Accepted Manuscript e

FIGICIS:
Probabilistic normed load monitoring in large scale distributed systems S Rt T

using mobile agents

Moazam Ali, Susmit Bagchi s

PII: S0167-739X(18)30984-1

DOI: https://doi.org/10.1016/j.future.2019.01.053
Reference: FUTURE 4746

To appear in: Future Generation Computer Systems

Received date: 25 April 2018
Revised date: 18 December 2018
Accepted date: 27 January 2019

Please cite this article as: M. Ali and S. Bagchi, Probabilistic normed load monitoring in large scale
distributed systems using mobile agents, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.01.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.01.053

Probabilistic Normed Load Monitoring in Large Scale Distrib’.ted Systems
using Mobile Agents

Moazam Ali, Susmit Bagchi
Department of Aerospace and Software Engineering (Informatics), Gyeongsang N~ wmal University,
Jinju, South Korea 660701
Corresponding author: Susmit Bagchi, profsbagchi@gm ... ym

Abstract

Due to rapid advancements and developments in computing platforn.- there is a tremendous
growth in heterogeneous distributed systems involving mobile device *. In distributed systems,
achieving better performance and efficient utilization of shat.d res jurces are dependent on
appropriate load monitoring mechanisms. In large-scale dstribted systems, performing load
monitoring is a challenging task and, it effects in increas. 7, resr onse time degrading system
performance. In this paper, we have developed and in,, 'emicuted mobile agent-based load
monitoring system intended to large-scale distributed ~vstems. Mobile agent based design is an
attractive approach for load monitoring in large-scale Yistri.*cd systems, because mobile agents
are autonomous, goal-driven, reactive to environmenta. changes and, lightweight piece of
program. In this paper, a detailed software architc.“iral design for mobile agent based load
monitoring system is presented. The design is bt ._* ~n a probabilistic normed estimation model
and corresponding monitoring algorithms. The ex, ¥ cimental evaluations and scalability analysis
presented in this paper illustrate the behavic ™ € ag>nts and performance of the system under
different load conditions. Moreover, a detailea qualitative as well as quantitative analysis of
various mobile agent models are presented.

Keywords: Distributed Systems, Mo'1le A, ents, Load Monitoring, Resource Utilization, Cloud
Computing.

1. INTRODUCTION

A distributed system is the co ibinatio.. of independent nodes operating in a network and appears
to the users as a single coheient s, “tem [6]. Distributed systems mean distributed processing in a
shared environment to n . Mize computing time and to increase the overall performance.
However, achieving bett.~ p .rformance and reduction of computing time are subject to proper
load balancing and lo-d mou.“oring mechanisms [7, 31]. It means that, the overall processing
load should be equ ly dist ibuted among all the nodes with the proper load monitoring
mechanism to avoid nac '« ad or overload conditions. In recent time, researchers have proposed
that strict load b ancin ~ in a distributed system may not offer improved performance [34].
However, in gene: °1. it s observed that load balancing is an important factor in heterogeneous
large-scale di .iribut>d systems to avoid overloading/underloading skews at nodes [32, 33]. In
distributed sy. tems, ! »ad monitoring mechanisms are used to monitor available computing nodes
in a syster [25]. vvithout load monitoring, it is difficult to employ load balancing approaches to
distributed svstems. In large-scale distributed systems, load monitoring by a system
administrator is a very difficult task [7, 26]. Moreover, load monitor creates frequent
intercommunication in distributed systems while collecting node information repeatedly [8].

Furthermore, checking the current status of the large set of available node in a distributed
systems is difficult in the presence of network latency, because getting the < ..-rent status of all
the available nodes incurs immense internetwork communications increasing respo. se time and
affecting system performance. Therefore, a mechanism is required to ovs rcor 1e these problems
in determining the current status of the available nodes. Mobile agents are «.” 2rging technologies
which has the ability to autonomously manage, design, implement an maintain distributed
systems [3, 28]. Mobile agents are autonomous software entities b .vi1 « the ability to migrate
through the network from node to node [1, 24]. The basic charac..-is.ics of mobile agents are
autonomy in behavior, social interaction, reactive to its environ».catal . anges and goal driven
execution [2]. A mobile agent created in one node can transport its “coc €” and “‘state” to another
node in the network, where it continues its execution [5, 291 Th. - _ction of “code” is to start
execution and the “state” determines the actions of a mobil: age .. m the destination node. Thus,
mobile agent based load monitoring is an attractive approach i lare e-scale distributed systems.

1.1 MOTIVATION

Load monitoring mechanisms are designed to momn.“or distributed processing load to improve
system performance and to enhance resource u’’~~tion in distributed systems [27]. In order to
maximize the efficiency of distributed systems a . for better utilization of the resources load
monitoring mechanisms should be able to coi. v “te 1. e current status of nodes. Researchers have
proposed different approaches to load moniring in distributed systems [1, 4]. A Grid
Monitoring Architecture (GMA) is desig. »d 1or grid computing by Global Grid Forum
Performance Working Group [9]. The key feature of GMA is to provide a low-level specification
that supports required functionality a-.d, en. bles interoperability. However, in general, the GMA
model is computationally expensive [9]. Ir GMA, intercommunication between producer and
consumer for a large set of tasks v ou'd en.ance computational complexity to a large extent. The
space complexity of the GMA 1..~d /I is .aigh because of the information storage including a set
of events. The Ganglia is a sc7.able a.. cibuted monitoring system design for clusters and grids to
achieve high-performance ¢ mp.*ng systems [10]. Ganglia is based on the hierarchical design
to form a federation of clur... ~ and it depends on a multicast based listen or announce protocol to
monitor the state of clus’ °rs - s well as cluster nodes. In ganglia, there is no mechanism to store
information of produce.s anu ~onsumers. Tabu search algorithm is another neighborhood based
search method which s v .ed 71 distributed systems for monitoring applications [11]. However, a
constant collection of «~ta’ied performance attribute values of a large number of nodes is
difficult. On the ¢ »ntrary we argue that the mobile agent-based load monitoring approaches have
several advantage. such as [11, 30], (a) Reduced network load, (b) Network delay resolve, (c)
Dynamic adar .auon (d) Fault tolerance and, (¢) Goal-driven behavior.

In this paper, v = pre ,ent the design, implementation, and evaluation of mobile agents based load
monitorin,_ ... ~ distributed system environment. The process load estimation is computed by
employing & “vint probability model and norm function, which is computationally inexpensive.
The detailed scalability analysis is presented by using experimental evaluations as well as by
following regression analytical model. The distinctive features of the proposed approach are,

e Autonomous load monitoring by migrating mobile agents based on the probabilistic
norm.

e Reduction of waiting time of a node as well as the network load in arder to increase the
overall system performance.

e Updating real-time load information to monitoring node for decisi. »~ making based on
time intervals.

e Adaptive decision making by mobile agents depending on va yin'; .*2tus of a node.

Rest of the paper is organized as follows. Section 2 presents rel>*~d w. k. Section 3 illustrates
software architectural design and estimation model. Section 4 presen 5 monitoring algorithms.
Section 5 describes the implementation environment. Secti.n 6 represents experimental
evaluations. Section 7 presents a comparative analysis ¢ th~ wroposed algorithm to other
contemporary designs. Lastly, section 8 concludes the paper.

2. Related Work

There are various approaches available for load 1. nitoring in distributed systems. In general,
load monitoring in large-scale distributed <vstems requires a considerable amount of
computational resources [7]. The researcher. 'ave proposed model-based methods and
algorithms for minimization of time and en. .7v o~ computations for profiling data related to
performance and energy of servers having mui.‘co. 2 processors [35]. However, the algorithmic
model considers specific server configuraw ~n 1u. evaluation and, does not cover heterogeneous
nodes including clients. Iosup, A et al. have pioposed a monitoring architecture for control of
grids, which is known as Toytle [16” 1u. core issues addressed by Toytle are grid-awareness,
scalability and communication stan. ~rds. T)ytle architecture inherits Global Grid Forum Grid
Monitoring Architecture (GGFGDM.A) gu. ’:lines [16]. This architecture consists of three layers
such as, a Distributed core layer a }.iers chical connection layer, and Local monitor layer. This
mechanism ensures that the hi rarcu.>» connection yields a highly scalable approach, where the
data can be collected from di tc. nt and large-scale distributed systems with some degree of fault
tolerance. Pivot Tracing is ~ monitoring framework for distributed systems that addresses two
important limitations [17". Th . first limitation is that, most of the monitoring system information
is recorded a priori. The sce~nd limitation is that, the information is stored in a component or
machine centric way - /hic’ 1 makes it very difficult to correlate events that cross these boundaries.
The Pivot tracing coni. nes dynamic instrumentation with a relational operator e.g. happened
before join whicl giver users run-time ability to define arbitrary metrics. The Pivot tracing
approach is able "o filte , select and group based on events meaningful at other parts of the
systems. Dan .ater c. al. have proposed a very lightweight instrumentation system for dynamic
monitoring o high p :rformance distributed applications [18]. The system is used to collect and
aggregate detai.> - onitoring information from distributed applications. The system consists of
four main. mu ..loring components such as, application instrumentation, activation service,
monitoring ¢ ent receiver and archive feeder. Moreover, to achieve high-performance none of
the above components can cause the pipeline to block while processing the data. Their proposed
approach is used to deal with performance problems such as, low throughput and high latency by

determining a detailed end to end instrumentation of all components incluring applications,
operating systems, hosts and networks. InteMon is designed for monitoring .. 1 data mining in
large clusters [19]. InteMon can monitor more than 100 nodes of a data center. 1..is approach
uses the Simple Network Management Protocol (SNMP) and, MySQIJ da abase is used for
storing monitored data. The advantage of this approach is the ability to auw - atically analyze the
monitored data in real time and to alert users for any anomalies [19]. “Mobile agents are an
efficient approach, which migrates from node to node in a connr . tec network for gathering
status information. Mobile agents are autonomous which means tha. ~ v ,er is no longer needed to
allocate mobile agents to nodes for migration. The researchers *...e pro, osed a Mobile Agent-
Based Server Resource Monitoring System (MABSRMS) bas :d on | lobile-C library [12]. In
MABSRMS, mobile agents call a low-level function to monitor s. = resources effectively and
efficiently. The monitoring algorithm can be deployed on som . .ndes or all monitoring nodes
quickly, easily and silently. In MABSRMS there is ne backup .nechanism specified for the
servers. The intercommunication between the nodes and the . ~rver would enhance when a large
number of nodes are interacting with a single sc.ver fcr load monitoring. Distributed
Architecture for Monitoring and Diagnosis (DIAMCND) is a hierarchical and distributed
cooperating agent model designed for distributed —._....c..ng and diagnosis system [13]. The
hierarchical model gives the advantage to predict tu. behavior of the system providing high
performance and flexibility. The component (tag, «.’s and monitoring (CDM) systems are
modular to guarantee flexibility to alter when needc t in case of expansion of any module without
any new line of code [13]. Localhost Informaticn Cervice Agent (LISA) is a lightweight dynamic
service capable of providing applicati .. mo.itoring, configuring system parameter and
optimizing distributed applications [14]. LISA “ramework is independent and it can be deployed
on any node architecture or operatir> systems. The framework (core system) is based on
modules responsible for managing - ad mo. itoring other modules. This approach is capable to
continuously monitor itself and detect . ~v potential problems and selects a possible solution to
overcome the problem. Precede.ce 3ased Monitoring (PBM) algorithm is proposed for load
monitoring in cloud architecturs 1. nar .ge resources based on time, event and precedence [15].
Reduced Penalty Class Algo .“hm (RFCA) is used for negotiation and service level agreement
between the centralized noae of ¢..ud and the consumers. In their proposed model, if the user
request is not fulfilled by a j articular cloud, then the agent of the current cloud migrates the
request of the users to a nc_~'.boring cloud.

3. Software Arc ite .turz Design

3.1. M Jnitor 'ng Agent Model

The architectura! n.. *~" of the designed Mobile agent monitoring system is illustrated in Figure
1. The propcsed architecture has three main modules such as, (a) Agent Monitoring Module
(AMM), (b) +.~ent "secision Module (ADM) and, (c¢) Agent Migration Module (AMMO). The
agent mc ...~no module is used to collect the current status of the available resources in
distributed s - ,tems. In addition, the agent is programmed to wait for a randomly varying time
intervals to gunerate different samples of the currently available resources of a node. The
purpose of collecting different samples is to compare the status of resources at different time

intervals with randomness. The ADM computes these samples of data for maki ig decisions. The
decision can be at multiple levels. For example, to re-compute the resources .." the condition for
threshold doesn’t match, otherwise forwarding it to AMMO. The AMMO is used . migrate the
agent to appropriate nodes in distributed systems if a migration decision ‘s m de autonomously.
The background processes or daemon processes are those programs tha. - e periodic or non-
terminable. Most of these processes are part of the operating systems. The “ackground processes
have significance in managing system performance. System resource , an ~lassified into different
types and functions such as, CPU, video card, hard drive and, m« ~c.y. In this paper, we are
referring RAM and CPU as the main available system resourc . in a ..ode for computational
purposes.

Agent Mo, “ring T _odule

Background Processes J I i L

Agent De -ion Module

i1l

System Resources ’7 £ gent Migration Module

Figure 1: Schematic diagram of Mobile Agent Model
3.2. Architectural Desig:.

The internals of architectural des'gn ‘.f our proposed monitoring system based on mobile agents
are shown in Figure 2. The ag=n. - 1oni oring module is consisting of sub-modules for systems
data collection, for computi” - idle and used resources (RAM and CPU), randomization of
sampling and, storage of sampln._ data for the decision-making process. The agent decision
module is consisting of £ub- 10dules for retrieving sampling data, categorization of sampling
data by monitoring logic .~ decision making for agent migration. The agent migration module
is consisting of sub-n-odvles .ur collecting updated system loads, selection of the appropriate
node based on spec: *ed crit.ria and migrating the agent to the next node for computing the
current status of sy~ -m re. - arces.

e Data colle~tion riodule (DCM): The function of the data collection module is to start
the dat. uxtracuon from the currently available resources. The mobile agent will collect
the cu rent st tus of resources i.e. RAM and CPU. In the first phase, the DCM module
calculatc. ‘e total size of RAM and CPU. In the second phase, the DCM module
cow nw s> .he total number of processes that are currently holding the resources. In the
third | “ase, agents send this information to the resource compute module (RCM).

e Resource compute module (RCM): The resource compute module is used to compute
the current status of the resources. The RCM module collects the status related

information from DCM in order to compute and convert it into a ' ercentage value.
Calculating percentage value helps to efficiently determine to .-ow exactly the
percentage usage of RAM and CPU is varying in random time intervals. . ater on, this
information is sent to the data sampling module.

Data sampling module (DSM): The data sampling module will tax. ‘he first sample and
will send it to the storage buffer and then waits for a random amu "nt of time. Next, the
sampling module will continue and take the second sample “.on ®CM and, this process
will continue until the specified amount of sampling is do. = The purpose of using a
randomized waiting time is to make sure that the sample” collecw.d by the DSM module
are distributed over time with relative uniformity. To a -oid et :cts of rapidly transiting
processes in a system, the randomization of waiting tire 15 -~ _io0yed.

Storage buffer module (SBM): The storage buf’:r i+ u.2d to store all the sampling
results which are collected by the sampling mo-ule. The sampling module stores the
status information of both the RAM and CPU. The >.M module will store the samples
and then wait for the random amount of time to ¢. ~tinur sample collection.

Agent Monitoring Mo. '
oo [ree o o |
i ‘
| Whil:-\ion_—ld—l saM |

A ~~=t Decision Module

1 igure 2. Mobile Agent Design Architecture

Data retri”.val mocule (DRM): The stored data is retrieved from the storage buffer by
the data ctrieva module. The stored data contains status information of available
resource- i.c. ~7 J status and RAM status, which indicate that how much CPU as well as
RAM s loac »d in a node. The DRM module will instantaneously retrieve the sampling
data frc m SF M. The purpose of this module is to get the sampling data and to send it to
the 2" module.

Mori.*oring logic module (MLM): The monitoring logic module computes the joint
probabu.ity variation of processing load in a node based on sampled data. The minimum
joint probability value is 0 and the maximum joint probability is 1. The joint probability

is used to calculate two instantaneous events that are probably occurring at the same time.
Thus, we are calculating joint random variations of CPU load and R/.: " load of a node.
By taking the joint probability of these resources, it is easy to make a decis.»n about the
status of a particular node (i.e. heavily loaded or lightly loaded) b7 sed »n a suitable norm
function. The monitoring logic is the key module of our mobile ag ~ t-based monitoring
model, where monitoring logic will categorize the status of systen. 'naa according to the
embedded logic to achieve the desired goal.

e Monitoring decision module (MDM): The monitoring dec.. ‘o « module is used to make
a decision either to migrate the agent or to re-compu*. che s..tus of resources. The
monitoring decision module will make a decision based »n the ¢ arrent status of CPU and
RAM. For example, if the joint probability of the resor'~ce .~~~ of a node is greater than a
specified threshold value, then the MDM will ¢1for.c ‘he agent to enter into the
migrating agent module (MAM). However, if *the joint probability is less than the
specified threshold value, then the MDM module wili . »nd the agent to execute the RCM
module for re-computing the status information.

¢ Node info module (NIM): The function of the . ~de info module is to check the current
status of existing nodes in the distributed -yswuus in order to determine the online or
offline nodes. The NIM module is very imy ~rtant in our mobile agent monitoring
architecture to ensure the reliability anu to uc.ease the performance of the system by
regularly updating its database if a no/'~ is a.'ded or removed.

e Computing next node module (CNN. 4). The computing next node module is used to
select the appropriate node base. «n. - specified criteria. The CNNM module is a
dynamic module because its criteria tfo. selecting node can be easily changed according
to the need of the system. T... criteria for selecting an appropriate node can be
categorized as, (a) select suc + a nod which has high level of processing and computing
resources, (b) select a nodr whil }as enough free available resources, (c) select nearest
or adjacent node and, (d) a nr de vhich have fast and less congested network link. In our
proposed model, we sel .ct u.~ ar jacent node to decrease the computation time.

e Migrate agent modi «. ‘MAM): Migrate agent module is used to migrate the agent to
the next node for comouting he current status of the node. This module takes two inputs:
one input from th. mi sration decision module and a second input from computing next
node module. The 1. oration decision module will confirm the migration of agent, while
the computing aex’ node module will specify the node where the agent will migrate.

3.3. Lc .u Estin.ation Model

In order to ca’culate the joint probability variations of CPU load and RAM load to get combined
load status o1 the no .e n, the estimation model will compute the joint probability of CPU load
P.(C) an” RAM i0ad P,(R) variations over time. Three samples are collected randomly within
an estimati v time window to reduce enlargement of memory consumption by statistical

datasets. This set of samples is sufficient to formulate probabilistic normed estimation of
dynamics of load variations. High frequency sampling in an interval is avoided because, repeated

samplings are done at multiple intervals and, past sampled datasets are teriporarily kept in
history for decision-making purposes. It effectively means that, more thar ‘“ree samples are
taken into consideration for making decisions. Hence, the computation of the iscrete joint
probability of resource load in a time window at the node n is given belov .

teZ",t<4,
2,0 =(P,C)).(RMR))

The relative triangular distances between the three samples of disci > joint probabilities are
computed as,

(1)

a,beZ”,

/2)
d,(a,b) = p,(a) - p,(0)|

The minimum value of joint probabilities of three diffc ->nt ..__.c intervals are computed as,
v, =min{d, (a,b):a,b <4} 3)
The joint resource load of the corresponding noa. 1s ' u...puted by employing a norm function as,

IVI=lv, +avg(d,(a,b))| 4)

It is easy to verify that Eqn. (4) is a norm beause, Vte Z*,| A 20, Vk e R:|kA |5 k|.| A | and,
| A |+ AL 2l A, + AL, | where, A =v, +avg(d, (a,b)) at a time instant t.

The norm value ||v|| of a node is .~ed 2, an input parameter for decision making by load
monitoring algorithm of the mobi’e as ents.

4. The Algorithm Design

The algorithm is designe . ba ed on the execution logic of mobile agents. We have employed a
mobile agent to collest s. tus information from nodes. The agent is capable to migrate
autonomously based r n d cision logic. The agent sends response messages from target nodes to
the monitoring node. T e (esigning of the monitoring algorithm and decision algorithm are
given below.

4.1. Mo. itar’ng Algorithm

The monitorig algo ithm executes to compute the status of currently available resources of a
node in a speci._ > umount of time. The pseudocode representation of the monitoring algorithm
is presentc 1 1 . .gure 3. The monitoring algorithm computes the available resources such as,
cpu_load anu vam_load of a node. The existing cpu_load and ram_load are computed in terms of
percentage (%) to accurately determine the freely available resources of a node. These values of
cpu load and ram load are stored in an array for further processing. In the next step, the

algorithm accesses and retrieves the associated stored values in order to c .lculate the joint
probability for cpu load and ram_load of a node. The purpose of calculating , ~int probability is
to determine the random variations of cpu load and ram load in order to eeneraic a combined
load status. The algorithm is designed to run and compute the joint probr vili1 7 for at least three
different time instances to efficiently and effectively calculate the cpu .. d and ram load in
random time intervals within an estimation time window.

PData types: ’
double mem, cpuperc, ram_per.,cpu_per;

array cpu_load[], array ram_load[];

double vy, v, v5,d,,,dy5, dyg, Vg, Vs ’
Initialization:

mem = null, cpuperc = null, ram_per=0, cpu_per=0- |
Proceditre: |
Compute_Node_Status(cpu_load,ram_load{
mem = get_memory_free();

cpuperc = get_cpu_free;
ram_per=compute_free_ram_percentage();
cpu_per=compute_[ree_cpu_percentage();
store{cpu_load][], cpu_per);
store(ram_load|[], ram_per);
wait(Random{));

v, = (cpu_load[0] . ram_load|0]);

vy = (cpu_load[1] .. ram_load[1]);

vy = (cpu_load[2] . ram_load[2]);

dig = | vy — v3ls
dig = | vy — vgl;
dys = | v3 — v3l;

vy = min(vy, 73, V3);
!

v= |min(v.,,) + (—d‘2+d;°+dz"\ :

monitoring_decision(v);}

Figure 3. Pseudo-code representati. of monitoring algorithm

1

The algorithm calculates . : joint probabilities of resource load variations and their relative
triangular distances (€ 2, 0 3 and, d;3). The minimum value of joint probabilities is computed and
is stored in variable v, ‘ine y, the algorithm calculates the final cpu load and ram load of a
node by following w.e norwu. function. The computed final value v (i.e. norm value) is passed as
an input paramete “ to mo itoring decision algorithm.

4.2. Deci ion Algorithms

The functic ~ ¢ . decision algorithm is to process the input data from the monitoring algorithm for
decision mak. g. The input data processing in the decision algorithm is done in three distinct
zones for current system load categorization such as, zone 1, zone 2 and, zone 3. The

distribution of zones is based on joint probability values assigned to each zone. The zone
boundaries are heuristically set as, zone 1= (v>0AVv<0.24), zone 2=(. 0.24 Av<0.48)
and, zone 3= (v>0.48Av<0.72). We have divided the decision algori*hm into three parts
based on the current status of zones for easy understanding and descriptio ..

4.2.1. Decision Algorithm for Zone_1

In our proposed decision algorithm there are two important var.ablss . ~med v_history and
v_current. The v_history stores last updated zone information to c. ‘ture zone dynamics and
v_current stores current zone status. This will result in char ging *he status of v_history to
v_current in the next execution instant. The pseudocode repres *ntatio’. of a decision algorithm
for zone 1 is presented in Figure 4.

Data types:
String v_history, v_current;
double cpu_load, ram_load;
integer msg_history;
Initialization:
cpu_load =0, ram_load = 0, msg_history ="
Procedure:
S/forzone 1:
monitoring_decision(){
if(cpu_load > 0.85 v ram_load > 0.7 ¢
migrate(Agent);
}elseif(v > 0 av < 0.24)
v_current = zone_1;

if (((v_history == zone_1)- 7+ history == null)) » v_current == zone_1) {
send_msg{monitoring_nr fe,< lc "d_any,node_id >);
v_history = v_current;
migrate(Agent);}
if(v_history ==zone £ A ' _cw rent ==zone_1) {
compute(cpu_load ra. loa.);

if(cpu_load > r m_load)
send_msg(moni’ orin,, mode, < load_light_cpu, node_id >);
v_history=v_c . “ent;
migrate(Age .t);7
}elsef
send_msg mouito. ‘ng_node, < load_light_ram, < node_id >);
v_histor ‘=1 _cur ent;
migrate(Ag. ~t) }
if(v_".(story ==zone_3 A v_current ==zone_1) {
send_msg(m nitoring_neode,< load_light_cpu ram,node_id >);
v_hist. ~ = .,_current;
T .(grat-(Agent); }}}

Tior ¢ 4. Pseudocode representation of decision algorithm for zone 1

In zone 1, Srs’ we monitoring_decision function checks the cpu_load and ram_load of a node. If
any of indiviiual load estimation is greater than 0.85, then it will result in migration of agent
without sending any message to the monitoring node. The elseif condition checks the joint

probability value to identify the current zone status of a node and to inform the monitoring node
for a particular load migration. The decision algorithm checks the status histr . - (v_history) and,
if the history is “null” or “zone 1 then the mobile agent will send a message to mo..itoring node
indicating that this node is lightly loaded enabling to send any processir 2 lc ad to it. Next, the
mobile agent updates the history to zone 1 and will migrate to the nc.” node. The second
condition will check if the v_history is in zone 2 or not. According. = the algorithm will
compute the cpu load and ram_load once more. If the cpu_load is gre: tor than ram_load, then
the mobile agent will send a message to the monitoring node for ti. *<f.rring light cpu_load and
vice versa. Next, it will update zone dynamics history and wil' ..igraiwc to the next node. The
third condition is to check whether v_history contains value zoi ¢ 3 or wny other zone. If it is in
zone 3, then it means that this node has previously highly lnraac* ~~.d is changed its status to
lightly loaded. As a result, the mobile agent sends a mess?_c to the monitoring node for
transferring the light processing load to the target node. Neat, it ~.pdates v_history of the node
and migrates to next node.

4.2.2. Decision Algorithm for Zone_2

In continuation of the first part, the second part . ..o uecision algorithm identifies zone 2,
which signifies a moderately loaded zone. The pseudo. ~de representation of zone 2 of decision
algorithm is represented in Figure 5.

AAfar zone 2:

elseif(v > 0.24 ~ v < 0.48){

v_current = zone_2;

if(v_history==zone_l a v_currem. —=._. - 2){
compute{cpu_load , ram_load);

if(cpu_load > ram_load){

send_msg({monitoring_node, - . wv.. 7 _light_cpu, node_id >);
v_history = v_current;

migrate(Agent);}

else{

send_msg({ monitoring_r Jde < load_light ram, < node_id >);
v_history = V_current;

migrate(Agent); }}

if{((v_history—zon _\ v (v_history == null) A (v_current == zone_2){
if(msg_history = 3 {

msg_history = 0;

compute(cpu_log ., rao n_load);

if{cpu_load > ro » J.ad){

send_msg(mor [toru.~ node, < load_ram,node_id >);
v_history = v -ury ant;

migrate(Ag ~t) t

else{

send_msyg monitor.ng_node, < load_cpu, node_id >);
v_histor, = v_cu. rent;

migrate(. qent) }

}else’

send msg{, onitoring_node, < load_light_cpu ram, node_id >);
v_hi. tory =1 _current;

MSG_h. ~t0v / + +;

v _-~te(Agent}; }}

it v istory == zone_3 A v_current == zone_2){

v_h. tory = v_current ;

migru te(Agent); }

}

Figure 5. Pseudocode representation of decision algorithm for zone 2

According to the computed joint probability value, it will assign zone 2 to ¢ V_t.vrent variable.
The algorithm will check the zone history and current zone status to make *...er decision. In the
next step, the agent will compute the cpu load and ram load status ¢ the node. In case the
cpu_load is greater than ram_load, the mobile agent will send a messag ~ fo u.> monitoring node
to send a process with light cpu_load to this particular node. The .'2ori. m will update the
v_history variable and will migrate to the next node. Otherwise, v her the ram_load is greater
than cpu_load, mobile agent sends a message to the monitoring node 1w <end a process with light
ram_load. The algorithm will update the v_history and will mi rate t. the next node. Based on
available condition and zone dynamics, the algorithm wi.' che k the message history
(msg_history). The message history plays a crucial role to .void sending of the same message
infinitely to monitoring node. If the message history is grea = .nan a predefined value (which is
set to three in this case), then the algorithm will compute .~ cp.. 10ad and ram_load of the node
once again. If the cpu_load is high then the agent sends a m. ssage to the monitoring node to
transfer processes with high ram_load, otherwise, the ~een. ~=*.ds a message to transfer processes
with cpu load. Next, the algorithm updates the v histu.>’ variable and initiates migration of
agent. If the message history is less than a predefinc 1 value, then the agent will send a message
to the monitoring node to transfer light cpu le * and ram_load to a particular node. Once the
message is sent, the v_history variable is upda.~ and the message variable is incremented.
Lastly, the agent is migrated to the next nc '« If ‘he v_history variable contains zone 3 and
v_current variable contains zone 2, then the alg. ritum will update the v_history and will migrate
the agent. The reason for not taking any a.*"on vy the monitoring node is to avoid an already
moderately loaded node from being getting a burst of processing load within a short time
interval.

4.2.3. Decision Algorithm fo~ Zoi.~ ©

The third part of the decision «'~c ithr. describes the dynamics of zone 3, which signifies a
highly loaded zone. The pseuc v-code . .presentation of zone 3 of decision algorithm is presented
in Figure 6.

//for zone 3:

elseif(v > 048av 0., 7Y

v_current = zone s;

if(v_history == zon 1 .v_current == zone_3){
wait(Random();

Compute_Node_Statv .(};

monitoring _uecision();

}

if (v_history - _zone_2 a v_current == zone_3){

v_histor," = v_current ;

migrate(A ent); }

if (((v_history == zone_3) v (v_history == null) A (v_current == zone_3))(
send_msg{(monitoring_node, < stop_sending load, node_id >);
v_history = v_current ;

migrale(Agent);

1}

Figure 6. Pseudocode representation of decision algorithm for zone 3

According to the joint probability value, the algorithm will assign zone 3 to a v _current variable.
If in a node, the v_history variable contains zone 1 and v_current variable ¢/ . “ain zone 3, then
the algorithm will wait for a random amount of time to repeat the estimation. The 1. gic of using
the random amount of time is to probabilistically avoid the running procer ses iear to completion
to be included within the estimation of the load. When the waiting time .- over, the algorithm
will recall Compute_Node_Status function and monitoring_decision tu. ~tion to evaluate the
current zone status. If the v_history contains zone 2 and v_currer. ccrtains zone 3, then the
algorithm will update the v_history variable and will enforce agen. ~i ration without sending a
message to the monitoring node. The reason for not sending a me ..uge fo. transferring extra load
is to avoid overloading scenario. Finally, if the v_history varial le cont ins zone 3 or null value
and, the v_current variable contains zone 3, then the agent wili .~~~ a message to monitoring
node to avoid transferring the load to an already highly jver’u.1ed node. After sending the
message to monitoring node v_history variable is updated anau the 2 sent is migrated to next node.

5. Implementation Environment

5.1.1. Deployment Model

We have implemented our software architecture on .~stbed comprised of five nodes having
completely connected topology. We have des 2ne ¢« one node as a monitoring node and,
remaining four nodes are targets executing r~obilc agents. The inherent properties of a mobile
agent are autonomousity, goal orientation ana, w.~lligent decision making [20]. The advantage
of using mobile agents in distributed s; .. .~ to reduce the communication overhead by
collecting the updated status of the available . ~de resources. Our proposed deployment model

s11

for mobile agent monitoring system is *'! “<trated in Figure 7.

14

-y

Figure 7. Deployment model of mobile agent monitoring systems

The mobile agent will first check the availability of a node where it will migrate next; if the node
is alive then the agent will migrate. Otherwise, it will check for next available node. The node

information is stored a priori into the node information database. The database ‘5 updated when a
node is added or removed from the system. The feature of our proposed agent . *onitoring system
is to enable the mobile agent to efficiently collect the status information of a node a.. i to send the
information to the monitoring node. Another feature of proposed moni‘orin 1 is the improved
overall response time. In the traditional load monitoring approaches, the ¢.~ ent load values are
calculated for all the available nodes and later the aggregated informatio.. is sent as a response
message to the monitoring node. On the contrary, our proposed r.oa! calculates the current
status of nodes and immediately sends the information to the moni. *i*.g node. This mechanism
will reduce the response time improving the overall system perfo...ance.

5.1.2. Implementation Architecture

Our proposed architecture is implemented in heterogeneou op.a.ng systems environment and
Java programming language is used to deploy a mobile acem tran swork (i.e. Java Development
Framework (JADE)). JADE is selected because it is a Java-_2sed platform providing a simple
and, efficient environment. Agents are implemented as ~ontai’ ers in JADE and, are distributed
among all the nodes in the network. The first contain. * launched by the platform is known as
“Main Container” and all other containers launc’ the “Main Container” is named as
“Container-1”, “Container-2”, “Container-3” and so ~n. The main container represents the
bootstrap point. The containers are connectec by wu.c Internal Message Transport Protocol
(IMTP). The main container components are. ~0nte ner table (CT), global agent descriptor table
(GADT), local agent descriptor table (LADT), a,~m management system (AMS) and, directory
facilitator (DF), as illustrated in Figur C. T.< container-1 components are global agent
descriptor table (GADT) and, local agent desc. ‘ntor table (LADT), as illustrated in Figure 8.

I
1 1
1 1
: Agents :
1 1
! € oT
: : r Y- agiste Agents GapT '
|| e T, e war ||
agents, !
! services | create/ kil ;"I" g IMTP currentstat !
') & location '
: AMS CT store All maintain i
, container > '
, o addresses !
1 maintair LADT
: .‘ | GADT :
1 .] !
H LADT GAD, cT Static Container-1 !
1 1
1 1

. ' iy st PLATFORM _ __ ..

Fig re 8. S. hematic diagram of static main-container and static container-1

Moreover, th* CT n anages a registry of the object references and transport addresses of all
available conta.. ~~_ of the platform. GADT manages a registry of all available agents in the
platform L ~lar .z ‘heir current status and location. The LADT contains its local agent's address
and also mai. tains global agent descriptor table. Agent management system monitors the entire
platform and, 1t provides access to the white pages of the platform as well as manages the life
cycle of the agent. Every agent must register with AMS in order to obtain valid AID. The

directory facilitator (DF) is the agent that implements the yellow pages ser-ice to any agent
which wants to register its services or search for other available services.

The configuration of our mobile agent framework development and .u.*ime environment
specification is illustrated in Table 1. Our proposed mobile agent n ~niforing algorithm is
developed using Java eclipse IDE on top of JADE agent platform f.: mo.. oring distributed
system. In addition, to test our proposed monitoring algorithm, we ha- . useu “wo additional load
generation (benchmark) software modules which are, (a) CPU Stre.s a'.d,) Heavy Load. The
purpose of using this software is to generate various categories of lo. 1 on our target nodes to
monitor the variations in algorithmic behavior under differe .t loaC conditions. In terms of
network connectivity, one of the nodes is wirelessly connecte.' and "ae rest of the nodes are
wired connected with the monitoring node. The wired conr .cuons operate at 100Mbps through
switch and wireless network operates on 100Mbps at peak.

Table 1. Platform specifications of runtime environmer.. and system configuration

Nodes Specification "o yme Environment

fal

Oper~+=-“, _m Software

o

Node 1 Intel Celeron G1840 CPU Windows 10
2.80 GHz, RAM: 4 GB,
HDD: 128 GB, NIC:
Wireless Adaptor

Node 2 Intel Core i7-6700 CPU Linux . =rnel 2.6 Fedora
3.40 GHz, RAM: 8 GB,
HDD: 2 TB, NIC: Realtek
PCle Controller

Node 3 Intel Core i5 3.1GHz, RA'/1: | W 1dows 10
3 GB, HDD: 500 GB, NIC:
Realtek PCle Controll o

Node 4 Intel Core 2 Duo E§ 10 Windows 7
CPU 3.00 GHz,R .M: 3
GB, HDD: 320 (€ , NIC:

Eclipse 4.6, JADE 4.5.0, JDK
1.8, CPU Stress and Heavy

Realtek PCle Controllex Load.
Monitoring Intel Core 17 670 CPU Windows 10
Node 3.40 GHz, ..*"V.8 GB,

HDD: 2T 3, NIC. <altek
PCle G'.E F mily Controller

Network Ethernet. * YOM ,ps LAN
Wir iess: 10uMbps WAP,
Sig 1al s -ength: 45%
(ave. ~e)

The zonal ‘ec siun-making algorithms are implemented as separate functions within the agent
body (code). ."he total lines of code (LOC) for each agent are equal to 182.

6. Experimental Evaluations

The monitoring algorithm computes the status of currently available rde .~sources in a
specified amount of time. In order to evaluate the behavior and performans _ . £ our implemented
system, we have conducted several sets of experiments under different lc *d ¢)nditions. We have
employed four standard benchmarks namely, (1) Heavy load, (2) CPU .‘ress () FFT-z and, (4)
DGEMM. These benchmarks exert non-uniform load stress at node. ~s 1. strated in sampled
profiles presented in Figure 9, Figure 10, Figure 31, Figure 33, Fsure 35 und, Figure 37. The
stress profile samples indicate that, CPU and RAM variations are unc. “related and non-uniform
in nature. We have evaluated the performance by using a set of paameters, which are zone
dynamics, rule firing density, load dynamics, migration t.>quen'y under different load
conditions, resource utilization and, decision logic executio'.. [he rule firing density represents
the total number of rules fired out of the entire set of rule. i» the time intervals. The rules are
fired by the decision logic module of the mobile agent dui.~c s;..em monitoring. The migration
frequency represents the frequency of migration of agents betw: en different nodes.

Non-uniform distribution profile of Heavy load Non-uniform distribution profile of CPU stress
benchmark benchmark

4 ‘%‘e_ oA a! Avé‘){ (.

System load

Syster (oad

& 3 4 5 6 7 8 9 101112 15 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 101112 15 14 15 16 17 18 19 20

BESTITeN [T
o ime {min)

———CPU ——RAM b (PU e RAM
Figure 9. Non-uniform distribution profile (Hee y load Figure 10. Non-uniform distribution profile of CPU stress
benchmark benchmark

6.1. Set 1: Experimenting ‘vith CPU utilization in terms of Heavy Load and CPU
Stress Benchmar! s

In this case, the cpu_lcad 15 mployed for estimating the behavior of zone dynamics, rule firing
dynamics, the combi ied dynamics of CPU/RAM utilization, joint probability and, migration
frequency of agents. 1. = vuriation in zone dynamics with respect to increasing cpu load is
illustrated in Figice 11. The variations in rule firing density are illustrated in Figure 12. The
variations in the ¢ ymbine 1 dynamics of CPU/RAM and joint probability are illustrated in Figure
13. The variat’ ,,:s in nugration frequency are illustrated in Figure 14.

Snap sho. ~ne & amics of algorithm Snap shot of rule firing density of algorithm

3 B
g e
Ez g:.
H l 2
1

mIn min min min min min min min mlri min min minmin min min cn‘: e b i et e e mde mbe e e i e ek o

113 485678 u e s L2 ¥ 4 5 5 ¥ 3 9 W1l o1 13 i[O3

llme(mln) lime [min)
Figure 11. Zone dynamics of mobile agent monitoring system Figure 12. Rule firing density of mobile agent monitoring

(ex-set-1) system (ex-set-1)

Variation of Individual and jolnt probabilities of Migration frequency distrbutlon Jf agen.. nder

cpufram load processing loar
1
5
i E,
i) :
H : 2 N £
E E! 1 £ \
210 =
& minmin rein rin min ris mis min min s s min e e s o -
3 pEoso% s et min min min min min omiro.. r 0 omin min omin min mineomine min
Time {mir) © 3 5 T 8§ 1L 13 ° 17 19 71 I3 25 I7 129
fnrpy s = Tmein. |
Figure 13. Combined dynamics of CPU and RAM load of Figure 14. Migration . =quency .istribution of agent under
mobile agent monitoring system (ex-set-1) JPU_lue. eX-set-1)
6.2. Set 2: Experimenting with CPU utilizati. n in te~.ns of Heavy Load and video

on demand (VOD) Benchmarks

In this case, the cpu_load and video on demand (VOL | benc.anarks are employed for estimating
the behavior of zone dynamics, rule firing density, ~om~hk=- | dynamics of CPU/RAM utilization,
joint probability and migration frequency. The vai.~tion in zone dynamics with respect to
increasing cpu load and VOD is illustrated .+ .. ~+= 15. Initially, cpu load is in zone 1,
however gradual increase in the load results in a ‘ ansition of the node to zone 3 and it stays
there without migration. However, due to bac'-.~urd processes, an abrupt increase in the load
happens exceeding the specified threshold ~2lue. This results in agent migration. The variations
in rule firing density are illustrated in Figuic 16. The variations in the combined dynamics of
CPU/RAM utilization and, joint prohability are illustrated in Figure 17. Under increased
cpu_load and VOD, the status of CPU n1tilization becomes maximum. The variations in
migration frequency are illustrated in " ~ure 18. It is shown in the figure that increasing the CPU
load and VOD causes frequent m°graf on or agent between different zones.

Snap shot of zone dynar .. ~f algorithm Snap shot of Rule firing density of algorithm
* L]
2 provessy T
i 3¢
a =5
&2 E .
& .
1 !)
" T
“:.. T.:' ":l "5.' .'f_—‘- I;II - ; "1:' "']_T “1‘; .;‘n": rinlresd wind mhd winbwing s e eny l-* wim ﬂ‘! min rin mie
Figure 15. Zone dynamics ©~-"ile agent monitoring system Figure 16. Rule firing density of mobile agent monitoring system

(~x-set-2) (ex-set-2)

o e rrecen oaing ey narmkes

Variatlons of iIndividual amd [oint probabilities of cpugram Migration frequency distr’ sutk 1of agent{under

lovad process’ <log
1-. F e F 3 e s
i ol 4
[E]
SpuT ‘ Ee
(1] !!.
s I
nz E,
[} =1
mianmisl min min s e wn mMnmn e e mn M e Ee 1
1 3 £ 5§ 6 7 & %5 W B2 W U I .m .
L= I L) - - T
Time mir} 5355555 §39z,35 Fsgggaqzaenrng
E 2 B BB B BF B BF BF B B BE BE B B BN BF B B v |
gy el—ram] Thrre {ming

Figure 1f Migr .. frequency distribution of agent under

Figure 17. Combined dynamics of CPU and RAM load of
< u_loac and VOD load (ex-set-2)

mobile agent monitoring system (ex-set-2)

6.3. Set 3: Experimenting with CPU utilization ii. terms ¢ f Heavy Load, CPU Stress and
video on demand (VOD) Benchmarks

In this case, the cpu_load is employed by apply..-o heavy load generation software, VOD and
CPU stress software for estimating the bekavior o. zone dynamics, rule firing dynamics,
combined dynamics of CPU/RAM, joint prou "b'.ity and, migration frequency. The variation
in zone dynamics with respect to inct .~ing ~pu_load is illustrated in Figure 19. The
variations in rule firing density are illustrai~d ... Figure 20. The variations in the combined
dynamics of CPU/RAM utilization an.' 1ou.. probability are illustrated in Figure 21. The
variations in migration frequency are illustra.ed in Figure 22.

Snap shot of zone dynamics of - .gori? um Snap shot of Rule firing density of zlgorithm

8
15 7 ;
3 ge
i ey
. £
it 3
A g’
s 1
] c 3
- minminz min mn ms min min mn omic omln min mih omie miomin
"‘"“""'""‘5"'"""'""“"":',:',:',:": 1 3 4 5 6 7 8§ % 10 M 1 1B U I
T sfwin] Time {m'n)
Figure 19. Zone dynamir< of m. " “le agent monitoring system (ex- Figure 20. Rule firing density of mobile agent monitoring system (ex-
~at-3) set-3)
Variz’ ... of inainvigual and joint probabilities of Migration frequency distribution of agent{under
cpufram load processing load)
1 7
B eewes opg gelcieie e e
E 28 E‘ [
Bos ¢ g5
§ a4 -g 4
5oz g3
2 [P]
5 o &
E min min M min min min min @ic min min min mino mn mine min =1
-g 1 2 E] 4 h h 7 H L] m 1 17 13 ‘4 1k a) K
3 Time {min) EEIZICEEEEadaRdcBnaaRAATANRRERS
= EEEEEEEEEEEEcEEEEEEEEEEEEsEcEEs
gy sfe=ram v Tirme [min)
Figure 21. Combined dynamics of CPU and RAM load of mobile Figure 22. Migration frequency distribution of agent under cpu_load

agent monitoring system (ex-set-3) and VOD load (ex-set-3)

6.4. Set 4: Experimenting with CPU and RAM utilization in terms of Hea. ’ Load and
CPU Stress Benchmarks

In this case, the cpu load and ram load are employed by applying he vy load generation
software, VOD and CPU stress software for estimating the behavior 0. 7one dynamics, rule
firing dynamics, combined dynamics of CPU/RAM utilization, joir. pr *~ability and, migration
frequency of our proposed algorithmic approach. The variation in zc *» dynamics with respect to
increasing cpu_load is illustrated in Figure 23. The variations in - u:¢ firin, density are illustrated
in Figure 24. The variations in the combined dynamics of CPU RAM tilization and, computed
joint probability are illustrated in Figure 25. The variations in mig. *_a frequency are illustrated
in Figure 26.

Snap shot of zone dynamics of algorithm Sn., ~hot of Rule firing density of algorithm
3 T
w &
g
i
: 2 Yl
min minZz mir min min min min mir min min min min min min min wr mrz mr omn oEn wn own owe wr s en r|I| Fr oFe oEn
1 3 & 3 6 7 8 9 1k 1l 1Z 13 14 15 t 3 4 5 & T 8 9 19 1L 2 13 14 15
lime [min) Tiree i
Figure 23. Zone dynamics of mobile agent monitoring syst - Figure 24. Rule firing density of mobile agent monitoring
(ex-set-4) system (ex-set-4)
Vartation of Individual and Joint probabifitles of ¢»- '~ Migration frequency distribution of agent{under
load processing load)
N 8
3 T
b .
5
Fod v W W N—— “.ww“ ‘!‘
= 02 3
H i
an F1
E min raisZ min win min mh mn mh e sh e win A4 min win 2
= 1 143 8 7 8 D@L BN FuZzooRoeCSaNATUCREARNRRIGERANE
i e g4 e EE e e e e I E SRR iR Eid
Time rin]

g e ¥

Figure 26. Migration frequency distribution of agent under

Fi 25. Combined d: i« 9" CPU and RAM load of
1gure ormbined Cynai g ™t oado cpu_load and VOD load (ex-set-4)

mobile agent mo’ .toring sy. ~m (ex-set-4)

6.5. Set 5: Ex".cvimenung with RAM utilization in terms of Heavy Load and video on
demand (VO J) Beni hmarks

In this case, tF ¢ cpu load and ram_load is employed by applying heavy load generation software
and VOD fc - estimr ating the behavior of zone dynamics, rule firing dynamics, combined
dynamics of CkF . 'wWAM utilization, joint probability and, migration frequency. The variation in
zone dynai. icc with respect to increasing cpu_load is illustrated in Figure 27. The variations in
rule firing de >sity are illustrated in Figure 28. The variations in the combined dynamics of

CPU/RAM tilization and, joint probability are illustrated in Figure 29. The variations in
migration frequency are illustrated in Figure 30.

Snap shot of zone dynamics of algorithm Snap shot of Rule fir' 1g de sity of algorithm
E 7
8 EG
E7 §°
5 EN
g1 22
N 21 -
12 3 4 5 6 7 & 9 10 11 12 13 14 15 an "";" ";" 'f.:" "'5'" '"é" " ":" "'5'\" ";{;' ";'11 'I'; T'; "ﬂ" '"1'5"
Time {min}) Time (min)
Figure 27. Zone dynamics of mobile agent monitoring system Figure 2¢ Ru! uariny density of mobile agent monitoring system
(ex-set-5) (ex-set-5)
Varlatlan of Individual and Jolnt probabilities of Mig itlon frequency distribution of agent{under
. cpu/ram load processing load)
E .
g =
E L
£ 75
2 N
H 3
E 51
E min min min min minmin min min - min- min min Ain min min min ::
T . 1 3 4 5 6 7 8 9 10 1t 12 13 14 1
; et T L
EEEEEEEEES £&!
[E S S S EEE SRR R R NN R R R R B
)y g -y Time {min}
Figure 29. Combined dynamics of CPU and RAM load of mobile Figure 30. Migration frequency distribution of agent under
agent monitoring system (ex-set-5) cpu_load and VOD load (ex-set-5)
6.6. FFT-z and DGEM" { Stress (‘est

In this section, the experinen.:! s.tup and performance of the monitoring algorithm are
described by using resour.. 1tilization and decision logic execution. We have conducted four
set of experiments (ex-1 to ex-.) under different load distribution in order to evaluate the
decision logic execut’on ¢ enerated by monitoring agents. Moreover, we have evaluated the
decision logic executio. 1y monitoring agent using a set of numerically tagged decision logic
parameters such as, 1: any load, 2: compute_cpu_ram_load, 3: light_cpu_load, 4:
light_ram_load, . 'ijht _pu_ram_load, 6: migrate_agent, 7: ram_load, 8: cpu_load and, 9:
stop_sending_'ad. In uie first experiment, the CPU and RAM utilization is evaluated using
FFT-z CPU ¢ ress b¢ nchmark having CPU cores saturation as core-C0, core-C2, core-C4
and, core-C4 1.~ ,ariations in resource utilization and decision logic execution for this
experime: t are .'lustrated in Figure 31 and Figure 32 respectively. It is evident that the
behavior 0. deci‘ 1on logic execution is periodic in nature. The reason for periodic execution
behav: .. == Aue to the current load having average ranged values (CPU 50% and RAM 60%).
In the sc>und experiment, the saturation of CPU cores is set to core-CO, core-Cl, core-C3,
core-C4 and, core-C6 as illustrated in Figure 33. The behavior of decision logic execution is
aperiodic in nature. The reason for aperiodicity is due to the algorithmic logic of monitoring

mnin 30

algorithm to execute various decision outputs as illustrated in Figure 34. In the third
experiment, the saturation of CPU cores is set as core-C0, core-C1, core 2. core-C3, core-
C4, core-C5, core-C6 and, core-C7 as illustrated in Figure 35. In this case, the « "erage value
of resource utilization of CPU is 100% and utilization of the RAM i, 60 %. The reason for
full utilization of CPU is due to saturating maximum available numc- - of activated CPU
cores. The decision logic execution of monitoring agent is periodic ‘n nature due to full
utilization of CPU exceeding the specified threshold value. Th re1=. as illustrated in the
Figure 36 the decision logic 9 (stop_sending load) is validated. ' *.1e fourth experiment, the
stress test is carried out by the DGEMM CPU stress benchr ...k as .'lustrated in Figure 37.
The DGEMM is a stress test model based on multithreaded >rogran ming. The sets of matrix
dimensions for DGEMM are consisting of 150x150, 500x5062 1700x1000 and 1500x1500.
The average resource utilization of CPU is 40% while the ...’ M utilization is 70% on the
average. The decision logic execution sequence of agen. mon’.oring algorithm is illustrated
in Figure 38. In this case, the mobile agent executes dec ~ion logic 5 (light_cpu_ram_load)
and 8 (cpu_load) in most cases. The reason for fic ment ¢ xecution of decision logic 5 and
decision logic 8 is due to the current lightly ic~dea status of a node. Therefore, the

1 4 ™

monitoring node can send CPU load as well as 2.0 7.'../ load to a particular node.

Resource utilization based on FET-z CPU stress Snap shot of decision logic execution of algorithm
benchmark (Saturation epu cores = CO, C2, C4, 9
CB) 8
5 7
1 H
208 3 G
] g,
5D g N 2
= 06 A et o £
I 5 ey peesiend PR R 5
g o4 :
S 02 F]
201
a 1
o
1 2 K a E) 1) f) 9 1w 11 13 7 14 1 ? 1 4 b f i - I S b B I M T)
Time(min) Time(min)
e (AN ol P | LT

Figure 31. Resource utilization of me ‘le agent monitoring system Figure 32. Decision logic execution of mobile agent

(ex-! monitoring system (ex-1)
Resource utilizz ion bas. ' on FFT-z CPU stress Snap shot of decision logic execution of algorithm
benchmark (Sat .ratic . cpu cores = €0, C1, (3, C4, 5
ce’ s
1 c/
=}
w00 2
Sos gL
i EE
5 0o Y 2
Z 05 gt
o 04
’g e <2
02 ?
& 01
2 1
1 2 R 4 [7 & 9 10 11 12 13 14 15 1 2 3 4 3 L] ! B 9 W 11 1@ 13 14 1
Time{min) Time{min}
e RAM b (L) g Jerision
Figure 33. Resource utilization of mobile agent monitoring system Figure 34. Decision logic execution of mobile agent

(ex-2) monitoring system (ex-2)

Resource utilization based on FFT-z CPU stress Snap shot of decision logic execi 'an of algorithm
benchmark(saturation cpu cores = CU, C1, C2, C3, B
C4, C5, Ce, C7) 8

zent Decision

A

4 5 & 7 & 9 10 1 7 13 14 15
ime(m me(min)
RAM cPU — Dccision
Figure 35. Resource utilization of mobile agent monitoring system Figure 36. Der ,iun logic cxecution of mobile agent monitoring
(ex-3) “ystem (ex-3)
Resource utilization based on DGEMM CPU stress Snap sho. ~f decision logic execution of algorithm

beecnchmark a

cision
I.=l'/
%

Ager .

1 2 a 1 5 o 7 a 9 10 11 12 13 14 1% 1 2 3 4 5 G 7 8 9 10 11 12 13 14 15

Time(min) Time(min)
RAM CPU Lo gl M E R T
Figure 37. Resource utilization of mobile agent monitoring system Figure 38. Decision logic execution of mobile agent monitoring
(ex-4) system (ex-4)
6.7. Decision Execution . ~file r f Agents

In our monitoring algorithm. Jdec’,ion execution block of our mobile agent is designed to fire
decision sequences accord’ag . th. computing status of currently available resources at a
node at an instant of time. "o evaluate the decision sequences generated by agents, we have
conducted five experiments (vx-1 to ex-5) under different load conditions. We have
evaluated the decisior sec aences by using a set of numerically tagged decision logic given
by, 1: any_load, 2: .~ mpute_cpu_ram_load, 3: light_cpu_load, 4: light_ram_load, 5:
light_cpu_ram_lo7d, €. miyrate_agent, 7: ram_load, 8: cpu_load and, 9: stop_sending_load.
The decision exec. “i)n p ofile represents the sequence of fired decision logic by the mobile
agent in the sp cidc tin.e interval. In the first experiment, the dynamism of CPU utilization is
evaluated in =rms o’ Heavy load and CPU stress benchmarks. The variation in decision
execution se~ue.. "~ for experiment one is illustrated in Figure 39 (the x-axis represents time
and y-axi repre:. >nt numerically tagged decision logic). The behavior of decision execution
sequence 1. neri ,dic, because the current load status of the node is less than the threshold
value. ... "~ <econd experiment, the dynamism of CPU utilization is evaluated in terms of
Heavy It ~d and video on demand (VOD) benchmarks. The variation in decision execution
sequences .or the second experiment is illustrated in Figure 40. The behavior of decision
logic sequence is aperiodic because of the gradual increase in the CPU load. In the third

experiment, the dynamism of CPU utilization is evaluated in terms of Fleavy load, CPU
stress and, VOD combined benchmarks. The variation in decision exec' ..~n sequences for
the third experiment is illustrated in Figure 41. In this case, the mobile agent .1itially fires
decision logic 5 (light_cpu_ram_load) based on current load ste us. However, further
increased in load results in firing decision logic 9 (stop_sending_loau, oecause the load is
now increased from the specified threshold value in the curren. noae. In the fourth
experiment, the dynamism of CPU and RAM utilizations are e salt »*ted 1n terms of Heavy
load and CPU stress benchmarks. The variation in decision .ve.ution sequences for the
fourth experiment with respect to increasing CPU and RAM Icoad is ['lustrated in Figure 42.
In the fifth experiment, the dynamism of RAM utilization is >valuat d in terms of Heavy load
and VOD benchmarks. The variation in decision executior sey. »* ¢s for the fifth experiment
with respect to increasing RAM load is illustrated in Fig are 7. ™n this case, the mobile agent
initially executes decision logic 1 (any_load), which meaus the the current load status of the
node is marked as very lightly loaded and the monitor.. * node can send any load to this
particular node. After more than halftime of the ¢.~ducti ig experiment, the mobile agent
executes decision logic 2 (compute_cpu_ram_loau, ana s (cpu_load). However, the overall
decision logic sequence remains stable at sequ-—-_. ! {.ay_load) for a relatively long period
of time, because of the lightly loaded status of the 1. ~nective node.

Snap shot of decision logic sequencas of algorithm Snap shot of decision logic sequences of

8 algorithm

7
£ 11 s '
g 6 o g
T 5 3
g g’
w4 : 5]
£ 2 -gn s
s° 2 4
22 4. S 3
a1 g i

o o

1 2 3 4 5 [7 .3 9 10 . 12 13 >]-‘I 15 1 2 3 "l ‘.> i‘; 7 a 9]Ll.]‘E 12].!‘ 14 .

Time (min) Time (min)

Figure 39. Decision logic sequence of © hile agent monitoring

-1
system (ex-! system (ex-2)

Snep shot of decision logi. =r iences of algorithm Snap shot of decision lcgic sequences of
i algorithm
@ A
9
m 2
8
37 " 37
& 6 3— -
= o6
== 20
s 21
= 3 3
- o
g 1 é = 2
[a] 1]
a1
0
min rin min min min mi min mn min min- men min min min N min l]‘iﬂ ”,i” min min ”|i|- min |-|i” ||-j” f‘-lill fl‘ill ,hi” ”-in ”|i|-, ”|i||
1 2 3 a4 5 /7 8 9 10 1m 12 13 14 15 1 2 3 4 56 7 8 9 10 11 12 13 14 15
Time (min) Time (min)
Figure 41. . cision logic sequence of mobile agent monitoring Figure 42. Decision logic sequence of mobile agent monitoring

system (ex-3) system (ex-4)

15

Figure 40. Decision logic sequence of mobile agent monitoring

Snap shot of decision logic sequences of
algorithm

LERT

Decision logic sequence

min min min Min Min Min Mnmin MmN M min M0 mine mine min
1 2 3 4 5 =] 78 9 10 11 12 13 14 15

Time (min)

Figure 43. Decision logic sequence of mobile agent monitoring
system (ex-5)

6.8. Scalability estimation

Scalability is the ability of a system, a network or an applicau.. 1 to maintain overall performance
at an acceptable level even if the load is increase. In t'.is section, we have conducted
experiments to evaluate the scalability of the prop.-ed design architecture by computing
response time of mobile agents. Our experimen’ . .cowoed is consisting of a group of nine
computing nodes at maximum, which are connecteu “y heterogeneous networks (wired and
wireless networks). We have considered hetero, en¢ .. hardware platforms to prepare testbed,
which are comprised of: (a) nodes having ral-c. e Celeron 2.8GHz CPU and limited RAM
(4GB) and, (b) nodes having core 17 3.4Gh." \«nboard 8§ CPUs) and 8GB RAM. We have
measured response time as an average of t -2 == 2ated experiments on the testbed for each node
counts. We have conducted scalability anai,~is in two phases such as, (1) experimentally
measuring on the testbed and, (2) ther _*cally projecting through regression analysis for a very
large set of nodes based on our expe' .mentai data.

Measured response dme of ag.nts on testbed

Number of Nodes

wires. wired and wirelews (avg) winteless

Figure 4 . Measuring response time of agents on testbed

In Figure 44. exper. nentally measured response time is presented for wired network, wireless
network and L. _brid etwork (wired and wireless). It is illustrated in Figure 44 that, the average
response t ... ~fnodes connected by a wired network is less than wireless connected nodes. This
is because 1. v available bandwidth of the wired network is greater than the wireless network.
Moreover, the wvired medium is less prone to data losses and crosstalk as compared to wireless

medium. In order to analyze the behavior of our proposed model for a very larg . set of nodes, we
have performed a regression analysis for projection based on Equation 5.

Y, =Dbo-+bi(xi) %)

The values of coefficients P and P! are computed by using the experi.. nta, 'ata of Figure 44.

The values of B0 and D' are given in Table 2.

Table 2. Computed coefficient values

Wired Nodes ’
bo 441685]
bi 247.75 o

Wireless Nodes |
bo 440,]
b S oy

Projection of resporse time ~f agents through
regressi. ™ anaiysis

700000
600000
— 500000
£ 200000
2 300000
= 200000
100000

0

100 500 1000 1500

Nurnber ol Nodes

wired wireless
Figure 15. P1c, ~tion of response time of agent through regression analysis

The projection of res, ~r se t'.ne of mobile agents for a very large set of nodes is illustrated in
Figure 45. The reg- ._sion .. ialysis shows that, for a very large set of nodes, the response time of
agents tends to d verge ¢ »sidering wired and wireless networks. The wired network connected
nodes are having “etter response time due to high bandwidth and less interference in data
communicatic a.

7. Comparative .nalysis

We have ev." iated our mobile agent-based load monitoring model with various agent-based load
monitoring fraiaeworks for performance analysis. Some of these include, Agent-Based Adaptive
Monitoring System [21], Java Based Agent Management System [23], Localhost Information

Service Agent (LISA) [14], Web Server Load Monitoring System using a Mok ile Agent [12], A
Method of Network Monitoring by Mobile Agents [1], A Mobile Agent-Baser ~vstem for Server
Resource Monitoring [2] and, Monitoring Agents in A Large Integrated Services Architecture
(MonALISA) [22]. Each mobile agent model is examined and evaluated " vith respect to various
design parameters and attributes like autonomisity, reliability, mobu... network latency,
heterogeneity and, flexibility. A detailed discussion is explained in the fol.. “ving sections.

7.1. Quialitative Analysis

In our qualitative analysis, we have selected six parameters f.. quali.ative analysis namely,
autonomousity, reliability, mobility, network latency, flexibility and, he terogeneity as illustrated
in Table 3. In the qualitative analysis, the parameters are c2*ego.*~ u in between [0, 1] scale,
where 0 indicates the low value and 1 indicates high value M~ ¢ ver, within 0 and 1 scale we
have categorized the interval into three zones (first zone is rrom J to 0.3 which indicates low
zone (L), the second zone is from 0.3 to 0.6 indicating mea. "m zone (M) and, the last zone is
from 0.6 to 1 indicating high zone (H)).

7.1.1. Autonomousity

In case of autonomousity, the agent-based adaptive .. ~nitoring system (ABAMS) is in high
zone, because the system administrator does nc* ne cu 0 update the system information when
new nodes are appended (the information upr'~ting < carried out by the mobile agent) [21]. The
autonomousity of mobile agent based nitw.<k monitoring and management system
(MABNMMSY) is in high zone, because t.. - oo~ will migrate to various nodes in the network,
gather status information and carry out devic. control tasks [1]. This model is designed for
decentralized networks without auton- ... usity. The autonomousity of Monitoring Agents in A
Large Integrated Services Architect ire (M« nALISA) is in a high zone, because this model is
designed as an autonomous, 1w alti-u.=~.ded agent-based monitoring system. MonALISA
registers dynamic services whic’, ar, ab'e to collaborate and cooperate for performing a wide
range of monitoring tasks ir dis.“br.ed systems [22]. Without autonomous behavior, the
collaborating and cooperatin, ith other agents will be difficult to achieve. The autonomousity
of Mobile Agent-Based Server kesource Monitoring System (MABSRMS) is in high zone,
because this is designed to ollect available system resources in the large scale-distributed
systems [12]. This mode1 - .es three different mobile agents to collect system resources. The
autonomousity of Dis.ribr ted Management System based on Java agents (DMSBA) is in the
medium zone, becaus. ‘.e r.anagement is handled by the administrator, but when the system
loses contact with _catral auministrator or having problems on time scales, the mobile agent will
take over and ai tonom¢ usly manages the system and performs automated tasks [23]. The
autonomousity ~¥ M. "¢ Agent-Based Load Monitoring (MABLM) is in the high zone because
the agent is d :signec in such a way that it autonomously and automatically gathers system status
information ai.? ser (s the results to monitoring server [20]. The autonomousity of Localhost
Informatic . Z —rice Agent (LISA) is in high zone, because this monitoring system is designed to
dynamically -onfigure system parameters and autonomously migrates agent to various nodes in
the network to increase the system performance [14]. The autonomousity of our mobile agent-
based monitoring system is in a high zone, because the mobile agent collects system status

information automatically. In our model, the agent must be autonomous, beca'.se the agent will
make a decision about migrating to the next node. If the node is not available .”=n the agent will
select the next available node in the network.

7.1.2. Reliability

Reliability is used to measure the system stability. The reliability o1 -~cent-based adaptive
monitoring system (ABAMS) is in the low zone, because server F.ok = is used for collecting
information of active nodes by sending heartbeat signals [21]. Tu. r.liability of mobile agent
based network monitoring and management system (MABNMDP) is 1. high zone, because in
this model fault management module is used to monitor fats anc take necessary actions
accordingly to increase overall system reliability [1]. The 1 ~Lility of the MonALISA
monitoring system is in a high zone, because this model use . a @, uc mic pool of threads [22]. The
reliability of Mobile Agent-Based Server Resource Monritoring S stem (MABSRMS) is in the
medium zone, because it uses more than one server for enhai. ‘ng reliability [12]. The reliability
of Distributed Management System based on Java agen.. ‘DMf BA) is in high zone, because this
model uses mobile agents that can be trained to perfor..> a set of tasks such as, monitoring host
network traffic and restarting a specific server the’ l... ueun crashed recently to achieve a high
level of reliability [23]. The reliability of Mobile Agen. Rased Load Monitoring (MABLM) is in
the medium zone, because this model uses mas. ‘r-s ... agents for monitoring [20]. The master
agent keeps track of slave agents in the syste ~. Th - reliability of Localhost Information Service
Agent (LISA) is in high zone, because this t."n..work uses the binary module, which can be
automatically restarted by the mobile ¢ <..* ~ -ating reliable monitoring system [14]. The
reliability of our mobile agent-based monitot.. = system is in a high zone, because our mobile
agent checks the status of each node. ™" -~me node goes offline then the agent will immediately
notify the monitoring node and the r onitorii g node will take necessary action accordingly.

7.1.3. Mobility

In our qualitative analysis, we '.ave “ele _ted seven models which are based on mobile agents. All
these models are in the high .. ~e in terms of mobility, because mobility is an essential factor of
agents.

7.1.4. Network . atr.acy

In the case of netwr ck "atency ABAMS model is in a high zone, because the agent will
communicate with se1.~ brr ger, not with monitoring system directly [21]. The communication
between server bruker ana monitoring node will increase intercommunication, which in turn
increases the net 7ork la ency. Network latency of MABNMMS monitoring system is in the
medium zone, »~cau.. .e mobile agent collects status information of all available nodes in the
network and ends 1. to the manager node [1]. The mobile agent does not send individual node
status informa.’~n. vhich increases the delay in the monitoring process. Network latency of
MonALIS 1 ... ~**oring model is in the low zone, because the reusability of the dynamic pool of
threads redv es the network load as well as network latency increasing overall system
performance [.2]. Network latency of MABSRMS model is in the medium zone, because this
model uses three different agents for collecting system information, which increases the network

latency. Network latency of the DMSBA model is in the medium zone, be:ause this model
replicates data on multiple servers for reliability, which increases the net .tk latency [23].
Network latency of MABLM model is in the medium zone, because the master age. t will create
slave agents and then it migrates slave agents to collect system informatio’. for available nodes in
the network [20]. Network latency of LISA monitoring model is in the lov. one, because LISA
monitoring system can dynamically load or unload its binary modules to “omnicor current status
and sends results directly to a monitoring system [14]. Moreover, ne .wo - latency of our mobile
agent-based monitoring system is in the low zone, because the .~0'.1le agent collects status
information and directly sends to the monitoring node.

7.1.5. Flexibility

In the case of flexibility, ABAMS model is in a high zone, “ecause each monitoring component
can be dynamically activated, deactivated, moved or changed " rithout affecting or restarting the
entire monitoring system [21]. The flexibility of MATNM. € model is in the low zone, because
the module or component cannot be changed once the svs.~m is deployed [1]. The flexibility of
MonALISA monitoring model is in the medium -one, because this framework allows co-
operating services [22]. The flexibility of MAF Z™MS niodel is in the low zone. The reason is
that, this model has no mechanism to adopt ch.» ses in its monitoring component [12]. The
flexibility of the DMSBA model is in a hig "onc, because this model has the capability to
dynamically load new code to existing code fo. enhancing agent capabilities and functionality
[23]. The flexibility of MABLM monitoring mocel is in the low zone, because once the model
has deployed, there no mechanism to upgrade its existing components [20]. The flexibility of the
LISA monitoring model is in a high 7ne, v ~cause LISA framework is flexible enough to include
new modules to the existing system . ‘thout compromising the performance and efficiency [14].
The flexibility of our monitorinc, mrdel .s in the medium zone, because we can upgrade its
monitoring functionality beforc deplov nent, but once it is deployed we cannot change its
component.

7.1.6. Heterogeneitv

The heterogeneity of AL AV S model is in a high zone, because this model uses dynamically
controllable agents in . distr..ted network to utilize heterogeneous resources efficiently. This
model uses an agent vhira c7a be loaded, unloaded on a specific resource or it can be migrated
to another node denenu¢ on the requirement. Heterogeneity of MABNMMS monitoring
framework is in . high -one, because it can be deployed on various nodes having a different
platform in a disu‘butesr system. Heterogeneity of MonALISA is in high zone, because this
model allows coorerating services and adaptation to a dynamic environment. Moreover,
cooperating s>rvices also make this monitoring framework very efficient when monitoring a
large numher o1 .werogeneous nodes having different response times. The heterogeneity of the
DMSBA n.~dr (1s in a high zone, because the interoperability of Java allows this architecture to
be highly ada table and, portable. The heterogeneity of MABLM monitoring model is in high
zone, because this monitoring framework uses Mobile Agent Server (MAS), which provides an

environment for executing mobile agents on various nodes (heterogeneous nor'es) in distributed
systems. Heterogeneity of LISA framework heterogeneity is in high zone. T . heterogeneity is
managed by the ability to detect various architectures and deploying its bin.ry modules
dynamically to monitor its current status. Heterogeneity of our mobile as ent nonitoring system
is in a high zone, because our monitoring model is developed using .. a language, which
provides interoperability and can be easily deployed in heterogeneous plai. rms.

Table 3. Comparative analysis of load monitoring models

Parameters | Autonomousity | Reliability | Mobility | Network | ~'exi* iity | Heterogeneity
later .y

Agent- ‘
Based
Models |
ABAMS H L H | 1. H H
MABNMMS | H H H | M L H
MonALISA | H H H " M H
MABSRMS | H M H M L M
DMSBA M H H M H H
MABLM H M o M L H
LISA H H hH L H H
MABMS H H 'H L M H

Legends: H: High, M: Medium, L: Low, agent-vased adaptive monitoring system (ABAMS), Mobile
agent-based network monitoring anc ma. ~gement system (MABNMMS), Monitoring Agents in A
Large Integrated Services Archi >cture MonALISA), Mobile Agent-Based Server Resource
Monitoring System (MABSRMS’, Disu '~ .ed Management System based on java agents (DMSBA),
Mobile Agent-Based Load Mc.ito'.ng ‘MABLM), Localhost Information Service Agent (LISA),
Mobile Agent-Based Monitorag ._ster . (MABMS).

7.2. Quantitati /e » nalysis

In this section, we wi'l qua titatively analyze different agent-based monitoring models. The
comparative studies r ce r 2rformed based on fault tolerance, scalability, mobile agent migration
latency and, response tu. > a‘ illustrated in Figure 46, 47, 48, 49 and, 50, respectively. The values
of performance 1 :tric a = determined with approximation by analysis. The metric values are set
in a scale betwee. 0 anr 1, where 0 represents the lowest value and, 1 represents the highest
value. We hav_ uivided the interval into three zones such as, the first zone is from 0 to 0.3 (low
zone), the sec nd zo1 e is from 0.3 to 0.6 (medium zone) and, the last zone is from 0.6 to 1 (high
zone).

7.2.1. Scalability

Scalability is defined as the ability of a system or model that describes if, ca' ability to perform
efficiently under an increasing number of nodes. The scalability of ABAn "- framework is in a
high zone, because it can monitor more than one multicast groups, howc ~r, the administrator
can add or remove multicast group without disturbing the sysi>~ performance [21].
MABNMMS monitoring system has scalability in the medium zon. Fecause this framework is
tested on a fixed number of nodes [1]. Scalability of MonALIS \ frame vork is in the medium
zone, because it is designed as an autonomous multi-threa led sei -describing agent-based
system, which is able to collaborate and cooperate in perfermi._ -~ urious monitoring task by
adding more nodes in the existing system without affecting syst..u nerformance [22]. Moreover,
the scalability of MABSRMS monitoring framework i< 1 the medium zone, because it is
deployed in large-scale distributed systems. The mobile « ent calls low-level functions in
dynamic libraries and can monitor system resources efti. ‘ently ~ithout considering the increased
number of nodes [12]. The scalability of the DMSBA 1..~itoring system is in the medium zone.
It is designed for large-scale distributed systems "22]. 7w scalability of MABLM is in high
zone, because it is designed for large-scale distributeu ~vstem and operates efficiently where a
large number of systems are connected through . ne' ~.k having low bandwidth and high delay
time [20]. The scalability of LISA framewor'" is 1. high zone, because the agents automatically
detect the architecture and load binary modu.»s in case of the appended node) necessary to
perform monitoring services making this . -...~. vk scalable [14]. The scalability of our mobile
agent monitoring system is in a high zone, v ~ause the mobile agent detects any addition or
removal of nodes in the system and up~'_“~s its information in the node information database.

7.2.2. Fault Tolerance

In case of fault tolerant, ABAMY, frz nev-ork is in the low zone, because there is no mechanism
specified which can be used t) rec~ve. from the failure [21]. For example, if the monitoring
agents die or stop working d’ .« *o some error, then the entire system fails. The fault tolerance of
MABNMMS monitoring svstem is .a a high zone, because the fault management module uses a
mobile agent to monitor * 1e 1 >twork and identify any faults and take a necessary control action
[1]. The fault tolerance . MonALISA framework is in high zone, because this framework
assigns an independe .t th:ead to each task so that if some task fails due to error other tasks
should not be affectc. whira make this framework fault tolerant [22]. The fault tolerance of
MABSRMS moni‘oiing system is in the low zone, because there is no backup mechanism in
monitoring syster. [12]." he fault tolerance of DMSBA framework is in a high zone, because the
agents detect f~*lirc. - congestion automatically and, change the granularity at which the data is
collected [23". This mechanism provides the administrator with a detailed view of the system.
The fault tol.-ance of MABLM monitoring system is in the medium zone. The agents
communis «. ~“th each other if some fault or error occurs and agents notify the monitoring
system whiiw king control action enhancing fault tolerance [20]. The fault tolerance of LISA
monitoring sys.em is in a high zone, because the core system manages monitoring modules and
dynamically restarts the crashed module [14]. The fault tolerance of our mobile agent-based

monitoring system is in a high zone, because the mobile agent migrates to each aode and collects
status information. If any node dies or an error occurs, then the mobile . ent immediately
informs the monitoring system. The mobile agent constantly updates the node information
database, which enhances overall system fault tolerance.

Mobile Agents Models Fault Tolerant Mabile Agent ‘ndr s Scalability

s U8
E 0.7
0.6
E 05
Soa '
= 03
w2
01 ‘
& ‘,f

LSS PSS

Muoalle Agent v adels Mobl e Agent Wodels

Fault Tolerant Ratio
CoO0O0OCO0C00
cRrRNuprnoakipR

Figure 46. Fault tolerance of mobile agent models Fioure 47 @~ bility distribution of mobile agent models

7.2.3. Mobile Agent Migration Latency

In Figures 48 and 49, the comparison of mob.'c ~oeat migration latency (excluding agent code
execution time at nodes) is illustrated for ‘>~ wn ~d and wireless nodes for varying data sizes of
agents. As illustrated in Figure 48 and 49, . ~ agent behavior in the wired node is relatively
stable without major increase or decre2se in latency, because the wired connection is more
reliable and provides a stable connec.ton to ‘upport bandwidth for a large volume of data. While
in Figure 48 and 49, the behavicr oy “vir fess node is aperiodic and tends to overshoot and
undershoot with respect to netwe « Ic ad and congestion of wireless network increasing the agent
migration latency in the wireless ..~ -wo <. The decreased latency values at instances 1, 3, 5 and
9, which is almost close to * ‘@ wirea node that at particular instances due to less congestion
(packet loss is almost none and si_"al strength is good). The mobile agent migration latency is
not greatly affected by the dav volume it carries in the network.

Moabile Agent Migrau.. ~ ad Dr 210 Latency Maoblle Agent Migration and Data IO Latency
1800 1750 -
1700 oy
.

.g . P . 'A‘\ E ig < \"s. e
— -
a_1.0 ‘,t ~r ‘hr ,‘._...—'—-—“.‘ ‘.‘" = 1550 ."“‘-t_"" -‘v‘_.-.-m....', .
§ 1500 ~ T £ 1500 —
k| \ 7 1450

1400 1400

120 =

t ‘ ! ‘ s ¢ ! o + 0w 1 H 3 4 5 5 7 8 9 10
Experiment Instances Experiment Instances
== yired == Wirclcss, Data size= 1 kb P virad = = Wiraleas, Data slze= 4 kh

Figure 49. Comparison of mobile agent migration and data 10

Figure 48. Comparison of mobile agent migration and data IO
latency with respect to wired and wireless node (data size = 4 kb)

latency with respect to wired and wireless node (data size = 1kb)

7.2.4. Execution-response Time

In Figure 50, the comparison of execution-response time (i.e. averaged v aluc ~f agent code
execution time at nodes excluding network IO and migration time) for u.> 3-node model is
illustrated considering MABNMMS and MABMS. As illustrated in Fi_re 50, the execution-
response time of MABMS is less than MABNMMS, which shows that > 1TAb. 'S performance is
better than MABNMMS. The MABNMMS monitoring agents use a . ~ll sc.’pt [1]. The results
illustrate that, the execution-response time depends upon the comp’exit 0. he script as well as
the number of available nodes in the network. Execution-responsc *ime increases with the
increase in a number of nodes in the network and, vice versa. ‘Vhile MABMS uses Java-based
agents, the Java-based agents are platform independent and lig: ‘weig! ¢ in nature. This reduces
the execution-response time of agents in MABMS based on "ADF niatform.

Comparison of Response Time for 3-No. ~ Tris. _ular
Model

1750

VABNMMS MABMS

RABNRMS: Mohlle agent- . * netwt. maonltoringand management system
MABMSE: Mabile agent-basec . ing wystem

Figure 50. Comparison 0. ~sponsec time for 3-Node triangular model

8. Conclusion

In large-scale distributed systen s, k.eping track of load monitoring mechanism by a system
administrator is a very difficult .. . L.ad monitoring mechanism is used to monitor available
computing nodes in a distrib’ ed system. In this paper, we present the design, implementation,
and evaluation of mobile agents “ased load monitoring system for distributed systems in a
heterogeneous network er vir. nment. Moreover, the monitoring algorithm runs to compute the
status of currently availa.'» 10de resources in time intervals. We used mobile agents to collect
status information fro a nodes and sending a response message to the monitoring node. The
pseudocodes describs *o " 10n’ oring algorithms and decision algorithm are presented. In order to
evaluate the behav’- - ana > .rformance of our implemented system, we have conducted five sets
of experiments u1 der dit =rent load scenarios. We have evaluated the performance using a set of
parameters such as, 7or. dynamics, rule firing density, load dynamics and, migration frequency
under differrat lo.1 conditions. A detailed scalability analysis is performed based on
experimental ~valua ion on testbed and through regression analysis. The proposed approach
reduces th - vaiting time of a node as well as the network load in order to increase the overall
system per.w nance. The waiting time of a node is reduced by autonomously sending the
required infor ation to the monitoring node for decision making at different time instants.

References

[1]

[2]

[10]

[11]

Manvi, S, S and Venkataram, p. A method of network monito’.ng >y mobile agents,
computing, 2000, 2(3), pp. 4-5.

Aridor., Yariv., and Danny B. L., Agent design patterns: elr... uts ¢ agent application
design. In Proceedings of the second international confere ice on .sutonomous agents,
ACM, 1998, pp. 108-115.

Das, Shantanu., Mobile agents in distributed computing: Networ < exploration. Bulletin of
EATCS 1, no. 109, 2013.

Park, H. J., K. J. Jyung., and S. S. Kim., Mobile age ** oase | load monitoring system for
the safety web server environment. In Internatic ~al cConference on Computational
Science, Springer, 2004, pp. 274-280.

Mostafa., Salama A., Mohd S. A., Muthukkaru, ran A., Azhana A., and Saraswathy S.
G., A dynamically adjustable autonomic &_-u. wramework. In Advances in Information
Systems and Technologies, Springer, 2013, pp 6 '-642.

Xu F., Liu F., Liu L., Jin H, and Li . iAware: Making live migration of virtual
machines interference-aware in the clo ', TELE Transactions on Computers, volume: 63,
IEEE, 2014, pp. 3012-3025.

Rajani S., and Garg N. A clustered app.oach for load balancing in distributed systems,
International Journal of Mob’'c C~mputing & Application, volume: 2, SSRG-IIMCA,
2015, ISSN: 2393-9141.

Haverkamp DS., and Gav:h €. Intelligent information agents: review and challenges for
distributed information so. - .es, sournal of the Association for Information Science and
Technology 49, no. 4, 998, page(s) 304-311.

Wang, Xiaoguang, '™i Wang, and Yongbin Wang. A unified monitoring framework for
distributed enviro .me’ t. Intelligent Information Management 2, no. 07, 2010, pp. 398.

Massie, Matth .w L., Srent N. Chun, and David E. Culler. The ganglia distributed
monitoring s; “ter 1: d' sign, implementation, and experience. Parallel Computing 30, no.
7,2004, pp C17-5-".

Vidhate, S wali L , and M. U. Kharat. Resource Aware Monitoring in Distributed System
using Tuuu Search Algorithm. International Journal of Computer Applications 96, no. 23
2014.

Ti .7 A Mobile Agent-Based System for Server Resource Monitoring. Cybernetics and
Info. v ation Technologies, 13(4), 2013, pp. 104-117.

[18]

Worn, H., Langle, T., Albert, M., Kazi, A., Brighenti, A., Seijo, S.R., Senior, C., Bobi,
M.A.S. and Collado, J.V., Diamond: distributed multi-agent architec’.. = for monitoring
and diagnosis. Production planning & control, 2004, 15(2), pp. 189-200.

Dobre, C., Voicu, R., Muraru, A. and Legrand, I.C., A distribute. agr at based system to
control and coordinate large scale data transfers. arXiv preprint o. Xiv:, '06.5171, 2011.

Seenuvasan, P., Kannan, A. and Varalakshmi, P., Agent-Bas' d k =~ource Management In
A Cloud Environment. Appl. Math, 11(3), 2017, pp. 777-78o.

losup, A., Tapus, N. and Vialle, S., 2005, February. A m nitor.. g architecture for control
grids. In European Grid Conference, Springer, 2005, pp. - ?2-93 ..

Mace, J., Roelke, R. and Fonseca, R., Pivot traciig: y 'amic causal monitoring for
distributed systems. In Proceedings of the 25tk Symnr.ium on Operating Systems
Principles, ACM, 2015, pp. 378-393.

Gunter, D., Tierney, B., Jackson, K., Lee, J. ~na "“_afer, M., Dynamic monitoring of
high-performance distributed applications. In Hior. erformance Distributed Computing,
11th IEEE International Symposium, IEEE, 222, pp. 163-170.

Hoke, E., Sun, J., and Faloutsos, C., In = on. Intelligent system monitoring on large
clusters. In Proceedings of the 32nd " -ternc‘ional conference on Very large data bases,
VLDB Endowment, ACM, 2006, pp. 1229-1242.

Kim, S.T., Park, H.J. and Kim, Y.C., The load monitoring of Web server using mobile
agent. In Info-tech and Info-net, 2001. Proceedings. ICII 2001-Beijing. 2001
International Conferences on (EEE, Vol. 5, pp. 89-94.

Kwon, S. and Choi, J., ‘.n ag.*-based adaptive monitoring system. In Pacific Rim
International Workshop n " ult’-Agents, Springer, Berlin, Heidelberg, 2006, pp. 672-
677.

Legrand, 1., Newmau, H., “7oicu, R., Cirstoiu, C., Grigoras, C., Dobre, C., Muraru, A.,
Costan, A., Dediv v and Stratan, C., MonALISA: An agent based, dynamic service
system to moni.>r. control and optimize distributed systems. Computer Physics
Communicatior 3, 180(.?2), 2009, pp.2472-2498.

Brooks, C., 1. me', B. and Johnston, W., JAVA agents for distributed system
manageme at. LBNL Report, 1997.

Adacal, M. ~nd Tener, A.B., Mobile web services: A new agent-based framework. |IEEE
Intern :t Con nuting, 10(3), 2006, pp.58-65.

Tomarc,. ~ J., Vita, L. and Puliafito, A., Active monitoring in grid environments using
mo e agont technology. In Active Middleware Services, Springer, Boston, MA, 2000,
pp. 5. 66.

[29]

Du, T.C., Li, EY. and Chang, A.P., Mobile agents in dis'sibuted network
management. Communications of the ACM, 46(7), 2003, pp.127-132.

Ahn, J., Fault-tolerant Mobile Agent-based Monitoring Mechanisr .. + Highly Dynamic
Distributed Networks. IJCSI International Journal of Computc - Srience Issues, 7(3),
2010, pp.1-7.

Papavassiliou, S., Puliafito, A., Tomarchio, O. and Ye, J., M ob1 ~ agent-based approach
for efficient network management and resource a.~cation: framework and
applications. IEEE Journal on Selected Areas in Commr.ucation., 20(4), 2002, pp.858-
872.

Ku, H., Luderer, G.W. and Subbiah, B., Nover.oer An intelligent mobile agent
framework for distributed network manageme.* In'slobal Telecommunications
Conference, GLOBECOM'97.,1997, IEEE, Vol. 1, p, 165-164.

Tomarchio, O. and Vita, L., On the use of mob..~ cod . technology for monitoring Grid
system. In Cluster Computing and the Grid, Pruo=edings. First IEEE/ACM International
Symposium on, IEEE, 2001, pp. 450-455.

Iranpour E., Sharifian S., A distributed .. halancing and admission control algorithm
based on fuzzy type-2 and game theory fc - iarge-scale SaaS cloud architectures, Future
Generation Computer Systems, Vol. 8 lseyier, 2018, pp. 81-98.

Volkova, V.N., Chemenkaya, L." C:~. atirikova, E.N., Hajali, M., Khodar, A. and
Osama, A., Load balancing in cloud cuputing. In IEEE Conference of Russian Young
Researchers in Electrical and ~..>tronic Engineering (EIConRus), IEEE, 2018, pp. 387-
390.

Dasoriya, R., Kotadiya, P, Arya, (., Nayak, P. and Mistry, K., Dynamic load balancing
in cloud a data-centric approach. In Networks & Advances in Computational
Technologies (NetACT .. IEEE, 2017, pp. 162-166.

Lastovetsky, A., Szr<tak, L., & Wyrzykowski, R., Model-based optimization of EULAG
kernel on Intel X .on 'hi through load imbalancing. IEEE Transactions on Parallel and
Distributed Systems, EEE, 2017, 28(3), 787-797.

Lastovetsky, ‘., x Manumachu, R. R., New model-based methods and algorithms for
performancs ana > .ergy optimization of data parallel applications on homogeneous
multicore :luster. IEEE Transactions on Parallel and Distributed Systems, IEEE, 2017,
28(4), 111y 1132,

Moazam Ali obtained his BCS in Computer Science in year 2007 from the Islamia _olic_=. University of
Peshawar and, MS-IT in Computer Networks in year 2012 from the Institute of .. nagement Sciences,
Peshawar. Currently, he is pursuing his PhD in Distributed Systems in the Deps tme 1t of Aerospace and
Software Engineering (Informatics), Gyeongsang National University, Jinju, Sc "th Ko. ~a.

Susmit Bagchi has received B.Sc. (Honours) from Calcutta University n. 1993, B. E. in Electronics
Engineering in 1997 from Nagpur University, M.E. in Electronics and (elecc mmunication Engineering in
1999 from Bengal Engineering and Science University (presenti* IIEST' He has obtained Ph.D.
(Engineering) in Information Technology in 2008 from Benga! .agineciing and Science University.
Currently, he is Associate Professor in Department of Aerospace anc >ofi vare Engineering (Informatics),
Gyeongsang National University, Jinju, South Korea. His resea. ~h inter- ts are in Distributed Computing
and Systems.

Moazam Ali

Distributed systems load monitoring using agents and probabilistic rarm.
Adaptive and autonomous load monitoring in distributed systems 1 ..~a agents.
Mobile agent and probabilistic norm based autonomous load monitoring .3

distributed systems.

