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a b s t r a c t

Virtual machine (VM) packing plays an important role in improving resource utilization in cloud data
centers. Recently, memory content similarity among VM instances has been used to speed up multiple
VM migration in large clouds. Based on this, many VM packing algorithms have been proposed, which
only considered the memory capacity of physical machines (PMs) as the resource constraint. However,
in practice the results of such algorithms are not feasible, because thy may not satisfy the constraints
of multiple resources (e.g., CPU of the PMs). Besides, the granularities of memory sharing in existing
studies are very coarse, and they cannot fully leverage the benefits of memory content similarity
which mainly appears at memory page level. In this paper, we study the page-sharing-based VM
packing that considers constraints in multiple resources. Given a set of VM instances that share a
large number of common memory pages, we pack them into the minimum number of PMs, subject to
the constraints in the multiple resources on the PMs. This problem is solved in two steps. First, we pack
the maximum number of VMs into a given PM, and then propose an approximation algorithm. The
approximation ratio is better than that of the existing algorithm. Then, based on this approximation
algorithm, we propose a heuristic algorithm to solve the general problem. Experimental results show
that our heuristic algorithm outperforms existing approaches with at most 25% less required PMs and
at most 40% less memory page transferring.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has attracted much research attention in
recent years. By gathering and concentrating various kinds of
heterogeneous computing capabilities and delivering them as
services to users via Internet, cloud computing greatly improves
efficiency in application development. To meet the users’ Quality
of Service (QoS) requirements, cloud data centers (CDCs) are
usually fully provisioned or over-provisioned [1], which results
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in under utilization of resources in CDCs. For example, only 10%–
15% computing resources of about 30% cloud servers in CDCs
are utilized [2]. Most of the time, the servers are in idle state.
The under-utilization of cloud resources greatly increases the
operating cost and energy consumption of CDCs [3,4], and it is
an important and challenging issue in data centers. There are
many methods have been proposed to handle this challenge. For
instance, to improve the network energy efficiency, a linear pro-
gramming method is used to find the lowest energy consumption
route between the user and the CDC [5]. Also, GreeAODV [6]
is used to reduce the energy consumption of communication
between users(vehicles) and the CDC. A framework is presented
in [7] to consider brokerage systems, energy consumption and se-
curity in multi-cloud. E2C2 [8] is proposed to optimize the energy
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efficiency in seeking for IoT service composition in multi-cloud
environment.

Generally, virtual machine (VM) packing is the most common
way of reducing the energy consumption in CDCs. VM packing
aims at placing a set of VMs into a minimum number of physical
machines (PMs). Hence, VM packing can increase the resource
utilization ratio and in turn reduce the energy consumption [9,
10]. After the cloud system determines which VMs should be
packed into PMs, the selected VMs are migrated to the proper
destination PMs via the network [11]. The main factors that
influence the duration time of VM migration include the memory
size, the growth of dirty memory pages, and the topology of
the network [12–14]. In a typical VM migration, all the memory
pages of a VM should be transferred from the source PM to
the destination PM. Today’s VMs usually take a large amount
of physical memories to maintain the performance. For exam-
ple, a VM with Windows 7 operating system, even without any
other running applications, takes nearly 4 Gigabytes (GB) physical
memory. Thus the VM migration times are not short. Specially,
when multiple VMs are migrated at the same time, they consume
a large portion of the network bandwidth and may take a long
time to complete the data transfer.

Recently, many studies exploit memory and image content
similarity among different VMs to reduce the amount of trans-
ferred data during the VM migration/packing, aiming to shorten
the duration time as well as relieve the network bandwidth
stress [15–19]. These schemes are motivated by the observa-
tions that there are many similar, or even same memory pages,
in different VMs [15,16,20,21]. For example, in Memory Bud-
dies [15], when multiple VMs are migrated to one PM at the
same time, each distinct memory page is transferred only once,
even if that page may be used in different VMs. Memory Buddies
uses a similarity-aware VM placement algorithm: each VM is
migrated to the PM whose memory of running VMs have the
highest similarity with it. In the rest of the paper, this algorithm
referred as Greedy-Flow. Sindelar et al. [22] further defined a
content-based page sharing (CBPS) packing problem which aims
at packing the VMs into the minimum number of PMs. They
used a hierarchical tree model which approximately describes
the memory content shared among VMs. However, the use of
coarse-grained content similarity cannot fully exploit the bene-
fit of memory similarity, because research [20] has shown that
the content similarity among VMs only appears at the memory
page level. Moreover, this solution only considers memory as
the resource constraint. Rampersaud et al. [23,24] proposed two
approximation algorithms to pack the maximum number of VMs
into a given PM with the content-based page sharing. Although
they considered multiple resource constraints, the approximation
ratios of the algorithms is not good enough and the packing
problem is still unsolved.

Hence in this paper, we study the VM packing problem with
the multi-resource constraints and the CBPS among VMs. To solve
CBPS packing problem (CBPSP), we first propose an approxima-
tion algorithm to pack as many as possible VMs into a given PM
(content-based page sharing VM maximization problem, CBPSM).
Then we present a method to sort the PMs according to the capac-
ities of their available resources. Combining the approximation
algorithm with the sorting method, we give a heuristic algorithm
to minimize the total number of PMs used for hosting VMs. We
evaluate the proposed algorithm by extensive simulations and
compare the results with those of the state-of-the-art solutions.
The results show that our heuristics algorithms outperform them
with less required PMs and memory page transferring.

Our contributions are as follow:
(A) We formally define CBPS VM Maximization problem and

CBPS VM packing problem.

Table 1
Notations used in CBPS VM maximization and packing problem.
Notation Explanation

M The number of VMs
N The number of PMs
P(pmk) The number of memory pages that the PM pmk can house
L The number of kinds of resource
PRj(pmk) The available capacity of the jth resource of the PM pmk
VM The set of all VMs
VM(vmi) The set of memory pages of the ith VM
VRj(vmi) The resource demand of the jth resource of the ith VM

(B) We propose an approximation algorithm, which has better
approximation ratio than that of existing algorithms, to solve
CBPS VM Maximization problem, and then based on this we pro-
posed a heuristic algorithm to solve CBPS VM packing problem.

(C) We conduct numerical simulations, the results show that
our heuristic algorithm outperforms existing approaches with
less required PMs and memory page transferring.

The rest of this paper is organized as follows. In Section 2, we
define CBPSM and develop an approximate algorithm to solve it.
In Section 3, we define CBPSP and propose a heuristic algorithm
to solve it. In Section 4 we report the simulation results of our
algorithms and the comparisons with state-of-the-art solutions.
Section 5 introduces the related work. Section 6 concludes the
paper.

2. CBPS VM maximization problem

In this section, we first describe the CBPSM, and then propose
an approximation algorithm as the solution.

2.1. Definition of CBPSM

let us consider a CDC consists of N PMs, denoted a set PM .
The kth PM, denoted as pmk, k ∈ [1,N], has the space for P(pmk)
memory pages and can provide another L kinds of resources.
The available capacity of the jth kind of resource is denoted as
PRj(pmk), j ∈ [1, L]. There are a set, denoted as VM, of M VMs
waiting to be migrated. The set of memory pages of the ith VM
vmi is denoted as VM(vmi) (i ∈ [1,M]), and the resource demand
of vmi on the jth is denoted as VRj(vmi) (j ∈ [1, L]). The total
set of memory pages contained by all VMs in VM is denoted as
VM(VM).

In CBPSM, there is only one PM, hence we denote P(pm1) by
P and denote PRj(pmk) by PRj.

Definition 2.1 (CBPSM). The objective of CBPSM is to find a subset
T of VM that maximizes | T |, with the constraints: | VM(T ) |≤ P
and

∑
vm∈T VRj(vm) ≤ PRj for any j ∈ [1, L].

Above mentioned notations are listed in Table 1.
Since this PM is selected as the destination of any migrating

VM, it is reasonable to assume that P ≥ max{| VM(vmi) |: vmi ∈

VM} and PRj ≥ max{VRj(vm) : vm ∈ VM} for any j ∈ [1, L] in
CBPSM.

2.2. An approximation algorithm for CBPSM

We propose a greedy based approximation algorithm to solve
CBPSM. In order to house as many as possible VMs on a given PM,
we must ensure that the selected VM in each iteration requires
the minimum memory page transferring. To achieve this goal, we
firstly calculate the relative complements of the set of memory
pages that have been confirmed to be delivered. Then we select
the VM that corresponds to the smallest relative complement.
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For instance, after several iterations, it has been confirmed that
A, B, C and D are the delivered memory pages. Currently VM1,
which contains memory pages B, C, D and E, and VM2, which
contains memory pages D, E and F, are waiting to be selected. In
the current iteration, if we choose VM1, memory page E will be
sent; if we choose VM2, memory pages E and F will be delivered.
Hence VM1 is the current best choice, despite VM1 has more
memory pages than VM2, .

At the meantime, we expect that in each iteration the selected
VM requires less amount of resources than others. We adopt
the following Euclidean distance to measure the size of needed
resources and the transferred memory pages of a VM:√(

| VM(vm)/TMk
|

P
)2 +

L∑
j=1

(
VRj(vm)

PRj
)2,

where T k is the set of VMs that will be placed in the PM in the
beginning of the kth iteration, TMk is the set of memory pages of
these VMs, and vm ∈ VM \ T k.

The algorithm is presented in Algorithm 1. To improve the
approximation ratio, we select C VMs, denoted as a set VMk (k
means the kth iteration), in each iteration such that√
( VM(VMk)/TMk

P )2 +
∑

vm∈VMk
∑L

j=1(
VRj(vm)

PRj
)2 is minimum and all of

them can be hosted on the PM, as shown in line 5 of Algorithm 1.
If there is no such set of VMs, we will reduce the value of C until
some VMs or a VM can meet the conditions.

Algorithm 1 A Greedy Algorithm for CBPS VM maximization
problem
Input: PRj (j ∈ [1, L]) and P of the PM pm; the set VM of M VMs,
VM = {VMi, i ∈ [1,M]}, where VMi = (VR(vmi), VM(vmi)); C
Output: a subset T of VM
1: initialize k = 1, T = ∅, T k

= ∅, TMk
= 0, TRk

j = 0 for any
j ∈ [1, L];

2: c = C;
3: while TH_Mk > 0 ∥ TH_Rk

j > 0 for any j ∈ [1, L] do
4: while c ≥ 1 do
5: select a set of c VMs VMk

= {vm : vm ∈ VM}

such that

√
( |VM(VMk)|−TMk

P )2 +
∑

vm∈VMk

L∑
j=1

( VRj(vm)
PRj

)2 is minimum,∑
vm∈VMk

VRj(vm) + TRk
j ≤ PRj for ∀j ∈ [1, L]}, | VM(VMk) ∪

VM(T k) |≤ P;
6: if VMk

̸= ∅ then
7: break;
8: else
9: c − −;

10: end if
11: end while
12: T k

= T k
∪ {VMk

};
13: VM = VM \ {VMk

};
14: TMk

=| VM(T k) |;
15: TRk

j = TRk
j +

∑
vm∈VMk

VRj(vm) for ∀j ∈ [1, L];

16: TH_Mk
= P − TMk;

17: TH_Rk
j = PRj − TRk

j for ∀j ∈ [1, L];
18: k + +;
19: end while
20: return T = T k

In the following, we investigate the approximation ratio of the
algorithm. Let VRmin

j = min{VRj(vmi), vmi ∈ VM}, j ∈ [1, L].

Theorem 2.1. Algorithm 1 is an approximation with polynomial-
time complexity, and its approximation ratio is
1
C

· min(min(
PRj

VRmin
j

),M), j ∈ [1, L].

Proof. The time complexity of Algorithm 1 is O(L · M2) when
C = 1; the time complexity of Algorithm 1 is O(L · C2

·MC ) when
C > 1.

If VMk is empty for any c ≥ 1, there is no solution for the prob-
lem. Otherwise, if | Topt |= 1 or VM1

= ∅ for c = C , Algorithm 1
can find at least one VM to be housed. Hence |Topt |

|T |
≥ 1.

If VM1
̸= ∅ for c = C , the worst solution of Algorithm 1 is |

Topt |= M and | T |= C , there are |Topt |
|T |

≤
M
C . Hence |Topt |

|T |
∈ [1, M

C ].
Moreover, there are | T |≥ C ≥ 1 and

∑
vm∈T VM_Rj(vm) ≤

PM_Rj for any j ∈ [1, L] when VM_C is not empty.
Hence for any j ∈ [1, L] we obtain∑

vm∈Topt

VRj(vm) <| T | ·

∑
vm∈Topt

VRj(vm) ≤| T | ·PRj,

and thus∑
vm∈Topt VRj(vm)

| T |
< PRj.

We have

| Topt | ·VRmin
j (vm) ≤

∑
vm∈Topt

VRj(vm).

Since | T |≥ C , we have

| Topt |

| T |
≤

1
C

·
PRj

VRmin
j

.

Thus
| Topt |

| T |
≤

1
C

· min(
PRj

VRmin
j

), j ∈ [1, L].

If 1
C · min( PRj

VRmin
j

) < M
C , we have

| Topt |

| T |
≤

1
C

· min(
PRj

VRmin
j

) <
M
C

.

If 1
C · min( PRj

VRmin
j

) > M
C , since |Topt |

|T |
∈ [1, M

C ], we have

| Topt |

| T |
≤

M
C

<
1
C

· min(
PRj

VRmin
j

).

Finally, we have |Topt |
|T |

≤
1
C · min(min( PRj

VRmin
j

),M), j ∈ [1, L].

The time complexity of Algorithm 1 increases with C . Hence,
in general cases, C can be set no larger than 3 to avoid a high time
complexity. In the following we give a tight example of Algorithm
1. There are 8 VMs waiting to be migrated, and each VM needs
2 units of the CPU resource. The memory pages contained are
presented in Fig. 1. For example, VM1 has four memory pages
which are A, B, C and D. The PM has 8 units of available of CPU
resource and can house 4 memory pages. The optimal solution
of this instance is to choose VMs 5–8 to migrate to the PM, and
the worst case of Algorithm 1 is to randomly select a VM from
VMs 1-VM4. At this time, |Topt |

|T |
=

4
1 = 4. In the real scenario, the

numbers of memory pages of different VMs usually vary, and the
VM is randomly selected in each iteration of Algorithm 1 when
there are multiple VMs meet the condition. Hence, it is difficult
to generate the worst case for Algorithm 1.
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Fig. 1. A tight example of Algorithm 1 with C = 1.

3. CBPS VM Packing problem

We extend SAVMP to the CBPS VM packing problem (CBPSP)
and then propose a heuristic algorithm to solve it. In SAVMP,
memory is the resource constraint and the available memory of
all candidate PMs are the same. In the real scenario, however, the
situation is more complicated. The PMs host some running tasks,
and hence their amounts of available resources are different.

Given N PMs as a set PM , the kth PM pmk, k ∈ [1,N], can house
P(pmk) memory pages and provide another L kinds of resource,
and the available capacity of its jth kind of resource is PRj(pmk),
j ∈ [1, L]. Given M VMs as a set VM, the set of memory pages
of the ith VM vmi, i ∈ [1,M], is denoted as VM(vmi), and the
resource demand of the jth, j ∈ [1, L], resource of the ith VM is
VRj(vmi). The memory pages contained a set V of VMs is denoted
as a set, VM(V ).

Related notations of CBPSP are also listed in Table 1.

3.1. Definition of CBPSP

Definition 3.1 (Feasible VM Collocation Strategy). Choose a subset
S of VM and divide it into N disjoint subsets S1, S2, . . ., Sk,. . . ,
SN , k ∈ [1,N], where for any l,m ∈ [1,N] and l ̸= m there is
Sl ∩ Sm = ∅. If for any Sk there are

∑
vm∈Sk

VRj(vm) ≤ PRj(pmk)
and | VM(Sk) |≤ P(pmk). Let the set ST = {S1, S2, . . . , Sj, . . . , SN}

be a feasible VM collocation strategy, and S be the feasible VM
collocation set of this feasible VM collocation strategy.

Definition 3.2 (CBPSP). It can be assumed that there exist at least
one feasible VM collocation strategy ST = {S1, S2, . . . , Sj, . . . , SN}

derived from VM such that its feasible VM collocation set S =

VM. The objective of CBPSP is to find a feasible VM collocation
strategy TS such that | TS | is minimal.

CBPSM and CBPSP mainly exist in the VM migration systems,
such as Memory Buddies [15], which can quickly migrate VMs
between different PMs by identifying, sharing, compressing and
delivering memory pages or sub-pages.

3.2. Solving CBPSP

In CBPSP, the PMs have different capacities of various re-
sources. Hence this problem is very similar to the variable-sized
bin packing problem [25] (the bins have different sizes). To solve
the variable-sized bin packing problem, researchers prefer to use
bins in large sizes to house items [26–29]. The larger the size of a
bin, the more items it can house. If the bins with larger sizes are
selected to pack items, finally the number of used bins will be
small. Selecting the bin with the largest size (Next-Fit and using
Largest possible bins, NFL) in each iteration is the most important
principle for solving variable-sized bin packing problem [25]. By
using NFL, the approximation ratios of the algorithms [26–29] for

offline and online variable-sized bin packing problems are smaller
than 2. We also use NFL to solve CBPSP.

Based on Algorithm 1, we present a heuristic algorithm, called
H-CBPSP, for CBPSP. The number of memory pages that pmk cur-
rently can house is denoted as PM(pmk), and the set of memory
pages stored on pmk is denoted as PM_M(pmk). The capacity of
the jth resource of a PM in idle state is denoted as PRj, and the
number of memory pages that a PM in idle state can house is
denoted as PM .
Algorithm 2 H-CBPSP
Input: PM = {PMl, l ∈ [1,N]}, where PMj = (PRj(pml), j ∈

[1, L]PM_M(pml)); VT = {vti = {vmdi, d ∈ [1, | vti |]}, i ∈ [1, S]},
vmdi = (VRj(vmdi))
Output: A subset of PM , T = {pml : pml ∈ PM} and V = {Tl :

Tl is the set of VMs that will be migrated to pml}

1: sort all PMs in PM in descending order by the value of√
( PM(pml)

PM )2 +

L∑
j=1

( PRj(pml)
PRj

)2 as P_List , and denote the dth PM

in P_List as pm′

l;
2: initialize T = ∅, V = ∅;
3: for l = 1 : N do
4: for i = 1 : S do
5: vti = vti \ PM_M(pm′

l);
6: end for
7: sort VT in descending order by the value of P(vti) as VT ′,

and denote the hth VM type set in VT ′ as vt ′h;
8: compute F (vm) for ∀vm ∈ vt ′h and the mean, F ′, of all

F (vm);
9: separate vt ′h into two sets, vt1 = {vm : F (vm) ≤ F ′

} and
vt2 = {vm : F (vm) > F ′

};
10: put vt1 on pml by implementing Algorithm 1, and obtain

Tl;
11: if Tl == vt1 then
12: vt = vt2;
13: for i = 1 :| VT | do
14: put vti on pml by implementing Algorithm 1 with

C = 2, and obtain T i
l ;

15: end for

16: Tl = Tl ∪
|VT |⋃
i=1

T i
l ;

17: end if
18: V = V ∪ {Tl};
19: T = T ∪ {pm′

l};
20: delete all empty VM type sets from VT ′;
21: if VT ′

== ∅ then
22: break;
23: end if
24: end for
25: return T ,V
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Now we describe the basic idea of the heuristic algorithm.
According to NFL idea, the PMs should be sized down with the
‘‘biggest’’ in front. Hence, all light loaded PMs are sorted in the
descending order by their capacities of available resources, and
then Algorithm 1 is implemented on the PMs one by one until
all VMs are mapped to the PMs. Algorithm 1 guarantees that the
VMs can be packed as many as possible into a PM. Then we sort
the PMs based on the capacity of available CPU resource and the
number of VM memory pages that can be housed simultaneously.
This algorithm is presented in Algorithm 2.

To improve the efficiency of the algorithms, we firstly divide
the all VMs in VM according to their memory content similarities
before the algorithms launch. The VMs use the same operating
system (OS) are in the same VM type set. We assume that the
memory content similarity between any two VM type sets can
be ignored. Hence, VM is separated into several VM type sets,
and denote them as vt1, vt2, · · ·, vtS , where S is the total number
of all VM type sets. When we pack the VMs onto the PM pm, the
VM type set that has the highest memory content similarity with
PM_P(pm) is the first consideration.

Now we reduce the potential computation complexity caused
by enumerating all combinations of selecting c VMs frommultiple
VMs (for instance, the number of combinations of selecting 4 VMs
from 1000 VMs is larger than 4 billions). We compute F (vm) =√
( |VM(vm)/TMk|

PM(pml)
)2 +

∑L
j=1(

VRj(vm)
PRj(pml)

)2 for all VMs in the VM type set

and the mean of all F (vm). Then we divide the VM type set into
two subsets, vt1 and vt2. In vt1, F (vm) of the VMs are less than
or equal to the mean, and the rest is vt2. Since the VMs in vt1

use less resource than the VMs in vt2, we firstly put vt1 into the
PM by implementing Algorithm 1 and hence more VMs can be
housed. In case of that the PM still has resource to house VMs,
we use vt2 and other VM type sets to quickly fulfill it. At this
time, C is set as 2 to reduce the computation complexity. In most
cases, a PM can be fulfilled by only one VM type set.

Actually, based on the PM sorting idea of Algorithm 2, we

can easily modify
√
( PM(pml)

PM )2 +
∑L

j=1(
PRj(pml)

PRj
)2 in the first step of

Algorithm 2 to suit for any given number of resource constraints.
The time complexities of this algorithm is O ∗ (N · MC ).

4. Performance evaluation

In this section, we conduct the simulations to evaluate the
performances of H-CBPSP by comparing it to Greedy-Flow [15]
and a First Fit VM placement algorithm. Greedy-Flow is briefly
described in Section 1. In First Fit, each VM is placed in the first
suitable PM of the input PM list (without sorting). It should be
noted that the algorithm proposed by Sindelar et al. [22] cannot
completely solve SAVMP problem at the page level, and hence it
cannot be applied in the comparison.

We set that CPU and memory are the resource constraints
(L = 1) of the CDC. For a deeper investigation, we generate three
algorithms derived from H-CBPSP by changing the number of
resources used to sorting the PMs. The first one is called H-CBPSP-
CPU, which sorts the PMs only according to the CPU capacity.
The second one is called H-CBPSP-Mem, which sorts the PMs only
according to the memory capacity. The last one is called H-CBPSP-
Hybrid, which sorts the PMs according to the CPU and memory
capacities at same time.

We use two metrics to evaluate the performances: (1) the
number of used PMs and (2) the number of transferred memory
pages.

Fig. 2. Comparing with Gurobi 7.5 regarding the number of used PMs.

4.1. Experiment setup

We emulate four different CDCs. In each CDC, there are 400
PMs as the VM migration destinations and all of them are in
lightly loaded. Every PM can provide at most 20 cores CPU and
host at most 60000 memory pages. Barker et al. [20] and Jayaram
et al. [30] analyzed the similarity among memory of many VM
instances. Based on their discovery, we build 4 different VM
instance pools for the 4 aforementioned CDCs, respectively. Each
CDC contains 1500 running VM instances and each VM instance
has about 3000 (±1000) different memory page sets. There are
totally about 2 million different memory pages in each VM in-
stance pool. The VM instances are divided into 4 VM types. 500
out of 1500 VMs are randomly running on these 400 light loaded
PMs and the rest 1000 VMs (migration VM pool) are waiting to
be migrated. The demands for CPU of the VMs are three types: 1
core, 2 cores and 4 cores. The demand of CPU of a VM is randomly
assigned. We set C = 3. The simulation is implemented with
Matlab R2012a.

4.2. Evaluation of the distance from optimality

In this section, we estimate the distance from the optimality of
the three heuristic algorithms. We use Gurobi 7.5 [31] to obtain
the minimum number of used PMs, and we use Yalmip [32] to
help Gurobi 7.5 modeling in Matlab R2012a. Due to implementing
Gurobi 7.5 with Yalmip in Matlab R2012a is very time consuming,
we generate 10 datasets in small size to evaluate the algorithms.
In each dataset, there are 50 VMs and 20 PMs. Fig. 2 shows
the average used number of PMs of using the three heuristic
algorithms and Gurobi 7.5 to handle the 10 datasets, respectively.
The results of H-CBPSP-Hybrid, H-CBPSP-CPU and H-CBPSP-Mem
are about 8.7%, 22% and 25% larger than that of Gurobi 7.5,
respectively.

4.3. Evaluation scenario 1

Five types of migration requests are generated to evaluate the
performances of the algorithms: (1) 200 VMs, (2) 400 VMs, (3)
600 VMs, (4) 800 VMs and (5) 1000 VMs. For example, in migra-
tion request 1, 200 VMs are picked out from the migration VM
pool. To run the algorithms, migration requests 1–4 are randomly
selected 10 times from the migration VM pool, respectively. The
average numbers of used PMs with the algorithms for all migra-
tion requests in 4 CDCs are shown in Fig. 3(a)–(d), respectively,
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Fig. 3. The number of used PMs with different algorithms for migration requests 1–5 in 4 CDCs.

Fig. 4. The number of transferred memory pages with different algorithms for migration requests 1–5 in 4 CDCs.

and the average number of transferred VM memory pages are
shown in Fig. 4(a)–(d), respectively.

It can be seen from Fig. 3 that H-CBPSP-Hybrid always uses the
smallest numbers of PMs than other algorithms for all

migration requests. The numbers of used PM with H-CBPSP-
Hybrid are about 20% less than those of First Fit and are about 25%
less than those of Greedy-Flow. Although Greedy-Flow uses the
largest number of PMs to migrate VMs in every scenario, the gap
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between Greedy-Flow and First Fit are not significant. Hence, it
can be supposed that the similarity of memories, to some extent,
is beneficial to the VM packing problem.

It can be seen from Fig. 4 that the CDCs deliver the minimum
numbers of memory pages by using H-CBPSP-Hybrid with all
migration requests. H-CBPSP-Hybrid causes about 40% less trans-
ferred VM memory pages than that of First Fit and at least 16%
less transferred VM memory pages than that of Greedy-Flow.

The performances of H-CBPSP-CPU and H-CBPSP-Mem are
very close to that of H-CBPSP-Hybrid. Greedy-Hybrid uses the
same VM selection policy as H-CBPSP-CPU and H-CBPSP-Mem,
and hence the PM sorting policy is the reason that H-CBPSP-
Hybrid outperforms the latter two algorithms. It can be supposed
that a better VM packing policy could be beneficial to leverage
the similarity of VM memories.

According to Figs. 3 and 4, for the migration requests in the
same size, the deviations of the numbers of used PM are small,
but the numbers of transferred memory pages vary a lot. With
the different combinations of VMs, the similarity rates among the
VMs changes. The similarity among the selected VMs is higher,
and the number of transferred memory pages is lower. The se-
lection and combination of VMs have relatively less inference on
the number of used PMs.

4.4. Evaluation scenario 2

The VM migration requests are divided into 4 workload types
to further investigate the impacts of VM packing policy on lever-
aging similarity of VM memories: (1) 100 VM instances×10,
(2) 200 VM instances×5, (3) 250 VM instances×4, (4) 500 VM
instances×2. In workload type 1, for instance, firstly 100 VMs are
randomly selected from the VM pool to be migrated, and then
another 100 VMs are randomly selected from the rest 900 VMs.
The selections are repeated several rounds until all 1000 VMs are
migrated. All workload types are randomly generated from the
VM pool for 10 times.

Fig. 5(a)–(d) show the numbers of used PMs with the 5 al-
gorithms for workload types 1–4 in 4 CDCs, respectively. The
results also illustrate that (1) H-CBPSP-Hybrid uses the minimum
number of PMs to house VMs and (2) different combinations of
VMs have less impact on packing VMs.

In Fig. 6(a)–(d), the numbers of transferred memory pages
with the 5 algorithms for workload types 1–4 in 4 CDCs are
presented, respectively. H-CBPSP-Hybrid outperforms other algo-
rithms and causes at most 25% less transferred VMmemory pages
than First Fit and at most 15% less transferred VM memory pages
than Greedy-Flow.

Regarding H-CBPSP-CPU, H-CBPSP-Mem and H-CBPSP-Hybrid,
the numbers of transferred memory pages decrease as the num-
bers of VMs selected in a round increase. It can be inferred
from this phenomenon that H-CBPSP-CPU, H-CBPSP-Mem and H-
CBPSP-Hybrid highly exploit the similarity among VM memories.
If more VMs are selected in a round of a workload type, the H-
CBPSP-CPU, H-CBPSP-Mem and H-CBPSP-Hybrid can know more
information about the similarity among the VMs, and hence such
similarity is exploited more efficiently. Based on this observation,
when we decide which VMs should be migrated, the VMs that
have high similarity among their memories are chosen. Thus
when the same VM packing method is used, the group of VMs
with higher memory similarity can cause less number of transfer
memory pages.

5. Related work

The memory similarity among different VMs has been uti-
lized to design efficient VM migration system prototypes, such
as Memory Buddies [15], Shrinker [33], Live Gang Migration [18],
and IRLM [34]. To migrate a group of VMs to a PM simultaneously,
these systems deliver the common pages in different VMs or the
sub-pages among them to the target PM only once. The hash
values are computed and compared among the different memory
pages to determine the page similarity.

Live Gang Migration [18] uses re-hashing to eliminate the
dirty pages that are generated during live migration. Memory
Buddies [15] and Live Gang Migration [18] choose to compress
the data to further reduce the total size of transferred data.
Meanwhile, Memory Buddies directly reads the memory of the
VMs running on the destination PM to decrease the total size of
transferred data.

Above mentioned systems barely consider the VM packing
problem during the VM migration. VM packing is a fundamental
problem in the VM migration and server consolidation for cloud
computing. Many studies focus on the VM packing optimiza-
tion in resource utilization, power consumption, Service Level
Agreement (SLA), network and storage [35–38].

To minimize the number of PMs used for VM migration and
to reduce the size of transferred data, Sindelar et al. [22] de-
scribed two problems: sharing-aware virtual machine maximiza-
tion problem (SAVMM) and sharing-aware virtual machine pack-
ing problem (SAVMP). SAVMM considers a group of VMs that
share a number of common memory pages and a PM, with each
VM being assigned a profit value. The objective is to select a
subset of the given VMs that maximizes the summation of the
profit values, subject to the constraint that the total number
of memory pages contained in the selected VMs is no larger
than the number of memory pages that can be hosted on the
PM. In the actual study, all profit values that are assigned to
the VMs are the same, and hence SAVMM is converted into a
problem that maximizes the number of VMs in the subset. SAVMP
deals with a system consists of a group of VMs that share a
number of common memory pages and several PMs with the
same memory capacity up to P pages. The problem is to select
the minimum number of PMs that can house the migrated VMs
with the constraints that each PM can hold at most P pages.

To solve the SAVMM, Sindelar et al. [22] developed a hierarchi-
cal tree model to approximately describe the memory similarity
(a coarse-grained content similarity) among the VMs and pro-
posed a dynamic programming solution. Actually, SAVMM can be
considered as a reduced Densest k−subhypergraph problem [39].
Given a hypergraph G = (V , E) and a parameter k, the densest
k−subhypergraph problem is to find a set of k vertices with
maximum number of hyperedges in the subgraph induced by the
set. If we treat each memory page as a vertex and treat each
VM as a hyperedge, SAVMM is the Densest k−subhypergraph
problem. Based on the solution to SAVMM, Sindelar et al. [22]
further proposed an approximation algorithm to solve the SAVMP
problem.

G-SAVMM [23] solves SAVMM that only has memory as the
resource constraint. Given a PM and a group of M migrating
VMs, the approximation ratio of G-SAVMM isM . G-MSAVMM [24]
solves SAVMM that has three resource constraints. Given a PM
and a group of M migrating VMs, the available capacities of
memory, CPU and storage on the PM were Cm, Cu and C s, re-
spectively. The approximation ratio of G-MSAVMM is

√
3CmaxM ,

where Cmax = max{Cm, Cu, C s
}. Our method, which is presented

in Section 2, has a better approximation ratio than G-MSAVMM.
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Fig. 5. The number of used PMs with different algorithms for workload type 1–4 in 4 CDCs.

Fig. 6. The number of transferred memory pages with different algorithms for workload type 1–4 in 4 CDCs.

6. Conclusion

In this paper, we firstly defined CBPSM and CBPSP prob-
lem with multiple resource constraints. Then we proposed an
approximation algorithm to solve CBPSM, and the approxima-
tion ratio was better than the previous work. Based on this
approximation algorithm, we proposed a heuristics algorithm to
solve CBPSP. The simulation results showed that our heuristics
algorithm outperforms the VM placement algorithm proposed in

Memory Buddies [15] and a First Fit VM placement algorithm
regarding the number of used PMs and the number of transferred
VM memory pages. The simulation results also indicate that the
VMs with high similarity should be selected to be migrated.
Hence, a similarity-aware VM selection policy can be designed in
the future to further reduce the amount of transferred memory
pages.

Our solution for CBPSP is two-steps based. First CBPSM is
addressed, and then VMs are mapped into the PMs based on the
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method of solving CBPSM. The time complexity of our solution
is not good. We must reduce the complexity of the solution in
the future work. CBPSM has a tight relationship with the densest
k−subhypergraph problem and there has been little progress
on this NP-hard problem in recent years. Due to the hardness,
CBPSP is also hard to approximate and currently is still an open
problem. We may leverage other optimization ideas [40–43] in
graph theory and scheduling theory to conquer it. Moreover, the
heuristic algorithms that we proposed for CBPSP is offline, and
we will extend them to online to fit the dynamic of the CDCs.
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