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Abstract

Remote health monitoring is an effe *ve 1. ethod to enable tracking of at-risk
patients outside of conventional clinic. | scitings, providing early-detection of
diseases and preventive care as wo'' as 7 ninishing healthcare costs. Internet-
of-Things (IoT) technology facilitates developments of such monitoring sys-
tems although significant cb ... -ces need to be addressed in the real-world
trials. Missing data is a pr valent ssue in these systems, as data acquisition
may be interrupted fror timc t, time in long-term monitoring scenarios.
This issue causes incor .istcat end incomplete data and subsequently could
lead to failure in decis’on . ~ak’'ng. Analysis of missing data has been tackled
in several studies. '.~wever, these techniques are inadequate for real-time
health monitoring as they neglect the variability of the missing data. This
issue is significar, w 1en the vital signs are being missed since they depend
on different facto. ,uch as physical activities and surrounding environment.
Therefore, a ¥ olistic approach to customize missing data in real-time health
monitoring s <tr ms ‘s required, considering a wide range of parameters while
minimizin- “he L.~ s of estimates. In this paper, we propose a personalized
missing ¢ ata re: ‘lient decision-making approach to deliver health decisions
24/7 desp. = m*.sing values. The approach leverages various data resources
in Io” -based systems to impute missing values and provide an acceptable
resulv. We v lidate our approach via a real human subject trial on maternity
he~lth, 1. which 20 pregnant women were remotely monitored for 7 months.
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In this setup, a real-time health application is considered, w_=r maternal
health status is estimated utilizing maternal heart rate. The . ~cui..~y of the
proposed approach is evaluated, in comparison to existi.o met..ods. The
proposed approach results in more accurate estimates spe .1an, when the
missing window is large.

Keywords: Missing Data, Long-term Monitoring, H ‘alth M onitoring,
Internet of Things, Maternity Care, Personalized Deci ‘on "J[aking.

1. Introduction

Remote health monitoring systems broaa., exter d the boundaries of ev-
eryday healthcare access particularly for at-1..'* population groups including
pregnant women [1] and senior adults '™ ..l.0 .nay require additional ob-
servation. These systems are very promisi.~ in the healthcare domain as
the individuals can be continuously mcuwe ' for early detection, preventive
care, and early intervention. The ke~ func ion of such healthcare systems is to
ubiquitously observe and analyze uscs" health conditions, and subsequently
deliver medical early-warning as —~ll a. health and wellness coaching.

Fortunately, recent advances in 1..*ernet-of-Things (IoT) technologies have
paved the way for enabling snch monitoring services with 24/7 availabil-
ity. IoT is a growing net vork ¥ interconnected objects that envision a
shared knowledge for smart ~d a tonomous decision-making and actuation
[3, 4, 5, 6]. In the healtl care domain, IoT systems leverage different sensing,
computing and commu.. = ¢ior resources.

As illustrated in Figure ., the architecture of IoT-based systems can
be partitioned intc thic~ main tiers [7]. First, a Sensor network includes
wearable and mol ... sensors (i.e., Body Area Network) recording health and
context data, by wh'ch the user’s condition is perceived. Second, a Gateway
acts as a brid .e be.een the Sensor network and remote servers. Such a
device (e.g., an .ccess point) mostly performs data transmission and con-
ventional servic < s .ch as protocol conversion. However, alternative network
infrastruc ures ‘e.g., smart e-health gateways) are proposed to incorporate
intelligen. techn ques into the edge of the network [8, 9, 10]. Third, a Cloud
Server Jifers vroadcasting, data storage and a wide range of data analytic
techr 'ques ( .g., machine learning), through which healthcare services and
applica ‘o, are obtained [11].
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Figure 1: An IoT-based system for remote heal h monitoring.

In the real-world domain, missing dat~ i~ ~ : of the biggest challenges
among the IoT-based health monitoring sy.“ems. Missing data refers to an
entry in data where no value is availal «. 7->~h missingness often occurs over
the process of health monitoring, in pa.*.cular long-term screening, due to
failure in data collection and data tre . mis. ion, as the sensor(s) might detach
from the skin, lose connections with gu*eway devices or run out of batteries.
Moreover, in case of long-term mo.. *oring, the user might refuse or forget to
use wearable sensor(s) all the time. 'T'his inconsistent and incomplete data
collection leads to failure ir deci‘on making and consequently the mission
of the application.

There is a large bocy of livcrature on the analysis of missing data in
databases [12, 13]. Hov.~ve , m st of the conventional techniques are insuffi-
cient for real-time he‘.Ith m - .toring systems since they neglect the variabil-
ity of the missing d ita ‘n estimations. This issue is especially significant in
primary vital sign- ‘e.g., heart rate) as the variations are considerably large,
influenced by di'tere it factors such as health conditions, physical activities
and surroundirg ew. -ironment. Clearly, these techniques generate biased es-
timates and ,ubs:quently cause high error rates in health applications. In
consequence, « nisc.ng data resilient method is required to consider a wide
range of 1 arameters while minimizing the bias of estimates. We believe such
a solutior can b realized for real-time health monitoring systems by holis-
tically '~ver.,.ug loT-enabled concepts such as multi-modal data collection
and ] ersonaization.

In "his raper, we present a personalized missing data resilient decision-
m ..~ 2anproach to continuously deliver health decisions despite missing




values. This approach uses a Multiple Imputation method [12, *3! reinforced
with various data resources (e.g., context information) in Io’s” hase. systems
to estimate missing values. Subsequently, a personalized .. ling method is
introduced to provide an acceptable decision according ‘o st «tes of the user
and monitoring system. Our approach is proposed for a re.' human subject
trial on maternal health where 20 pregnant women w re rer. otely monitored
for 7 months (i.e., 6 months of pregnancy and 1 mor."h pos partum) beside
normal check-up visits in maternal health clinic.. In tms case study, we
concentrate on a real-time health application, in w hic’y m: ternal health status
is remotely estimated using maternal heart rate.  Ma;~_ contributions of this
paper are as follow:

e A personalized missing data resilient ac ~ision-making approach is pro-

posed to continuously deliver healt™ . ... as despite missing data.

e The approach is presented for . ~~1 human subject trial on mater-
nal health, focusing on a real-tim. ".ealth application where maternal
health statues are remotely es .. ~ate 1.

e Personalized models are de. e 2+ 1 used exploiting maternal (medical)
history and context data to im,. 1te the missing values.

e A personalized poolir g meivhod is introduced to fuse the values and
deliver health decisions 'eve’ aging user’s data.

e The proposed ap; roe h is evaluated in terms of accuracy of the health
decisions, in co’ 1ipari, v to existing missing data analysis methods.

The remainder of the paper is organized as follow. In Section 2, we
outline backgrov id . nd related work of this research. Section 3 describes
the proposed soi.*ion. The demonstration and evaluation are provided in
Section 4; anc finally, Section 5 concludes the paper.

2. Backs.ovund «nd Related Work

In this sectis n, we first present our case study on maternal health mon-
itorin ., inc'uding a maternal health indicator to remotely estimate health

condi -ions o pregnant women. Then, we delve into the missing data concept
and poso._.e techniques of dealing with this issue.




2.1. Maternal Health Monitoring

The maternal body undergoes a variety of changes througn. "1t p. _gnancy,
particularly in the cardiovascular system. Cardiac outp’.. .nd compliance
elevation is an example, which is reflected by different vit-i1 signs such as
stroke volume and heart rate [14, 15]. These changes are pa. '~ of physiologi-
cal adaptations during pregnancy and are mostly nor nal. F. wever, they are
affected by pre-pregnancy and pregnancy conditions «nd cc nplications. On
the one hand, diseases and serious conditions suc'. as maternal obesity, dia-
betes and depression considerably impact pregna -, an | elevate vital signs
(e.g., heart rate and blood pressure), increasing 1.k fac.ors for various health
problems in the mothers and their future offspring. On the other hand, a
healthy lifestyle consisting of an adequate iet .~d regular physical activity
engagement could be beneficial [16, 17].

To investigate such physiological chai.-es in pregnancy, long-term moni-
toring and studies of pregnant womer are desrable [18, 19|, assessing their
health conditions and providing efficic 't recommendations and guidelines.
In this context, we conduct a rea. "“‘me maternal monitoring and concen-
trate on heart rate variation and phy.ical activity of pregnant women. This
study includes 7 months monito. ny o 20 pregnant women, in which heart
rate, steps, hand movements, sleep ley 1 and ascending/descending stairs are
continuously collected via e ... ~rt wristband. The parameters should be
mapped into an abstracted tevel o1 data (i.e., a health score) to continuously
and explicitly indicate he.: ma. v al health status.

Therefore, a materral }ealth indicator is selected to remotely estimate
the health condition wvhi th: user is engaging in various physical activi-
ties in everyday sett. os. This indicator leverages a set of guidelines, rules
and recommendations the" state the target ranges of heart rate in different
phases of pregne.acy [14, 20, 21, 16, 17, 22]. In our case study, this rule-
based indicator v.’l” rs continuous monitoring of heart rate, physical activity,
personalized .ate (e.s., baseline heart rate values at the beginning of the
monitoring) nd meta-data (e.g., gestational week and maternal age) to esti-
mate the b--lth &~ ision. The decision is a warning sign ranging from 0 to 3,
where 0 1dicate 5 a normal health condition and 3 shows the highest health
deteriorat. n [27, 24].

2.2. Missinc Data

In tue arst place, it is important to understand the properties and pat-
ter s .1 vhe missing values for developing effective methods in real-world




applications. Various missingness mechanisms cause missing “a'aes in the
health monitoring systems, interrupting real-time decision-1..~king. As pro-
posed by Rubin et al. [25, 12, 13], such missingness r . hani. ns gener-
ally stand into three main categories. 1) Missing Cor vlet ly .it Random
(MCAR). The missing value is independent of the data valu = For example,
unpredictable data loss occurs during the monitoring n cas. of sensor failure
or loss of Internet connection. 2) Missing At Rand.m (MAR). The prob-
ability of data to be missing is related to availal.c intormation. However,
the missingness does not depend on the missing v-.ues For instance, the
vital signs are more likely to be missing in the ~ver-_g, as the sensors are
disconnected to be charged when the user is at ho ne. 3) Not Missing At
Random (NMAR). It occurs when the missing ~ess Jdepends on the missing
values. For example, a pregnant woman remo. ~s the wearable devices while
she is smoking, obscuring the direct effec or smoking on the vital signs.

There is a broad variety of missine data -nalysis methods in the liter-
ature, aiming to provide estimates w1 h ‘.cceptable bias (i.e., distance be-
tween the estimate and the true val ~) fo. missing values [26, 13, 27, 28, 29].
Such analysis methods have their ow 1 s.~engths and restrictions. They are
selected according to target ap, .t~ s with different requirements (e.g.,
desired accuracy) and limitations (e. , the amount of missing data and the
missingness mechanisms). Ir (>~ following, we outline various missing data
analysis methods available .n the .'terature.

Deletion methods are the .~os ¢ straightforward approaches for handling
missing data, where re orcd; with missing values are eliminated. Listwise
deletion is one of the met.. ds~ here a record is dropped out from the analysis
if it has at least onr missing attribute. This method results in a complete
dataset although it reducc - the amount of data. Similarly, Pairwise deletion is
another method i « w ich a record is omitted on an analysis-by-analysis basis.
This method mu..*n zes the deletion, in contrast with the Listwise deletion,
as records wit 1 missi.2 values are kept if their under-analysis attributes are
not missing. Suc.a de.etion methods are restricted to MCAR, otherwise they
produce bi~ced «.+"nates [30, 31, 32, 28].

Despi e the eletion methods, imputation-based methods fill-in the miss-
ing values =xple.ting available (i.e., observed) data. There are different im-
putat’on m~thods in the literature including mean imputation, Last Obser-
vatio. Carri d Forward (LOCF) imputation, regression imputation, hot-deck
imbutav.c.., cold-deck imputation and K-Nearest-Neighbor (KNN) imputa-
tio |'z, 33, 34, 35]. Unfortunately, such single imputation methods might
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lead to biased estimates, as they neglect the variability of the .. iss ng values.
Additionally, Multiple Imputation (MI) is a modern missiu, dat. imputa-
tion method that complete the dataset, considering impuv’...‘on u.icertainty
[12, 36, 13, 37, 38]. MI includes three main steps as Impu atic 1, ~nalysis and
Pooling. First, different estimates (n > 2) for the missing v. 'nes are created
via different procedures (e.g., linear regression and ".ot-de k). Second, the
completed datasets are analyzed. Last, the results « ve intr grated into one
final output. In contrast with single imputation uecthoas, MI is applicable
for both MAR and MCAR.

In addition to the imputation-based methow. mc ™ i-based methods cre-
ate a model of the observed data to estimate the m.ssingness. For example,
Maximum Likelihood Estimation (MLE) metho! nti’.zes available data to ap-
proximate parameters (e.g., mean and standa:.' deviation of a log-likelihood
function) that fits the data [13, 39, 40]. . 'ssing values can be estimated via
the obtained model. MLE provides unhiased c. “imates for MAR and MCAR.
Furthermore, there are model-based mu*hc as such as pattern-mixture, selec-
tion models and shared-parameter r ~dels that are able to yield estimates for
NMAR. Such methods are appropria‘e .>r studies where data are recorded
repeatedly through time [41, 42, .5, *1.

Moreover, machine learning-based methods tailor available data (i.e., at-
tributes) to provide a hypoth~ .- (i.e., classifier). The hypothesis could assign
new values to missing attril ates. 'L hus far, different approaches including Ar-
tificial Neural Networks (AN, S .pport Vector Machine (SVM) and Generic
algorithms have been e alu‘.ced for missing data estimations [45, 46, 47, 48,
49, 50]. On the other h« d, some machine learning-based methods handle
missingness in a dat <et without imputing values. In such methods, a clas-
sifier is trained by observ. 1 data including missing values, and subsequently
decision making i, pe “formed. However, the missingness and poor correlation
between availabi. at . ributes might decrease the performance of the methods.
These learnin -basea methods (e.g., Decision Tree) have been investigated
in different ¢ nd’es [71, 52, 53, 54].

In addition, “bore are studies to investigate missing data in IoT de-
vices anc wirele 's sensor network, featuring a multi-sensors data collection.
In this re,.ard, 1 probabilistic method has been proposed to estimate the
missi» g vale considering similarity in neighboring sensors data [55]. Simi-
larly, missin' , corrupted and late-reading data has been tackled in streaming
data [bu, i, 58].




3. Missing Data Resilient Decision-making Approach

In this section, we tackle the missing data issue in [oT-basea ealth mon-
itoring systems, which are incapable of providing services whr .. ~ensory data
are unavailable or unreliable. In this regard, we, first, ou.» e which missing
data analysis techniques can be suitable for these syst _ius. Then, we present
the definitions and functions of our personalized dedision-n aking approach
via a case-study on maternal health monitoring.

As mentioned in Section 2.2, there is a wide ran<: ¥ methods available
for missing data estimations, targeting different applisations and missing-
ness mechanisms. Many of the available techniqu. - are, nevertheless, inap-
propriate for real-time decision-making of Io 7" basec health monitoring sys-
tems. Deletion methods are not applicable .~ sucu systems as the decision
making is interrupted while there is a ==~ _ _aput. Moreover, the deci-
sion making is vulnerable to biased values . hen single imputation methods
are exploited. LOCF imputation is a.:w « “raightforward method used for
longitudinal studies, which fills in miss. g values leveraging the pattern of
gradual changes in observed data. 1w mecthod is inappropriate, due to un-
derestimating the variation of th~ mis: ‘ng values. In addition, conventional
multiple imputation, model-based .. «thods (e.g., Maximum Likelihood Esti-
mation) and machine learning-based methods are other possible alternatives.
In health monitoring syster s, ti se methods are insufficient for data with
high variations such as heai. vate. which highly depends on different factors.

In contrast, auxiliary imfermacion can be utilized in missing data analysis
techniques to mitigate he bia® of the estimates [59, 60, 61, 62]. Auxiliary
information is additional a."+ or meta-data that correlates with the value
of interest (i.e., mi sin, value). The use of such information in a missing
data analysis teck .. ~ue is suitable for IoT-based monitoring systems due to
their capability Hf Fsterogeneous data collection. Moreover, this informa-
tion is very prr misi. ~ in real-time health decision-making as the missingness
mechanism r.agh’ be MAR or NMAR.

The IoT-be. d ¢ ystems provide a great opportunity to record such auxil-
iary infor nation, also named as context, along with the primary data collec-
tion thro 'ghout the monitoring. Context is the information that describes
the er- -onu.cut and condition of the system [63]. Context-awareness in
comy 1ting € ables the loT-based systems to observe and understand the sen-
sory ac*a ».d to be aware of their own states and surrounding environment,
pi il o robust and adaptive behavior in different conditions [64, 65]. In
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Figure 2: Health decision making while the primary J~ta (fron primary sensor) is missing.
In this setup, context data (from Sensor 1 to Sens. ~ n), .~ ory data and user’s feedback
are utilized in the computation.

addition, other meta-data such as me. «...! =~cords and user feedback can be
manually added to the computations to *aprove the system’s performance.

To incorporate context-awarenes. .. *o cur missing data resilient decision-
making approach, we believe that Mui“iple Imputation (MI) method can be
an appropriate alternative. In this ~egard, the computation of this decision-
making approach is partitioned into tnree main components as Imputation,
Analysis and Personalized T oolu, - estimating a real-time health score while
the sensory data is missing Thic function is depicted in Figure 2, where
the data collected from sne sen.or is missing. In the rest of this paper, we
entitle this sensor as pt me y srasor and its data as primary data; and other
sensors are named as econu. * y sensors which acquire context data and other
information includi-.g « “her vital signs.

We thoroughly ~esent vhese three components in the following and clarify
the definitions e 1d f inctions of our approach via a case study on maternal
health during preg -ancy. In this context, we concentrate on a maternal
health indice.or (see Section 2.1) which remotely estimates the degree of
maternal heai." cor dition while the pregnant woman is engaging in various
physical 7 ctivities in everyday settings. This indicator tailors sensory data
and meta data t  estimate the health score (i.e., warning sign). However, its
functic=aliv, I, limited to the availability of the real-time heart rate value
(i.e., prima, 7 data). The proposed decision-making approach allows this
healtl, ‘ndic «tor to acceptably operate even if the heart rate is missed due to
in «.. tions in data collection or data transmission.




3.1. Imputation

A number of different methods are exploited to impute the miss.ag value
(i.e. maternal heart rate in our case) m times, where r. - 2. C’herefore,
m values are estimated leveraging different resources, ec “h ¢ wnich holds a
considerable correlation with the primary data that is =issi.> The method
of selection depends on the nature of the data anc the \ pe of auxiliary
information. In the following, we outline methods to . mput . maternal heart
rate values throughout the monitoring.

3.1.1. Short-term Data

First, short-term history of data (i.e., preceding n ighbors) can be utilized
for the data imputation. These values correla.~ st.ongly with the missing
value, particularly when the context situation ~nd the individual condition
are constant. Autoregressive models [66, ~re conventionally used for such a
sequence of data, in which the current value .5 estimated from n preceding
values. The autoregressive model of or'er n 1s defined as:

Ty = fs(t7 ﬁ)
=Bo+biwe o P2t BaTin (1)
where xy_1,21_9,...,7, are the previous n data, and fy, f1,..., 3, are the

parameters of the model es 1mate..

In our case study, nor-mu.. ing neart rate values from previous weeks are
selected as the training dat. to estimate the parameters via a regularized
least-square (i.e., ridge . ~.ess’on) desired to minimize:

k

Z: [xz - fs(t>ﬁ)]2 + AZﬁ?

=1

where k is the 1umbe. of training data, x; indicates the actual heart rate, fs(.)
estimates th : heart - ate from preceding data, and A > 0 is a regularization
parameter 87, 21 The model is periodically updated to consider variation
of mater: al hea t rate throughout pregnancy.

The esimat - d value is added to the heart rate set, so it is considered as
a prer eding neighbor for the next iteration. When a considerable number of
data tems ¢ce missing, the estimates become unreliable in this imputation
as the ei.o.s are accumulated. Root-mean-square error (RMSE) of the heart
rav> e cunates for a pregnant woman is shown in Figure 3. As indicated,
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Figure 3: RMSE of the estimates of a pregna v . ~’s heart rate (1714 iterations) using
the autoregressive model.

the RMSE values increase whe o lare portion of data is missing. In a
similar manner using neighboring he. ~t rate values, the unreliability of heart
rate estimation when the miseineg window is large is investigated in [69]. In
consequence, this imputatic.a is ap ropriate only when the amount of missing
data is small.

3.1.2. Context Data
Associations betv een the primary data and context information can be
exploited to imputc the issing values. This can be indicated as:

T = fc(t77) <2)

where 7 is the cor ext-related data and f.(.) is the function that approximates
the heart rate ~(ue [n our case study, context data are the maternal physical
activities. .ucluding 7 states as light sleep, deep sleep, sedentary, very light
activity, ight a«tivity, moderate activity and vigorous activity. They are
specified vi. ~*_ps and hand movements of the user {70, 71]. Such physical
activ cies a1 associated with the heart rate values and its variations.

Hc vever this association is specific for each individual, so a personalized
m . '~ is required. To show the differences in maternal heart rate, we select

11
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Figure 4: Weekly average of maternal h. . rav values of 10 pregnant women during
sedentary time in the second trimester.

data from 10 pregnant women as examples. Weekly average heart rate val-
ues of these women during .ne s.lentary time in the second trimester (i.e.,
gestational weeks 14-26) ai. illust ated in Figure 4. As indicated, the heart
rate ranges are not overls pped 1. some cases. Average heart rates of M4 vary
from 62 to 72 beats/n. nu‘e al hough M3 average heart rates are between
87 and 96 beats/mir ate. " reover, such a model should be dynamically
updated frequently ., every week or every two weeks) because conditions
of each pregnant ~~man are changing as the pregnancy advances. Figure 5
illustrates such - arie ;ions in average heart rates of one pregnant woman in
different activities . om gestational week 14 to postpartum week 4.
In our co’ tex’, Equation 2 can be defined as:

=) H (3)

where y(:) = [p+ 1), p2(t), ..., pr(t)] represents which of the 7 physical activ-
ities ic ailocaved to t, where pg(.) is either 0 or 1 and:

pi(t) +pa(t) + -+ pr(t) =1

H = ni,ha, ..., hs] also indicates the most probable heart rate value in
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Figure 5: Weekly average of maternal hea.* . ~te .alues of a pregnant woman in different
activities from week 14 to postpartum week .

each state. This vector is unicely defined for each individual according to
non-missing data of previor s weer 35 of monitoring.

3.1.3. Lifestyle Data

Similarity in heart -at: prcterns due to repetitive habits (i.e., user’s
lifestyle) is another 1 source *» impute missing values. These patterns could
be manually added oy . =ers (feedback) or automatically extracted from the
data. This is sig- ‘Scant n the monitoring particularly when the context
data is incomple e o' not fine-grained enough. For example, we access to the
physical activi‘y o1 "he pregnant women, but no information is available re-
garding eatir g ar d drinking habits (e.g., time and duration of meals), which
affect user’s ne vt rates [72]. With this intention, the missing value can be
obtained 1a a function as:

z = fi(¢) (4)

where ¢ ho'ds history data and/or feedback.

[t our ci se, non-missing heart rate values of the current time window
are comp..ed with previous time windows, and the window with the most
sin lar neart rate pattern is extracted. Then, the imputation is fulfilled using
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heart rates of the most similar window. In this regard, Equ.‘io. 4 can be
determined as:

where x;, is the corresponding heart rate value of the w. 4 ,w k, which has
the least distance to the current window. Hence, k is . ccifiel via:

argmin dist(k)
ked

which dist(.) is a distance function defined as:

dist(k) = [z — 2,12
i=1

where n is the window length, and z;y and ., are available heart rate values
in the current window and window k, e *ively.

Moreover, additional information cai. oe manually collected to select the
most similar heart rate pattern. uc™ ndformation includes self-reported
physical activities or events ma~~d i1 user’s calender, from which similar
windows are selected to perform (-ta immputation. For instance, the user
participates in a certain exercise course every odd day from 2 p.m. to 4 p.m.
Heart rate data of this exe cise «an be leveraged if the heart rate value is
missed in this activity in the futw e.

3.2. Analysis

The rule-based 1 aterna. aealth indicator is implemented, mapping the
sensor data into ar ab.‘racted decision. It repeats m times per iteration,
as m versions of ...~ missing value are estimated in the Imputation part.
Therefore, m drcisic ns are generated in each iteration. m equals to 3 in
our case studyv as 1.~ missing heart rate value is filled via the 3 imputation
methods. H we er, the decisions might be diverse due to inaccuracy and
uncertainty in . ~e i nputation methods.

The 1 de-baed indicator generates a warning score between 0 and 3 for
each hea. rate value. Similar to a typical obstetric Early Warning Score
(EWS" 23, .4, different ranges are defined for the heart rate value to obtain
the s ore. 1 e ranges are defined for each pregnant woman according to per-
sonaliz. 1 d-ca such as baseline heart rate at the beginning of the monitoring.
I aul”“on, a set of guidelines and rules are utilized [14, 20, 21, 16, 17, 22].
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For examples, heart rate should not exceed 140 (beats/min.*e) while the
mother engages moderate and vigorous activities; it should ..~t be "2ss than
40 (beats/minute) during sleep and sedentary time; and he ... rate likely rises
20% till the end of pregnancy. Note that this function is ssv neu to indicate
the functionality of the proposed approach, and it can be rep'aced with other
classifiers.

3.3. Personalized Pooling

A pooling method is performed to integrate .he /n ¢ 2cisions into a final
decision (i.e., dfina). An arithmetic mean is a - ~uvesonal method in this
case. However, it might be inappropriate as the decis ons with different errors
are treated equally, even if some decisions hola “iet error rates.

We propose a personalized pooling methoa '~ alleviate the impact of the
errors in the final decision. In this reg.. 1. a weighted arithmetic mean is
exploited to pool the decisions, in which the weights become personalized
throughout the monitoring leveraging us r's data. In each iteration, the
weights are determined and selecte = accc ding to the states of the user and
monitoring system. The final decisic 1. obtained via a dot product of the
vectors of the m decisions and t. - ..~ nalized weights that satisfies:

Wy [ q/)2+..-+wm:1

When the primary data -~ av-.ilable, the weights are calculated by the
squared error between o :tusl anu estimated values. However, as conditions
of the user and system ~v higaly dynamic (e.g., state of the user and size
of the missing windo /), genc al weights are insufficient, minimizing the sum
of squared errors cver 'l time points. In this regard, we define different
states for each i “ation and calculate the sum of squared errors over the
corresponding p int in each state. In the following, we outline how states
and weights ar 2 dew.. »d in our case study with the 3 imputation methods.

The first .mp atation is related to the short-term data. The error of the
imputation hig’ 'v .epends on the portion of missing data, as indicated in
Figure 3. [her-fore, the weights should be determined for different missing
window s 7es. A missing window refers to the interval between the current
point - ..d the iast point that heart rate data was recorded. When the missing
wind w size ‘s 7, the last i value(s) of heart rate data including current heart
rate a..7 v evious values are removed; the current heart rate is imputed;
an1 v, eight is determined using the errors in this iteration and previous
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Figure 6: The personalized pooling when heart rate is available (weights determination).

iterations. This process is re, @at .d ny times with different sizes of missing
window, where the ma- 1m1 m missing window size is n;. In consequence,
a set of weights (i.e., W, = {"11,...,wy, 1}) is obtained for the n; missing
windows.

The second imputav. n is associated with the context data. The un-
certainty of the “w.t rate is significant in this imputation as the most
probable heart _~te 1s selected (see Section 3.1.2). This uncertainty (e.g.,
variance) are dversc ‘n different physical activities. For instance, in most
cases, the v ria’ ce f deep sleep heart rate is considerably less than the
variance of hea.® rutes of vigorous activity. Therefore, the squared errors
should be sever. lly calculated for each physical activity to obtain weights—
ie., Wy = {wyo ...,wp, o} where ny is the number of physical activities. As
there e 7 pnysical activities, ny is 7 in this monitoring.

T 1e thirc imputation is related to the lifestyle data. Meta-data including
the wec! -~ schedule of the user is considered to define different time states
(in , 74 olates). For example, the weight for weekend-days (as a time state)

16




is defined, considering the squared error of the time points d.-ir s weekend
days. In this regard, a set of weights (i.e., W5 = {wy 3, ..., Wn, 5\ is c leulated
for the ng time states in the monitoring.

The three weights vectors, Wy, W, and W3, are d- nar.ca.y updated
in iterations that the heart rate data is available. The :mamic weights
determination of the personalized pooling method /hen ‘he heart rate is
available is illustrated in Figure 6.

In contrast, in the iterations with the missing ' cart rave, the heart rate is
imputed by the 3 imputation methods, and the h al*.i scores (i.e., dy, dy and
ds) are calculated. The corresponding weights (& =., w1, w;, 2 and w;, 3) are
selected from the three weights vectors according to he current missing data
size, physical activity and time state, respect. ~lv see Figure 7). Finally,
the health decisions are pooled using the selec.~d weights as:

dfinal = Wiy, 1.d1 + Wiy 0.0 + Wiy 3.d3 (6)

Algorithm 1 also indicates the function ~f che personalized pooling when the
heart rate is available and is missir, .

4. Demonstration and Evaluaion

In this section, we preser’ ir case study on maternal health, where 20
pregnant women have beer remot: ly monitored for seven months. First, we
outline the study design and . criitment in this monitoring. Next, we rep-
resent the setup, data coller cior and data analysis in our IoT-based system.

5 3
1 5
Current Current

Current L
missing N . physical time

window size activity state

a Normalize weights X

Pooling iy

decision

b1z .. 7: The personalized pooling when heart rate is missing (weights selection).
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Algorithm 1 The function of the personalized pooling throug‘ﬁ the mon-
itoring.

1: Initialize:
n1 < maximum missing window size
ny < number of physical activities
ns < number of time states
{le, ceey wnhl}, {wl’z, ceny wnmg}, {U}Lg, ceey wns_g}

2: while monitoring is Active do
3: True < data from the heart rate sensor
4: if 24pqe # NULL then
5: dtina < HealthIndicator(zirye)
6: for i1 = 1 to ny do
T remove last i1 value(s) of heart rate d~ta
8: x1 + fs(t, )
9: €;,,1 < squared error of the correspona.. = heart rate data
10: wiy 1 < 1 — Normalize(e;, 1)
11: end for
12: iy < determine the current physi ' ~~tivity
13: x9 — fe(t,7)
14: €iy,2 < squared error of the cc ~spo. ling heart rate data
15: Wi, 2 < 1 — Normalize(e;, 2)
16: i3 < determine the current “*me s te
17: x3 < fi(t, 9)
18: €iy.3 < squared error of the corresponding heart rate data
19: Wig.3 < 1 — Normaliz .(cqy )
20: else
21: x1 = fo(t, B), xa <= foro ™), 3 fi(t, d)
22: dy, ds, d3 < Healt iIncicatoi (21, x2, x3)
23: 11 <— determine he  arre .t missing window size
24: iy < determir : the . “v :nt physical activity
25: i3 < determ’..~ the current time state
26: Normalize\wi, 1,« 2, Wiy 3)
27 Afinal =7 ;. d1 + w4, 2.da + w;, 3.d3
28: end if

29: end while

Moreover, the p.~rosed approach is tested and evaluated by comparing the
approach with « onventional methods. Finally, strengths and weaknesses of
the appro. <h ar . discussed.

4.1. Study 1'esign
The ...onitoring was conducted on primiparous pregnant women who vis-

ite.! o.e of two maternity outpatient clinics in Southern Finland between
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Table 1: Background information of the twenty selected partic nan’s.

Statement Type Valu.
Age at pregnancy (years) - 9.7 4.96
Gestational age at recruitment (weeks) — la £2.1
Pre-pregnancy Body Mass Index - *5.0£6.45
tit ¢ once r les~ 3 women
Q}?ar} 11y t(? it plte—pregl?ancy some. ™ cs 5 women
physical activity . wee alme + dally 12 women
! ¢ L ~ht 8 women
Qua }ty ol pre-pregnancy Mode. L€ 11 women
physical activity in week viet, us 1 woman
.+ work 13 women
Employment Status “+udent 5 women
unemployed 2 women

pre-pregnancy 7 women

Smoking Status .
in-pregnancy 5 women

May and September 2016. } regn< 1t women in Finland are provided a free of
charge ultrasound examinau. n at t ae end of the first trimester. The pregnant
women were recruited in chis ap.ointment considering the following criteria.

1. The participant ex,. <tes. her first child.

The participar . was at least 18 years old.

The pregnancv was . ‘ngleton.

The pregns acy was less than 15 gestational weeks
The particip. 't understood Finnish or English

AN

The pa tici sant, owned a PC, tablet or Smartphone to be able to syn-
chronize e ¢ nart wristband

Conseque ntly, 1 7enty participants were selected as the sample size was ap-
propriate " a » ilot study [73].

Afer the ultrasound examination, the eligible women were met face-to-
face (nce an | after signing the informed consent, the device and instructions
were piu..ued. Background information was collected via a questionnaire.
So. e Lackground information is represented in Table 1. Afterward, Garmin
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Figure 8: A 24-hours sample of mnon-mis sing) data collected from one pregnant women in
gestational week 34 (day 244'1). (o, (7)), (c) and (d) indicate the variables collected via
the wristband; and (e) and f) e e the physical activities and health decisions calculated
in the cloud server.

Vivosmart@® HR [74] as ‘he selected wristband for this study along with
instructions has eer delivered to the pregnant women. During the follow-
up, the participa..‘c were interviewed via telephone.

4.2. Setup

An IoT Lasea . ystem was tailored for this study, determining the Garmin
wristban as the sensor device, by which physical activity and heart data were
collected. The “rarmin wristband is a small and light water-proof band with
consi .erabl battery life [74], so it can be an appropriate choice considering
the fe 'sibilit 7 of the monitoring. More details regarding the feasibility of this
stAv can pe found in [75].
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The wristband includes one built-in optical-based sensc. tr record a
photoplethysmogram (PPG) signal enabling real-time heai. »ate ~easure-
ments [76] Moreover, it consists of an inertial measurem-... uni, (IMU) to
track steps, stair ascending/descending and hand mover .ent .. 1. our setup,
the data collection rate was set as 1 sample per 15 minute. so a new data
record was available in every 15 minutes. A 24-hou s san. »le of such data
with non-missing values collected from one pregnant -omar is illustrated in
Figure 8 (a,b,c,d).

The pregnant women were asked to periodi-al’y sead the data to re-
mote servers through a gateway device, which —as ¢ .martphone or a PC.
Most of the data analysis was performed in the clou.' servers, amalgamating
sensor data to extract new information such « he .th status and physical
activity [77]. For the data analysis, we used « "inode virtual private server
(VPS) [78] with two 2.50GHz Intel Xeo.. *.ru (E5-2680 v3), 4GB memory
and SSD storage drive. Figure 8 (e,f) show. such information abstracted
from the data in Figure 8 (a,b,c,d). .'s awcated, the health score was 0
when the subject was sleeping. Ho ~ver, it varied between 0 to 2 while she
engaged in different physical activitic .

The proposed decision-makit._ .7 ach was implemented with a Python
service in the cloud server to estima. > health status of 15 pregnant women.
Five of the pregnant women .. -re dropped out of this analysis because the
missing data was too large (i.e., n» data for at least 50% of the monitoring
days). A view of heart rete w."h "aissing values and estimated health scores
for one day of monitori'.g is denicted in Figure 9. The heart rate values are
missed in two time w'nac s v ith lengths of 75 and 180 minutes. The blue
dots in Figure 9 (b) - - the scores when the heart rates are available; and the
red dots indicate estimauv. 1 health scores while the heart rates are missing.
Note that, this a7 prc ach is not restricted to the cloud layer settings and can
be pushed to the fo-) layer to enable local decision making.

In additior , manu. ! data collection was implemented to enrich the afore-
mentioned d ta - olle tion and decision making. In this regard, semi-structured
phone interiews ~ re fulfilled once or twice in a month. Such interviews con-
tained a s ot of q estions to indicate the self-report physical activity on a scale
1 to 5 ana ~erta’a events that considerably influence their sleep or activities.
Pregr ancy-+elated data including blood pressure, weight gain and oral glu-
cose est we e also obtained from the maternity card and hospital patient
records.
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Figure 9: A 24-hours sample of heart rates with .. ’ssing values and estimated health
scores. The blue dots represent the health s.res .. uined from the available heart rates
while the red dots indicate the estimated score. vhen heart rates are missing.

4.3. Ethics

The monitoring was performed in accordance with the code of ethics of
the World Medical Associati .. (Declaration of Helsinki) for experiments in-
volving humans. Moreover it was pproved by the joint ethics committee of
the hospital district of So ithwe.* “'inland (35/1801/2016) and Turku Univer-
sity Hospital (TYKS). "a ar.dition, the permission to employ Garmin Vivos-
mart@®) HR (Garmin "tda, 'cb ffhausen, Switzerland) in this monitoring was
acquired from the 1. nfacturer Garmin Ltd.

4.4. Accuracy Asses. ment

We validate ./« performance of our personalized decision-making ap-
proach in ter ns »f accuracy. In this regard, a cross-validation technique
is used to di.~ar 1 a vindow of the heart rate and estimate the health score.
The estim- ..d scu. 2 is compared with the actual score obtained via the actual
heart rat : value.

To eva. "ate che proposed approach, other existing methods are selected
to imHute r issing heart rate values and extract the health scores. First, the
KNN 15 a si igle imputation method is utilized, where the missing heart rate
is ~stimated from the k preceding non-missing values by weights proportional
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to the inverse of the distance to the missing value. Second, t. » < atoregres-
sive model is used leveraging preceding neighbors. Third, “he nVE as a
model-based method is used, in which the missing value i.  <tray slated via
a Sigmoid function. Fourth, the SVM (with an RBF k rne’) as a machine
learning-based method is tailored, imputing the missine vai. » from the vari-
ation of the history of data (i.e., last two-weeks de.a). ~'he methods are
implemented using SciPy [79] and Scikit-learn [80] liL varies n Python.

In the first evaluation, we investigate the dist~.uce (1.e., RMSE) between
the estimations and actual health scores with d.%e-cnt windows of missing
heart rate. The RMSE values are illustrated in. Wigu-- (0 while the missing
window (i.e., x axis) varies from 15 minutes to 6 ho ws. As indicated, when
the missing window is small, the proposed meu..~d. utoregressive and KNN
have the lowest RMSE; and the RMSE values . ¥ the SVM and logistic MLE
methods are higher. In contrast, in large ~ssing windows, the RMSE values
of the autoregressive and logistic MLF and 1NN methods are significantly
high, whereas the RMSE of the propos~d "nevhod is the lowest.

In addition, we evaluate the per “>rma. ce of the methods by determining
the C-index (i.e., concordance index) !s.] of estimations in different missing
windows. C-index represents hov. «.!! b+ alth scores are estimated considering
the correct rank/order of outcomes. ™n this experiment, the scores as well
the outcomes are in ascendir, ~rder, varying from 0, as the normal health

===- KNN = == P LE (Logistic) —— Proposed P

) : SEENAY
===- Autoregressive = 3VM ____—;;-”w b

1 2 3 4 5 6
Length of missing window (hour)

Figure 1M K.."“"" values of the health scores estimations with different methods while the
missir ; wind. v varies from 15 minutes to 6 hours.
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status, to 3, as the highest health deterioration. The C-index '~ ¢ :fined as:

1 ~ ~
s 2 2= )

Yi>Yj

where y; and §; indicate the actual and estimated d--isiow. (i.e. scores),
respectively; and H(.) is the Heaviside step function

For 15 pregnant women monitoring data, the esti.~atic'. process is ran-
domly repeated in 2040 iterations, in which the .aeal*™ scores are obtained
considering different missing windows. Eventuu'' , th . C-index values of
the 5 methods are determined. As illustrated .~ Figure 11, the proposed
method’s C-index is approximately 0.82 when the n issing window is small,
and it decreases to 0.7 when the missing v.*ndo.- *, considerably large. On
the contrary, C-index of SVM and logistic ML, are less than the proposed

method’s C-index in all cases; and the ' index of the autoregressive and
KNN methods drop to less than 0.55 - -hile the missing window is large.

4.5. Discussion

The proposed approach results in m. e reliable and more accurate esti-
mates compared with the conven. n..! » sthods. As aforementioned, deletion
methods are unfit for real-time decisic »~ making. Moreover, traditional impu-
tation methods, model-basec ...~thods and machine learning based methods
underestimate variability ¢ the 11issing heart rate values, delivering esti-
mates with high error rat»s. 1™is s in accord with our findings in the previ-
ous section. In contrast, th . proposed approach considers this variability in

=== KNN ===+ MLE (Logistic) - Proposed
===+ Autoregressive === SVM

Length of missing window (hour)

Figure 1.. T-index of the estimations with different methods while the missing window
va.'es 1+ ... 15 minutes to 6 hours.
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data using context information, minimizing the bias of estim.*es. This en-
hancement is particularly significant when there is a high cori 'atio.. between
context and the missing heart rate.

One of the major concern of using auxiliary informs ¢ior 18 « low corre-
lation between context information and the missing data. As a result, the
estimates could be biased, reducing the precision o the ctput [61]. The
proposed approach mitigates such a problem in dec sion r.akings through
the personalized pooling method. In this regard « smau value is allocated
to the related weight when the correlation is insi mi‘.car ;.

Another issue in multi-sensor health IoT - <ter = 1s the occurrence of
missingness in more than one variable. In such ¢ ses, the imputation of
the proposed approach is repeated n x m tim.~ wiere n is the number of
missed variables and m is the number of diic-ent imputation methods for
each variable. In each imputation, one .. 'ssea variable is considered as the
primary data, and other non-missed variable. are the secondary data (i.e.,
auxiliary information). Next, nxm dec."10".s are generated, and consequently
the decisions are pooled.

In addition, the proposed approa-h = capable of handling additions or
changes in the health monitoring, ~.!*» new imputations to the approach or
updating the existing imputations. his modular approach, first, suits IoT
systems where the context of ! »~ user might change; and various sensors are
added with respect to need . in the monitoring. Second, the approach can be
distributed into the 3 layevs o1 "T systems (i.e., sensor network, gateway and
cloud server) according ‘o hr alth application requirements. Moreover, adding
new data resources c~n . reve the performance of the system, removing
ambiguity in the cc ‘text imiormation. This disambiguation is important
when the missingness me “hanism is NMAR, and the variability of missing
data is invisible i a ailable information.

Estimating L. ~1ta status with only one vital sign is the limitation of this
study, where 1 nexpec.2d health deterioration with no prior history cannot be
estimated w' en he '.eart rate value is missing. Therefore, the health indica-
tor in this »oni. »'ag only targets real-time health coaching and preventive
purposes but n t health deterioration detection. However, this health indi-
cator is a ~roof of-concept for the proposed decision-making approach; and
inclus.on of different vital signs could alleviate this problem.

A the fi ture work of this study, we are going to extend our work, tar-
geting 1c.i-time health deterioration in pregnant women. We will use an
ob. et 1c Early Warning Score (EWS) [24, 23] as a standard manual tool
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in clinical settings to early-detect patients’ health deteriorat. m. This tool
will be developed for remote health monitoring through Iot hasedl systems
[82, 83]. In this regard, five warning scores ranging from 0 .¢ 3 are Zenerated
from five vital signs which are heart rate, body temper: cur., b.ood oxygen
saturation, respiration rate and blood pressure. The agg, ~ation of these
scores represents the level of health deterioration.

5. Conclusion

Missing data is a prevalent problem among "21-b=c_d health monitoring
systems, where data collection and data transmis.’on may be interrupted
in long-term scenarios. This problem mostly lead  to failures in decision
making and subsequently health application. Conventional missing data
methods are inappropriate for such systc . as vuese methods underestimate
variability of the missing values. This is impc tant when the vital signs such
as heart rate are being missed, as hec*t rav. variations could be consider-
ably large. In this paper, we propc-ad a nersonalized missing data resilient
decision-making approach tailoring ¢v. resources in IoT systems to enable
continuous health decision mak .5 desoite missing values. This approach
exploited the Multiple Imputation . ethod reinforced with auxiliary infor-
mation obtained via the IoT-r~sed system. In this regard, first, the missing
values were estimated via d derent methods using various resources. Second,
the decision-making methoa -as ‘'mplemented, and decisions were obtained
from different estimates FE- entually, the final decision was extracted using
a personalized pooline . <cho'.. We demonstrated the proposed approach
via a real human svject ti.al on maternity health. The accuracy of the
proposed approach was « ~pared with existing methods. We indicated that
the proposed app va h leads to more accurate decisions, especially when the
missing window = 17 rge.
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A personalized missing data resilient decision-making approach is proposed to continuously
deliver health decisions despite missing data.

The approach is presented for a real human subject trial on maternal health, focusing on a
real-time health application where maternal health statues are remotely estimated.
Personalized models are defined and used exploiting maternal (medical) his’ . “v and context
data to impute the missing values.

A personalized pooling method is introduced to fuse the values and deli' er h :alth decisions
leveraging user's data.

The proposed approach is evaluated in terms of accuracy of the health ac ~isions, in
comparison to existing missing data analysis methods.




