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Abstract

Remote health monitoring is an effective method to enable tracking of at-risk
patients outside of conventional clinical settings, providing early-detection of
diseases and preventive care as well as diminishing healthcare costs. Internet-
of-Things (IoT) technology facilitates developments of such monitoring sys-
tems although significant challenges need to be addressed in the real-world
trials. Missing data is a prevalent issue in these systems, as data acquisition
may be interrupted from time to time in long-term monitoring scenarios.
This issue causes inconsistent and incomplete data and subsequently could
lead to failure in decision making. Analysis of missing data has been tackled
in several studies. However, these techniques are inadequate for real-time
health monitoring as they neglect the variability of the missing data. This
issue is significant when the vital signs are being missed since they depend
on different factors such as physical activities and surrounding environment.
Therefore, a holistic approach to customize missing data in real-time health
monitoring systems is required, considering a wide range of parameters while
minimizing the bias of estimates. In this paper, we propose a personalized
missing data resilient decision-making approach to deliver health decisions
24/7 despite missing values. The approach leverages various data resources
in IoT-based systems to impute missing values and provide an acceptable
result. We validate our approach via a real human subject trial on maternity
health, in which 20 pregnant women were remotely monitored for 7 months.
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In this setup, a real-time health application is considered, where maternal
health status is estimated utilizing maternal heart rate. The accuracy of the
proposed approach is evaluated, in comparison to existing methods. The
proposed approach results in more accurate estimates especially when the
missing window is large.

Keywords: Missing Data, Long-term Monitoring, Health Monitoring,
Internet of Things, Maternity Care, Personalized Decision Making.

1. Introduction

Remote health monitoring systems broadly extend the boundaries of ev-
eryday healthcare access particularly for at-risk population groups including
pregnant women [1] and senior adults [2] who may require additional ob-
servation. These systems are very promising in the healthcare domain as
the individuals can be continuously monitored for early detection, preventive
care, and early intervention. The key function of such healthcare systems is to
ubiquitously observe and analyze users’ health conditions, and subsequently
deliver medical early-warning as well as health and wellness coaching.

Fortunately, recent advances in Internet-of-Things (IoT) technologies have
paved the way for enabling such monitoring services with 24/7 availabil-
ity. IoT is a growing network of interconnected objects that envision a
shared knowledge for smart and autonomous decision-making and actuation
[3, 4, 5, 6]. In the healthcare domain, IoT systems leverage different sensing,
computing and communication resources.

As illustrated in Figure 1, the architecture of IoT-based systems can
be partitioned into three main tiers [7]. First, a Sensor network includes
wearable and mobile sensors (i.e., Body Area Network) recording health and
context data, by which the user’s condition is perceived. Second, a Gateway
acts as a bridge between the Sensor network and remote servers. Such a
device (e.g., an access point) mostly performs data transmission and con-
ventional services such as protocol conversion. However, alternative network
infrastructures (e.g., smart e-health gateways) are proposed to incorporate
intelligent techniques into the edge of the network [8, 9, 10]. Third, a Cloud
Server offers broadcasting, data storage and a wide range of data analytic
techniques (e.g., machine learning), through which healthcare services and
applications are obtained [11].
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Figure 1: An IoT-based system for remote health monitoring.

In the real-world domain, missing data is one of the biggest challenges
among the IoT-based health monitoring systems. Missing data refers to an
entry in data where no value is available. Such missingness often occurs over
the process of health monitoring, in particular long-term screening, due to
failure in data collection and data transmission, as the sensor(s) might detach
from the skin, lose connections with gateway devices or run out of batteries.
Moreover, in case of long-term monitoring, the user might refuse or forget to
use wearable sensor(s) all the time. This inconsistent and incomplete data
collection leads to failure in decision making and consequently the mission
of the application.

There is a large body of literature on the analysis of missing data in
databases [12, 13]. However, most of the conventional techniques are insuffi-
cient for real-time health monitoring systems since they neglect the variabil-
ity of the missing data in estimations. This issue is especially significant in
primary vital signs (e.g., heart rate) as the variations are considerably large,
influenced by different factors such as health conditions, physical activities
and surrounding environment. Clearly, these techniques generate biased es-
timates and subsequently cause high error rates in health applications. In
consequence, a missing data resilient method is required to consider a wide
range of parameters while minimizing the bias of estimates. We believe such
a solution can be realized for real-time health monitoring systems by holis-
tically leveraging IoT-enabled concepts such as multi-modal data collection
and personalization.

In this paper, we present a personalized missing data resilient decision-
making approach to continuously deliver health decisions despite missing
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values. This approach uses a Multiple Imputation method [12, 13] reinforced
with various data resources (e.g., context information) in IoT-based systems
to estimate missing values. Subsequently, a personalized pooling method is
introduced to provide an acceptable decision according to states of the user
and monitoring system. Our approach is proposed for a real human subject
trial on maternal health where 20 pregnant women were remotely monitored
for 7 months (i.e., 6 months of pregnancy and 1 month postpartum) beside
normal check-up visits in maternal health clinics. In this case study, we
concentrate on a real-time health application, in which maternal health status
is remotely estimated using maternal heart rates. Major contributions of this
paper are as follow:

• A personalized missing data resilient decision-making approach is pro-
posed to continuously deliver health decisions despite missing data.

• The approach is presented for a real human subject trial on mater-
nal health, focusing on a real-time health application where maternal
health statues are remotely estimated.

• Personalized models are defined and used exploiting maternal (medical)
history and context data to impute the missing values.

• A personalized pooling method is introduced to fuse the values and
deliver health decisions leveraging user’s data.

• The proposed approach is evaluated in terms of accuracy of the health
decisions, in comparison to existing missing data analysis methods.

The remainder of the paper is organized as follow. In Section 2, we
outline background and related work of this research. Section 3 describes
the proposed solution. The demonstration and evaluation are provided in
Section 4; and finally, Section 5 concludes the paper.

2. Background and Related Work

In this section, we first present our case study on maternal health mon-
itoring, including a maternal health indicator to remotely estimate health
conditions of pregnant women. Then, we delve into the missing data concept
and possible techniques of dealing with this issue.
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2.1. Maternal Health Monitoring

The maternal body undergoes a variety of changes throughout pregnancy,
particularly in the cardiovascular system. Cardiac output and compliance
elevation is an example, which is reflected by different vital signs such as
stroke volume and heart rate [14, 15]. These changes are parts of physiologi-
cal adaptations during pregnancy and are mostly normal. However, they are
affected by pre-pregnancy and pregnancy conditions and complications. On
the one hand, diseases and serious conditions such as maternal obesity, dia-
betes and depression considerably impact pregnancy and elevate vital signs
(e.g., heart rate and blood pressure), increasing risk factors for various health
problems in the mothers and their future offspring. On the other hand, a
healthy lifestyle consisting of an adequate diet and regular physical activity
engagement could be beneficial [16, 17].

To investigate such physiological changes in pregnancy, long-term moni-
toring and studies of pregnant women are desirable [18, 19], assessing their
health conditions and providing efficient recommendations and guidelines.
In this context, we conduct a real-time maternal monitoring and concen-
trate on heart rate variation and physical activity of pregnant women. This
study includes 7 months monitoring of 20 pregnant women, in which heart
rate, steps, hand movements, sleep level and ascending/descending stairs are
continuously collected via a smart wristband. The parameters should be
mapped into an abstracted level of data (i.e., a health score) to continuously
and explicitly indicate her maternal health status.

Therefore, a maternal health indicator is selected to remotely estimate
the health condition while the user is engaging in various physical activi-
ties in everyday settings. This indicator leverages a set of guidelines, rules
and recommendations that state the target ranges of heart rate in different
phases of pregnancy [14, 20, 21, 16, 17, 22]. In our case study, this rule-
based indicator tailors continuous monitoring of heart rate, physical activity,
personalized data (e.g., baseline heart rate values at the beginning of the
monitoring) and meta-data (e.g., gestational week and maternal age) to esti-
mate the health decision. The decision is a warning sign ranging from 0 to 3,
where 0 indicates a normal health condition and 3 shows the highest health
deterioration [23, 24].

2.2. Missing Data

In the first place, it is important to understand the properties and pat-
terns of the missing values for developing effective methods in real-world
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applications. Various missingness mechanisms cause missing values in the
health monitoring systems, interrupting real-time decision-making. As pro-
posed by Rubin et al. [25, 12, 13], such missingness mechanisms gener-
ally stand into three main categories. 1) Missing Completely At Random
(MCAR). The missing value is independent of the data values. For example,
unpredictable data loss occurs during the monitoring in case of sensor failure
or loss of Internet connection. 2) Missing At Random (MAR). The prob-
ability of data to be missing is related to available information. However,
the missingness does not depend on the missing values. For instance, the
vital signs are more likely to be missing in the evening, as the sensors are
disconnected to be charged when the user is at home. 3) Not Missing At
Random (NMAR). It occurs when the missingness depends on the missing
values. For example, a pregnant woman removes the wearable devices while
she is smoking, obscuring the direct effect of smoking on the vital signs.

There is a broad variety of missing data analysis methods in the liter-
ature, aiming to provide estimates with acceptable bias (i.e., distance be-
tween the estimate and the true value) for missing values [26, 13, 27, 28, 29].
Such analysis methods have their own strengths and restrictions. They are
selected according to target applications with different requirements (e.g.,
desired accuracy) and limitations (e.g., the amount of missing data and the
missingness mechanisms). In the following, we outline various missing data
analysis methods available in the literature.

Deletion methods are the most straightforward approaches for handling
missing data, where records with missing values are eliminated. Listwise
deletion is one of the methods where a record is dropped out from the analysis
if it has at least one missing attribute. This method results in a complete
dataset although it reduces the amount of data. Similarly, Pairwise deletion is
another method in which a record is omitted on an analysis-by-analysis basis.
This method minimizes the deletion, in contrast with the Listwise deletion,
as records with missing values are kept if their under-analysis attributes are
not missing. Such deletion methods are restricted to MCAR, otherwise they
produce biased estimates [30, 31, 32, 28].

Despite the deletion methods, imputation-based methods fill-in the miss-
ing values exploiting available (i.e., observed) data. There are different im-
putation methods in the literature including mean imputation, Last Obser-
vation Carried Forward (LOCF) imputation, regression imputation, hot-deck
imputation, cold-deck imputation and K-Nearest-Neighbor (KNN) imputa-
tion [12, 33, 34, 35]. Unfortunately, such single imputation methods might
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lead to biased estimates, as they neglect the variability of the missing values.
Additionally, Multiple Imputation (MI) is a modern missing data imputa-
tion method that complete the dataset, considering imputation uncertainty
[12, 36, 13, 37, 38]. MI includes three main steps as Imputation, Analysis and
Pooling. First, different estimates (n ≥ 2) for the missing values are created
via different procedures (e.g., linear regression and hot-deck). Second, the
completed datasets are analyzed. Last, the results are integrated into one
final output. In contrast with single imputation methods, MI is applicable
for both MAR and MCAR.

In addition to the imputation-based methods, model-based methods cre-
ate a model of the observed data to estimate the missingness. For example,
Maximum Likelihood Estimation (MLE) method utilizes available data to ap-
proximate parameters (e.g., mean and standard deviation of a log-likelihood
function) that fits the data [13, 39, 40]. Missing values can be estimated via
the obtained model. MLE provides unbiased estimates for MAR and MCAR.
Furthermore, there are model-based methods such as pattern-mixture, selec-
tion models and shared-parameter models, that are able to yield estimates for
NMAR. Such methods are appropriate for studies where data are recorded
repeatedly through time [41, 42, 43, 44].

Moreover, machine learning-based methods tailor available data (i.e., at-
tributes) to provide a hypothesis (i.e., classifier). The hypothesis could assign
new values to missing attributes. Thus far, different approaches including Ar-
tificial Neural Networks (ANN), Support Vector Machine (SVM) and Generic
algorithms have been evaluated for missing data estimations [45, 46, 47, 48,
49, 50]. On the other hand, some machine learning-based methods handle
missingness in a dataset without imputing values. In such methods, a clas-
sifier is trained by observed data including missing values, and subsequently
decision making is performed. However, the missingness and poor correlation
between available attributes might decrease the performance of the methods.
These learning-based methods (e.g., Decision Tree) have been investigated
in different studies [51, 52, 53, 54].

In addition, there are studies to investigate missing data in IoT de-
vices and wireless sensor network, featuring a multi-sensors data collection.
In this regard, a probabilistic method has been proposed to estimate the
missing value considering similarity in neighboring sensors data [55]. Simi-
larly, missing, corrupted and late-reading data has been tackled in streaming
data [56, 57, 58].
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3. Missing Data Resilient Decision-making Approach

In this section, we tackle the missing data issue in IoT-based health mon-
itoring systems, which are incapable of providing services when sensory data
are unavailable or unreliable. In this regard, we, first, outline which missing
data analysis techniques can be suitable for these systems. Then, we present
the definitions and functions of our personalized decision-making approach
via a case-study on maternal health monitoring.

As mentioned in Section 2.2, there is a wide range of methods available
for missing data estimations, targeting different applications and missing-
ness mechanisms. Many of the available techniques are, nevertheless, inap-
propriate for real-time decision-making of IoT-based health monitoring sys-
tems. Deletion methods are not applicable in such systems as the decision
making is interrupted while there is a missing input. Moreover, the deci-
sion making is vulnerable to biased values when single imputation methods
are exploited. LOCF imputation is also a straightforward method used for
longitudinal studies, which fills in missing values leveraging the pattern of
gradual changes in observed data. This method is inappropriate, due to un-
derestimating the variation of the missing values. In addition, conventional
multiple imputation, model-based methods (e.g., Maximum Likelihood Esti-
mation) and machine learning-based methods are other possible alternatives.
In health monitoring systems, these methods are insufficient for data with
high variations such as heart rate, which highly depends on different factors.

In contrast, auxiliary information can be utilized in missing data analysis
techniques to mitigate the bias of the estimates [59, 60, 61, 62]. Auxiliary
information is additional data or meta-data that correlates with the value
of interest (i.e., missing value). The use of such information in a missing
data analysis technique is suitable for IoT-based monitoring systems due to
their capability of heterogeneous data collection. Moreover, this informa-
tion is very promising in real-time health decision-making as the missingness
mechanism might be MAR or NMAR.

The IoT-based systems provide a great opportunity to record such auxil-
iary information, also named as context, along with the primary data collec-
tion throughout the monitoring. Context is the information that describes
the environment and condition of the system [63]. Context-awareness in
computing enables the IoT-based systems to observe and understand the sen-
sory data and to be aware of their own states and surrounding environment,
providing robust and adaptive behavior in different conditions [64, 65]. In
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Figure 2: Health decision making while the primary data (from primary sensor) is missing.
In this setup, context data (from Sensor 1 to Sensor n), history data and user’s feedback
are utilized in the computation.

addition, other meta-data such as medical records and user feedback can be
manually added to the computations to improve the system’s performance.

To incorporate context-awareness into our missing data resilient decision-
making approach, we believe that Multiple Imputation (MI) method can be
an appropriate alternative. In this regard, the computation of this decision-
making approach is partitioned into three main components as Imputation,
Analysis and Personalized Pooling, estimating a real-time health score while
the sensory data is missing. This function is depicted in Figure 2, where
the data collected from one sensor is missing. In the rest of this paper, we
entitle this sensor as primary sensor and its data as primary data; and other
sensors are named as secondary sensors which acquire context data and other
information including other vital signs.

We thoroughly present these three components in the following and clarify
the definitions and functions of our approach via a case study on maternal
health during pregnancy. In this context, we concentrate on a maternal
health indicator (see Section 2.1) which remotely estimates the degree of
maternal health condition while the pregnant woman is engaging in various
physical activities in everyday settings. This indicator tailors sensory data
and meta-data to estimate the health score (i.e., warning sign). However, its
functionality is limited to the availability of the real-time heart rate value
(i.e., primary data). The proposed decision-making approach allows this
health indicator to acceptably operate even if the heart rate is missed due to
interruptions in data collection or data transmission.
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3.1. Imputation

A number of different methods are exploited to impute the missing value
(i.e. maternal heart rate in our case) m times, where m ≥ 2. Therefore,
m values are estimated leveraging different resources, each of which holds a
considerable correlation with the primary data that is missing. The method
of selection depends on the nature of the data and the type of auxiliary
information. In the following, we outline methods to impute maternal heart
rate values throughout the monitoring.

3.1.1. Short-term Data

First, short-term history of data (i.e., preceding neighbors) can be utilized
for the data imputation. These values correlate strongly with the missing
value, particularly when the context situation and the individual condition
are constant. Autoregressive models [66] are conventionally used for such a
sequence of data, in which the current value is estimated from n preceding
values. The autoregressive model of order n is defined as:

xt = fs(t, β)

= β0 + β1xt−1 + β2xt−2 + · · ·+ βnxt−n (1)

where xt−1, xt−2, . . . , xtn are the previous n data, and β0, β1, . . . , βn are the
parameters of the model estimated.

In our case study, non-missing heart rate values from previous weeks are
selected as the training data to estimate the parameters via a regularized
least-square (i.e., ridge regression) desired to minimize:

k∑

i=1

[xi − fs(t, β)]2 + λ

n∑

j=0

β2
j

where k is the number of training data, xi indicates the actual heart rate, fs(.)
estimates the heart rate from preceding data, and λ > 0 is a regularization
parameter [67, 68]. The model is periodically updated to consider variation
of maternal heart rate throughout pregnancy.

The estimated value is added to the heart rate set, so it is considered as
a preceding neighbor for the next iteration. When a considerable number of
data items are missing, the estimates become unreliable in this imputation
as the errors are accumulated. Root-mean-square error (RMSE) of the heart
rate estimates for a pregnant woman is shown in Figure 3. As indicated,
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Figure 3: RMSE of the estimates of a pregnant woman’s heart rate (1714 iterations) using
the autoregressive model.

the RMSE values increase when a large portion of data is missing. In a
similar manner using neighboring heart rate values, the unreliability of heart
rate estimation when the missing window is large is investigated in [69]. In
consequence, this imputation is appropriate only when the amount of missing
data is small.

3.1.2. Context Data

Associations between the primary data and context information can be
exploited to impute the missing values. This can be indicated as:

x = fc(t, γ) (2)

where γ is the context-related data and fc(.) is the function that approximates
the heart rate value. In our case study, context data are the maternal physical
activities, including 7 states as light sleep, deep sleep, sedentary, very light
activity, light activity, moderate activity and vigorous activity. They are
specified via steps and hand movements of the user [70, 71]. Such physical
activities are associated with the heart rate values and its variations.

However, this association is specific for each individual, so a personalized
model is required. To show the differences in maternal heart rate, we select
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Figure 4: Weekly average of maternal heart rate values of 10 pregnant women during
sedentary time in the second trimester.

data from 10 pregnant women as examples. Weekly average heart rate val-
ues of these women during the sedentary time in the second trimester (i.e.,
gestational weeks 14–26) are illustrated in Figure 4. As indicated, the heart
rate ranges are not overlapped in some cases. Average heart rates of M4 vary
from 62 to 72 beats/minute although M3 average heart rates are between
87 and 96 beats/minute. Moreover, such a model should be dynamically
updated frequently (e.g., every week or every two weeks) because conditions
of each pregnant woman are changing as the pregnancy advances. Figure 5
illustrates such variations in average heart rates of one pregnant woman in
different activities from gestational week 14 to postpartum week 4.

In our context, Equation 2 can be defined as:

x = γ(t)TH (3)

where γ(t) = [p1(t), p2(t), . . . , p7(t)] represents which of the 7 physical activ-
ities is allocated to t, where pk(.) is either 0 or 1 and:

p1(t) + p2(t) + · · ·+ p7(t) = 1

H = [h1, h2, . . . , h7] also indicates the most probable heart rate value in
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Figure 5: Weekly average of maternal heart rate values of a pregnant woman in different
activities from week 14 to postpartum week 4.

each state. This vector is uniquely defined for each individual according to
non-missing data of previous weeks of monitoring.

3.1.3. Lifestyle Data

Similarity in heart rate patterns due to repetitive habits (i.e., user’s
lifestyle) is another resource to impute missing values. These patterns could
be manually added by users (feedback) or automatically extracted from the
data. This is significant in the monitoring particularly when the context
data is incomplete or not fine-grained enough. For example, we access to the
physical activity of the pregnant women, but no information is available re-
garding eating and drinking habits (e.g., time and duration of meals), which
affect user’s heart rates [72]. With this intention, the missing value can be
obtained via a function as:

x = fl(φ) (4)

where φ holds history data and/or feedback.
In our case, non-missing heart rate values of the current time window

are compared with previous time windows, and the window with the most
similar heart rate pattern is extracted. Then, the imputation is fulfilled using
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heart rates of the most similar window. In this regard, Equation 4 can be
determined as:

x = xk (5)

where xk is the corresponding heart rate value of the window k, which has
the least distance to the current window. Hence, k is specified via:

argmin
k∈φ

dist(k)

which dist(.) is a distance function defined as:

dist(k) =
n∑

i=1

||xi0 − xik||2

where n is the window length, and xi0 and xik are available heart rate values
in the current window and window k, respectively.

Moreover, additional information can be manually collected to select the
most similar heart rate pattern. Such information includes self-reported
physical activities or events marked in user’s calender, from which similar
windows are selected to perform data imputation. For instance, the user
participates in a certain exercise course every odd day from 2 p.m. to 4 p.m.
Heart rate data of this exercise can be leveraged if the heart rate value is
missed in this activity in the future.

3.2. Analysis

The rule-based maternal health indicator is implemented, mapping the
sensor data into an abstracted decision. It repeats m times per iteration,
as m versions of the missing value are estimated in the Imputation part.
Therefore, m decisions are generated in each iteration. m equals to 3 in
our case study as the missing heart rate value is filled via the 3 imputation
methods. However, the decisions might be diverse due to inaccuracy and
uncertainty in the imputation methods.

The rule-based indicator generates a warning score between 0 and 3 for
each heart rate value. Similar to a typical obstetric Early Warning Score
(EWS) [23, 24], different ranges are defined for the heart rate value to obtain
the score. The ranges are defined for each pregnant woman according to per-
sonalized data such as baseline heart rate at the beginning of the monitoring.
In addition, a set of guidelines and rules are utilized [14, 20, 21, 16, 17, 22].
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For examples, heart rate should not exceed 140 (beats/minute) while the
mother engages moderate and vigorous activities; it should not be less than
40 (beats/minute) during sleep and sedentary time; and heart rate likely rises
20% till the end of pregnancy. Note that this function is assumed to indicate
the functionality of the proposed approach, and it can be replaced with other
classifiers.

3.3. Personalized Pooling

A pooling method is performed to integrate the m decisions into a final
decision (i.e., dfinal). An arithmetic mean is a conventional method in this
case. However, it might be inappropriate as the decisions with different errors
are treated equally, even if some decisions hold high error rates.

We propose a personalized pooling method to alleviate the impact of the
errors in the final decision. In this regard, a weighted arithmetic mean is
exploited to pool the decisions, in which the weights become personalized
throughout the monitoring leveraging user’s data. In each iteration, the
weights are determined and selected according to the states of the user and
monitoring system. The final decision is obtained via a dot product of the
vectors of the m decisions and the personalized weights that satisfies:

w1 + w2 + · · ·+ wm = 1

When the primary data is available, the weights are calculated by the
squared error between actual and estimated values. However, as conditions
of the user and system are highly dynamic (e.g., state of the user and size
of the missing window), general weights are insufficient, minimizing the sum
of squared errors over all time points. In this regard, we define different
states for each imputation and calculate the sum of squared errors over the
corresponding points in each state. In the following, we outline how states
and weights are defined in our case study with the 3 imputation methods.

The first imputation is related to the short-term data. The error of the
imputation highly depends on the portion of missing data, as indicated in
Figure 3. Therefore, the weights should be determined for different missing
window sizes. A missing window refers to the interval between the current
point and the last point that heart rate data was recorded. When the missing
window size is i, the last i value(s) of heart rate data including current heart
rate and previous values are removed; the current heart rate is imputed;
and the weight is determined using the errors in this iteration and previous
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Figure 6: The personalized pooling when heart rate is available (weights determination).

iterations. This process is repeated n1 times with different sizes of missing
window, where the maximum missing window size is n1. In consequence,
a set of weights (i.e., W1 = {w1,1, ..., wn1,1}) is obtained for the n1 missing
windows.

The second imputation is associated with the context data. The un-
certainty of the heart rate is significant in this imputation as the most
probable heart rate is selected (see Section 3.1.2). This uncertainty (e.g.,
variance) are diverse in different physical activities. For instance, in most
cases, the variance of deep sleep heart rate is considerably less than the
variance of heart rates of vigorous activity. Therefore, the squared errors
should be severally calculated for each physical activity to obtain weights—
i.e., W2 = {w1,2, ..., wn2,2} where n2 is the number of physical activities. As
there are 7 physical activities, n2 is 7 in this monitoring.

The third imputation is related to the lifestyle data. Meta-data including
the weekly schedule of the user is considered to define different time states
(i.e., n3 states). For example, the weight for weekend-days (as a time state)
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is defined, considering the squared error of the time points during weekend
days. In this regard, a set of weights (i.e., W3 = {w1,3, ..., wn3,3}) is calculated
for the n3 time states in the monitoring.

The three weights vectors, W1, W2 and W3, are dynamically updated
in iterations that the heart rate data is available. The dynamic weights
determination of the personalized pooling method when the heart rate is
available is illustrated in Figure 6.

In contrast, in the iterations with the missing heart rate, the heart rate is
imputed by the 3 imputation methods, and the health scores (i.e., d1, d2 and
d3) are calculated. The corresponding weights (i.e., wi1,1, wi2,2 and wi3,3) are
selected from the three weights vectors according to the current missing data
size, physical activity and time state, respectively (see Figure 7). Finally,
the health decisions are pooled using the selected weights as:

dfinal = wi1,1.d1 + wi2,2.d2 + wi3,3.d3 (6)

Algorithm 1 also indicates the function of the personalized pooling when the
heart rate is available and is missing.

4. Demonstration and Evaluation

In this section, we present our case study on maternal health, where 20
pregnant women have been remotely monitored for seven months. First, we
outline the study design and recruitment in this monitoring. Next, we rep-
resent the setup, data collection and data analysis in our IoT-based system.
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Algorithm 1 The function of the personalized pooling throughout the mon-
itoring.

1: Initialize:
n1 ← maximum missing window size
n2 ← number of physical activities
n3 ← number of time states
{w1,1, ..., wn1,1}, {w1,2, ..., wn2,2}, {w1,3, ..., wn3,3}

2: while monitoring is Active do
3: xtrue ← data from the heart rate sensor
4: if xtrue 6= NULL then
5: dfinal ← HealthIndicator(xtrue)
6: for i1 = 1 to n1 do
7: remove last i1 value(s) of heart rate data
8: x1 ← fs(t, β)
9: ei1,1 ← squared error of the corresponding heart rate data

10: wi1,1 ← 1−Normalize(ei1,1)
11: end for
12: i2 ← determine the current physical activity
13: x2 ← fc(t, γ)
14: ei2,2 ← squared error of the corresponding heart rate data
15: wi2,2 ← 1−Normalize(ei2,2)
16: i3 ← determine the current time state
17: x3 ← fl(t, φ)
18: ei3,3 ← squared error of the corresponding heart rate data
19: wi3,3 ← 1−Normalize(ei3,3)
20: else
21: x1 ← fs(t, β), x2 ← fc(t, γ), x3 ← fl(t, φ)
22: d1, d2, d3 ← HealthIndicator(x1, x2, x3)
23: i1 ← determine the current missing window size
24: i2 ← determine the current physical activity
25: i3 ← determine the current time state
26: Normalize(wi1,1, wi2,2, wi3,3)
27: dfinal = wi1,1.d1 + wi2,2.d2 + wi3,3.d3
28: end if
29: end while

Moreover, the proposed approach is tested and evaluated by comparing the
approach with conventional methods. Finally, strengths and weaknesses of
the approach are discussed.

4.1. Study Design

The monitoring was conducted on primiparous pregnant women who vis-
ited one of two maternity outpatient clinics in Southern Finland between
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Table 1: Background information of the twenty selected participants.

Statement Type Value

Age at pregnancy (years) – 25.7± 4.96

Gestational age at recruitment (weeks) – 12± 2.1

Pre-pregnancy Body Mass Index – 25.0± 6.45

Quantity of pre-pregnancy
physical activity in week

once or less 3 women
sometimes 5 women
almost daily 12 women

Quality of pre-pregnancy
physical activity in week

light 8 women
moderate 11 women
vigorous 1 woman

Employment Status
at work 13 women
student 5 women
unemployed 2 women

Smoking Status
pre-pregnancy 7 women
in-pregnancy 5 women

May and September 2016. Pregnant women in Finland are provided a free of
charge ultrasound examination at the end of the first trimester. The pregnant
women were recruited in this appointment considering the following criteria.

1. The participant expected her first child.

2. The participant was at least 18 years old.

3. The pregnancy was singleton.

4. The pregnancy was less than 15 gestational weeks

5. The participant understood Finnish or English

6. The participant owned a PC, tablet or Smartphone to be able to syn-
chronize the smart wristband

Consequently, twenty participants were selected as the sample size was ap-
propriate for a pilot study [73].

After the ultrasound examination, the eligible women were met face-to-
face once and after signing the informed consent, the device and instructions
were provided. Background information was collected via a questionnaire.
Some background information is represented in Table 1. Afterward, Garmin
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Figure 8: A 24-hours sample of (non-missing) data collected from one pregnant women in
gestational week 34 (day 244th). (a), (b), (c) and (d) indicate the variables collected via
the wristband; and (e) and (f) are the physical activities and health decisions calculated
in the cloud server.

Vivosmart® HR [74] as the selected wristband for this study along with
instructions has been delivered to the pregnant women. During the follow-
up, the participants were interviewed via telephone.

4.2. Setup

An IoT-based system was tailored for this study, determining the Garmin
wristband as the sensor device, by which physical activity and heart data were
collected. The Garmin wristband is a small and light water-proof band with
considerable battery life [74], so it can be an appropriate choice considering
the feasibility of the monitoring. More details regarding the feasibility of this
study can be found in [75].
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The wristband includes one built-in optical-based sensor to record a
photoplethysmogram (PPG) signal enabling real-time heart rate measure-
ments [76] Moreover, it consists of an inertial measurement unit (IMU) to
track steps, stair ascending/descending and hand movements. In our setup,
the data collection rate was set as 1 sample per 15 minutes, so a new data
record was available in every 15 minutes. A 24-hours sample of such data
with non-missing values collected from one pregnant woman is illustrated in
Figure 8 (a,b,c,d).

The pregnant women were asked to periodically send the data to re-
mote servers through a gateway device, which was a smartphone or a PC.
Most of the data analysis was performed in the cloud servers, amalgamating
sensor data to extract new information such as health status and physical
activity [77]. For the data analysis, we used a Linode virtual private server
(VPS) [78] with two 2.50GHz Intel Xeon CPU (E5-2680 v3), 4GB memory
and SSD storage drive. Figure 8 (e,f) shows such information abstracted
from the data in Figure 8 (a,b,c,d). As indicated, the health score was 0
when the subject was sleeping. However, it varied between 0 to 2 while she
engaged in different physical activities.

The proposed decision-making approach was implemented with a Python
service in the cloud server to estimate health status of 15 pregnant women.
Five of the pregnant women were dropped out of this analysis because the
missing data was too large (i.e., no data for at least 50% of the monitoring
days). A view of heart rate with missing values and estimated health scores
for one day of monitoring is depicted in Figure 9. The heart rate values are
missed in two time windows with lengths of 75 and 180 minutes. The blue
dots in Figure 9 (b) are the scores when the heart rates are available; and the
red dots indicate estimated health scores while the heart rates are missing.
Note that, this approach is not restricted to the cloud layer settings and can
be pushed to the fog layer to enable local decision making.

In addition, manual data collection was implemented to enrich the afore-
mentioned data collection and decision making. In this regard, semi-structured
phone interviews were fulfilled once or twice in a month. Such interviews con-
tained a set of questions to indicate the self-report physical activity on a scale
1 to 5 and certain events that considerably influence their sleep or activities.
Pregnancy-related data including blood pressure, weight gain and oral glu-
cose test were also obtained from the maternity card and hospital patient
records.
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Figure 9: A 24-hours sample of heart rates with missing values and estimated health
scores. The blue dots represent the health scores obtained from the available heart rates
while the red dots indicate the estimated scores when heart rates are missing.

4.3. Ethics

The monitoring was performed in accordance with the code of ethics of
the World Medical Association (Declaration of Helsinki) for experiments in-
volving humans. Moreover, it was approved by the joint ethics committee of
the hospital district of Southwest Finland (35/1801/2016) and Turku Univer-
sity Hospital (TYKS). In addition, the permission to employ Garmin Vivos-
mart® HR (Garmin Ltd, Schaffhausen, Switzerland) in this monitoring was
acquired from the manufacturer Garmin Ltd.

4.4. Accuracy Assessment

We validate the performance of our personalized decision-making ap-
proach in terms of accuracy. In this regard, a cross-validation technique
is used to discard a window of the heart rate and estimate the health score.
The estimated score is compared with the actual score obtained via the actual
heart rate value.

To evaluate the proposed approach, other existing methods are selected
to impute missing heart rate values and extract the health scores. First, the
KNN as a single imputation method is utilized, where the missing heart rate
is estimated from the k preceding non-missing values by weights proportional
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to the inverse of the distance to the missing value. Second, the autoregres-
sive model is used leveraging preceding neighbors. Third, the MLE as a
model-based method is used, in which the missing value is extrapolated via
a Sigmoid function. Fourth, the SVM (with an RBF kernel) as a machine
learning-based method is tailored, imputing the missing value from the vari-
ation of the history of data (i.e., last two-weeks data). The methods are
implemented using SciPy [79] and Scikit-learn [80] libraries in Python.

In the first evaluation, we investigate the distance (i.e., RMSE) between
the estimations and actual health scores with different windows of missing
heart rate. The RMSE values are illustrated in Figure 10 while the missing
window (i.e., x axis) varies from 15 minutes to 6 hours. As indicated, when
the missing window is small, the proposed method, autoregressive and KNN
have the lowest RMSE; and the RMSE values of the SVM and logistic MLE
methods are higher. In contrast, in large missing windows, the RMSE values
of the autoregressive and logistic MLE and KNN methods are significantly
high, whereas the RMSE of the proposed method is the lowest.

In addition, we evaluate the performance of the methods by determining
the C-index (i.e., concordance index) [81] of estimations in different missing
windows. C-index represents how well health scores are estimated considering
the correct rank/order of outcomes. In this experiment, the scores as well
the outcomes are in ascending order, varying from 0, as the normal health
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Figure 10: RMSE values of the health scores estimations with different methods while the
missing window varies from 15 minutes to 6 hours.
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status, to 3, as the highest health deterioration. The C-index is defined as:

1

|{(i, j)|yi > yj}|
∑

yi>yj

H(ŷi − ŷj)

where yi and ŷi indicate the actual and estimated decisions (i.e. scores),
respectively; and H(.) is the Heaviside step function.

For 15 pregnant women monitoring data, the estimation process is ran-
domly repeated in 2040 iterations, in which the health scores are obtained
considering different missing windows. Eventually, the C-index values of
the 5 methods are determined. As illustrated in Figure 11, the proposed
method’s C-index is approximately 0.82 when the missing window is small,
and it decreases to 0.7 when the missing window is considerably large. On
the contrary, C-index of SVM and logistic MLE are less than the proposed
method’s C-index in all cases; and the C-index of the autoregressive and
KNN methods drop to less than 0.55 while the missing window is large.

4.5. Discussion

The proposed approach results in more reliable and more accurate esti-
mates compared with the conventional methods. As aforementioned, deletion
methods are unfit for real-time decision making. Moreover, traditional impu-
tation methods, model-based methods and machine learning based methods
underestimate variability of the missing heart rate values, delivering esti-
mates with high error rates. This is in accord with our findings in the previ-
ous section. In contrast, the proposed approach considers this variability in
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Figure 11: C-index of the estimations with different methods while the missing window
varies from 15 minutes to 6 hours.
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data using context information, minimizing the bias of estimates. This en-
hancement is particularly significant when there is a high correlation between
context and the missing heart rate.

One of the major concern of using auxiliary information is a low corre-
lation between context information and the missing data. As a result, the
estimates could be biased, reducing the precision of the output [61]. The
proposed approach mitigates such a problem in decision makings through
the personalized pooling method. In this regard, a small value is allocated
to the related weight when the correlation is insignificant.

Another issue in multi-sensor health IoT systems is the occurrence of
missingness in more than one variable. In such cases, the imputation of
the proposed approach is repeated n × m times, where n is the number of
missed variables and m is the number of different imputation methods for
each variable. In each imputation, one missed variable is considered as the
primary data, and other non-missed variables are the secondary data (i.e.,
auxiliary information). Next, n×m decisions are generated, and consequently
the decisions are pooled.

In addition, the proposed approach is capable of handling additions or
changes in the health monitoring, adding new imputations to the approach or
updating the existing imputations. This modular approach, first, suits IoT
systems where the context of the user might change; and various sensors are
added with respect to needs in the monitoring. Second, the approach can be
distributed into the 3 layers of IoT systems (i.e., sensor network, gateway and
cloud server) according to health application requirements. Moreover, adding
new data resources can improve the performance of the system, removing
ambiguity in the context information. This disambiguation is important
when the missingness mechanism is NMAR, and the variability of missing
data is invisible in available information.

Estimating health status with only one vital sign is the limitation of this
study, where unexpected health deterioration with no prior history cannot be
estimated when the heart rate value is missing. Therefore, the health indica-
tor in this monitoring only targets real-time health coaching and preventive
purposes, but not health deterioration detection. However, this health indi-
cator is a proof-of-concept for the proposed decision-making approach; and
inclusion of different vital signs could alleviate this problem.

As the future work of this study, we are going to extend our work, tar-
geting real-time health deterioration in pregnant women. We will use an
obstetric Early Warning Score (EWS) [24, 23] as a standard manual tool
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in clinical settings to early-detect patients’ health deterioration. This tool
will be developed for remote health monitoring through IoT-based systems
[82, 83]. In this regard, five warning scores ranging from 0 to 3 are generated
from five vital signs which are heart rate, body temperature, blood oxygen
saturation, respiration rate and blood pressure. The aggregation of these
scores represents the level of health deterioration.

5. Conclusion

Missing data is a prevalent problem among IoT-based health monitoring
systems, where data collection and data transmission may be interrupted
in long-term scenarios. This problem mostly leads to failures in decision
making and subsequently health applications. Conventional missing data
methods are inappropriate for such systems as these methods underestimate
variability of the missing values. This is important when the vital signs such
as heart rate are being missed, as heart rate variations could be consider-
ably large. In this paper, we proposed a personalized missing data resilient
decision-making approach tailoring data resources in IoT systems to enable
continuous health decision making despite missing values. This approach
exploited the Multiple Imputation method reinforced with auxiliary infor-
mation obtained via the IoT-based system. In this regard, first, the missing
values were estimated via different methods using various resources. Second,
the decision-making method was implemented, and decisions were obtained
from different estimates. Eventually, the final decision was extracted using
a personalized pooling method. We demonstrated the proposed approach
via a real human subject trial on maternity health. The accuracy of the
proposed approach was compared with existing methods. We indicated that
the proposed approach leads to more accurate decisions, especially when the
missing window is large.
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 A personalized missing data resilient decision‐making approach is proposed to continuously 

deliver health decisions despite missing data. 

 The approach is presented for a real human subject trial on maternal health, focusing on a 

real‐time health application where maternal health statues are remotely estimated. 

 Personalized models are defined and used exploiting maternal (medical) history and context 

data to impute the missing values. 

 A personalized pooling method is introduced to fuse the values and deliver health decisions 

leveraging user's data. 

 The proposed approach is evaluated in terms of accuracy of the health decisions, in 

comparison to existing missing data analysis methods. 


