusing
on existing computation offload system and a data staging system,
respectively, we addressed the following two research questions:

RQ1: Which of the architectural tactics for cyber-foraging
can be identified in the system? The analysis of the Tactical
Cloudlets system resulted in the identification of four architectural
tactics for computation offload, cloudlet provisioning, cloudlet
discovery and scalability/elasticity. In addition, elements of the
Pre-Provisioned Surrogate tactic were also used to meet cloudlet
management and ease of deployment and re-deployment require-
ments. The analysis of the GigaSight system resulted in the iden-
tification of four architectural tactics for data staging, cloudlet
provisioning, cloudlet discovery and fault tolerance. In addition,
elements of these tactics were also used to meet energy efficiency
requirements as well as privacy requirements. Scalability require-
ments were met by a combination of tactics plus the selection of
virtual machines as containers for data processing applications.

In addition, several gaps were identified that show that there
is great potential to further extend the tactics catalog as more
operational cyber-foraging systems are developed and evaluated.

RQ2:Howdo the implemented tactics support their intended
functional and non-functional requirements? System testing
and data collection show that the implemented tactics meet their
intended functional andnon-functional requirements. As indicated
by the developers of the Tactical Cloudlets system, a catalog of
architectural tactics would have been useful not only to discover
ways to implement system requirements, but also to identify as-
pects of the system that had not been considered. Similarly, as
indicated by the developers of the GigaSight system, a catalog of
architectural tactics would definitely be an asset for the develop-
ment of real cyber-foraging systems.

For the AgroTempus case study, focusing on the development
of a cyber-foraging system for computation offload and data stag-
ing, we addressed the following research questions:

RQ3: Which of the architectural tactics for cyber-foraging
can be used in the development of the system to fulfill its
functional andnon-functional requirements? The analysis of the
AgroTempus system resulted in the identification of eight archi-
tectural tactics, seven of which were implemented in the system.
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One tactic had to be replaced due to technology constraints. In
addition, elements of these tactics were also used to meet energy
efficiency, ease of deployment, and performance requirements.
The recovery requirement was implemented via amechanism that
could easily be codified as a new tactic, especially applicable to
cyber-foraging systems in resource-constrained environments. In
addition, several tactic variations were identified.

RQ4: How do the selected tactics support their intended
functional and non-functional requirements? System testing
shows that the implemented tacticsmeet their intended functional
and non-functional requirements. As indicated by the developer
of the AgroTempus system, the architectural tactics constituted a
strong foundation for the development of the system. In summary,
the results of these three case studies show that there is potential
for taking a tactics-driven approach to fulfill functional and non-
functional requirements for cyber-foraging systems.

Continuation of thiswork has resulted in the characterization of
usage contexts for cyber-foraging [39] as well as a decision model
for cyber-foraging systems [40]. Next steps include a complemen-
tary quantitative component of the decision model to support for
quantitative analysis of the impact of tactics selection, to more
clearly understand the tradeoffs. As an example, we have started
work to quantify the energy efficiency, bandwidth efficiency, and
maintainability associated to the different tactics for surrogate pro-
visioning (pre-provisioning, provisioning from the mobile device,
and provisioning from the cloud).
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Appendix. Architectural tactics for cyber-foraging

The complete catalog of architectural tactics is shown in Fig. A.13.
The top levels of the figure are the tactic categories. The boxeswith
solid lines under each category are the tactics. A box with a dashed
line under a tactic is a variation of that tactic. A short description
of each functional tactic is provided in Table A.5, and of each non-
functional tactic in Table A.6.
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