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Abstract  
Due to rapid advancements and developments in computing platforms, there is a tremendous 
growth in heterogeneous distributed systems involving mobile devices. In distributed systems, 
achieving better performance and efficient utilization of shared resources are dependent on 
appropriate load monitoring mechanisms. In large-scale distributed systems, performing load 
monitoring is a challenging task and, it effects in increasing response time degrading system 
performance. In this paper, we have developed and implemented mobile agent-based load 
monitoring system intended to large-scale distributed systems. Mobile agent based design is an 
attractive approach for load monitoring in large-scale distributed systems, because mobile agents 
are autonomous, goal-driven, reactive to environmental changes and, lightweight piece of 
program. In this paper, a detailed software architectural design for mobile agent based load 
monitoring system is presented. The design is based on a probabilistic normed estimation model 
and corresponding monitoring algorithms. The experimental evaluations and scalability analysis 
presented in this paper illustrate the behavior of agents and performance of the system under 
different load conditions. Moreover, a detailed qualitative as well as quantitative analysis of 
various mobile agent models are presented. 
 
Keywords: Distributed Systems, Mobile Agents, Load Monitoring, Resource Utilization, Cloud 
Computing. 

1. INTRODUCTION 

A distributed system is the combination of independent nodes operating in a network and appears 
to the users as a single coherent system [6]. Distributed systems mean distributed processing in a 
shared environment to minimize computing time and to increase the overall performance. 
However, achieving better performance and reduction of computing time are subject to proper 
load balancing and load monitoring mechanisms [7, 31]. It means that, the overall processing 
load should be equally distributed among all the nodes with the proper load monitoring 
mechanism to avoid underload or overload conditions. In recent time, researchers have proposed 
that strict load balancing in a distributed system may not offer improved performance [34]. 
However, in general, it is observed that load balancing is an important factor in heterogeneous 
large-scale distributed systems to avoid overloading/underloading skews at nodes [32, 33].  In 
distributed systems, load monitoring mechanisms are used to monitor available computing nodes 
in a system [25]. Without load monitoring, it is difficult to employ load balancing approaches to 
distributed systems. In large-scale distributed systems, load monitoring by a system 
administrator is a very difficult task [7, 26]. Moreover, load monitor creates frequent 
intercommunication in distributed systems while collecting node information repeatedly [8]. 



Furthermore, checking the current status of the large set of available nodes in a distributed 
systems is difficult in the presence of network latency, because getting the current status of all 
the available nodes incurs immense internetwork communications increasing response time and 
affecting system performance. Therefore, a mechanism is required to overcome these problems 
in determining the current status of the available nodes. Mobile agents are emerging technologies 
which has the ability to autonomously manage, design, implement and maintain distributed 
systems [3, 28]. Mobile agents are autonomous software entities having the ability to migrate 
through the network from node to node [1, 24]. The basic characteristics of mobile agents are 
autonomy in behavior, social interaction, reactive to its environmental changes and goal driven 
execution [2]. A mobile agent created in one node can transport its “code” and “state” to another 
node in the network, where it continues its execution [5, 29]. The function of “code” is to start 
execution and the “state” determines the actions of a mobile agent in the destination node. Thus, 
mobile agent based load monitoring is an attractive approach in large-scale distributed systems. 

 

1.1  MOTIVATION 

Load monitoring mechanisms are designed to monitor distributed processing load to improve 
system performance and to enhance resource utilization in distributed systems [27]. In order to 
maximize the efficiency of distributed systems and for better utilization of the resources load 
monitoring mechanisms should be able to compute the current status of nodes. Researchers have 
proposed different approaches to load monitoring in distributed systems [1, 4]. A Grid 
Monitoring Architecture (GMA) is designed for grid computing by Global Grid Forum 
Performance Working Group [9]. The key feature of GMA is to provide a low-level specification 
that supports required functionality and, enables interoperability. However, in general, the GMA 
model is computationally expensive [9]. In GMA, intercommunication between producer and 
consumer for a large set of tasks would enhance computational complexity to a large extent. The 
space complexity of the GMA model is high because of the information storage including a set 
of events. The Ganglia is a scalable distributed monitoring system design for clusters and grids to 
achieve high-performance computing systems [10]. Ganglia is based on the hierarchical design 
to form a federation of clusters and it depends on a multicast based listen or announce protocol to 
monitor the state of clusters as well as cluster nodes. In ganglia, there is no mechanism to store 
information of producers and consumers. Tabu search algorithm is another neighborhood based 
search method which is used in distributed systems for monitoring applications [11]. However, a 
constant collection of detailed performance attribute values of a large number of nodes is 
difficult. On the contrary, we argue that the mobile agent-based load monitoring approaches have 
several advantages such as [11, 30], (a) Reduced network load, (b) Network delay resolve, (c) 
Dynamic adaptation, (d) Fault tolerance and, (e) Goal-driven behavior. 

In this paper, we present the design, implementation, and evaluation of mobile agents based load 
monitoring in a distributed system environment. The process load estimation is computed by 
employing a joint probability model and norm function, which is computationally inexpensive. 
The detailed scalability analysis is presented by using experimental evaluations as well as by 
following regression analytical model. The distinctive features of the proposed approach are, 



 Autonomous load monitoring by migrating mobile agents based on the probabilistic 
norm. 

 Reduction of waiting time of a node as well as the network load in order to increase the 
overall system performance.  

 Updating real-time load information to monitoring node for decision making based on 
time intervals.  

 Adaptive decision making by mobile agents depending on varying status of a node.  

Rest of the paper is organized as follows. Section 2 presents related work. Section 3 illustrates 
software architectural design and estimation model. Section 4 presents monitoring algorithms. 
Section 5 describes the implementation environment. Section 6 represents experimental 
evaluations. Section 7 presents a comparative analysis of the proposed algorithm to other 
contemporary designs. Lastly, section 8 concludes the paper.  

 

2. Related Work 

There are various approaches available for load monitoring in distributed systems. In general, 
load monitoring in large-scale distributed systems requires a considerable amount of 
computational resources [7].  The researchers have proposed model-based methods and 
algorithms for minimization of time and energy of computations for profiling data related to 
performance and energy of servers having multicore processors [35]. However, the algorithmic 
model considers specific server configuration for evaluation and, does not cover heterogeneous 
nodes including clients. Iosup, A et al. have proposed a monitoring architecture for control of 
grids, which is known as Toytle [16]. The core issues addressed by Toytle are grid-awareness, 
scalability and communication standards. Toytle architecture inherits Global Grid Forum Grid 
Monitoring Architecture (GGFGMA) guidelines [16]. This architecture consists of three layers 
such as, a Distributed core layer, a Hierarchical connection layer, and Local monitor layer. This 
mechanism ensures that the hierarchical connection yields a highly scalable approach, where the 
data can be collected from different and large-scale distributed systems with some degree of fault 
tolerance. Pivot Tracing is a monitoring framework for distributed systems that addresses two 
important limitations [17]. The first limitation is that, most of the monitoring system information 
is recorded a priori. The second limitation is that, the information is stored in a component or 
machine centric way which makes it very difficult to correlate events that cross these boundaries. 
The Pivot tracing combines dynamic instrumentation with a relational operator e.g. happened 
before join which gives users run-time ability to define arbitrary metrics. The Pivot tracing 
approach is able to filter, select and group based on events meaningful at other parts of the 
systems. Dan Gunter et al. have proposed a very lightweight instrumentation system for dynamic 
monitoring of high performance distributed applications [18]. The system is used to collect and 
aggregate detailed monitoring information from distributed applications. The system consists of 
four main monitoring components such as, application instrumentation, activation service, 
monitoring event receiver and archive feeder. Moreover, to achieve high-performance none of 
the above components can cause the pipeline to block while processing the data. Their proposed 
approach is used to deal with performance problems such as, low throughput and high latency by 



determining a detailed end to end instrumentation of all components including applications, 
operating systems, hosts and networks. InteMon is designed for monitoring and data mining in 
large clusters [19]. InteMon can monitor more than 100 nodes of a data center. This approach 
uses the Simple Network Management Protocol (SNMP) and, MySQL database is used for 
storing monitored data. The advantage of this approach is the ability to automatically analyze the 
monitored data in real time and to alert users for any anomalies [19]. Mobile agents are an 
efficient approach, which migrates from node to node in a connected network for gathering 
status information. Mobile agents are autonomous which means that a user is no longer needed to 
allocate mobile agents to nodes for migration. The researchers have proposed a Mobile Agent-
Based Server Resource Monitoring System (MABSRMS) based on Mobile-C library [12]. In 
MABSRMS, mobile agents call a low-level function to monitor server resources effectively and 
efficiently. The monitoring algorithm can be deployed on some nodes or all monitoring nodes 
quickly, easily and silently. In MABSRMS there is no backup mechanism specified for the 
servers. The intercommunication between the nodes and the server would enhance when a large 
number of nodes are interacting with a single server for load monitoring. Distributed 
Architecture for Monitoring and Diagnosis (DIAMOND) is a hierarchical and distributed 
cooperating agent model designed for distributed monitoring and diagnosis system [13]. The 
hierarchical model gives the advantage to predict the behavior of the system providing high 
performance and flexibility. The component diagnosis and monitoring (CDM) systems are 
modular to guarantee flexibility to alter when needed in case of expansion of any module without 
any new line of code [13]. Localhost Information Service Agent (LISA) is a lightweight dynamic 
service capable of providing application monitoring, configuring system parameter and 
optimizing distributed applications [14]. LISA framework is independent and it can be deployed 
on any node architecture or operating systems. The framework (core system) is based on 
modules responsible for managing and monitoring other modules. This approach is capable to 
continuously monitor itself and detect any potential problems and selects a possible solution to 
overcome the problem. Precedence Based Monitoring (PBM) algorithm is proposed for load 
monitoring in cloud architecture to manage resources based on time, event and precedence [15]. 
Reduced Penalty Class Algorithm (RPCA) is used for negotiation and service level agreement 
between the centralized node of cloud and the consumers. In their proposed model, if the user 
request is not fulfilled by a particular cloud, then the agent of the current cloud migrates the 
request of the users to a neighboring cloud.  

3. Software Architecture Design 
 

3.1.  Monitoring Agent Model 

The architectural model of the designed Mobile agent monitoring system is illustrated in Figure 
1. The proposed architecture has three main modules such as, (a) Agent Monitoring Module 
(AMM), (b) Agent Decision Module (ADM) and, (c) Agent Migration Module (AMMO). The 
agent monitoring module is used to collect the current status of the available resources in 
distributed systems. In addition, the agent is programmed to wait for a randomly varying time 
intervals to generate different samples of the currently available resources of a node. The 
purpose of collecting different samples is to compare the status of resources at different time 



intervals with randomness. The ADM computes these samples of data for making decisions. The 
decision can be at multiple levels. For example, to re-compute the resources if the condition for 
threshold doesn’t match, otherwise forwarding it to AMMO. The AMMO is used to migrate the 
agent to appropriate nodes in distributed systems if a migration decision is made autonomously. 
The background processes or daemon processes are those programs that are periodic or non-
terminable. Most of these processes are part of the operating systems. The background processes 
have significance in managing system performance. System resources are classified into different 
types and functions such as, CPU, video card, hard drive and, memory. In this paper, we are 
referring RAM and CPU as the main available system resources in a node for computational 
purposes.  

 

 

 

 

 

 

 

 

 

3.2. Architectural Design 

The internals of architectural design of our proposed monitoring system based on mobile agents 
are shown in Figure 2. The agent monitoring module is consisting of sub-modules for systems 
data collection, for computing idle and used resources (RAM and CPU), randomization of 
sampling and, storage of sampling data for the decision-making process. The agent decision 
module is consisting of sub-modules for retrieving sampling data, categorization of sampling 
data by monitoring logic and decision making for agent migration. The agent migration module 
is consisting of sub-modules for collecting updated system loads, selection of the appropriate 
node based on specified criteria and migrating the agent to the next node for computing the 
current status of system resources.  

 Data collection module (DCM): The function of the data collection module is to start 
the data extraction from the currently available resources. The mobile agent will collect 
the current status of resources i.e. RAM and CPU. In the first phase, the DCM module 
calculates the total size of RAM and CPU. In the second phase, the DCM module 
computes the total number of processes that are currently holding the resources. In the 
third phase, agents send this information to the resource compute module (RCM). 

 Resource compute module (RCM): The resource compute module is used to compute 
the current status of the resources. The RCM module collects the status related 

Figure 1: Schematic diagram of Mobile Agent Model 



information from DCM in order to compute and convert it into a percentage value. 
Calculating percentage value helps to efficiently determine to know exactly the 
percentage usage of RAM and CPU is varying in random time intervals. Later on, this 
information is sent to the data sampling module. 

 Data sampling module (DSM): The data sampling module will take the first sample and 
will send it to the storage buffer and then waits for a random amount of time. Next, the 
sampling module will continue and take the second sample from RCM and, this process 
will continue until the specified amount of sampling is done. The purpose of using a 
randomized waiting time is to make sure that the samples collected by the DSM module 
are distributed over time with relative uniformity. To avoid effects of rapidly transiting 
processes in a system, the randomization of waiting time is employed. 

  Storage buffer module (SBM): The storage buffer is used to store all the sampling 
results which are collected by the sampling module. The sampling module stores the 
status information of both the RAM and CPU. The SBM module will store the samples 
and then wait for the random amount of time to continue sample collection.  

  

 

 

 

 

 

 

 

 

 

 

 

 Data retrieval module (DRM): The stored data is retrieved from the storage buffer by 
the data retrieval module. The stored data contains status information of available 
resources i.e. CPU status and RAM status, which indicate that how much CPU as well as 
RAM is loaded in a node. The DRM module will instantaneously retrieve the sampling 
data from SBM. The purpose of this module is to get the sampling data and to send it to 
the MLM module. 

 Monitoring logic module (MLM): The monitoring logic module computes the joint 
probability variation of processing load in a node based on sampled data. The minimum 
joint probability value is 0 and the maximum joint probability is 1. The joint probability 

Figure 2. Mobile Agent Design Architecture 



is used to calculate two instantaneous events that are probably occurring at the same time. 
Thus, we are calculating joint random variations of CPU load and RAM load of a node. 
By taking the joint probability of these resources, it is easy to make a decision about the 
status of a particular node (i.e. heavily loaded or lightly loaded) based on a suitable norm 
function. The monitoring logic is the key module of our mobile agent-based monitoring 
model, where monitoring logic will categorize the status of system load according to the 
embedded logic to achieve the desired goal. 

 Monitoring decision module (MDM): The monitoring decision module is used to make 
a decision either to migrate the agent or to re-compute the status of resources. The 
monitoring decision module will make a decision based on the current status of CPU and 
RAM. For example, if the joint probability of the resource load of a node is greater than a 
specified threshold value, then the MDM will enforce the agent to enter into the 
migrating agent module (MAM). However, if the joint probability is less than the 
specified threshold value, then the MDM module will send the agent to execute the RCM 
module for re-computing the status information.  

 Node info module (NIM): The function of the node info module is to check the current 
status of existing nodes in the distributed systems in order to determine the online or 
offline nodes. The NIM module is very important in our mobile agent monitoring 
architecture to ensure the reliability and to increase the performance of the system by 
regularly updating its database if a node is added or removed.  

 Computing next node module (CNNM): The computing next node module is used to 
select the appropriate node based on the specified criteria. The CNNM module is a 
dynamic module because its criteria for selecting node can be easily changed according 
to the need of the system. The criteria for selecting an appropriate node can be 
categorized as, (a) select such a node which has high level of processing and computing 
resources, (b) select a node which has enough free available resources, (c) select nearest 
or adjacent node and, (d) a node which have fast and less congested network link. In our 
proposed model, we select the adjacent node to decrease the computation time. 

 Migrate agent module (MAM): Migrate agent module is used to migrate the agent to 
the next node for computing the current status of the node. This module takes two inputs: 
one input from the migration decision module and a second input from computing next 
node module. The migration decision module will confirm the migration of agent, while 
the computing next node module will specify the node where the agent will migrate. 
 

3.3.  Load Estimation Model 
 

In order to calculate the joint probability variations of CPU load and RAM load to get combined 
load status of the node n , the estimation model will compute the joint probability of CPU load 

)(CPn  and RAM load )(RPn  variations over time. Three samples are collected randomly within 

an estimation time window to reduce enlargement of memory consumption by statistical 
datasets. This set of samples is sufficient to formulate probabilistic normed estimation of 
dynamics of load variations. High frequency sampling in an interval is avoided because, repeated 



samplings are done at multiple intervals and, past sampled datasets are temporarily kept in 
history for decision-making purposes. It effectively means that, more than three samples are 
taken into consideration for making decisions. Hence, the computation of the discrete joint 
probability of resource load in a time window at the node n  is given below.  
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The relative triangular distances between the three samples of discrete joint probabilities are 
computed as, 
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The minimum value of joint probabilities of three different time intervals are computed as,  

}4,:),(min{  babadv nn       (3) 

The joint resource load of the corresponding node is computed by employing a norm function as, 

 |)),((||||| badavgvv nn         (4) 

It is easy to verify that Eqn. (4) is a norm because, 0||,  
tAZt ,  ||.|||:| tt AkkAk   and, 

|||||| btatbtat AAAA     where,  )),(( badavgvA nnt   at a time instant t . 

The norm value |||| v   of a node  is used as an input parameter for decision making by load 

monitoring algorithm of the mobile agents.  

 

4. The Algorithm Design 

The algorithm is designed based on the execution logic of mobile agents. We have employed a 
mobile agent to collect status information from nodes. The agent is capable to migrate 
autonomously based on decision logic. The agent sends response messages from target nodes to 
the monitoring node. The designing of the monitoring algorithm and decision algorithm are 
given below.  

4.1.  Monitoring Algorithm 

The monitoring algorithm executes to compute the status of currently available resources of a 
node in a specified amount of time. The pseudocode representation of the monitoring algorithm 
is presented in Figure 3. The monitoring algorithm computes the available resources such as, 
cpu_load and ram_load of a node. The existing cpu_load and ram_load are computed in terms of 
percentage (%) to accurately determine the freely available resources of a node. These values of 
cpu_load and ram_load are stored in an array for further processing. In the next step, the 



algorithm accesses and retrieves the associated stored values in order to calculate the joint 
probability for cpu_load and ram_load of a node. The purpose of calculating joint probability is 
to determine the random variations of cpu_load and ram_load in order to generate a combined 
load status. The algorithm is designed to run and compute the joint probability for at least three 
different time instances to efficiently and effectively calculate the cpu_load and ram_load in 
random time intervals within an estimation time window.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm calculates the joint probabilities of resource load variations and their relative 
triangular distances (d12, d13 and, d23). The minimum value of joint probabilities is computed and 
is stored in variable vn. Finally, the algorithm calculates the final cpu_load and ram_load of a 
node by following the norm function. The computed final value v (i.e. norm value) is passed as 
an input parameter to monitoring decision algorithm.  

 

4.2.  Decision Algorithms 

The function of decision algorithm is to process the input data from the monitoring algorithm for 
decision making. The input data processing in the decision algorithm is done in three distinct 
zones for current system load categorization such as, zone_1, zone_2 and, zone_3. The 

Figure 3. Pseudo-code representation of monitoring algorithm 



distribution of zones is based on joint probability values assigned to each zone. The zone 
boundaries are heuristically set as, )24.00(1_  vvzone , )48.024.0(2_  vvzone  

and, )72.048.0(3_  vvzone . We have divided the decision algorithm into three parts 

based on the current status of zones for easy understanding and description.  

4.2.1. Decision Algorithm for Zone_1 

 In our proposed decision algorithm there are two important variables named v_history and 
v_current. The v_history stores last updated zone information to capture zone dynamics and 
v_current stores current zone status. This will result in changing the status of v_history to 
v_current in the next execution instant. The pseudocode representation of a decision algorithm 
for zone_1 is presented in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In zone_1, first the monitoring_decision function checks the cpu_load and ram_load of a node. If 
any of individual load estimation is greater than 0.85, then it will result in migration of agent 
without sending any message to the monitoring node. The elseif condition checks the joint 

Figure 4. Pseudocode representation of decision algorithm for zone 1 



probability value to identify the current zone status of a node and to inform the monitoring node 
for a particular load migration.  The decision algorithm checks the status history (v_history) and, 
if the history is “null” or “zone_1” then the mobile agent will send a message to monitoring node 
indicating that this node is lightly loaded enabling to send any processing load to it. Next, the 
mobile agent updates the history to zone_1 and will migrate to the next node. The second 
condition will check if the v_history is in zone_2 or not. Accordingly, the algorithm will 
compute the cpu_load and ram_load once more. If the cpu_load is greater than ram_load, then 
the mobile agent will send a message to the monitoring node for transferring light cpu_load and 
vice versa. Next, it will update zone dynamics history and will migrate to the next node. The 
third condition is to check whether v_history contains value zone_3 or any other zone. If it is in 
zone_3, then it means that this node has previously highly loaded and is changed its status to 
lightly loaded. As a result, the mobile agent sends a message to the monitoring node for 
transferring the light processing load to the target node. Next, it updates v_history of the node 
and migrates to next node. 

4.2.2. Decision Algorithm for Zone_2 

In continuation of the first part, the second part of the decision algorithm identifies zone_2, 
which signifies a moderately loaded zone. The pseudocode representation of zone_2 of decision 
algorithm is represented in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pseudocode representation of decision algorithm for zone 2 



 

According to the computed joint probability value, it will assign zone_2 to a v_current variable. 
The algorithm will check the zone history and current zone status to make further decision. In the 
next step, the agent will compute the cpu_load and ram_load status of the node. In case the 
cpu_load is greater than ram_load, the mobile agent will send a message to the monitoring node 
to send a process with light cpu_load to this particular node. The algorithm will update the 
v_history variable and will migrate to the next node. Otherwise, when the ram_load is greater 
than cpu_load, mobile agent sends a message to the monitoring node to send a process with light 
ram_load. The algorithm will update the v_history and will migrate to the next node. Based on 
available condition and zone dynamics, the algorithm will check the message history 
(msg_history). The message history plays a crucial role to avoid sending of the same message 
infinitely to monitoring node. If the message history is greater than a predefined value (which is 
set to three in this case), then the algorithm will compute the cpu_load and ram_load of the node 
once again. If the cpu_load is high then the agent sends a message to the monitoring node to 
transfer processes with high ram_load, otherwise, the agent sends a message to transfer processes 
with cpu_load. Next, the algorithm updates the v_history variable and initiates migration of 
agent. If the message history is less than a predefined value, then the agent will send a message 
to the monitoring node to transfer light cpu_load and ram_load to a particular node. Once the 
message is sent, the v_history variable is updated and the message variable is incremented. 
Lastly, the agent is migrated to the next node. If the v_history variable contains zone_3 and 
v_current variable contains zone_2, then the algorithm will update the v_history and will migrate 
the agent. The reason for not taking any action by the monitoring node is to avoid an already 
moderately loaded node from being getting a burst of processing load within a short time 
interval. 

4.2.3. Decision Algorithm for Zone_3 

The third part of the decision algorithm describes the dynamics of zone_3, which signifies a 
highly loaded zone. The pseudo-code representation of zone_3 of decision algorithm is presented 
in Figure 6.   

 

 

 

 

 

 

 

 

 

Figure 6. Pseudocode representation of decision algorithm for zone_3 



According to the joint probability value, the algorithm will assign zone_3 to a v_current variable. 
If in a node, the v_history variable contains zone_1 and v_current variable contain zone_3, then 
the algorithm will wait for a random amount of time to repeat the estimation. The logic of using 
the random amount of time is to probabilistically avoid the running processes near to completion 
to be included within the estimation of the load. When the waiting time is over, the algorithm 
will recall Compute_Node_Status function and monitoring_decision function to evaluate the 
current zone status. If the v_history contains zone_2 and v_current contains zone_3, then the 
algorithm will update the v_history variable and will enforce agent migration without sending a 
message to the monitoring node. The reason for not sending a message for transferring extra load 
is to avoid overloading scenario. Finally, if the v_history variable contains zone_3 or null value 
and, the v_current variable contains zone_3, then the agent will send a message to monitoring 
node to avoid transferring the load to an already highly overloaded node. After sending the 
message to monitoring node v_history variable is updated and the agent is migrated to next node. 

5.  Implementation Environment  
 

5.1.1. Deployment Model 

We have implemented our software architecture on testbed comprised of five nodes having 
completely connected topology. We have designated one node as a monitoring node and, 
remaining four nodes are targets executing mobile agents. The inherent properties of a mobile 
agent are autonomousity, goal orientation and, intelligent decision making [20]. The advantage 
of using mobile agents in distributed systems is to reduce the communication overhead by 
collecting the updated status of the available node resources. Our proposed deployment model 
for mobile agent monitoring system is illustrated in Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

The mobile agent will first check the availability of a node where it will migrate next; if the node 
is alive then the agent will migrate. Otherwise, it will check for next available node. The node 

Figure 7. Deployment model of mobile agent monitoring systems 



information is stored a priori into the node information database. The database is updated when a 
node is added or removed from the system. The feature of our proposed agent monitoring system 
is to enable the mobile agent to efficiently collect the status information of a node and to send the 
information to the monitoring node. Another feature of proposed monitoring is the improved 
overall response time. In the traditional load monitoring approaches, the current load values are 
calculated for all the available nodes and later the aggregated information is sent as a response 
message to the monitoring node. On the contrary, our proposed model calculates the current 
status of nodes and immediately sends the information to the monitoring node. This mechanism 
will reduce the response time improving the overall system performance.   

5.1.2. Implementation Architecture  

Our proposed architecture is implemented in heterogeneous operating systems environment and 
Java programming language is used to deploy a mobile agent framework (i.e. Java Development 
Framework (JADE)). JADE is selected because it is a Java-based platform providing a simple 
and, efficient environment. Agents are implemented as containers in JADE and, are distributed 
among all the nodes in the network. The first container launched by the platform is known as 
“Main Container” and all other containers launched after the “Main Container” is named as 
“Container-1”, “Container-2”, “Container-3” and so on. The main container represents the 
bootstrap point. The containers are connected by the Internal Message Transport Protocol 
(IMTP). The main container components are, container table (CT), global agent descriptor table 
(GADT), local agent descriptor table (LADT), agent management system (AMS) and, directory 
facilitator (DF), as illustrated in Figure 8. The container-1 components are global agent 
descriptor table (GADT) and, local agent descriptor table (LADT), as illustrated in Figure 8.  

 

 

 

 

 

 

 

 

 

Moreover, the CT manages a registry of the object references and transport addresses of all 
available containers of the platform. GADT manages a registry of all available agents in the 
platform holding their current status and location. The LADT contains its local agent's address 
and also maintains global agent descriptor table. Agent management system monitors the entire 
platform and, it provides access to the white pages of the platform as well as manages the life 
cycle of the agent. Every agent must register with AMS in order to obtain valid AID. The 

Figure 8. Schematic diagram of static main-container and static container-1 



directory facilitator (DF) is the agent that implements the yellow pages service to any agent 
which wants to register its services or search for other available services. 

The configuration of our mobile agent framework development and runtime environment 
specification is illustrated in Table 1. Our proposed mobile agent monitoring algorithm is 
developed using Java eclipse IDE on top of JADE agent platform for monitoring distributed 
system. In addition, to test our proposed monitoring algorithm, we have used two additional load 
generation (benchmark) software modules which are, (a) CPU Stress and, (b) Heavy Load. The 
purpose of using this software is to generate various categories of load on our target nodes to 
monitor the variations in algorithmic behavior under different load conditions. In terms of 
network connectivity, one of the nodes is wirelessly connected and the rest of the nodes are 
wired connected with the monitoring node. The wired connections operate at 100Mbps through 
switch and wireless network operates on 100Mbps at peak.  

Table 1. Platform specifications of runtime environment and system configuration 

 Nodes  Specification  Runtime Environment  

Operating System  Software 

 Node 1  Intel Celeron G1840 CPU 
2.80 GHz, RAM: 4 GB, 
HDD: 128 GB, NIC: 
Wireless Adaptor 

 Windows 10  
 
 
 
 
 
 
 
 
 
 
 

Eclipse 4.6, JADE 4.5.0, JDK 
1.8, CPU Stress and Heavy 

Load. 

 Node 2  Intel Core i7-6700 CPU 
3.40 GHz, RAM: 8 GB, 
HDD: 2 TB, NIC: Realtek 
PCIe Controller 

  Linux kernel 2.6 Fedora  

 Node 3 Intel Core i5 3.1GHz, RAM: 
3 GB, HDD: 500 GB, NIC: 
Realtek PCIe Controller 

 Windows 10 

 Node 4  Intel Core 2 Duo E8400 
CPU 3.00 GHz, RAM: 3 
GB, HDD: 320 GB, NIC: 
Realtek PCIe Controller 

 Windows 7 

 Monitoring 
Node  

 Intel Core i7-6700 CPU 
3.40 GHz,  RAM: 8 GB, 
HDD: 2TB, NIC: Realtek 
PCIe GBE Family Controller

 Windows 10 

 Network  
  

 Ethernet: 100Mbps LAN 
Wireless: 100Mbps WAP, 
Signal strength: 45% 
(average) 
  

  
  

 

The zonal decision-making algorithms are implemented as separate functions within the agent 
body (code). The total lines of code (LOC) for each agent are equal to 182. 

 



6. Experimental Evaluations  

The monitoring algorithm computes the status of currently available node resources in a 
specified amount of time. In order to evaluate the behavior and performance of our implemented 
system, we have conducted several sets of experiments under different load conditions. We have 
employed four standard benchmarks namely, (1) Heavy load, (2) CPU stress (3) FFT-z and, (4) 
DGEMM. These benchmarks exert non-uniform load stress at nodes as illustrated in sampled 
profiles presented in Figure 9, Figure 10, Figure 31, Figure 33, Figure 35 and, Figure 37. The 
stress profile samples indicate that, CPU and RAM variations are uncorrelated and non-uniform 
in nature. We have evaluated the performance by using a set of parameters, which are zone 
dynamics, rule firing density, load dynamics, migration frequency under different load 
conditions, resource utilization and, decision logic execution. The rule firing density represents 
the total number of rules fired out of the entire set of rules in the time intervals. The rules are 
fired by the decision logic module of the mobile agent during system monitoring. The migration 
frequency represents the frequency of migration of agents between different nodes.  

 

 

 

  

 

 

 

 

 

6.1.  Set 1: Experimenting with CPU utilization in terms of Heavy Load and CPU 
Stress Benchmarks 

In this case, the cpu_load is employed for estimating the behavior of zone dynamics, rule firing 
dynamics, the combined dynamics of CPU/RAM utilization, joint probability and, migration 
frequency of agents. The variation in zone dynamics with respect to increasing cpu_load is 
illustrated in Figure 11. The variations in rule firing density are illustrated in Figure 12. The 
variations in the combined dynamics of CPU/RAM and joint probability are illustrated in Figure 
13. The variations in migration frequency are illustrated in Figure 14.   

                                                                                                                                 

 

 

Figure 11. Zone dynamics of mobile agent monitoring system 
(ex-set-1) 

Figure 12. Rule firing density of mobile agent monitoring 
system (ex-set-1) 

Figure 9. Non-uniform distribution profile of Heavy load 
benchmark 

Figure 10. Non-uniform distribution profile of CPU stress 
benchmark 



 

 

 

 

 

 

 

 

6.2. Set 2: Experimenting with CPU utilization in terms of Heavy Load and video 
on demand (VOD) Benchmarks 

In this case, the cpu_load and video on demand (VOD) benchmarks are employed for estimating 
the behavior of zone dynamics, rule firing density, combined dynamics of CPU/RAM utilization, 
joint probability and migration frequency. The variation in zone dynamics with respect to 
increasing cpu_load and VOD is illustrated in Figure 15. Initially, cpu_load is in zone_1, 
however gradual increase in the load results in a transition of the node to zone_3 and it stays 
there without migration. However, due to background processes, an abrupt increase in the load 
happens exceeding the specified threshold value. This results in agent migration. The variations 
in rule firing density are illustrated in Figure 16. The variations in the combined dynamics of 
CPU/RAM utilization and, joint probability are illustrated in Figure 17. Under increased 
cpu_load and VOD, the status of CPU utilization becomes maximum. The variations in 
migration frequency are illustrated in Figure 18. It is shown in the figure that increasing the CPU 
load and VOD causes frequent migration of agent between different zones.  

                                                                               

 

 

 

 

 

 

 

 

 

Figure 13. Combined dynamics of CPU and RAM load of 
mobile agent monitoring system (ex-set-1) 

Figure 14. Migration frequency distribution of agent under 
cpu_load (ex-set-1) 

Figure 15. Zone dynamics of mobile agent monitoring system 
(ex-set-2) 

Figure 16. Rule firing density of mobile agent monitoring system 
(ex-set-2)  



 

 

 

 

 

 

 

 

 

6.3. Set 3: Experimenting with CPU utilization in terms of Heavy Load, CPU Stress and 
video on demand (VOD) Benchmarks 

In this case, the cpu_load is employed by applying heavy load generation software, VOD and 
CPU stress software for estimating the behavior of zone dynamics, rule firing dynamics, 
combined dynamics of CPU/RAM, joint probability and, migration frequency. The variation 
in zone dynamics with respect to increasing cpu_load is illustrated in Figure 19. The 
variations in rule firing density are illustrated in Figure 20. The variations in the combined 
dynamics of CPU/RAM utilization and joint probability are illustrated in Figure 21. The 
variations in migration frequency are illustrated in Figure 22.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Combined dynamics of CPU and RAM load of 
mobile agent monitoring system (ex-set-2) 

Figure 18. Migration frequency distribution of agent under 
cpu_load and VOD load (ex-set-2) 

Figure 19. Zone dynamics of mobile agent monitoring system (ex-
set-3) 

Figure 21. Combined dynamics of CPU and RAM load of mobile 
agent monitoring system (ex-set-3) 

Figure 22. Migration frequency distribution of agent under cpu_load 
and VOD load (ex-set-3) 

Figure 20. Rule firing density of mobile agent monitoring system (ex-
set-3) 



 

6.4. Set 4: Experimenting with CPU and RAM utilization in terms of Heavy Load and 
CPU Stress Benchmarks 

In this case, the cpu_load and ram_load are employed by applying heavy load generation 
software, VOD and CPU stress software for estimating the behavior of zone dynamics, rule 
firing dynamics, combined dynamics of CPU/RAM utilization, joint probability and, migration 
frequency of our proposed algorithmic approach. The variation in zone dynamics with respect to 
increasing cpu_load is illustrated in Figure 23. The variations in rule firing density are illustrated 
in Figure 24. The variations in the combined dynamics of CPU/RAM utilization and, computed 
joint probability are illustrated in Figure 25. The variations in migration frequency are illustrated 
in Figure 26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5. Set 5: Experimenting with RAM utilization in terms of Heavy Load and video on 
demand (VOD) Benchmarks 

In this case, the cpu_load and ram_load is employed by applying heavy load generation software 
and VOD for estimating the behavior of zone dynamics, rule firing dynamics, combined 
dynamics of CPU/RAM utilization, joint probability and, migration frequency. The variation in 
zone dynamics with respect to increasing cpu_load is illustrated in Figure 27. The variations in 
rule firing density are illustrated in Figure 28. The variations in the combined dynamics of 

Figure 23. Zone dynamics of mobile agent monitoring system 
(ex-set-4) 

Figure 25. Combined dynamics of CPU and RAM load of 
mobile agent monitoring system (ex-set-4) 

Figure 26. Migration frequency distribution of agent under 
cpu_load and VOD load (ex-set-4) 

Figure 24. Rule firing density of mobile agent monitoring 
system (ex-set-4) 



CPU/RAM utilization and, joint probability are illustrated in Figure 29. The variations in 
migration frequency are illustrated in Figure 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.6. FFT-z and DGEMM Stress Test 

In this section, the experimental setup and performance of the monitoring algorithm are 
described by using resource utilization and decision logic execution. We have conducted four 
set of experiments (ex-1 to ex4) under different load distribution in order to evaluate the 
decision logic execution generated by monitoring agents. Moreover, we have evaluated the 
decision logic execution by monitoring agent using a set of numerically tagged decision logic 
parameters such as, 1: any_load, 2: compute_cpu_ram_load, 3: light_cpu_load, 4: 
light_ram_load, 5: light_cpu_ram_load, 6: migrate_agent, 7: ram_load, 8: cpu_load and, 9: 
stop_sending_load. In the first experiment, the CPU and RAM utilization is evaluated using 
FFT-z CPU stress benchmark having CPU cores saturation as core-C0, core-C2, core-C4 
and, core-C6. The variations in resource utilization and decision logic execution for this 
experiment are illustrated in Figure 31 and Figure 32 respectively. It is evident that the 
behavior of decision logic execution is periodic in nature. The reason for periodic execution 
behavior is due to the current load having average ranged values (CPU 50% and RAM 60%). 
In the second experiment, the saturation of CPU cores is set to core-C0, core-C1, core-C3, 
core-C4 and, core-C6 as illustrated in Figure 33. The behavior of decision logic execution is 
aperiodic in nature. The reason for aperiodicity is due to the algorithmic logic of monitoring 

Figure 27. Zone dynamics of mobile agent monitoring system 
(ex-set-5) 

Figure 29. Combined dynamics of CPU and RAM load of mobile 
agent monitoring system (ex-set-5) 

Figure 28. Rule firing density of mobile agent monitoring system 
(ex-set-5) 

Figure 30. Migration frequency distribution of agent under 
cpu_load and VOD load (ex-set-5) 



algorithm to execute various decision outputs as illustrated in Figure 34. In the third 
experiment, the saturation of CPU cores is set as core-C0, core-C1, core-C2, core-C3, core-
C4, core-C5, core-C6 and, core-C7 as illustrated in Figure 35.  In this case, the average value 
of resource utilization of CPU is 100% and utilization of the RAM is 60%. The reason for 
full utilization of CPU is due to saturating maximum available number of activated CPU 
cores. The decision logic execution of monitoring agent is periodic in nature due to full 
utilization of CPU exceeding the specified threshold value. Therefore, as illustrated in the 
Figure 36 the decision logic 9 (stop_sending_load) is validated. In the fourth experiment, the 
stress test is carried out by the DGEMM CPU stress benchmark as illustrated in Figure 37. 
The DGEMM is a stress test model based on multithreaded programming. The sets of matrix 
dimensions for DGEMM are consisting of 150x150, 500x500, 1000x1000 and 1500x1500. 
The average resource utilization of CPU is 40% while the RAM utilization is 70% on the 
average. The decision logic execution sequence of agent monitoring algorithm is illustrated 
in Figure 38.  In this case, the mobile agent executes decision logic 5 (light_cpu_ram_load) 
and 8 (cpu_load) in most cases. The reason for frequent execution of decision logic 5 and 
decision logic 8 is due to the current lightly loaded status of a node. Therefore, the 
monitoring node can send CPU load as well as light RAM load to a particular node. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Resource utilization of mobile agent monitoring system 
(ex-1) 

Figure 32. Decision logic execution of mobile agent 
monitoring system (ex-1) 

Figure 33. Resource utilization of mobile agent monitoring system 
(ex-2) 

Figure 34. Decision logic execution of mobile agent 
monitoring system (ex-2) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.7. Decision Execution Profile of Agents 

In our monitoring algorithm, decision execution block of our mobile agent is designed to fire 
decision sequences according to the computing status of currently available resources at a 
node at an instant of time. To evaluate the decision sequences generated by agents, we have 
conducted five experiments (ex-1 to ex-5) under different load conditions. We have 
evaluated the decision sequences by using a set of numerically tagged decision logic given 
by, 1: any_load, 2: compute_cpu_ram_load, 3: light_cpu_load, 4: light_ram_load, 5: 
light_cpu_ram_load, 6: migrate_agent, 7: ram_load, 8: cpu_load and, 9: stop_sending_load. 
The decision execution profile represents the sequence of fired decision logic by the mobile 
agent in the specific time interval. In the first experiment, the dynamism of CPU utilization is 
evaluated in terms of Heavy load and CPU stress benchmarks. The variation in decision 
execution sequences for experiment one is illustrated in Figure 39 (the x-axis represents time 
and y-axis represent numerically tagged decision logic). The behavior of decision execution 
sequence is periodic, because the current load status of the node is less than the threshold 
value. In the second experiment, the dynamism of CPU utilization is evaluated in terms of 
Heavy load and video on demand (VOD) benchmarks. The variation in decision execution 
sequences for the second experiment is illustrated in Figure 40. The behavior of decision 
logic sequence is aperiodic because of the gradual increase in the CPU load. In the third 

Figure 35. Resource utilization of mobile agent monitoring system 
(ex-3) 

Figure 36. Decision logic execution of mobile agent monitoring 
system (ex-3) 

Figure 37. Resource utilization of mobile agent monitoring system 
(ex-4) 

Figure 38. Decision logic execution of mobile agent monitoring 
system (ex-4) 



experiment, the dynamism of CPU utilization is evaluated in terms of Heavy load, CPU 
stress and, VOD combined benchmarks. The variation in decision execution sequences for 
the third experiment is illustrated in Figure 41. In this case, the mobile agent initially fires 
decision logic 5 (light_cpu_ram_load) based on current load status. However, further 
increased in load results in firing decision logic 9 (stop_sending_load), because the load is 
now increased from the specified threshold value in the current node. In the fourth 
experiment, the dynamism of CPU and RAM utilizations are evaluated in terms of Heavy 
load and CPU stress benchmarks. The variation in decision execution sequences for the 
fourth experiment with respect to increasing CPU and RAM load is illustrated in Figure 42. 
In the fifth experiment, the dynamism of RAM utilization is evaluated in terms of Heavy load 
and VOD benchmarks. The variation in decision execution sequences for the fifth experiment 
with respect to increasing RAM load is illustrated in Figure 43. In this case, the mobile agent 
initially executes decision logic 1 (any_load), which means that the current load status of the 
node is marked as very lightly loaded and the monitoring node can send any load to this 
particular node. After more than halftime of the conducting experiment, the mobile agent 
executes decision logic 2 (compute_cpu_ram_load) and 8 (cpu_load). However, the overall 
decision logic sequence remains stable at sequence 1 (any_load) for a relatively long period 
of time, because of the lightly loaded status of the respective node.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Decision logic sequence of mobile agent monitoring 
system (ex-1) 

Figure 40. Decision logic sequence of mobile agent monitoring 
system (ex-2) 

Figure 41. Decision logic sequence of mobile agent monitoring 
system (ex-3) 

Figure 42. Decision logic sequence of mobile agent monitoring 
system (ex-4) 



 

 

 
 
 
 
 
 
 
 
 

6.8.  Scalability estimation 
Scalability is the ability of a system, a network or an application to maintain overall performance 
at an acceptable level even if the load is increased. In this section, we have conducted 
experiments to evaluate the scalability of the proposed design architecture by computing 
response time of mobile agents. Our experimental testbed is consisting of a group of nine 
computing nodes at maximum, which are connected by heterogeneous networks (wired and 
wireless networks). We have considered heterogeneous hardware platforms to prepare testbed, 
which are comprised of: (a) nodes having dual-core Celeron 2.8GHz CPU and limited RAM 
(4GB) and, (b) nodes having core i7 3.4GHz (onboard 8 CPUs) and 8GB RAM. We have 
measured response time as an average of three repeated experiments on the testbed for each node 
counts. We have conducted scalability analysis in two phases such as, (1) experimentally 
measuring on the testbed and, (2) theoretically projecting through regression analysis for a very 
large set of nodes based on our experimental data. 
 
 

 
 
 
 
 
 
 
 
 

 
In Figure 44, experimentally measured response time is presented for wired network, wireless 
network and hybrid network (wired and wireless). It is illustrated in Figure 44 that, the average 
response time of nodes connected by a wired network is less than wireless connected nodes. This 
is because the available bandwidth of the wired network is greater than the wireless network. 
Moreover, the wired medium is less prone to data losses and crosstalk as compared to wireless 

Figure 43. Decision logic sequence of mobile agent monitoring 
system (ex-5) 

Figure 44. Measuring response time of agents on testbed 



medium. In order to analyze the behavior of our proposed model for a very large set of nodes, we 
have performed a regression analysis for projection based on Equation 5. 

                    0 1( )iiy b b x                                                                                 (5) 

The values of coefficients 0b  and 1b  are computed by using the experimental data of Figure 44. 

The values of 0b  and 1b  are given in Table 2. 

 

                                          Table 2. Computed coefficient values 

Wired Nodes 

0b  4416.85 

1b  247.75 

Wireless Nodes 

0b  4406.5 

1b  315.7 

 
 
 
 
 
 
 
 
 
 
 
 

 
The projection of response time of mobile agents for a very large set of nodes is illustrated in 
Figure 45. The regression analysis shows that, for a very large set of nodes, the response time of 
agents tends to diverge considering wired and wireless networks. The wired network connected 
nodes are having better response time due to high bandwidth and less interference in data 
communication. 
 
7. Comparative Analysis  

We have evaluated our mobile agent-based load monitoring model with various agent-based load 
monitoring frameworks for performance analysis. Some of these include, Agent-Based Adaptive 
Monitoring System [21], Java Based Agent Management System [23], Localhost Information 

Figure 45. Projection of response time of agent through regression analysis 



Service Agent (LISA) [14], Web Server Load Monitoring System using a Mobile Agent [12], A 
Method of Network Monitoring by Mobile Agents [1], A Mobile Agent-Based System for Server 
Resource Monitoring [2] and, Monitoring Agents in A Large Integrated Services Architecture 
(MonALISA) [22]. Each mobile agent model is examined and evaluated with respect to various 
design parameters and attributes like autonomisity, reliability, mobility, network latency, 
heterogeneity and, flexibility. A detailed discussion is explained in the following sections. 

7.1.  Qualitative Analysis 

In our qualitative analysis, we have selected six parameters for qualitative analysis namely, 
autonomousity, reliability, mobility, network latency, flexibility and, heterogeneity as illustrated 
in Table 3. In the qualitative analysis, the parameters are categorized in between [0, 1] scale, 
where 0 indicates the low value and 1 indicates high value. Moreover, within 0 and 1 scale we 
have categorized the interval into three zones (first zone is from 0 to 0.3 which indicates low 
zone (L), the second zone is from 0.3 to 0.6 indicating medium zone (M) and, the last zone is 
from 0.6 to 1 indicating high zone (H)). 

7.1.1. Autonomousity 

In case of autonomousity, the agent-based adaptive monitoring system (ABAMS) is in high 
zone, because the system administrator does not need to update the system information when 
new nodes are appended (the information updating is carried out by the mobile agent) [21].  The 
autonomousity of mobile agent based network monitoring and management system 
(MABNMMS) is in high zone, because the agent will migrate to various nodes in the network, 
gather status information and carry out device control tasks [1]. This model is designed for 
decentralized networks without autonomousity. The autonomousity of Monitoring Agents in A 
Large Integrated Services Architecture (MonALISA) is in a high zone, because this model is 
designed as an autonomous, multi-threaded agent-based monitoring system. MonALISA 
registers dynamic services which are able to collaborate and cooperate for performing a wide 
range of monitoring tasks in distributed systems [22]. Without autonomous behavior, the 
collaborating and cooperating with other agents will be difficult to achieve. The autonomousity 
of Mobile Agent-Based Server Resource Monitoring System (MABSRMS) is in high zone, 
because this is designed to collect available system resources in the large scale-distributed 
systems [12]. This model uses three different mobile agents to collect system resources. The 
autonomousity of Distributed Management System based on Java agents (DMSBA) is in the 
medium zone, because the management is handled by the administrator, but when the system 
loses contact with central administrator or having problems on time scales, the mobile agent will 
take over and autonomously manages the system and performs automated tasks [23]. The 
autonomousity of Mobile Agent-Based Load Monitoring (MABLM) is in the high zone because 
the agent is designed in such a way that it autonomously and automatically gathers system status 
information and sends the results to monitoring server [20]. The autonomousity of Localhost 
Information Service Agent (LISA) is in high zone, because this monitoring system is designed to 
dynamically configure system parameters and autonomously migrates agent to various nodes in 
the network to increase the system performance [14]. The autonomousity of our mobile agent-
based monitoring system is in a high zone, because the mobile agent collects system status 



information automatically. In our model, the agent must be autonomous, because the agent will 
make a decision about migrating to the next node. If the node is not available then the agent will 
select the next available node in the network.  

7.1.2. Reliability  

Reliability is used to measure the system stability. The reliability of agent-based adaptive 
monitoring system (ABAMS) is in the low zone, because server broker is used for collecting 
information of active nodes by sending heartbeat signals [21].  The reliability of mobile agent 
based network monitoring and management system (MABNMMS) is in high zone, because in 
this model fault management module is used to monitor faults and take necessary actions 
accordingly to increase overall system reliability [1]. The reliability of the MonALISA 
monitoring system is in a high zone, because this model uses a dynamic pool of threads [22]. The 
reliability of Mobile Agent-Based Server Resource Monitoring System (MABSRMS) is in the 
medium zone, because it uses more than one server for enhancing reliability [12]. The reliability 
of Distributed Management System based on Java agents (DMSBA) is in high zone, because this 
model uses mobile agents that can be trained to perform a set of tasks such as, monitoring host 
network traffic and restarting a specific server that has been crashed recently to achieve a high 
level of reliability [23]. The reliability of Mobile Agent-Based Load Monitoring (MABLM) is in 
the medium zone, because this model uses master-slave agents for monitoring [20]. The master 
agent keeps track of slave agents in the system. The reliability of Localhost Information Service 
Agent (LISA) is in high zone, because this framework uses the binary module, which can be 
automatically restarted by the mobile agent creating reliable monitoring system [14]. The 
reliability of our mobile agent-based monitoring system is in a high zone, because our mobile 
agent checks the status of each node. If some node goes offline then the agent will immediately 
notify the monitoring node and the monitoring node will take necessary action accordingly.  

7.1.3. Mobility  

In our qualitative analysis, we have selected seven models which are based on mobile agents. All 
these models are in the high zone in terms of mobility, because mobility is an essential factor of 
agents.  

7.1.4. Network Latency 

In the case of network latency ABAMS model is in a high zone, because the agent will 
communicate with server broker, not with monitoring system directly [21]. The communication 
between server broker and monitoring node will increase intercommunication, which in turn 
increases the network latency. Network latency of MABNMMS monitoring system is in the 
medium zone, because the mobile agent collects status information of all available nodes in the 
network and sends it to the manager node [1]. The mobile agent does not send individual node 
status information, which increases the delay in the monitoring process. Network latency of 
MonALISA monitoring model is in the low zone, because the reusability of the dynamic pool of 
threads reduces the network load as well as network latency increasing overall system 
performance [22]. Network latency of MABSRMS model is in the medium zone, because this 
model uses three different agents for collecting system information, which increases the network 



latency. Network latency of the DMSBA model is in the medium zone, because this model 
replicates data on multiple servers for reliability, which increases the network latency [23]. 
Network latency of MABLM model is in the medium zone, because the master agent will create 
slave agents and then it migrates slave agents to collect system information for available nodes in 
the network [20]. Network latency of LISA monitoring model is in the low zone, because LISA 
monitoring system can dynamically load or unload its binary modules to monitor current status 
and sends results directly to a monitoring system [14]. Moreover, network latency of our mobile 
agent-based monitoring system is in the low zone, because the mobile agent collects status 
information and directly sends to the monitoring node. 

 

7.1.5. Flexibility  

In the case of flexibility, ABAMS model is in a high zone, because each monitoring component 
can be dynamically activated, deactivated, moved or changed without affecting or restarting the 
entire monitoring system [21]. The flexibility of MABNMMS model is in the low zone, because 
the module or component cannot be changed once the system is deployed [1]. The flexibility of 
MonALISA monitoring model is in the medium zone, because this framework allows co-
operating services [22]. The flexibility of MABSRMS model is in the low zone. The reason is 
that, this model has no mechanism to adopt changes in its monitoring component [12]. The 
flexibility of the DMSBA model is in a high zone, because this model has the capability to 
dynamically load new code to existing code for enhancing agent capabilities and functionality 
[23]. The flexibility of MABLM monitoring model is in the low zone, because once the model 
has deployed, there no mechanism to upgrade its existing components [20]. The flexibility of the 
LISA monitoring model is in a high zone, because LISA framework is flexible enough to include 
new modules to the existing system without compromising the performance and efficiency [14]. 
The flexibility of our monitoring model is in the medium zone, because we can upgrade its 
monitoring functionality before deployment, but once it is deployed we cannot change its 
component.  

7.1.6. Heterogeneity  

The heterogeneity of ABAMS model is in a high zone, because this model uses dynamically 
controllable agents in a distributed network to utilize heterogeneous resources efficiently. This 
model uses an agent which can be loaded, unloaded on a specific resource or it can be migrated 
to another node depending on the requirement. Heterogeneity of MABNMMS monitoring 
framework is in a high zone, because it can be deployed on various nodes having a different 
platform in a distributed system. Heterogeneity of MonALISA is in high zone, because this 
model allows cooperating services and adaptation to a dynamic environment. Moreover, 
cooperating services also make this monitoring framework very efficient when monitoring a 
large number of heterogeneous nodes having different response times. The heterogeneity of the 
DMSBA model is in a high zone, because the interoperability of Java allows this architecture to 
be highly adaptable and, portable. The heterogeneity of MABLM monitoring model is in high 
zone, because this monitoring framework uses Mobile Agent Server (MAS), which provides an 



environment for executing mobile agents on various nodes (heterogeneous nodes) in distributed 
systems. Heterogeneity of LISA framework heterogeneity is in high zone. The heterogeneity is 
managed by the ability to detect various architectures and deploying its binary modules 
dynamically to monitor its current status. Heterogeneity of our mobile agent monitoring system 
is in a high zone, because our monitoring model is developed using Java language, which 
provides interoperability and can be easily deployed in heterogeneous platforms. 

 

   Parameters     
       
 
Agent- 
Based  
Models 

Autonomousity  Reliability Mobility Network 
latency  

Flexibility Heterogeneity  

ABAMS H L H H H H 
MABNMMS H H H M L H 
MonALISA H H H L M H 
MABSRMS H M H M L M 
DMSBA M H H M H H 
MABLM H M H M L H 
LISA H H H L H H 
MABMS H H H L M H 

Legends: H: High, M: Medium, L: Low, agent-based adaptive monitoring system (ABAMS), Mobile 
agent-based network monitoring and management system (MABNMMS), Monitoring Agents in A 
Large Integrated Services Architecture (MonALISA), Mobile Agent-Based Server Resource 
Monitoring System (MABSRMS), Distributed Management System based on java agents (DMSBA), 
Mobile Agent-Based Load Monitoring (MABLM), Localhost Information Service Agent (LISA), 
Mobile Agent-Based Monitoring System (MABMS). 
 
 
7.2. Quantitative Analysis 

In this section, we will quantitatively analyze different agent-based monitoring models. The 
comparative studies are performed based on fault tolerance, scalability, mobile agent migration 
latency and, response time as illustrated in Figure 46, 47, 48, 49 and, 50, respectively. The values 
of performance metric are determined with approximation by analysis. The metric values are set 
in a scale between 0 and 1, where 0 represents the lowest value and, 1 represents the highest 
value. We have divided the interval into three zones such as, the first zone is from 0 to 0.3 (low 
zone), the second zone is from 0.3 to 0.6 (medium zone) and, the last zone is from 0.6 to 1 (high 
zone). 

  

 

Table 3. Comparative analysis of load monitoring models 



 

7.2.1. Scalability 

Scalability is defined as the ability of a system or model that describes its capability to perform 
efficiently under an increasing number of nodes. The scalability of ABAMS framework is in a 
high zone, because it can monitor more than one multicast groups, however, the administrator 
can add or remove multicast group without disturbing the system performance [21]. 
MABNMMS monitoring system has scalability in the medium zone, because this framework is 
tested on a fixed number of nodes [1]. Scalability of MonALISA framework is in the medium 
zone, because it is designed as an autonomous multi-threaded self-describing agent-based 
system, which is able to collaborate and cooperate in performing various monitoring task by 
adding more nodes in the existing system without affecting system performance [22]. Moreover, 
the scalability of MABSRMS monitoring framework is in the medium zone, because it is 
deployed in large-scale distributed systems. The mobile agent calls low-level functions in 
dynamic libraries and can monitor system resources efficiently without considering the increased 
number of nodes [12]. The scalability of the DMSBA monitoring system is in the medium zone. 
It is designed for large-scale distributed systems [23]. The scalability of MABLM is in high 
zone, because it is designed for large-scale distributed system and operates efficiently where a 
large number of systems are connected through a network having low bandwidth and high delay 
time [20]. The scalability of LISA framework is in high zone, because the agents automatically 
detect the architecture and load binary modules (in case of the appended node) necessary to 
perform monitoring services making this framework scalable [14]. The scalability of our mobile 
agent monitoring system is in a high zone, because the mobile agent detects any addition or 
removal of nodes in the system and updates its information in the node information database.  

7.2.2. Fault Tolerance 

In case of fault tolerant, ABAMS framework is in the low zone, because there is no mechanism 
specified which can be used to recover from the failure [21]. For example, if the monitoring 
agents die or stop working due to some error, then the entire system fails. The fault tolerance of 
MABNMMS monitoring system is in a high zone, because the fault management module uses a 
mobile agent to monitor the network and identify any faults and take a necessary control action 
[1]. The fault tolerance of MonALISA framework is in high zone, because this framework 
assigns an independent thread to each task so that if some task fails due to error other tasks 
should not be affected, which make this framework fault tolerant [22]. The fault tolerance of 
MABSRMS monitoring system is in the low zone, because there is no backup mechanism in 
monitoring system [12]. The fault tolerance of DMSBA framework is in a high zone, because the 
agents detect failures or congestion automatically and, change the granularity at which the data is 
collected [23]. This mechanism provides the administrator with a detailed view of the system. 
The fault tolerance of MABLM monitoring system is in the medium zone. The agents 
communicate with each other if some fault or error occurs and agents notify the monitoring 
system while taking control action enhancing fault tolerance [20]. The fault tolerance of LISA 
monitoring system is in a high zone, because the core system manages monitoring modules and 
dynamically restarts the crashed module [14]. The fault tolerance of our mobile agent-based 



monitoring system is in a high zone, because the mobile agent migrates to each node and collects 
status information. If any node dies or an error occurs, then the mobile agent immediately 
informs the monitoring system. The mobile agent constantly updates the node information 
database, which enhances overall system fault tolerance. 

 

 

 

 

 

 

 

 

 

7.2.3. Mobile Agent Migration Latency 

In Figures 48 and 49, the comparison of mobile agent migration latency (excluding agent code 
execution time at nodes) is illustrated for the wired and wireless nodes for varying data sizes of 
agents. As illustrated in Figure 48 and 49, the agent behavior in the wired node is relatively 
stable without major increase or decrease in latency, because the wired connection is more 
reliable and provides a stable connection to support bandwidth for a large volume of data. While 
in Figure 48 and 49, the behavior of wireless node is aperiodic and tends to overshoot and 
undershoot with respect to network load and congestion of wireless network increasing the agent 
migration latency in the wireless network. The decreased latency values at instances 1, 3, 5 and 
9, which is almost close to the wired node that at particular instances due to less congestion 
(packet loss is almost none and signal strength is good). The mobile agent migration latency is 
not greatly affected by the data volume it carries in the network.  

 

 

 

 

 

 

 

 

Figure 46. Fault tolerance of mobile agent models Figure 47. Scalability distribution of mobile agent models 

Figure 48. Comparison of mobile agent migration and data IO 
latency with respect to wired and wireless node (data size = 1kb) 

Figure 49. Comparison of mobile agent migration and data IO 
latency with respect to wired and wireless node (data size = 4 kb) 



7.2.4. Execution-response Time 

In Figure 50, the comparison of execution-response time (i.e. averaged value of agent code 
execution time at nodes excluding network IO and migration time) for the 3-node model is 
illustrated considering MABNMMS and MABMS. As illustrated in Figure 50, the execution-
response time of MABMS is less than MABNMMS, which shows that MABMS performance is 
better than MABNMMS. The MABNMMS monitoring agents use a shell script [1]. The results 
illustrate that, the execution-response time depends upon the complexity of the script as well as 
the number of available nodes in the network. Execution-response time increases with the 
increase in a number of nodes in the network and, vice versa. While MABMS uses Java-based 
agents, the Java-based agents are platform independent and lightweight in nature. This reduces 
the execution-response time of agents in MABMS based on JADE platform.   

 

 

 

 

 

 

 

 

8. Conclusion 

In large-scale distributed systems, keeping track of load monitoring mechanism by a system 
administrator is a very difficult task. Load monitoring mechanism is used to monitor available 
computing nodes in a distributed system. In this paper, we present the design, implementation, 
and evaluation of mobile agents based load monitoring system for distributed systems in a 
heterogeneous network environment. Moreover, the monitoring algorithm runs to compute the 
status of currently available node resources in time intervals. We used mobile agents to collect 
status information from nodes and sending a response message to the monitoring node. The 
pseudocodes describing monitoring algorithms and decision algorithm are presented. In order to 
evaluate the behavior and performance of our implemented system, we have conducted five sets 
of experiments under different load scenarios. We have evaluated the performance using a set of 
parameters such as, zone dynamics, rule firing density, load dynamics and, migration frequency 
under different load conditions. A detailed scalability analysis is performed based on 
experimental evaluation on testbed and through regression analysis. The proposed approach 
reduces the waiting time of a node as well as the network load in order to increase the overall 
system performance. The waiting time of a node is reduced by autonomously sending the 
required information to the monitoring node for decision making at different time instants. 

 

Figure 50. Comparison of response time for 3-Node triangular model 
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