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Intelligent Conditional Collaborai:ve
Private Data Sharing

Giuseppe Bianchi, Tooska Dargahi, Alberto Caponi, and " Z_uro G ~ti

Abstract With the advent of distributed s, *ems, secure and privacy-
preserving data sharing between differe * __..l... \individuals or organiza-
tions) becomes a challenging issue. There w. ~ several real-world scenarios in
which different entities are willing to “-re their private data only under cer-
tain circumstances, such as sharing the sys em logs when there is indications
of cyber attack in order to provid-~ cybe. chreat intelligence. Therefore, over
the past few years, several resear Y.~ pr. posed solutions for collaborative
data sharing, mostly based on existi. g ciyptographic algorithms. However,
the existing approaches are no. ~uvp. .~ ate for conditional data sharing, i.e.,
sharing the data if and only if a p. = defined condition is satisfied due to the
occurrence of an event. Moreover, in case the existing solutions are used in
conditional data sharing scen. ‘os, the shared secret will be revealed to all
parties and re-keying 1 ‘ocess is 1ecessary. In this work, in order to address
the aforementioned challe.. =s, ve propose, a “conditional collaborative pri-
vate data sharing” » roto ol based on Identity-Based Encryption and Thresh-
old Secret Sharing <che nes. .n our proposed approach, the condition based
on which the er :rypu. ' d .ta will be revealed to the collaborating parties
(or a central e -ity) coula be of two types: (i) threshold, or (ii) pre-defined
policy. Suppc ted 1, *horough analytical and experimental analysis, we show
the effective ~s and performance of our proposal.
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1 Introduction

New generation networking paradigms, such as Cloud, have r ade 'w. <har-
ing between individuals or organizations easier and simpler v.. n ver before.
However, preserving confidentiality and privacy of the shored a. ' (which
could be privacy sensitive) is an important and challengi .g issue ‘n such net-
works. This issue becomes more significant with regard to distr buted sys-
tems, in which different systems might have their own acce. - =~ .crol policies
for the shared data. Therefore, providing an intelli’ ent r-" -ate data sharing
method that allows the involved parties to decide w} .n, t« whom, and to
what extent they should share their private date ‘s import at [9,13].

Over the past few years, collaborative data shar.. ~ has attracted atten-
tion of governments, academia, and industry, e to a m lItitude of real-world
applications of such a data sharing need. F~r ex. ~nl- consider the promo-
tion of cyber threat information sharing anno. ~ced by the US government
in 2015 [16]: “In order to address cyber **~ * . public health and safety,
national security, and economic security oy “~e United States, private compa-
nies, nonprofit organizations, executi-~ departn..nts and agencies, and other
entities must be able to share informu “ion rewted to cybersecurity risks and
incidents and collaborate to respomd in « close to real time as possible”. As
another example, consider large-sc. ‘v lisas 2r recovery scenarios, such as the
WannaCry worldwide ransomware a tacs in May 2017. In such a scenario,
several crisis information syst. > . '~ "ed to different organizations need to
share their private data in order v ~rovide Cyber Threat Intelligence (CTI)
to take timely actions [8]. It should be noted that, though in these (and other
similar) scenarios, collat .rati. data sharing is necessary, at the same time,
preserving privacy of i- dividuals and confidentiality of the business data is
also important [16]. Thei. e, un intelligent and secure privacy-preserving
conditional data sh .ring metnod should be in place in order to ensure the
confidentiality anc acc' cacy of the shared data.

Motivation na " <lated Work

Recently, esea chers have paid more attention to the secure data sharing
issue, anu ~ro osed various cryptographical or non-cryptographical solutions
for pri- ate da. sharing. This ranges from (just to mention a few) cyberse-
curity [13] smart metering [10], cloud computing [25], cross project defect
pred. o . [29] and statistical data analysis [24], to online social networks [17].
Me-* of ti. » basically preserve privacy of shared data by applying different
1 rethods ~uch as data aggregation [24], anonymization [11], obfuscation [29],
i ulti-par y computation [10,13], or proxy re-encryption [18,22,27]. We be-
lie. +h-. the existing data sharing methods have two limitations: (1) Scala-
bili*: they are not scalable in terms of number of datasets, i.e., if the data
owne * wants to selectively restrict access of other entities to different sets of




Intelligent Conditional Collaborative Private Data Sharing 3

encrypted data, he should perform several key agreement procedu. = witw. ~/]
the other entities for each dataset. (2) Conditionality: they do not s._nort
conditional data disclosure, i.e., the scenarios in which the cc’.abc ~*ing en-
tities are willing to disclose only a specific set of encrypted d -a if und only if
a certain condition holds (e.g., entities identify indications of a . '~bal cyber
attack).

Moreover, recently some researchers proposed game—tl =oretic a proaches [19,
20]. They consider a game between the attackers and the . ~fende s, based on
which they decide the collaboration strategy betwe . different parties. The
difference between our solution and game-theoric m the sis hat we consider
a scenario in which the collaborating entities “musy, shars a specific piece
of data due to a previous agreement. However, ali .2 couaborating entities
might not be available at the same time. In such a scen. rio, our solution will
help other entities to access that piece of data, —hile /e preserve confiden-
tiality of other parts of the dataset. Therefoir. the uata owner has granular
control on the amount of data that is shared in e. ~rgency situation.

Running example: In order to elabo. *e more on the problem definition
and the importance of scalability and condi. mality issues, let us make a
small example of a cyber attack sce ari,. = misider a hierarchical banking
system (see Figure 1): in the first (highe. ** level, there is the country’s central
governmental bank, whose main . .. is t¢ nrovide financial, statistical, and
advisory services to all banks in the ~ou. ‘ry. In the second level (Bank A to
Bank M in Figure 1), the ce” "=~ ofh »s of all different independent banks
that exist in a country. In the ti.. 1 (lowest) level (Bank A.1 to Bank A.n in
Figure 1), each bank has a large numwer of branches in all cities (though we
could consider another fo- .7 level for classifying the branches based on the
cities, for simplicity we gnore ti’s level). It is normal to imagine that all the
branches of one bank su. "o thei" private data (possibly encrypted) with the
central office of the orrespo.. ' ag bank (i.e., entities of the third level share
the encrypted dats wit' the'r parent entity in the second level). This data
could be, monetary . - aon-" 1onetary (e.g., system logs of the users accessing
the PCs in eacl branch,. "[oreover, due to some reasons (e.g., country-wide
cyber attack 0 . nking system) central office of each bank (e.g., Bank A)
might need to share iv. swn private data with other banks (Bank B to Bank M
in the secc .d 1 vel in Figure 1), and/or with the central governmental bank
(in the fir t lev .1). In such a scenario, if Bank A releases its encrypted system
log and the sc et key for its decryption to the other entities at the same time,
as soc « as “ecepu.on of the encrypted private data, other parties will be able
to d- wvyp the .ata (which is not desirable due to confidentiality and privacy
concerns, In act, all banks wish to share their sensitive data if and only if a
¢ ecific eveny happens, e.g., they recognize that they are under global attack.

1such a ituation, Bank A will have two options: (i) to share the encrypted
de "a. bu* keep the secret key unless it recognizes the occurrence of an event;
or (ii) to share both the encrypted data and the secret after occurrence of the
ever, . However, both cases impose delay and are not efficient in emergency
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situations. Moreover, considering the fact that each bank might 1.. 7o sev. 1
different datasets (e.g., security logs, financial reports, software nndav. 'ogs,
etc.), for each dataset it requires to consider a secret key and peri »m a key
sharing procedure with all the other entities. Otherwise, in ce ~ of onsiaering
just one secret key for all the datasets, other entities will have ac. *ss to other
datasets that Bank A is not actually willing to share.

First level: /'/\3)!7 - KJ‘
Central Governmental Bank \% J/
Second level: - f?f/,, ~ , 2N
Independent Banks iaf 1 « ~ l,é' !

%Nank B dank C Bank M
Third Level: -

PN
Branches of Each Bank m
Bank A1

B
: |E?
E

“k A.n

Fig. 1: Simple overviev of .he system model

In such scenarios, a scalable, ana eas, to deploy secret sharing method
is required, such that it is inc ..’ >»* Tom the number of involved entities
and number of released datasets. .. nossible solution for the scalability chal-
lenge could be utilization of the Attribute-Based Encryption (ABE) [15], or
Identity-Based Encryptir . (1.™) [6] that allow the data owner to specify the
data decryptors based m their s »ecific attributes or identities, respectively.
However, the conditionai. = ch' denge is still unsolved, and to the best of
our knowledge ther: is ro solu.on in the literature (except our preliminary
work [3,4] that ar- solv 1ons lor specific networking use cases and we extend
them in the curr nt v ~k).

Contributi~=

In order v ad .ress the aforementioned two challenges, in this work, we pro-
pose a _ondit. ~al collaborative private data sharing protocol that provides
a sca' .ble .nd easy to deploy cryptographical method for data sharing sce-
nario. ' par’.cular, in order to deal with the “scalability” challenge, our
pre—osal .~ les the data owner to encrypt each dataset with a unique secret
1 ay. The efore, the disclosure of one dataset does not disclose information
«hout the other datasets. We remove the requirement of key management
be. —o different parties by translating the pre-defined conditions for the
aut™orized entities to an access policy, in particular access matriz. Based on
this re-defined access matrix, the participating entities in the data sharing
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process (which we call them collaborating entities) construct thei. ~wn s. ~e
of a master secret s. We use a distributed key generation scheme nropo. 1 by
Pedersen [28], to construct the unique shared master secret « (wt i~h is not
disclosed to any entity) out of the entities’ shares. The only equ’ ed coordi-
nation between the collaborating entities should take place jusy nce during
the global setup phase, in which the entities decide on th dataset name that
they are going to generate (we do not consider any limit tion on e number
of datasets that could be produced).

In order to cope with the “conditionality” challr .ge, we provide crypto-
graphically conditioning by permitting the collabc atir | en ‘ties to decrypt
a specific dataset only if they satisfy the pre-defineu policv and recover the
relevant secret key. We apply a fully distributed pi. ~ess vy adopting a com-
bination of Identity-Based Encryption (IBE) [6], and . ‘near Secret Sharing
(LSS) [2] (in particular, Threshold Secret Sharin, 1]). /sur approach permits
the reconstruction of the secret key for each ’~tasev (i.e., for each identity)
only when the provided shares of the relevant erv. ographic material satisfy
the pre-defined access policy. The pre-demn. ~d policy could be either a thresh-
old number of collaborating entities (e.g., if av "~ast three banks in level two
of the hierarchy in Figure 1 report ti. t w.., ~e under attack), or reception
of the shares from specific entities (e.g .f (Bank A AND Bank C) report
they are under attack; or if the ce. . ~1 gov rnmental bank signals an attack).

In our preliminary work [3,4], w p..~osed conditional data sharing so-
lutions for specific use case sc ~rins. ™ this paper, we extend our previous
work and provide a comprehensiv. ~olution for conditional data sharing which
could be: (i) threshold-based, or (ii) vased on a specific access policy due to
the network designer’s ¢k .. Moreover, we provide a security discussion in
which we consider sevr .al atta.k models and discuss the resilience of our
proposal against each o. “hem. a addition, we enhance the security of our
original proposal to -ope wi.. cheating entities on the shared secret, which
we did not address .n o1 . previous work. We modified our initial proposal by
permitting each mai. - varti ipating in the setup protocol to explicitly verify
each (fraction ¢ ) share 1. cived during the protocol setup. We also provide a
new use case * a. “le in order to show the applicability of our proposed ap-
proach to diverse reai- . orld scenarios. Our new use case focuses on intelligent
sharing an . a1 lysis of cyber threat information and indicators of compro-
mise (IoC <), i particular Ransomware threat intelligence (Section 4.1). In
this new use ase, each individual device in an organization (e.g., personal
compr cers 0 university offices, computers in each branch of a bank, or a hos-
pital ola s th role of a collaborating entity. Each device stores logs (e.g.,
activity « ~ th  files, user login, network traffic, contacted IP addresses) based
¢ . a specific index, and stores an encrypted version of the log in a shared

atabase ‘though it can be saved locally on the user’s system in a shared
fo Yer). T pon receiving an indication of a cyber attack, the admin of the sys-
tem (e.g., in Figure 1 nodes in the first or second level could be considered as
the . dmin or the authority) should have access to all the encrypted logs in
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order to perform analysis of the attack entry point, and in some ca. - it m. "t
be possible to prevent malware spreading on network shares by invest., “ting
the vulnerable points extracted from the security logs.

2 Models and Priliminaries

In this section we describe our considered system ».ouel (Section 2.1), and
attack model (Section 2.2), and we explain the assv upt’ .as \ 1at will be used
in the remainder of the paper. Moreover, we proviue rele: ant background
information (Section 2.3) about the cryptographic.’ toows that we utilize in
the proposed approach. Table 1 reports the notation: that we use in this
paper.

Table 1: Nota' ™ ... vauic.

Notation Mescription
E; Collab ating e ‘ities, ¢ = {1,...,n}
I1D; Unique idc “titie. of the target T;
Dy ; — {FE;,ID;} Data. * storeu by E; for the target I1.D;

Secret key used by E; to encrypt the dataset related

Kij = PRE(S:,1D;) w ~rget ID;, using random secret S;

EID] Ident' y based encryption using the ID; as identity
5 Unique shared master secret key
g° slobal public key associated to the s
H( L ¢ IBE private key of the target I1.D;
D) E;’s share of the IBE private key associated to the
target ID;
H Cryptographic hash function

Access Structure

F Finite field
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2.1 System Model

Figure 2 shows a simple overview of the considered system - .0ode’ ., con-
sider a set of n independent entities £ = {E1,..., E,}, eack - hich being
recognizable by a unique name or identity. We assume th~* eac.. ~utity E;
dynamically logs information about each possible targ .t 7; fi m a set of
targets. Note that we do not consider any limit on th¢ number of tracked
targets and so no limit for j. Targets are identifiable hy « =% ue identifier
ID;, and choice of the targets is application-depenc :nt, e _ in the “running
example” in Section 1, a target could be a daily .'er~ ity s og of a system.
The discussion about how a target could be spc ‘fied is o . of the scope of
the paper. The target identifier could be any pre-de.. *od string, such as Se-
curity.evtr in our running example. We also ~ssume tl at each FE; stores at
most one unique dataset D; ; for each targ~t iac *ifi-. ID; (i.e., each D; ;
is identifiable by a pair {E;, ID;}). In our mo.'~l, we do not assume any a
priori agreement between the entities or *' o--8 that they are going to
track (i.e., the datasets that they are going ~ generate), but we assume that
datasets/targets are identifiable thro~h their  lobal) unique identifier ID;
known by all the entities.

Legend:
: | TargetID, Target ’Di
g Entity £, i={1, .., n}
Entity E, | Entity E, .
) ] & Shared repository
b, D,, |/ Dataset D, for £,0n 1D,
% g a Secret key K, lfor D‘v/
1.4

o, 2: Simple overview of the system model

Data £ waring .. ~del:

As it « » oe sr:n in Figure 2, we assume that entities store their “encrypted”
dr* etsu.  shared repository, we call it Repo. In fact, following [3,4], the use
«  share. repository is just for presentation simplicity and is not necessary.
1 stead, 11e collaborating entities can broadcast their encrypted datasets,
wh..'  Lviously will impose communication overhead, though this choice is
apr ‘ication-dependent and does not hinder our proposal. We assume that the
store 1 data in the Repo is organized based on two indices: i) Target identifier,
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IDj, as primary index, and ii) Entity name (or identifier), E;, a> “=conu. ~v
index (see top left part of Figure 2).

Moreover, we assume that symmetric (e.g., AES [1]) and as mm *~ic (e.g.,
IBE [6]) encryption algorithms, as well as Threshold Secret ¢ ~arir g [31], and
Pedersen key generation [28] schemes are available in the systew.. *o be used
by the entities. Therefore, we consider each entity E; to er _rypt the content of
each dataset D; j;, for target identity ID;, using a fast s; mmetric >ncryption
method (e.g., AES). To do so, E; uses a distinct key K, ver - ataset that
is only known by the entity E; itself, and is comp ..ed using the following
function:

where S; is a random secret chosen by FE;, ~d PRF is a secure pseudo-
random function. We consider such a key de: atio.. ~~.anod in order to enable
entities to compute per target keys on-the-fly w “hout the need for complex
stateful key management methods. Ther .. .. c.uvy sends an IBE-encrypted
version of the target-specific key, i.e., E;p,\”" i), to the shared repository.

Furthermore, we assume the Pede - kev geaeration scheme [28] will be
used in the system in order to const. ict a unique shared master secret s
(which is not disclosed to any ent“v). A. 1 each target 7; with identity ID;
will be associated with an IBE pr. . key H(ID;)®, where H is a crypto-
graphic hash function mapping the . D; into a point of a cyclic group G),.
Each entity F; is able to coni, "te ... = #n share of the master secret s, the
global public key ¢°, as well as its 5. ~re of the IBE private key associated to
each target, i.e., H(ID;)" . where x; is the local per party share (for more
details on z; refer to Sec’.on 3.." All the details regarding the key generation
and sharing is explainc * in Sect1 m 3.

Data Disclosure . ~del

Every entity ir mir model 1s in charge of evaluating its own status and corre-
spondingly dcciding ~hen to share the credentials related to one (or more) of
its targets, ' triggering a “disclosure signal”. In particular, when an entity
E; decide’ to ¢ sclose its dataset D; ; on the target identity IDj, it sends
its own su. e H(IDj)*, of the IBE private key associated to target ID;.
When “ ae Repe “~ceives required number of private key shares for target ID;
whicl sati'.y the pre-defined access policy on 7}, it will be able to reconstruct
the £ 77/;)® - ad access all the datasetes related to target ID; generated by
al' ".e enw. " s (as we detail in Section 3). This way, we guarantee that the
acrypte ' datasets will be disclosed “if and only if” the pre-defined condition
1. satisfie , and neither the shared Repo, not the colluding entities are able
t0 w. . the datasets.
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To elaborate more on this matter consider our running examp. (see . ~-
ure 1). Each bank in the third level (e.g., Bank A; where ¢ € 1..n;, is in
charge of assessing its local security status and storing syster . Sec ity Log.
Each A; upon recognizing an attack indicator, triggers a “d ~clos «re signal”
and sends its own share of the secret related to its encrypted . ~curity Log
(which is identified by Security.evtr identifier) to a hig'. level correspond-
ing authority or repository (e.g., Bank A, or even the entral b. nk). Upon
reception of sufficient number of key shares on the Secur “n.evt~ by the col-
laborating entities, the Repo will be able to reco cr the IBE private key
associated to the Security.evtr and access the Sect ~ity .og « © all the collab-
orating banks. Obviously, if an entity Ej (for any icason) Jdoes not gather
information about a target 7;, will neither send co. “»sponding dataset Dy, ;
to the Repo, nor participate in the disclosure policy ot 7; dataset.

2.2 Attack Model

In our attack model, we consider two . pes * “tackers: external and internal
attackers. (1) External attackers are the -~ .ernal entities that do not collabo-
rate in our protocol. We consider .~ adv. sary as a weak attacker, since the
only capability of the attacker is ea. ~sa. "»ping the communication between
the collaborating entities, and ™ ~*ween ‘he entities and the shared repository.
A secure protocol against extern. ' attacker should not leak any information
to the eavesdropper. (ii) In contrary, e consider the internal attackers to be
strong attackers and our » ... focus in this work is to strengthen the security
of the proposed scheme against hese attackers.

We consider the inter. -1 atta ker to be of four types, as we explain in the
following.

(1) Untrusted sha:  re jositc -y: We consider the shared repository to be un-
trusted. Ther fore, * at .empts to gain information about the encrypted
datasets th- it receives from the entities. A desirable secure protocol
should be .esisi. “ce against this adversary, i.e., a security requirement
is that t+ <hared repository “must not” be able to decrypt any of the
dataset unl ss the disclosure condition (the pre-defined policy) is met by
the enu. ‘o

(2) Ho .est-buv ~wrious collaborating entities: We assume the collaborating
en’.ties .o be honest-but-curious adversaries, meaning that they honestly
fou.. v .he r otocol (as we will explain in Section 3) in generating their own

"ares " . secret and distributing the required public parameters. How-
ever, . ey are curious to obtain information about other entities’ dataset on
the sar e or different targets. To elaborate more on this attacker consider
+ 27 ¢ 2. Assume that F; has two datasets D;; and D; o on the targets
~ith ID; and IDs, respectively. Moreover, Fs has stored two datasets
L ; and Ds 3 on the targets with 1D, and IDs, respectively. Now assume
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that Ey is “curious” to access the data stored in Doy and L_ - In s
example, F1 and E5 both track the target 1D;. So, a possible attac.. “rom
Ey on Dy is to use its own secret on I'D; to have unauthc .izec ~~cess to
the Dy 1. Another possible attack from E; to Ds 3, is ag “llo /s: assume
that the entities agreed to reveal the dataset related to I D;. 1. w, Ey tries
to use the revealed share of the Fs’s secret to gain inf rmaticn avout the
D273.

Therefore, two security requirements regarding this av ~cker .re: (a) two
entities who track the same target “must not” ove able to access each
other’s dataset unless the disclosure condition is mnet- \b) he disclosure of
one dataset “must not” reveal any information avuut an cher dataset.

(3) Colluding entities: As the third attack, we consi’ >r a set of entities where
each of them does not satisfy a dataset disclosure’s co dition per se. Hence,
they collude with each other to satisfy the di. 'asure policy (e.g., by send-
ing a false “disclosure signal”) in order to he ~ unauchorized access to other
entities’ datatset. Now, we have two scenarios: « * the colluding entities do
not satisfy the disclosure policy, and (. ' the colluding entities satisfy the
disclosure policy. Therefore, security requu. ment related to this attacker
is: a set of colluding entities “mu t u. = “2 able to access information
about the dataset and the master se. 7 . s.

(4) Cheating entity on the secrei. “he la. - attacker that we consider is an
internal entity that sends a fak /a1, ved shares of the secret secret as
its share to the Repo (or ¢ "~ ent."ies) to avoid letting disclosure of its
dataset. Therefore, the secui. ~ requirement is that “no” collaborating
entity can submit an incorrect sha.e of a secret.

2.3 Backgrouns' on ‘e Cryptographic Algorithms

In the proposed sc.. * i, v : take advantage of Identity-Based Encryption
(IBE), and Line « Secrev ~aaring (LSS) schemes. In the following we provide
required back’ co. ~d knowledge on these two schemes.

2.3.1 Id ntit -Based Encryption

Identi y-Brsed kucryption proposed by Boneh and Franklin [6,7] is a public
key ncry ptior that allows the data owner to encrypt the data using an
arbitrar, “trig, ID, (as the public key). This way, any pair of users are able
t securely communicate without exchanging any key materials (i.e., public
~ud priva e keys), and without the need to involve any trusted third party
fc. the k y management purpose.

An IBE scheme is composed of four functions [7]:
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e Setup: takes as input a security parameter; and outputs a se. ~f sys. ™
public parameters, P, and a private master key, M K, that is know. only
by the key generator. The system public parameters inclucd . a ¢ >=~ription
of a finite message space M, and a description of a finite 'phe cext space
C.

o Extract: takes as input P, the master key MK, and an arbitraiy string
ID € {0,1}*; and outputs a private key SK. In par cular, t1 ‘s function
takes the I D as a public key, and extracts the corresp ndine private key
SK.

e Encrypt: takes as input P, an ID, and a mess ge - . € . 4; and outputs
a ciphertext CT € C.

e Decrypt: takes as input P, a ciphertext CT', a..' a private key SK; and
outputs the message m.

In an IBE scheme, if SK is a private k — tha. *= _enerated by the Ex-
tract algorithm for the string 1D as the public "2y, then the corresponding
encryption and decryption functions m' . .awoy ohe following consistency
constraint:

Vm € M : Decrypt(P,CT,SK) =m w .cre CT = Encrypt(P,ID,m)

2.3.2 Linear Secret Sharir ~

Secret sharing scheme, first introdu.2d by Shamir [31] as threshold secret
sharing, is a building ble ' for several cryptographic methods and secure
protocols, such as attri’ ute-bas 4 encryption, and multiparty computation.
In a (¢t,n) “threshold” . -ret sh: ring scheme [31], a dealer who has a secret
s, divides the secret mto n |~ ces and distributes shares of his secret to n
parties. Any subse’ of p xties whose cardinality is greater or equal to a pre-
defined threshold, « ‘v iere = < ¢ < n), can reconstruct the s from its shares.
However, know! .dge ot . = t — 1 or less shares of the secret reveals “no” in-
formation abe . e s. A generalization of the threshold secret sharing would
be distributing the si. “es of s based on an access structure A (i.e., a subset
of parties). sud " a secret sharing scheme satisfies the following conditions [2]:
i) Correc’ 1ess: any subset of A (authorized parties) can reconstruct the se-
cret from its nares; and ii) Perfect privacy: any subset of parties that is not
in A /marthori.ed parties) cannot gain any information about the secret.
A “) iear” secr .t sharing scheme (LSSS) is defined over a finite field F. The
dealer ¢. ~ose a secret which is an element of the F, and the shares of the
s cret are vectors over F. The shares are computed using some independent

andom i 1d elements (chosen by the dealer) while applying a linear mapping
tu the se cet [2].
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3 Proposed Approach

Our proposal for conditional collaborative data sharing cc apos «. ~f two
phases: 1) offline setup phase, and 2) online credential anc 7 .aset man-
agement. The main difference between our proposal and th~ statc ~f-the-art
LSSS [2] that might be considered by a layman reader as a similar »proach for
collaborative data sharing is the “conditionality” requir. ment. T is require-
ment, as we explained in Section 1 and Section 2 (second « “~<' _r model), is
that disclosure of a dataset related to target ident’.er 1™ must not reveal
any information related to any other target ident Ser Dy Therefore, our
proposal is different from the state-of-the-art i: that, in ur approach we
consider unique dynamic keys for each target (adopw. ~ IBE [6,7]), that can
be defined at runtime. Further, such keys wi' be mixe | with exiting secret
sharing schemes in order to provide distrikitea . ~ll»' orative data sharing.
We explain the details in the following.

3.1 Offtine Setup

In the setup phase, the participav.ng ~uti es, E; where i € {1..n}, share a
secret according to the considered ac -ess structure A. The entities agree on
the following public paramete.

Two large primes p and ¢ such tu. 5 g divides p — 1;
An m x £ access matriv' 4 on the participating entities, representing the
specified policy to ac ess the ecret;

e A cyclic group G), o1, “ime or .er p, and a generator g € G, for the group.
The group G, is  pecifica chosen as the domain of a non degenerative
bilinear map e : &, ¥ &p — Gr.

Then, each p7 -ty .. ner orms the following steps:

1. Chooses a " u. 'nm secret 0; € Z; over the ring of integers modulo prime
q;

2. Chooses + 1. ndom vector v; € Zg with o; as first entry;

3. For ear 1 acc ss matrix row j, computes the share w; ; = A; - v;, and sends
(through  secure unicast) it to party associated to the row j;

4. Cor .putrs g“+ & G, and broadcasts it to all entities.

A~ 1, r me of the entities knows the shared master secret s, where

s =\ ;. Rather, each entity is able to compute the following important
¢ aantitic

L' gene’ ., depending on the access structure, m can be greater than the number of
domaius n (i.e., an entity may require to be given multiple shares for satisfying the access

polic ). Here, for presentation simplicity we non restrictively consider m = n.
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e The global public key g° =[], g°* € Gp;
o The local per entity share x; = > 1 w; ; € Zq.

The system is secure as long as the master secret s remains ankr sw. *o all
the involved parties. In essence, the master secret will never be ~ onstructed,
and we will reconstruct quantities of type H(ZD,)?, nar * -~ idew. *y based
private keys associated to target identity H(ZD;).

3.2 Online Credential and Dataset N ar .ge nent

Monitoring a new target: We recall that an entity 7 encrypts its dataset
associated to a target ID; , using a pseudo-r. ~dom ke: K; ; on-the-fly gen-
erated according to (1). Each entity upor deciu. ~ .o generate a dataset
regarding a target 7T;, with identity I.D;, must «.'iver suitable cryptographic
information to the shared repository for C.., Luug the dataset. In order to
do so, E; transmits once-for-all to the Repo [~r once everytime it changes its
own secret S; used in Equation (1) # ™RF-enciypted version Erp, (K; ;) of
the key K j. The E;p, (K ;) is constr. ~te . using the IBE method [6], where
the identity (IBE public key) is t} ~ strin,_ ID;, and the PKG’s public key is
the ¢° that is computed in the offli. = . *up phase (Section 3.1). The adopted
IBE equation is as follows:

Erp, (Kij) = (9", b, © Ha(e(H(ID;)",g%))) (2)

where r € Z; is a rando” . . e, e : G, x G, = G is the agreed bilinear
map, H : {0,1}* — G, s a cry} ographic hash mapping a target name ID;
into a point of the grouy, ., an' Hy : G — {0, 1}" is a cryptographic hash
mapping a point of “ae group ‘.7 into a string of same size as K; ;.

Dataset disclc ;ure Wh-never an entity E;, desires to share its dataset
related to the targ.' .dent cy ID; with the other entities, it generates a
disclosure signc as follo.. .

Signali,j = H(IDj)zl (S Gp (3)

Upon rec ptior of a sufficient number of shares (satisfying the access pol-
icy) delive. 7 inside the signals Signal;; for ID;, the repo computes the
coeffic’ mt c; suc that

> ei-Ai=(1,0,...,0) (4)
i€Q

‘here Q s the set of secret shares for the target ID; received from the
en. “iee .nd A; is the row of the access matrix associated to the secret share
disclosed by the entity FE;. Having sufficient number of secret shares and
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+

their corresponding coefficients, the Repo can reconstruct the 1."% priv
key associated to the target ID; , i.e., H(ID,)*® as follows:

(5]

H(ID;)*= [ [ signaliy, = [ [HID,)*" = H(ID;)> e (5)
i€Q i€Q
Finally, all the IBE-encrypted keys K, ;, used to encrypt  ach ent. “ies dataset,
can be decrypted by computing

H(e(H(ID;)%,g")) (6)

Due the properties of bilinear pairings, we have
Hy(e(H(ID;)*,g")) = Ha(e(H(ID;)", %)), (7)
Considering the Equation (2), we can no.. vecov. ul the keys (i.e., K, ;):

Kij @ Ha(e(H(ID;)", 6%) @ & wewnnr;)®, ") = Kij (®)

The keys K, ; now can be used to decrypt all ."e datasets associated to the
target ID;. Hence, even the dataset  © the ... 'ties that have not decided to
share their dataset and have not sent 1. © relevant Signal can be decrypted
(due to satisfying the pre-defined & . s po. 2y during the offline setup phase).

3.3 Security Discussion

In this section, we prs vide a ¢ curity analysis of our proposed approach
against the considered « “ack ' .iodel in Section 2.2. First, considering an
external attacker, e vesdropp. .g could be easily eliminated by assuming a
secure communica’.on ¢ ann 1 between each pair of entities, and between an
entity and the sharc’ repc atory. Therefore, our proposed approach is safe
against such ar attacker.

Regarding .n « ‘ernal attacker and considered four types of attacks (refer
to Section 2.2), we di.:uss the resilience of our proposed approach against
each of thr .e a sacks in the following.

3.3.1 Upr rusted shared repository

Due to v. ~ v .age of IBE for encrypting the datasets based on their target
i entifie (i.e., per ID;), for each dataset we have a unique IBE private key,
_T(IDj)®. The shared repository (Repo) would only be able to decrypt the
de ~sets g either the s is disclosed, or H(IDj;)® has been reconstructed as a
whale. On the one hand, as we explained earlier, the master secret s will never
be r -onstructed, and the Repo will not have access to the s. On the other




Intelligent Conditional Collaborative Private Data Sharing 15

hand, if the shares of the IBE private key, H(ID;)%, that the Re, ~ rece. ~s
do not satisfy the access policy, the Repo would not be able t~ recov - the
H(IDj)®. This feature is due to the usage of LSSS for shar'ag t~ master
secret § between the collaborating parties. Therefore, the s" ared repository
is not able to decrypt the datasets unless a sufficient number o1 « “tities send
their shares of the IBE private key; hence the proposed .pproach meets the
security requirements related to an “untrusted shared r. vository attack.

3.3.2 Honest-but-curious collaborating enti ies

In Section 2.2 we defined two security requirements. ‘a) considering any sub-
set 2 of the entities (unauthorized parties) that are not involved in the
dataset disclosure access policy, should not be . ~le to sain any information
about the secret [2]. This requirement is sati."~d daue to the usage of LSSS.
Therefore, a malicious entity cannot access other . +tity’s share and datasets
unless the disclosure condition is met.

(b) Based on the features of IBE [6], it fou. vs that the disclosure of the
IBE private key H(ID,)® associatec. to « - zet ID; does not reveal any
information about the remaining targev

3.3.3 Colluding entities

In Section 2.2 we considered two dittccent scenarios. First case is a set 2’ of
colluding entities that dr ... " satisfy the disclosure policy. In this case, the
outcome of their collusi n will b a key s’ = >, cjaj, which would be 5" =
s+¢ and could not be usc ' to dec ypt the dataset. In the second case, in which
the colluding entitie “satisi,” che disclosure policy on a dataset, they will
obviously be able t, rec nstrmct the H(ID;)® and decrypt the corresponding
dataset.

3.3.4 Cheating enu. y on the secret

In this se tion we focus on cheating parties who aim to break the protocol
by delivering “ke/altered shares during the crucial offline setup operation?
(descr ved 'n Sec.on 3.1). We show that how our proposed system could be
furt! »rir prov d to cope with this kind of attack. Note that such an attacker

2 " ..e that . ke shares are critical only during the offline setup operation. Indeed, a
T arty wisL 1g to cheat during the online operation, i.e., sending a fake signal H(ID;)%i
1 Equatior (3), would be considered as a party who “refuses” to send her share. In other
wo. = kv wing that a signal is fake does not solve the problem of disclosing a target
dataset - in any case the dataset would be decrypted only when a sufficient number of

valie “ignals (Equation (3)) are received.
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may play havoc with the proposed protocol. Undetected inject. = of .. 'e
shares w; ; -with reference to the notation introduced in Section 3.. hv a
party ¢ would affect all of the local per-entity shares x; that .re )t upon
such fake shares. In this case, it will be impossible to recons —ct .he key for
any target dataset as detailed in Section 3.2.

A possible solution against such an attacker would be extending che pro-
tocol by permitting each party participating in the setu » phase 1 ) explicitly
verify each (fraction of the) share received during the -=tup. rhen, each
party could follow up with its own local share con puvation only when the
correctness of the received information is guarant =d. " nis 30al can be ac-
complished by adapting a non-interactive verifiahle sccret ' aring scheme to
our proposed offline setup protocol. To this purposc, ‘n tue remainder of this
section we show how a basic solution based cu Feldma. ’s commitments [12]
can be designed. Our proposed approach is sin., '» and perfectly compatible
with the Pedersen Distributed Key Generat.. » scheme [28], but it is more
general than previous proposals restricted to thre.” old-based secret sharing.
Our proposed solution does not require ai. - special structure or restriction in
the access matrix. We here focus on such a basc’ e approach and leave exten-
sions to more elaborated zero-knowlec ~€ a,. . ~ches for further work. In fact,
despite some known limitations [14] a 1~ tman-based commitment within a
distributed Pedersen-type protocc . ~ons. 'ered reasonable and, for instance,
it has been employed also for distriL 'ti._ the Private Key Generator in IBE
schemes [7].

Let us first recall, from Sec.. n 3.1, that each participating entity FE;
chooses a random secret o; € Z; and a random vector in Zg, with o; as
the first entry. Let us der .. —1ch a vector as

Vi = TJiy T2 77'l,i]-

With such a notatic 1, th- computation of the share w; ; for each access matrix
row j can be rewi. “er as

l

Wi = 107+ Y T
k=2

The offlir : set' p phase, described in Section 3.1, now requires each partici-
pating entit, “: to compute and broadcast ¢, ; = g7¢ € G. To permit verifia-
bility - 1 the shaics w; j, each party E; have to further compute and broadcast
the 7 (diti snal " — 1 commitments c;; = g™ € G, for all k = 2,---1.
The | “rtic pating entity F; is now given the possibility to verify that the
8" uve computed share w; ; associated to row j of the access matrix is indeed
valid sb re, by checking whether the following equality holds:

l

akg 2w
[T =9
k=1
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In fact, if the protocol is correctly executed and no shares arc ~ltere. *t,
readily follows that:

l l
[T = (o7 [T (g™ = glesmtBiacnrmes e (g)
k=1 k=2

Otherwise, if the Equation 9 does not hold, it mean: that on' (or more)
of the collaborating entities has shared a fake/altered sha. of +".e secret.

4 Use Case Example

In this section we explain two use case scenar.. - for which we adopt our
proposed conditional collaborative data shari._ approach. As we discuss in
Section 4.1, during a global or large scal~ ~~-~= -* .ck scenario, intelligently
sharing the threat feeds provides security malysts with threat intelligence.
Cyber Threat Intelligence (CTI) helps security « ialysts, victims, and defend-
ers to gain knowledge about adversai ~s, © .. intentions and methods [21].
This knowledge is achieved by processi.  the shared information regarding
the Indicators of Compromise (IoC "), ~ ¢., “rough sharing system logs, secu-
rity alerts, network traffic informatio, and so on [30]. An important challenge
in the area of CTI is legal iss -, . ~=r ‘ng the sharing of CTI-related infor-
mation, specially the informatio.. -vithin the government’s possession and
within the possession of the private sector [26]. As an example, assume a sce-
nario in which Federal P uca. of Investigation (FBI) provides the privately
owned banks with the "> addres =s that are known to deliver ransomware to
financial sector [26], or a.. ‘nfec’ od bank provides such information to other
banks.

The second use ase ( n Se’ iion 4.2) is borrowed from our previous work [3],
in which we show how e p oposed approach helps in mitigating a distributed
denial of servic attack tu_ough whitelisting legitimate traffic.

4.1 Ro 1so7 wware Threat Intelligence

In orc or to make this use case more clear let us consider the WannaCry Ran-
somy. ve uttac’., that emerged in May 2017. WannaCry exploited a vulnera-
bilitv in , “» .ows machines (Windows SMB remote code execution vulnera-
I .lity) a: 1 was able to spread itself across an organization’s network without
. ser inter ention [32]. We believe that it would be possible to mitigate the
W maly attack (and similar worm-like malwares) and block its spreading
thrrughout an organization’s network by sharing the attack indicators and
syst« n logs within the organization (and with different organizations).
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In this use case, we consider two scenarios. *Va fine jrained data sharing
scenario, in which each individual device i.. an 0., .ization, e.g., personal
computers in wards of a hospital, in each officc ~f a department in a uni-
versity, or in each branch of a bank, is usiuered as a collaborating entity
(e.g., Figure 3). In this scenario, each device ~tores logs (e.g., network traf-
fic, or application information) base . - snecific index (which should be
agreed a priori). For example, each dev. “e "ogs the requested DNS resolution,
or contacted websites, or list of s “ware vndates. Moreover, there is usually
a central logging database that st.ve. =n encrypted version of the logs of
each device (though it can be saved 1 ~ally on the user’s system in a shared
folder). Upon receiving an indic *10u o. a cyber attack, the security analyst
of an organization should have acce ~ to all the encrypted logs in order to
perform analysis of the att~~k entry point. For example, having access to the
contacted IP addresses ' y eacn levice in an organization, the analyst might
be able to detect the C mmand md Control (C2) server which the malware
connects to, and bla  klist . ~ T’ address. However, considering a university
example, all the st .ff 2 .d professors may not wish to share their private
information on th. '~ e tivit'cs, e.g., contacted web sites. In the WannaCry
attack scenario chis n. = happened for those computers that were using
outdated /unp- . “ed Windows. While, if at the first point of recognizing the
indicators of compro. ise, the first victim (or a number of initial victims) had
shared the - .. erability and attack information within their organization, or
with othe org nizations, it could be possible to search for those vulnera-
bilities anu ~ .tigate it before being distributed through the organization’s
networ <.

2) « cor sse-cained data sharing scenario: in which each private hospital,
each ac, «tm at in a university, or each private bank plays the role of a col-
lo” . ating o ity (e.g., Figure 4). Our proposed private data sharing method
5 of gre«  help in such scenarios. Imagine each hospital in a city or coun-
t. 7 being an entity. All of the hospitals log their security related information
(e.g., werts, DNS requests, software patches, etc) and store an encrypted copy
of t. =m in a shared repository. Moreover, assume that the dataset disclosure
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condition is that at least two hospitals trigger the Signa alert. Upon recogni-
tion of an attack, E5 and Ej3 in Figure 4 trigger e dats disclosure Signal. As
soon as receiving sufficient number of Signats, “he aw.uun of the shared repos-
itory is able to recover the encryption key and ac.. ~s the logged information
by all the entities. In fact, Equation 8 wh. * leads to disclosure of all the K, ;
keys regarding a target I D; (recalling that a v. *oet could be any of these logs
which is identifiable through a uniq. » p.. "~ index) provides an important
feature for emergency scenarios. This 1. v eful in situations where the log of
all the hospitals should be investi, . ~d (fc vulnerability analysis against the
ransomware attack), while some of e .. ~spitals have not detected an attack
(e.g., E1 in Figure 4), or thei~ TT ma ager (or whoever responsible) is not
available to share their credentia. = or ror any reason (which could be privacy
issues) they are not able/willing to s..are their logged information. In such a
scenario, in order to mitic ' - a large scale cyber attack, and due to the fact
that the disclosure poli .y has \ 2en agreed by all the participating entities
(i.e., hospitals) during ."= initis . setup, the unavailability or unwillingness
of some entities doe: not me * ¢, since the shared repository will be able to
access those inforn atior for further investigation.

4.2 Distrioute. Denial of Service Attack Mitigation

In this us : cas example we consider a DDoS mitigation approach through
establishing d sharing whitelists of good addresses that should not be fil-
tered .nder DLu3 attack conditions. Figure 5 shows an example scenario
in w ich "ae t-.get has been considered to be a web server, identifiable by
its uniy. ~ ne ne. Each domain generates a whitelist for any target that it
ir willing to monitor. Each whitelist includes a set of IP addresses of be-

ign user whose access to the target server should be guaranteed even in
t. > prese .ce of a DDoS attack. However, whitelists require domains to share
sensivie information. Our proposed approach helps in managing a large num-
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ber of fine-grained organized whitelists and selectively disclose them under
precisely specified attack conditions.

Whenever a domain E;, based on its inter. ~1 mo..coring of a target 1D,
detects that the target is under DDoS attack. it t. -gers the disclosure signal
and shares its own share of the private . ~v associated to the target ID; .
When “sufficient” number of Signals which . “tisfy the access policy (e.g.,
(E1 N\ Es) V E3) is received, all the de "ias.. “>alved in the system operation
will be able to retrieve (i.e., decrypt) all b whitelists associated to the target
I1D;, and will be able to instruct . ~it

firewalls accordingly (e.g., block i -affic except the whitelisted TP ad-
dresses).

5 Performance Ev dua. on

In this section, we p esent v.. - performance evaluation of our approach bor-
rowed from our pre sious work [3]. As our proposal is mostly a cryptographic
approach and its po # rmar ce assessment highly relates to specific applica-
tion scenario, ir this sec * n we present the computational time required to
perform each 1, ~tographic primitive. The performance evaluation is per-
formed on an Intel A ~n X5650 (2.67 GHz, 6 cores) equipped with 16 GB
RAM and . huntu Server operating system. We implemented the system
using C+ - prec ;ramming language. We adopted XML to structure and trans-
port exnorie  data between different entities. For cryptographic operations
(e.g., ".ashing wi.h SHA-256, symmetric encryption/decryption with AES-
128 * we .sed he OpenSSL library. For pairings, elliptic curve generation,
elliptic « "rve arithmetic, and hash functions required by IBE, we adopted
P uring Based Cryptography (PBC) library [23].

Even . our current preliminary implementation has not been specifi-
c.'v opt’ nized for performance and multi-core exploitation, results are very
promusing and suggest the feasibility of our system in a realistic setting. Ta-
ble . depicts performance analysis of the cryptographic primitives. The re-




Intelligent Conditional Collaborative Private Data Sharing 21

[Function [Computation Time “=s)|
IBE encryption, Equation (2) 2.2051 X
IBE decryption, Equation (6) 2.3070 4'
Symmetric key derivation, Equation (1) 0.0086
Key share computation, Equation (3) 0.3101 |
AES-cbc-256 encryption 0.000°7 -
AES-cbc-256 decryption 0.7 1334 ]
Key Reconstruction, Equation (5) (1 share) 0. 5697 T
Key Reconstruction, Equation (5) (2 shares) 0.9¢ 11 T
Key Reconstruction, Equation (5) (3 shares) 118959

Table 2: Cryptographic operation perfori. .ce ar ilysis

sults are obtained by averaging 1M executions of a sa.. > primitive. As it can
be seen, IBE-related operations impose the .. ~hest cc nputation overhead,
especially those involving pairings. While, &, mme.." c¢ncryption of datasets
is the least expensive operation. However, as enc., ~tion of datasets should be
performed in real time, it may become & -uviueneck. The IBE-related opera-
tions are actually computed only once for eve -~ newly considered target ID;
(we assume there is not a periodic rel ,” ~nrocess per target). Similarly, key
reconstruction functions per target sho 1d ve performed once, only if there is
an ongoing attack. Therefore, the © ~t tha complexity grows with the number
of shares is not an issue. It should . e . ~teu that complexity of the proposal
does not rely on the number of entitic * involved in the system, this will only
affect the initial offline setup ,."“ase. .. hile, the number of shares that are
required to satisfy the access policy ~ffects performance of the system. It is
evident that if we consider the threshold-based secret sharing, the increase in
the threshold value (an' conse mently number of required shares) will lead
to the increase in the c. mplexity of Equation (5) which reconstructs the IBE
private key associate ! to a ~rr st. While, if we consider the policy-based se-
cret sharing, the cr mple ity or Equation (5) depends on the complexity of
the access policy. . ~ e amp 2, if we consider a policy U;c ny E;, the number of
required shares ‘or key ~c nstruction would be one; however, if we consider
the following ¢ . ~ss policy (E; V E3) A E5 A E4 A Es, the number of required
shares to reccnstruc. “he key would be four. The performance of our system
also relies < . “he rate of considering new targets (ID;), since each entity
requires t perf rm Equation (1) and the IBE encryption (Equation (2)) and
deliver the ' .ryption key to the Repo. However, these operations can be
offload .d and sc. 'ed to gbps speed [5].

¢ Con 'lusion

The ....ditional collaborative private data sharing method proposed in this
pap v is a cryptographical method that is applicable to secure privacy-
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preserving collaborative data sharing scenarios. In such scenaric a pi. i
known entities would only like to share their encrypted data ~oudiv.. ~ally
on special occasions, defining uniform access structures. In Larti'ar, our
proposed method adopts a combination of Identity-Based F <ryr ion (IBE)
and Linear Secret Sharing(LSS) schemes in order to provide sc.. ~bility, and
efficiency. Our proposal is scalable in the sense that the’ - 1s no limic on the
number of distinct datasets that each entity is willing to sharc since the
datasets are independently encrypted using IBE, and the. » unio- ¢ identi

er is the public key. The proposed approach is e’ icient in the sense that
there is no need for any interaction between diffc -ent :nt1 ies on deciding
encryption/decrytion keys for each dataset, as long as chey « onsider a unique
public identifier for each dataset that is publicly ava."~ble vo all the collabora-
tive entities. The important distinguishing feature of t1 > proposed approach
compared to the existing collaborative data shai. - met 10ds is that, the mas-
ter secret will never be revealed /reconstructedw v any entity or central shared
storage; rather, some quantities of the identitv-ha. 1 private keys associated
to each dataset will be shared and recoun. “ructed by the collaborative enti-
ties. Therefore, disclosure of one dataset D; , ..l not reveal any information
about the other datasets with differe. © 1uc . "“ors (i.e., ID), eliminating the
need for perform re-keying process for ¢ “} or undisclosed datasets.
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In this paper:

- We present a conditional collaborative private data sharing protocol that provides a sc7.abi. @nd easy to deploy
cryptographical method for data sharing.

- We provide scalability by enabling the data owner to encrypt each dataset with a ur que ;ecret key. Therefore, the
disclosure of one dataset does not disclose information about the other datasets.

- We provide cryptographically conditioning by permitting the collaborating entities .~ dec. /pta specific dataset only if
they satisfy a pre-defined policy and recover the relevant secret key.

- We apply a fully distributed process by adopting a combination of Identity-B .sed =n. yption (IBE), and Linear
Secret Sharing (LSS) (in particular, Threshold Secret Sharing).
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