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Abstract

Large-scale graph data is being generated every day through apy..catic 1s and services such as social
networks, Internet of Things (IoT) and mobile applications. Trc 'itional processing approaches such
as MapReduce are inefficient for processing graph data. *s. To jvercome this limitation, several
exclusive graph processing frameworks have been devei.nea oince 2010. However, despite broad
accessibility of cloud computing paradigm and its ue~*' “-=_res namely as elasticity and pay-as-
you-go pricing model, most frameworks are designed for ~igh performance computing infrastructure
(HPC). There are few graph processing systems 'na. .~ developed for cloud environments but
similar to their other counterparts, they also trv to ii. iyrove the performance by implementing new
computation or communication techniques. In th’s ~ner, for the first time, we introduce the large-
scale graph processing-as-a-service (GPae™ (F.oaS considers service level agreement (SLA)
requirements and quality of service (QoS) for p. ~Vvisioning appropriate combination of resources in
order to minimize the monetary cost of th~ nperation. It also reduces the execution time compared to
other graph processing frameworks “dch as Giraph up to 10-15%. We show that our service
significantly reduces the monetary cnst L,” mc.e than 40% compared to Giraph or other frameworks
such as PowerGraph.

Keywords: Graph processi~_* cloud computing; quality of service; resource provisioning
1. Introduction

Today data is an asset ¢ oeir 4 able to collect, store, analyze, protect and use this big data provides
companies with crit’_.l aav. tages. Every second huge amount of data is being created by various
applications such i s sociar networks, Internet of things (1oT), mobile Apps, bloggers, and even smart
web robots that are _~in- artificial intelligent (Al) to produce news. According to [1], during each
minute at 207 7, 3.3 million posts were put on Facebook, 3.8 million queries were searched on
Google search ngine 500 hours of new videos were uploaded on YouTube and 448.800 tweets were
shared on ™ -“*er. These numbers are almost doubled compared to the amount of content was made
per minute 1, ~J14. Moreover, a big fraction of generated data is in the form of graphs. Graph-shape
data encompas. 2s a set of vertices that are connected to each other via a set of edges. In a typical
social network website, users are vertices and friendship relationships between users form the edges
of the graph while in an loT environment, sensors are considered as vertices and the connections
between sensors shape the edges.



Increasing amount of graph data on one side and proven inefficiency of traditional processing
approaches such as MapReduce for graphs on the other side [2] resulted in the appearance of
exclusive large-scale graph processing frameworks. Pregel [3] was the first graph processing
framework that was introduced by Google in 2010. After that, extensive efforts ha* 2 been conducted
in the research community to develop new processing frameworks or optimize prev.™s ones [4].
However, most existing works have implemented on high performanc. amputing (HPC)
environments where the number of resources are considered to be unlimited. ~ t.ers do not have to
deal with other complicated scenarios such as lack of sufficient computing 1. aurce, limited storage
space, competitions in order to obtain resources, time limitations, cor. ‘mita..ons, etc. that are
possible on distributed environments such as clouds. Based on thes - as’ ump.dons, most current
works are concentrating on improving different components of the <vstei,. namely as partitioning,
computing, communication, and 1/O.

Unlike HPC, a cloud environment is much more complex in “..ms u: resource provisioning and
scheduling [5]. Nevertheless, HPC is not available for everyon ar. m: 1y small/medium companies
do not have the resources (budget, professionals, etc.) to -'vn &= preserve such infrastructure.
Hence, researchers have started investigating cloud-based deployn.»nts recently. Cloud computing is
a paradigm of computing that has changed software, .>rdw.re and datacentres design and
implementation. It overcomes restrictions of traditional pre>tems in computing by enabling some
novel technological and economical solutions name:, as scalability, elasticity and pay-as-you-go
models which make service providers free from nrevious challenges to deliver services to their
customers. Cloud computing presents computing as ~ v.ility that users access various services based
on their requirements without paying attention t. >aw . e service is delivered or where it is hosted. It
brings many advantages for both service provide: ~ ai.d service consumers. For example, providers
can virtually locate their services at the sn.-tes. w.stance to their users and decrease latency of
delivering their services, which was a problem 1. traditional computing methods [6]. Because of
these benefits, cloud computing has 7,ut «.‘racted many attentions in recent years. Among the
limitations that make many current gi. ~h proc 2ssing frameworks not to be suitable for deployment
in a cloud environment are: 1) they “.re not «..e to utilize scalability and elasticity capability of cloud
environments, 2) they do not cons der .nor :tary cost (processing cost) as a crucial element in cloud
computing, 3) they are not desir.ied tu :~'.e advantage of the heterogeneity of cloud resources which
can affect the performance of .ne stem, 4) they cannot work efficiently in a dynamic environment
as clouds where for example ~~twork rnetrics are changing constantly.

To choose an appropriafe s~ ice in a cloud environment, the client investigates some factors that
can affect his/her proc .ssir3 requirements. Factors such as processing deadlines, available budget
and costs, resource acu. "< 0ilif /, etc. are usually taken into consideration for service selection. From
there, both the serv’ e proviuzr and the customer negotiate on a service level agreement (SLA) [7] by
which the quality « f servic : (QoS) will be guaranteed. SLA also determines the conditions of service
violation, whose vesp.~Z.oility is to respond and how they can be avoided. An important step is to
constantly mcitor ai. 1 evaluate the quality of service against pre-defined factors to ensure that the
expected level  * aua'.ty is provided.

On one hanu ¢ _cording to DB-Engines [8], a database industry observer, graph databases’ utilization
has been incruased dramatically since 2013 and it has surpassed other database models in all
popularity rankings ever since. On the other hand, increasing growth in graph data which in turn
results in raising processing demands, and the popularity of cloud computing, led to cloud-based
design of graph processing frameworks in recent years. However, although few graph processing
frameworks such as iGiraph [9] are developed specifically to take advantage of cloud computing



features, they do not support quality of service that is provided by these systems on cloud. Another
issue is that current frameworks typically receive “one” large-scale graph dataset as input and return
the output after completing the processing. Nevertheless, different users have different priorities
while using a system, and when it comes to cloud environments, a framework -nould be able to
handle multiple requests. Several research gaps and open challenges incfudn.. lack of a
comprehensive cloud-based graph processing systems are discussed in [4] [17; "1]. Therefore, in
this paper we consider large-scale graph processing, “as a service” on clo.™ V,e used iGiraph to
deploy the architecture of our graph processing service on it. The new app. ~ach . 2vides a service
that like any other services on the cloud, monitors and maintains the qu#’..,” of sc.vice based on the
users’ requirements and the submitted service level agreement (SLA) w iile “ne user does not need to
know the details of service implementation to be able to work with it Ou. =ervice also makes sure
that at any given time during execution, an optimized amount »f resc ‘rces are provisioned to
minimize the monetary cost of processing [12]. To the best of our : ~owle .ge, this work is the first
implementation of a large-scale graph processing framewor'« In *~hich we go beyond simply
processing a graph to considering it as a service that can be uset. =, mu' .iple customers on the cloud.

The key contributions of this work are:

e A novel service-based architecture for processing 'arge-scale graphs on cloud to monitor
and maintain the quality of service

e A new multi-handling mechanism for multi-grapn rocessing requests

e A new dynamic auto-scaling algorithm ti.°t f.aautes scale up and down according to the
characteristics of different arriving wor 'nads “nd agreements

e A new dynamic repartitioning approach v mw.’ned with a new mapping strategy to improve
the resource usability and performai..»

The system that we have developed in thi~ work can be used in providing many services such as: 1)
finding shortest paths between two o7 more | 2sitions in a geographical positioning system (GPS)
where places are the vertices of a la~ge-s.~'e yraph and roads are the edges of the graph, 2) finding
relevant products by a recommenc itio”. alporithm to suggest to customers (products and customers
are the vertices of the graph and reiw.” ans’iips are the edges), and 3) discovering various patterns in
graphs and extracting knowled-,. using pattern matching algorithms, and so on.

The rest of the paper is 0"ya ized as follows: Section 2 is providing the related work study by
investigating existing rec arc’c works about large-scale graph processing frameworks and the
opportunities for them on clou™ environments. Section 3 explains in detail the architecture and
workflow of our prrosed sriution for enabling a service-based graph processing. Section 4
describes the novel Mman..~ ,calable resource provisioning algorithm by which appropriate amount
of resources will ' e prov.led for every operation based on their requirements. Section 5 provides
performance evalua.*on ar Jd Section 6 concludes the paper and identifies directions for future work.

2. Related V 'ork

This sectic 1 u.. ~'=ses various graph processing frameworks and attempts to provide compatibility
with cloud er. «ronments and challenges.

2.1 Different Graph Processing Frameworks

Since 2010, when Google introduced its graph processing framework called Pregel [3], many
research works have been conducted to exclusively improve processing of graph data structures.



Some graph processing systems such as GraphChi [13], TurboGraph [14], X-Stream [15] and Grace
[16] were developed to enable processing based on single-server architecture to operate in-memory.
Although, these systems are fast and they do not need to be worried about the communication
difficulties between different nodes as their distributed counterparts, they have othr restrictions such
as limited amount of memory and computing capacity that make them ir.effic,.~t for more
complicated scenarios when the graph is larger than their capacity. On the r aw - side, distributed
graph processing frameworks such as Mizan [17], PowerGraph [18], Giraph>. "9, Trinity [20], etc.
are designed to overcome these issues. However, there are other ci.o'lenye~ in distributed
environments such as distributed memory, communication, distributed .. “cessi.g and so on that
make developing such systems more complex [4]. Many of these chal’ :\nge , have been investigated
in various research works and different solutions have been proposed tn aau. ~ss them. A summary of
most related works along with their notable features are provided i  Table 1 and explained in detail
in this section.

Tablel. Comparison of the most related woi <s * . the literature

System Architecture Implemented Partitioning Jasouren- Scalability QoS-aware
Environment Method aw. "2

Pregel [3] Distributed HPC Static i No No No
Giraph Distributed HPC Static ' NI- No No
PowerGraph Distributed HPC Static ’ No No No
[18] .
GPS [21] Distributed HPC Dynamic ' No No No
Pregel.Net Distributed Cloud Dyne~—ic | No No No
[22]
Surfer [23] Distributed Cloud D namic No No No
iGiraph [9] Distributed Cloud D) . Nic Yes Only Scale-in No
Our work - Distributed Cloud Dyne mic Yes Scale-in/out Yes
GPaaS

2.2 Challenges with Cloud-based Fra newo <s

One of the less studied areas for 7,raph p. ~.essing frameworks is cloud environments. Although
cloud computing is providing inte 2sti’.g fe itures namely as scalability, elasticity and pay-as-you-go
billing model by which large- cale ..-~.essing can be accessible for everyone, the majority of
research works are conductec o1, high-performance computing (HPC) clusters where they assume
that the number of resources ~~= unlimited, resources are always available and there is no need to pay
to use the them. The probl .m ic that owning HPC infrastructure to deploy such computations is very
costly and many small a21d ni.Yium companies or individuals cannot afford it [12]. Another issue is
that because HPC-base . fr7.newrorks do not need to consider the aforementioned cloud features, they
cannot take advantages . the’. benefits. Even few graph processing frameworks such as Surfer [23]
and Pregel.Net [2".| that are developed to be used on clouds are not investigating scalability or
pricing models. In.*ead, th :se systems are trying to reduce the cost of processing by providing faster
execution so th-.. (ney can release the resources quicker. For example, Surfer is offering a bandwidth-
aware graph 1 artitions 1g algorithm that places partitions on VMs according to the VMs’ bandwidth
and Pregel.Net .. ~ uluating the impact of Bulk Synchronous Parallel (BSP) model [24] on graph
processing 'sin  ...icrosoft Azure public clod.

In addition to cttempts to improve the performance of processing by ameliorating the computing
operation, a system such as iGiraph [9] is also proposing strategies to take advantage of scalability
feature of clouds in order to decrease the dollar cost. iGiraph is a Pregel-like graph processing




framework that is developed based on popular Giraph?. iGiraph is also employing BSP model while
it is implemented on top of Hadoop? and is using its distributed file system (HDFS). Since cost is a
main element for utilizing cloud infrastructure, iGiraph came up with the idea of reducing the
number of resources dynamically during the processing rather than using the same amount of
resources for the entire operation. It introduced a dynamic repartitioning algc.ithn, *hat is being
applied to the computation at the end of each iteration according to the type o1 “pplication that is
being used. iGiraph categorizes graph applications into two major categc.‘es .ncluding 1) non-
convergent, 2) convergent. When graph data is being processed by a coin..~rger.. application, the
vertices that their status has changed to inactive will be eliminated fror « = me..iory at the end of
every superstep. Therefore, the rest of the graph with active vertices mi t F 2 fiwed into less number
of VMs and spare VMs can be terminated. For non-convergent applicatic, ~ in which the status of
vertices is always active during the operation, utilizing high-dec ree ve. ‘ices concept assists the
computation to be completed quicker while reducing the communica.’an co.c.

2.3 Specific Cloud Features

Scalability and monetary costs have been investigated separate:, in few other research works. For
example, Pundir et al. [25] have developed a dynamic reg ~titior ng technique based on LFGraph
framework [26] in which, similar to iGiraph, they aimea  enable scale out/in by minimizing the
network overhead and migrating vertices between r ......... n another work, Li et al. [27] have
investigated monetary cost of large-scale distributed gra." processing on Amazon cloud. Graphic
processing units (GPUs) have been also utilized .0 st ... works such as [28], where authors are
improving the performance of the system by di-*ribu. 1g the computation among GPUs to boost the
computation speed while others such as [29) ai. evaluating the performance of single-node
frameworks on cloud environments.

Despite the specific development of cloud-hased graph processing frameworks, they have never been
considered to provide processing as a ser ‘ice on cloud infrastructure. This even make the
implementation of graph processing sys.>ms F arder because there will be new parameters that need
to be taken into consideration fo' de'ivering an acceptable service [30]. Parameters namely as
response time, throughput, cost, ew. ~.e u” yally negotiated in SLA between the customer and cloud
provider to ensure the quality ¢ the provided service. According to Ardagna et al. [31], “Quality of
service (QoS) is the problem of an. ~ating resources to the application to guarantee a service level
along dimensions such as er. ywymance, availability and reliability”. QoS in cloud computing has
been investigated well i1, m7 .1y research works and various techniques have been proposed to
monitor and maintain t'.e ouan.,” of the service in different platforms [32] [33] [34]. However, in
order to addressing C 'S " nall".nges in the context of large-scale graph processing, every solution
needs to meet speci*~ rey.* ements due to the inherent characteristics of highly connected graph
data. In this paper we are providing a graph processing as a service framework based on our latest
version of iGiraph ~at a~ peared in [35]. This service enables multiple users to submit their graph
processing rer dests 11 the system, while the system considers their preferred QoS parameters and
provides the b. st com sination of resources to meet the pre-defined requirements. Table 1 shows the
compariso~ ~f the nost related works.

! https://giraph.apache.org/
2 https://hadoop.apache.org/



3. Overview of the Proposed Solution

Figure 1 and 2 show the workflow and architecture of our proposed solution respectively. The
system contains seven different modules that are depicted by seven different colou’ s. These modules
include: 1) Users, 2) Repositories, 3) Priority queue, 4) Monitoring, 5) Managem .nt, 2\ Partitioning,
and 7) Computation. Each module comprises a couple of components ar. ‘s responsible for
accomplishing different function while it has input from/output to other pr ts c. the system. Our
proposed solution: 1) enables multiple users to apply their jobs at the scme u.me for processing
(unlike all other existing frameworks that only accept one job at a time). ™ ena.'es users to submit
their QoS requirement for each job (none of existing systems can ro sr,, ) introduces a new
complex workflow to handle intertwined requests, 4) utilizes the heteroy "eity of cloud resources
with graph algorithm characteristics to reduce the monetary cost of proces-ing, 5) considers various
important metrics to adjust dynamic repartitioning in order to meet oS rer direments, 6) can handle
multiple scenarios of different job requirements. Here, we expl . eacn module and its components

in detail.

QoS source
Requirements

I Repository \. “ository

Priority Analyser £———

4 In.

e

@ Workload \L |
Dynamic | | | ke urce Network KPI
“ } Scheduler " -mitoring Aggregator
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@ Workload || Makeg

QoS QoS Monitor

Requirements

Workload Queue

Dynamic
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Distributor

P N
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Figure 1. The workflow of the proposed solution
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Figure 2. The components that we added to [36] are shown in dotted rectangles



3.1 Users

Users provide the input to the system. Each user has to enter two objects into the framework: 1) a
large-scale workload or dataset that contains the graph data, and 2) a list of QoS equirements that
are derived from the negotiated SLA between customer and service provider I, *his paper, we
discuss two factors for QoS and develop algorithms to manage these factors: a* "-''dget and price, b)
processing time and deadline. Cloud computing features enable us to supp! / su’/icient amount of
resources to manage various situations. Cloud providers usually provide a ~roau “ange of resources
with various characteristics that can be mixed to deal with more comrlicawe.' requirements and
scenarios. For example, if a user has low budget to spend, but he has n', de7 ... ~= for his processing
request to be completed, cheaper virtual machines (VMSs) can be assigneu * ' his request. Instead, if a
user has strict deadline but no budget restriction, more powerful VV s can he aedicated to his request
for meeting the deadline properly. In order to provide the user with ¢ oriorit zation mechanism which
helps him to demonstrate his preferences over each QoS requirer...it, twu priority statuses have been
defined: a) Urgent, b) Normal. Urgent refers to the immediacy of . ret uest execution which in turn
mentions the execution time. Meanwhile, requests with No.™al r+*,rity compete over low price.
Therefore, the user defines the priority of his job by providing . is preferred priority status while
submitting his request to the system.

3.2 Repositories

There are two main repositories in the system. Q@ . .:>~"irements repository includes a set of pre-
defined quality conditions and constrains namely & execution time, execution cost, availability,
throughput, energy, reliability, etc. In this paper, v.~ cunsider two important QoS factors including
execution time and execution cost. Resourcr infori.ation repository contains the information about
all the available resources in the resource pooi. ~or Instance, for a typical VM, information such as
number of cores, memory capacity, usane cost, networks speed, etc. are stored in the repository.
Having this information helps the systr.n to n ake decision about which resources and how they can
be mixed to meet the quality of servire \..™Me a .d cost) properly for a specific request.

3.3 Priority Queue

This module comprises two co .., "nents. As mentioned above, each workload will be submitted with
a set of QoS requirements and a prior..y status. The whole submission is called a Job in this system.
All jobs will be stored in * 1e v orkload queue where priority analyser analyses the priority of each
job and reorders them to be  ocessed according to their priority compared to other jobs. Jobs with
urgent priority are time con’ trained with deadline and usually need to be processed before other jobs.
So, the first step is to [~ orit' _e urgent jobs over normal ones. Next step is to find the execution
priority among urg” .. Jobs suice there might be more than one urgent job in the queue. In order to do
so, a simple versi. n of K apsack algorithm is employed by which urgent jobs will be prioritized
based on their »~qunc. ¢xecution time and deadline. Moreover, jobs with normal priority will be
processed bas d on a ‘rstin first out (FIFO) strategy. The prioritization procedure occurs every time
a new job is su. mitte , to the system. However, this might keep some jobs with normal priority in the
queue foru e . ~~"use urgent jobs are being submitted constantly. To avoid this, we assign each
normal job w.*.n a timestamp based on its required execution time (deadline). When the timestamp
run out, the job will be considered and treated as an urgent job. This makes sure that no job will be
trapped in the queue forever. Algorithm 1 demonstrates the described prioritization mechanism.



Algorithm 1: Prioritization algorithm
Queue = receivelnput (Job)
For the entire Queue do
If (getPriority(Job i) == NORMAL) and (getPriority(Job i+1) == URGENT) then
swap(Job i, Job i+1)
If (getPriority(Job i) == URGENT) and (getPriority(Job i+1) == URGL:NT) v =n
knapsackJob(Job i, Job i+1)
For any suspendedJob(Job i) in the Queue do
If (priorityTime(Job i) == (Job i).Deadline) then
setPriority(Job i) = URGENT

oo E

3.4 Monitoring Module

This module is responsible to constantly monitor the system and me asure vi rious metrics that can be
used in each processing based on its requirements. The input *~ thi. ~.udule is coming from the
computation module where the actual graph processing operati»n b .pp ns. This is because it is very
important to track every changes that might affect the proces-ing and ".se the metrics to enhance the
operation. Therefore, the output from monitoring module goes to ..~anagement module where metrics
will be used in the decision making and dynamic scheduln._ nroc sses for the next step. Inputs and
outputs of this module will be exchanged after each supers..n i and before superstep i+1. Moreover,
this is the only module in our proposed solution that "~ paruany implemented on worker machines.
The reason is that its components need to gather informat.~ from workers during the execution. All
other modules are implemented on the master mac™inr. v.onitoring module contains the following
components:

- Resource monitoring: It is very cri*i~al t¢ know about the amount of resources that are
available in the resource pool at any ™oment along with their characteristics. So, this
component is placed in the inrtersection of resource information repository and the
computation module to be ablr to pro. ide a holistic view of the resource usage situations. It
is aware of the amounts and -opr.ties of all resources in the repository while it is
monitoring the changes th.t o’.cur to resources that are being used in the operation. The
information that this comy~ ent gathers from the computation part includes: the CPU
capacity, memory capa ‘ty, monetary cost, VM type, etc.

- Network Key Perforn.ance . dicator (KPI) Aggregator: This component monitors network
factors such as netv ork traffic, bandwidth, latency, topology, etc. In this paper, we are using
two major factors . iding traffic and bandwidth in our dynamic repartitioning algorithm.
We are using t«¢ methcd that is introduced in [36]. Network KPI aggregator component
gathers inforr, ~tic.1 frr m the computation module and passes them to the decision making
component

- QoS Moni or: As nentioned before, every job in the system is submitted with a list of SLA
requiremenw. wh’_h in this paper comprises the customer’s preferred time and dollar cost.
Using chis ir.*ormation, the system tries to provision the best combination of resources for
each joh to raaintain the quality of service. Like other components in this module, QoS
m’ ~**ar components also receives the input from computation module by watching the
mix. 'r : of VMs and the execution time of each superstep. It then passes the information to
decisio.” making component where various provisioning possibilities will be assessed.



3.5 Management Module

Management module is the heart of the system in our proposed architecture. This module is
responsible for scheduling the tasks and provisioning the best combination of resou ces in a way that
each job can meet its SLA requirements while ensuring the QoS. It is also respr.asi.'e to minimize
the occurrence of service violation as much as possible. This module collects “~formation from all
other modules in the architecture directly or indirectly which enables it to iave a comprehensive
view on what is happening in the system and the status of other parts. Havi~a su.™ a comprehensive
view is a critical pre-requisite for making optimized decisions. All the out'its 1. m this module also
directly affect the partitioning module. Management module includer thr' ¢ >ain components as
follow:

- Dynamic Scheduler: Since a cloud provider has to provide < 2rvices or many users in a cloud
computing environment, resources need to be scheduled ei.’~~ (ly to achieve maximum
profit. Dynamic scheduler component first becomes ac 1ve “., <Y0on as a job is coming out of
the queue to schedule the primary amount of resources ror tre processing. The number of
initial resources will be determined by the user. Howe."r, to better utilize the resources,
dynamic scheduler takes the size of the submi.~d daf set and QoS requirements into
consideration to select best VM type to start with ,* 'aorithm 2 — Line 1-4). At the beginning
of the processing, all VMs will be from the s7 ... ., .. cater during the processing, dynamic
scheduler receives the information about the chany s in the system from another component
in the management module called decision mar :.. This information will be obtained during
the intervals between supersteps and wi'* he u. »d to dynamically re-schedule the resources.

Algorithm 2: Dynamic “~hedu,>r
1: InitialVMs = userlnitialv . 's(UserVMs)

2:  VMMemory = DatasetSize/Initial VMs

3: VMType = bring* w1\ ‘ithMemory(VMMemory)
4:  startVM(VMTYV e, Initia VM)
5-
6
7

For Superstepl tu "“e er 4 of computation do
Newlnfc = re~eive.afo(DesisionMakerVVMList)
match\. MW.th(MN 2wlinfo)

- Policy Selector: Original iGi >9h [9] and its extended network-aware version [36] provided a
general categorizaf'on ‘or various processing environments on clouds and different graph
algorithms. This I1s ~Fown in Figure 3. Depends on what algorithm is being used for the
processing, the use” win choose the proper policy for his application while submitting his
job. Policy sew.~tr ., cor.iponent selects the appropriate approach for re-partitioning the graph
and informe «.e sys.. m. For example, if the algorithm is convergent and the environment is
communic itional- 1tensive, policy selector will pick up a traffic-and-bandwidth-aware [36]
strategy for , .~=~Ltioning.

Convergent Application
Computational-intensive
Environment Non-convergent Application
Graph processing environment

on a public cloud Convergent Application
Communicational-intensive

Environment Non-convergent Application

Fig. 3. Graph applications and processing environment categorization [36]



- Decision Maker: To help dynamic scheduler with the provisioning of appropriate resources,
decision maker component provides a holistic view of the system’s state at any given
moment. It collects data from monitoring module which in turn includes three components.
According to the collected data, the system will learn about the available r -sources and their
characteristics, network situation, possible service violations, etc. by . hich it can
intelligently make decision about the amount of resources that is neer'cu ‘or the rest of the
operation. Information will be sent to decision maker during .“e .ntervals between
supersteps. The output of this component will be sent to partition.. * moctle and dynamic
scheduler.

3.6 Partitioning Module

This module is responsible for partitioning the graph into smaller jo 's and a stributes them across the
allocated machines. Proper partitioning is the key to improve the =¥~ mance and speed up the
execution of a graph system. Similarly, when graph proces: ing "5 .'eing provided as a service,
suitable partitioning can help to meet the quality of service. Howr ser, in the literature, several
mechanisms have been proposed for graph partitioning and eaci. “ries to increase the efficiency [4].
The inputs for this module are all coming from the ma. ~aeme it module which shows that the
resources have been provisioned for computation and pa. :itioning should consider the limitations.
Partitioning module comprises three components:

- Initial Partitioner: When a user submits a, «., :**~ill be waiting in the priority queue until its
priority is higher than other jobs. Then. it w*'. be passed to dynamic scheduler and policy
selector, respectively. At this stage, iniv.« -escdrces have been allocated to the processing
and the large graph needs to be p-rtitior,nd and distributed across the machines. Initial
partitioning will be applied to the grap™ only before the first superstep. The approach for
initial partitioning in this paper is a simple random partitioning which is a hash function on
vertex IDs. However, the ucer car replace the simple initial partitioning with more
complicated one such as METI> [?7] t', improve the performance even more.

- Dynamic Re-partitioner: U .alik initial partitioning that is statistic and happens only at the
start of the processing, dvn..™ ¢ re partitioning changes the partitioning of the graph multiple
times during the opers 1on. The aim of dynamic re-partitioning is to match the size and
number of partitions with .~ allocated resources based on graph modification. The core of
our dynamic repart”ao: ing algorithm in this work is coming from our other work in which
we employed a . “ar.cteristic-based repartitioning to take advantage of heterogeneous
resources on cl,ud env. onments [35]. This allows us to achieve better performance with
less monetary ast comr sared to other frameworks such as Giraph.

- Partition Di~*ribu.ov. When partitions are ready, they need to be distributed across the
machines. =ntry o ‘ta to this component might come from the initial partitioner if it is before
the first sup ~rster or they can come from dynamic re-partitioning component after the first
iterati-.n. The output from this component goes to computation module which means that the
compL ‘ation f unction will be executed on all allocated worker nodes.

3.7 Compt aty i wvodule

Computation module is the computation function that will be executed on graph vertices. This
module does not have additional components like other modules. It receives the partitions from the
partitioning module and applies the compute() function on them. So, this function is being
implemented on each worker machine. The output of this module is metric measurements that will



be passed to the monitoring module. Depending on the graph algorithm, status of vertices might
change to inactive or may remain intact.

4. Dynamic Scalable Resource Provisioning

To ensure that a service is responding properly to SLA requirements for each request, 1. should be
able to employ flexibility for resource provisioning and processing. In this <:ctic 1, we discuss the
new multi-handling resource provisioning algorithm for a graph service. "1 our framework,
“dynamic resource provisioning” belongs to the management module ana .~ceives inputs from
various modules. Our experiments show that using this approach, adequ .te ¢ ~~unt of resources will
be assigned to processing jobs and enables them to meet their pre-define. ~ JS.

Different jobs with different priorities and requirements will be ser ( to the jraph processing service
and they will be processed based on their priorities one after the othe = Hor vever, there are situations
in which while a job is being processed in the system, anothe job ..‘th a strict deadline or higher
priority arrives and need to be processed as soon as possible. ... a ty’ ical scenario, imagine job A
with Normal priority is being assigned a number of resources ai.." it 1s being processed in the system.
Suddenly, job B with Urgent priority arrives and makes . request for the service. One solution for
dealing with this situation is to make the later reques. to vt until the ongoing processing is
finished. In this approach, the urgent request will miss th~ 7~~- “ine whereas a possible SLA violation
might happen and the service will not be efficient at all.

Another solution, which we implemented in this pap.r .or our service, is to stop the processing, take
the less urgent job out of the system and start .- ~2ss. g the more urgent job. After completion of
the urgent job, the previous job will be brouaht b.~k 0 the system to continue its processing from
where it was stopped. However, there are some uesuons that need to be answered here: 1) what will
happen to the resources that were being used by the former processing?, 2) how the new processing
will receive enough resources to ensu’  tha. the requirements will be met?, 3) can we utilize the
already existing resources from the pre. aus or aration for the new processing?, and 4) do we need to
restore the same resources for the le ,s urgen. ,ob as the ones it was assigned before being stopped?

Algorithm 3 demonstrates our pro.~srd dynamic scalable resource provisioning mechanism.
According to this algorithm, if u.. nriority of the ongoing job in the system is more than the priority
of the arriving job, it contini'as processing. But, if the priority of the arriving job is more than the
priority of the ongoing jo!, thr A system exchanges the jobs. In this situation, if the applied graph
algorithm to the current nngu.. 1 job is convergent type, in which the status of processed vertices will
change to inactive and vert ces will be removed from the memory, remaining active vertices in the
processing will be mov. ™ bac'. to the queue. If the applied graph algorithm is non-convergent type
which does not ch .nge the status of vertices, the whole dataset will be moved back to the queue.
Then, the new urg nt job will be taken from the queue to be loaded for processing. At this phase,
instead of term* ._tiny . resources from the previous processing, the dynamic scheduler calculates
the capacity ¢ f existi 3 resources in terms of VM types, available memory, available computation
power, etc. Meo™ e, it knows the size of arriving job, its QoS criteria, and the number of
resources «au . - lered by the user at the job submission stage. Following situations are considered
in order to pr. sision resources for the new processing job.

1) If the new dataset is small and current resources can handle the SLA requirements, then
there is no need for employing new resources.



2) If the size of the dataset is big, and the type of current resources is appropriate, then more
machines will be employed to reach the resource needs. So, we have a combination of old
and new resources that are assigned to the new operation. For example, if there are 3 medium
VMs left from the previous processing and system learns that 7 medium V' /s are needed for
the new operation, it only needs to employ 4 more mclium  VMs
(3mediumold+4mediumnew=7mediumrequired).

3) If only parts of the existing resources are usable for the new operw.*an system will keep
those VMs and removes the inappropriate ones. Afterwards, it repea.. the .. 2vious step (step
2). For example, if 4 medium and 2 small VMs are left from the .. “viou. operation and the
system learns that the new operation needs 10 medium VMs tc mer. the SLA requirements,
it terminates 2 small VMs and employs 6 new mediu. VMs ((4mediumold-
2smallold)+6mediumnew=10mediumrequired).

4) If any of the remaining VMs from the previous operation are "ot si’ (able for the needs of the
new operation, then all of them will be terminated ar 4 ne\** appropriate resources will be
employed for the new operation.

As noted in Algorithm 3 and the described scenarios, our algorithn. can both scale up and scale down
for provisioning resources. It should be considered that !l tr.. 2oe"ations in this paper will be started
with the same VM type. So, if the system learns that for .~ample large VM type is suitable for
processing, then all VMs at the beginning of the pruoessing will be large type whereas if system
learns that medium VM type is better, then all \VM=< at the start of the processing will be medium
type. We will investigate more complicated sce, ar'us such as starting the operation using a
combination of different VM types (for exam, .. corn hination of large and medium VMs) in our
future works.

The impact of our proposed mechanism on res.''rce usability is demonstrated in the evaluation
section (Figures 4-8). We show how res~_~es are being provisioned or released based on the SLA
requirements (priority, deadline, numr 2r of m chines, etc.) at each moment in the system. We also
show that this approach improves the .~rf,rmance of the system by utilizing resources more
intelligently while reducing the e eci.on time (Figure 8) and monetary costs of the processing
operation (Table 6).

Algorithm 3: Dynamic scalabic “asource provisioning

1: If ((getPriority(Curr.in. 2b)==URGENT) and (getPriority(ArrivingJob)==NORMAL)) then
2: continueWith? 2Ch- nge()
3:  If ((getPriority(Curre.. '0b)==NORMAL) and (getPriority(ArrivingJob)==URGENT)) then
4: backToQur ue(Cirentsob.ActiveVertex)
5: If (currer. */\ vier ory(AvailableVMs) ==DatasetSize) and (AvailableVMs<InitialVM)
then
6: co stinueV ‘ithCurrentConfig()
7. If (c rrentVN Memory(AvailableVMs)<DatasetSize) and (AvailableVMs<InitialVM)
then
8: only! “eepVM(VMType)
9: update [AvailableVMs)
10: .27 .edVMs = InitialVM — AvailableVMs
11: “tart(VMType , NeededVMs)
12: executeWithNewConfig()
13: 1. (currentVMMemory(AvailableVMs)>DatasetSize) and (AvailableVMs>InitialVM)
then
14: onlyKeepVM(VMType)

15: update(AvailableVMs)




5. Performance Evaluation

In this section we explain the environment that we conducted our experiments on, and discuss the
evaluation results.

5.1 Experimental Setup

To evaluate our framework and effectiveness of the proposed algorithms, we .**l7 _ed resources from
Australian national cloud infrastructure (NECTAR) [38]. We utilize three dii. >vent "M types for our
experiments based on NECTAR VM standard categorization: m2.large, n. medium, and ml.small.
Detailed characteristics of NECTAR standard VMs are shown in Te le “.. Taole 3 describes the
utilized VMs in our work with their prices which are determined ~ropu.‘*onally based on their
closest AWS counterparts. The reason for using m-type VM is be :ause ti 2 algorithms that we are
using are memory-intensive and using m-type machines proviu~s b er performance. Since
NECTAR does not correlate any price to its infrastructure for r .sear~.. se cases, the prices for VMs
are put proportionally based on Amazon Web Service (AWS) c..-den and instance costs in Sydney
region according to closest VM configurations as an assumpu. tor this work. According to this,
NECTAR ma2.large price is put based on AWS mb5.xlar,~ Linux instance, NECTAR ml.medium
price is put based on AWS mb5.large Linux instance anu NEC AR ml.small price is put based on
AWS t2.small Linux instance. All VMs have NECTAP !~ 4 14.04 (Trusty) amd64 installed on
them, being placed in the same zone and using the samw <ecurity policies. We use iGiraph [9] (the
extended version of Giraph [39]) with its checkpoi. ., ~"~racteristics turned off along with Apache
Hadoop version 0.20.203.0 and modify that to co. “ain heterogeneous auto-scaling policies and
architecture. All experiments are run using 17 ™. hii.es where one large machine is always the
master and workers are a combination of me~"**'m ar," small instances.

We use single source shortest path (SSSP) 140] and PageRank (PR) [41] algorithms as
representatives of convergent and non-c unver ent graph algorithms respectively for our experiments.
They are good representatives of many -ther a' Jorithms regarding their behaviour. SSSP is solving a
particular case of a bigger probler. ca'led .nortest path (SP) which aims to discover a path with
minimum weights of edges betwec > tv 0 ve tices in a graph. SSSP will find the shortest path between
a typical source node and all otr er veru.~ s in the graph. First, the source node sends its value (which
is set to 0 at the beginning) tr its «iacent vertices. Those vertices update their value and send their
new value to their neighbo ... This operation continues until there are no more vertex left to be
updated. Whenever a vert x u'.dates its value, its status changes to inactive. So process completes
when all vertices’ statu chang ~ to inactive. This is why SSSP is a convergent algorithm. On the
other hand, a vertex st .tus emeins intact in PageRank algorithm which makes it to be categorized as
a non-convergent aloonu ™. PageRank weighs the significance of websites and web pages by
calculating the nur iber of ‘inks that are connected to them (hyperlinks). The more connected links a
page has, the more *mport it the page is. This algorithm values each page solely and does not value
the entire webr..e as A unit.

We also use thre~ re~.-world datasets of different sizes: YouTube, Amazon, and Pokec [42] as shown
in Table 4.



Table 2. NECTAR standard VM characteristics [38]

VM Type VCPUS RAM Total Disk
m2.tiny 1 768MB 5GB
m2.xsmall 1 2GB 10GB
m1.small 1 4 GB ‘0GB
m2.small 1 4GB ~_30GB
m2.medium 2 6 GB ~__30GB
m1l.medium 2 8 GB 70 GB
m2.large 4 12 GB | 110 GB
m1l.large 4 16 GB ar 130 GB
m1l.xlarge 8 32 GB 250 GB
m2.xlarge 12 48 GB ; 390 GB
m1.xxlarge 16 64 GB ! 490 GB

Table 3. Utilized VM characteristics and their proportional cos” oa: 2d on their closest AWS

counterparts L
VM Type  #Cores RAM Disk Price/hour
(root/e, “emeral)
m2.large 4 12GB  110C® (3u, ™™ $0.24
ml.medium 2 8GB 70GB (1v,'40) $0.12
m1.small 1 4GB 5D (1U/30) $0.0292

Table 4. Database. > properties

Graph vorticss Edges
YouTube Links 1,'30,499 4,942,297
Amazon (TWEB) -J3,394 3,387,388
Pokec 1,032,803 30,622,564

5.2 Experiments and Results

We have compared our systems ard algu,-*'ims with Giraph because it is a popular open-source
Pregel-like graph processing fre aewurk und is broadly adopted by many companies such as
Facebook [43]. To evaluate diff rent 5.~ arios by our service, we have provided various workloads
and jobs by combining the daf .se.> from Table 3 with different characteristics. Table 5 demonstrates
input jobs and the order of ir-'ts alony with their properties.

Table 5. Input scenarios for evaluation

Scenarios Datasr . | Input Priority Sut_)mission Deadline Nulr:i?izrl of Algorithm
| Corder Time (s) (s) VMs
Scenario 1 YouT .ue | 1 Normal 0 30 16 SSSP
Am zon | 2 Normal 5 80 8 PR
Poke 3 Normal 7 110 16 SSSP
Scenario 2 "....azon 1 Normal 0 50 16 SSSP
YouTuw 2 Urgent 6 30 16 SSSP
Sokec 3 Urgent 8 80 8 PR
Alioon 4 Normal 15 110 8 PR
Scenario « ’_ e A 1 Urgent 0 60 8 SSSP
YouTube 2 Urgent 1 30 16 SSSP
\mazon 3 Normal 12 130 16 PR
%YouTube 4 Urgent 15 90 16 SSSP

Scenario 1: This is the simplest situation in which all jobs in the queue have the same priority as
“normal”. In this situation, deadline is not very important for the processing, so all jobs will be
executed by a first-in-first-out (FIFO) approach and it is fine if any deadline was missed. However,




as can be seen in Figure 4, the cost of processing in our service is much less than conducting it on a
popular framework as Giraph. The reason is that our service scales up and down to provision the best
combination of resources for the processing while Giraph uses the same amount of resources for the
entire operation. Note that in processing graphs by PageRank algorithm, the numbe of VMs for both
Giraph and our service is the same because PageRank is a non-convergent wigorni."m. We also
consider up to 20 supersteps for PageRank algorithm in all our experiments. ".1 « Ir future research
work, we will find the best combination to reorder the queue in case if deadlii.>s e e different so jobs
will be processed to meet their deadline as well.
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Scenario 2: In this situation a combination of “norm.'" and “urgent” jobs are arriving to the service
for processing. According to Algorithm 1 and A’ ~ithi 1 3, when a normal job is getting processed,
it should be replaced by the urgent job as sorn as s.<h job is arrived to the system. Nevertheless, the
normal job cannot wait in the queue forever on:," hecause urgent jobs are being submitted constantly.
To resolve this situation, when the normal job goes back to the queue to be replaced by an urgent
job, a deadline will be set for it so tha’ its pr. ity will change to urgent when the deadline arrives.
Figure 5 shows how this scenario woiw.> and rigure 6 demonstrates the scenario in which Giraph
follows the job order and depicts w'.at ic happening in reality.
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Scenario 3: In this scenario, jobs are different in terms of the.. deac’..ie. So, when two jobs with the
same urgent priority arrive, the one with closer deadline will be p ocessed first. Figure 7 shows the
processing order in this scenario and compares that with ~irap.
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We conducted the same exoerime:.'s on PowerGraph [18], an edge-centric distributed graph
processing framework. P.we sraph outperforms Giraph due to its vertex-cut strategy and
implemented optimizations . speed up the execution on natural graphs with “highly skewed power-
law degree distribution’ * [27]. Huwever, PowerGraph’s processing pattern is the same as Giraph
as shown in Figures *-° wt.le performing under various scenarios. The reason is that, like
Giraph, PowerGre'... does ..ot have any priority recognition or other mechanisms to distinguish
between the prioiities ot different jobs. So, it executes jobs based on first-in-first-out (FIFO)
approach. Simi'~rly, ** does not distinguish between different graph algorithms’ behaviour
(convergent, r on-con. srgent, etc.), hence it cannot utilize the resources efficiently.

Figure 8 c~monsuates the execution time in our service against Giraph and PowerGraph for each
scenario. It .he ws that our proposed service completes faster than both Giraph and PowerGraph due
to its dynamic ~esource provisioning and scheduling. GPaaS also eliminates overheads for manual
job submissions after each process completion. It reduces the cost even more because resources will
be released quicker. In Table 6, monetary cost of each scenario in three different systems are being
compared. It shows that using GPaa$S, the user has to pay much less (more than 40% less in some
cases) for performing the same job when compared to Giraph and PowerGraph. Whereas, using



PowerGraph can save more money than Giraph due to its faster execution. The cost here is
calculated based on the amount of time that various resources have been utilized in each system. In
both Giraph and PowerGraph, the number of provisioned machines remains the same during the
entire processing which is a very expensive approach while there is no need to ke’ o all machines in
use if the behaviour of the algorithm and operation characteristics are considercd. 11, number and
configurations of utilized resources (machines) in GPaaS are being updated r.gu arly to obtain the
efficient combination of VMs in order to minimize the cost.
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Table 6. Processing cost for . ..~h sc. nario in different systems

Giraph | PowerGraph GPaa$S
Scenario 1 $0.0399 ' $0.0302 $0.0185
Scenario 2 $0.0532 | $0.0483 $0.0342
Scenario 3 $0.0516 | $0.0428 $0.0294

6. Conclusions and Future Wce . k

Many applications such as soci .l netww.’ «s, mobile applications, 10T devices and applications, etc.
are generating huge amount f a..~ which a considerable fraction of it is graph data. Due to the
inefficiency of traditional . acessing solutions such as MapReduce, several unprecedented
frameworks are developec to 7 Jdress the challenges of large-scale graph processing. Many of these
frameworks are desigr:d to ~nerate on HPC environments rather than clouds. Since HPC
infrastructure is not a aila' 1e tr everyone, cloud computing with its unprecedented features such as
elasticity and pay-as-vou-_n 'illing model is a suitable candidate for implementing the frameworks
on as it can be a cessib.> easier too. However, the few existing frameworks that are developed
exclusively to be .sed o cloud environments have many limitations and cannot guarantee the
quality of sen.ces ac It is expected in negotiated SLA between cloud provider and clients. In this
paper, we hav » propo ed the first large-scale graph processing service on cloud (graph processing-
as-a-service). Unn..c graph processing frameworks, our service can handle multiple processing
requests wi.'le ¢ considers each request’s priorities and requirements to avoid SLA violations. Our
proposed arc. itecture and algorithms such as dynamic scheduling and dynamic resource
provisioning make it possible to utilize the heterogeneous cloud resources efficiently in order to
respond the requests. This service can be used for many real-world applications such as finding
shortest path in GPS systems, recommendation systems, pattern recognition, knowledge extraction
and data analytics systems that require processing large-scale graph data. Our evaluation results



presented that our service can handle graph processing requests successfully to a high extent. To
achieve this, three real-world datasets (YouTube, Amazon and Pokec) were used in three different
scenarios. We observed that GPaaS can minimize the monetary cost more than 40% by utilizing
resources intelligently and executes faster when compared with Giraph and " owerGraph- two
popular distributed graph processing frameworks. It also reduces the execution ti.ne up *0 20%. This
means that customers can save a lot of money and time while the qualit o. service is being
maintained.

As part of the future work, we plan to improve our proposed system by er~bliny, it to utilize various
combinations of resources to start a processing with, instead of starting with .. same VM types for
all resources. We will also consider other network factors such as netwv.” latency and topology to
investigate their impact on the computation and if they can improve "«.
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