
Accepted Manuscript

Task migration for mobile edge computing using deep reinforcement
learning

Cheng Zhang, Zixuan Zheng

PII: S0167-739X(18)32967-4
DOI: https://doi.org/10.1016/j.future.2019.01.059
Reference: FUTURE 4752

To appear in: Future Generation Computer Systems

Received date : 26 November 2018
Revised date : 14 January 2019
Accepted date : 27 January 2019

Please cite this article as: C. Zhang and Z. Zheng, Task migration for mobile edge computing using
deep reinforcement learning, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.01.059

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.01.059


Task Migration for Mobile Edge Computing Using Deep Reinforcement Learning

Cheng Zhanga,∗, Zixuan Zheng1

aDepartment of Computer Science and Communications Engineering, Waseda University, Tokyo, Japan

Abstract
Mobile edge computing (MEC) is a new network architecture that puts computing capabilities and storage resource at the edges of
the network in a distributed manner, instead of a kind of centralized cloud computing architecture. The computation tasks of the
users can be offloaded to the nearby MEC servers to achieve high quality of computation experience. As many applications’ users
have high mobility, such as applications of autonomous driving, the original MEC server with the offloaded tasks may become far
from the users. Therefore, the key challenge of the MEC is to make decisions on where and when the tasks had better be migrated
according to users’ mobility. Existing works formulated this problem as a sequential decision making model and using Markov
decision process (MDP) to solve, with assumption that mobility pattern of the users is known ahead. However, it is difficult to get
users’ mobility pattern in advance. In this paper, we propose a deep Q-network (DQN) based technique for task migration in MEC
system. It can learn the optimal task migration policy from previous experiences without necessarily acquiring the information
about users’ mobility pattern in advance. Our proposed task migration algorithm is validated by conducting extensive simulations
in the MEC system.
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1. Introduction

With recent years’ proliferation of variouswireless computing
applications such as wearable devices, virtual reality and
smart-phones, it leads to an explosion of data. Therefore,
cloud computing [1] was proposed to provide high quality
of service (QoS) for the applications [2]. Meanwhile, some
applications also require low latency and the central cloud
computing servers need store and transmit tremendous data.
These raised drawbacks of traditional cloud computing can
be overcome by the Mobile Edge Computing (MEC) [3][4].
The basic idea of MEC is performing the related tasks of
the application to the nearby edges of radio access network.
The autonomous driving which is currently most concerned
topic usually involving diverse kinds of tasking dealing (e.g.
localization, road visualization and route planning). By
using the MEC technology, cellular operators (the autonomous
vehicles) can fulfill multiple tasks efficiently.

Still we are confronting many challenges regarding MEC
technology [5]: (1) computation offloading; (2) allocation of
computing resource and (3) mobility management. In this
paper, we focus on the last one. Mobility management is the
problem about how to guarantee the service continuity for the
applications, if the user equipments (UEs, we also use "user" to
point UE) roams from one network region to another. Several
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Figure 1: UE’s movement makes its connection to base station from eNB 1
to eNB 3. The network should consider the problem whether to migrate UE’s
offloaded tasks from MEC 1 to MEC 3.

methods are provided to tackle with UEs’ mobility problem.
The most direct method is adapting the evolved node B (eNB)
or small-cell eNB (SCeNB) transmission power for the offloaded
applications. However, it can only be feasible for the UEs with
a low mobility. As for the autonomous driving applications,
the virtual machine (VM) migration (or equivalently, task
migration)model should be introduced to guarantee the services.
Even though task migration migration may spendmore time and
backhaul resources for the transmission between MEC nodes,
it can bring us the benefits when the autonomous vehicles
experience lower latency in the vehicles’ neighbor and backhaul
need not to be assigned for the transport. Therefore, it proves
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to be a tough problem to how to maximize the migration gain
under the restriction of migration cost.

The paper [6] formulated the problem about VM migration
as a continuous time Markov Decision Processing (MDP)
and design a policy to determine whether initiating the VM
migration. The [7] also use MDP to deal with the VM
migration but it always initiates the VM migration as long as
the UE is bounded by the thresholds. The main drawback for
[6] and [7] is that their proposed methods all are based on
one-dimension models. Actually, the general setting for the
VM migration involves 2D mobility. The paper [8] improve
their VM migration process by a mobility prediction: estimate
an advanced throughput when roaming throughout the network.
However, to make satisfying prediction, it requires to acquire
large amount of information. In [9], they enhance the VM
migration decision processing in the field of minimizing the
total cost during a period time by predicting future migration
cost under a specific predicting error bound. But it will be
hard for this offline algorithm to be applied in the real world
because of its high complexity. In [10], it focuses on the load
of individual MEC serves that may have impact on the VM
migration. The authors propose online control algorithm to
minimizing the overall transmission and reconfiguration costing
during the VM migration. The paper [11] introduce a protocol
architecture in dealing with the mobility management but for
optimizing cloud access problem.

In this paper, considering the practical challenges faced by
the autonomous vehicles with MEC technology: vehicles are
with high level mobility and changing mobility pattern. We
propose a method based on the deep reinforcement learning
(DQN) to tackle the problem. Reinforced learning problems can
be described as an agent learning continuously from interactions
with the environment to achieve specific goals such as achieving
maximum reward values. And at the initial state, the agent will
rarely have ideas about decision making or the task. It receives
a reward from its performance about the task. Theoretically,
it will become easy for agent to make an optimal decision if
agent explore whole states and acquire corresponding values.
However, in the real word especially our autonomous vehicles
application, it seems impossible for the agent to experience all
situations let alone the situations are not constant. Therefore, we
propose method based on the DQN to generalize the experience
rather than know all situations. DQN is a neural network version
Q-learning. And the Q-function could be executed by the neural
network, but it is not simply replaced. DQN provides a stable
solution for deep value-based reinforcement learning problems.

There are main three contributions about this paper:

• We formulated the sequential decision problem that
deal with where and when to migrate the tasks using
reinforcement learning framework.

• Wepropose an algorithmbased on a deepQ-learning neural
network to solve task migration decision problem without
knowing users’ mobility pattern.

• Substantial simulations have been done to validated the
proposed deep reinforcement learning based algorithm,

and the results prove our method’s usefulness and
effectiveness.

We organize the rest sections of the paper as the following.
The section 2 , we describe recent years’ related study in the
field of MEC and its application in the automatic driving. The
section 3, defines our system model. Section 4 formulates the
problem which can be solved by our proposed reinforcement
learning based technique. Section 5 explicitly illustrates our
proposed algorithm. Section 6 shows the simulation results to
valid our algorithm Section 7 draws out the conclusion.

2. Related Work

Previous works enable the mobility of users via handover
procedure once users choose to change the serving eNB/SCeNB
when roaming through the networks in order to insure the QoS.
A user offloads the computation tasks to a MEC server in one
location, and with the user moves far away from theMEC server,
the distance between the user and theMEC server becomes long.
Then, time delay is large for the user to use the original MEC
server. Therefore, task migration comes to be a novel approach
to be utilized in the MEC service.

Task migration mainly mediates about two parts: the cost and
gain for migration. On the one side, the cost represents the time
consumption for the taskmigration, and the resources consumed
in network backhaul in transmission of the tasks between the
MEC servers. One the other side, the system can obtain gain
from the view of lower delay between the the user and MEC
server.

Taleb et al. in [12] proved the influence performance to theUE
in VMmigration. they employed the Markov chains to describe
the mobility of UEs. In the case of without VM migration, the
probability decreases as the distance between the eNB and the
user increases, as well as higher detention. In contrast, one UE
connects to the optimummobile edge computing server with the
lowest time delay while may pay more cost on the process of
migration.

Taleb et al. extends their work to [13], in which applied a
MDP based algorithm for optimizing task migration decisions,
and studied their implementation on Software Defined
Networking (SND) technologies, or the Locator/Identifier
Separation Protocol.

Ksentini et al. in [6] proposed to use follow me cloud (FMC)
to implementmobile edge computing, and they considered about
an optimal threshold policy to decide migration or not. Each
time the handover performed by the UE, the decision policy tries
to perfume the execution judgment. If the cost is higher than
the gain, the computation task is kept in the present MEC server
instead of migration and vice versa.

Similarly, Sun et al. in [14] also researched the topic to
obtain benefits from VM migration while considering the extra
cost. They proposed a strategy to decide if the task migration is
supposed to be executed or not. They proposed anmixed-integer
quadratic programming based heuristic algorithm to solve the
formulated problem since it is proven that the target problem is
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NP-hard. Moreover, the paper also gives the impact of parameter
weighting on cost and gain.

Wang et al. in [7] formulated the task migration problem
by Markov decision process, and then proposed a low time
complexity threshold policy for task migration . The purpose
is to reduce the whole cost during the VM migration as much
as possible, where the cost is defined as the time delay for task
migration. The results show that the optimal threshold is always
better than never migrate or always migrate.

Not like the one dimension mobility model in [6][7], Wang
et al. in [15] considered two dimension mobility model and real
trace mobility trace. A sequential decision making problem is
formulated and a optimal algorithmwith time complexityO(N3)
(N is the hops between the user and the MEC server that has
user’s task) is proposed.

Nadembega et al. in [8] improves the migration process
via a mobility prediction. The scheme makes it possible to 1)
evaluate the throughput between each MEC server and the user
as the user roams throughout the network in advance; 2) evaluate
the duration windows for the user performing handover, and 3)
select the optimal MEC servers for task migration management
scheme according to offered throughput. The problem is that
it needs much information and does not consider the cost of
migration, which is not generally used in reality.

Authors in [9] and [15] demonstrated the improvement on
the mobility prediction and found the upper bound on the error
of mobility prediction. Similar to [7][15], the objective is to
minimize the sum cost of task migration. The paper proposed
an offline algorithm to get the optimal sequence decision for a
certain look-ahead window with size K , which stands for the
time to which the cost forecasting is done. The task migration’s
performance strongly depends on the size of K . In the proposed
scheme, only single-UE problem is formulated. Furthermore,
[15] extended the paper to consider multiple UEs offloading
multiple tasks to the MEC server. Since previous offline
algorithm is too complex to be used in reality. They proposed
an online approximation algorithm, with outperforming no task
migration and keep migrating policy by about 32% and 50%.

Until now, all of the researches on task migration omitted the
influence on scheduling of workload. Urgaonkar et al. in [10]
firstly mentioned the issue of risk being affected by a load from
independentMEC servers. It may suffer from some defects such
as 1) a broad understanding of user mobility and the statistics of
request arrival process is rather difficult; 2) the time complexity
of the problem is very high and 3) the optimal solution is
needed to be recalculated due to any changes in mobility and
arrival statistics. Authors in [10] evidenced a new methodology
surmounting these disadvantages of the Lyapunov optimization
framework. An online control algorithm that decides where
the task should be migrated to minimize total transmission and
reconfiguration costs is proposed.

The paper [16] studies the topic about how to minimize the
overall time of migration, when the VM migration will be
executed. The paper gives out an algorithm to reduce the sum of
data transmission inmigration. More datawith low compression
will be transmitted. In the opposite, high compression rate
can result in a significant reduction in data transfers during

migration, but with increases of time for data compression.
Hence, the paper proposes that the compression ratio is
dynamically adjusted according to the available bandwidth of
the return trip and the workload of the MEC server. Simulation
shows the superiority of the schemewith the dynamic adaptation
to deal with the variations of available bandwidth in the process
of task migration.

Authors in [11] demonstrated that proper task migration may
not only reduce latency for task execution, but also increase
system throughput. [17] proposed a locator/identifier separation
protocol (LISP) based protocol for cloud access optimization.
Once the user encounters a delay that exceeds the maximum
tolerance threshold, the task starts to migrate to a new MEC
server.

Qiu et al. in [18] proposed one optimal and one near-optimal
heuristic algorithms to solve the real-time heterogeneous
task assignment problem when different tasks have different
execution time. Zhu et al. in [19] considered QoS requirements
of tasks of distributed systems, and proposed a fault-tolerant
scheduling algorithmwithQoSneeds on heterogeneous clusters.
Qiu et al. in [20] studied green cloud. They proposed a
genetic-based algorithm that can not only schedule and assign
tasks to cores in the chip multiprocessor system, but also
provides a phase-change memory multi-level cell configuration
that balances the phase-change memory performance as well as
the efficiency.

Different from aforementioned papers, our proposed DQN
[21] based algorithm is aimed to solve the task migration
problem for MEC without the knowledge of user’s mobility
pattern. Its effectiveness is shown in two aspects: (1) fast
convergence rate (2) without depending on knowing user
mobility in advance.

Figure 2: Illustration for reinforcement learning.

3. System Model

In this section, we describe the system by defining the
necessary notations. We consider that there are M distributed
MEC servers equipped with cloud computing resource attached
to base station eNB, and there is only one user moving
from one place to another. The location set of eNBs is
defined as L={1, ..., L}. It is assumed a time-slotted model
as t∈T={1, 2, ...,T}. At time t, the user should connect to one
of eNBs at some location index lt∈ L. The user offloads its
task to MEC server at location index ls∈ L. User’s current
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Table 1: Notations.
Notation Description
M M={1, ..., M}, MEC server set.
T the time slot set.
t t ∈ T , the time slot.
L L={1, ..., L}, location set.
lt lt ∈ L, user’s location index at time t.
ls ls ∈ L, user’s location index where he

migrate his task to the MEC sever.
ut ut = |lt − ls | is the distance between user’s

current location (lt ) and user’s location (ls)
where he offloaded his task to MEC server.

st st = lt , state of user.
at FMC controller’s action at time t.
A FMC controller’s action set.
a0 a0 means the action of no task migration.
a1 a1 means the action of task migration.
β The parameter that measure the cost of one

hop between eNB.
ct (st, at ) cost at state st when choose action at at t.

C(st ) cost of task migration.
H replay memory.
Q state-action function.
π FMC controller’s policy.
Π FMC controller’s policy set.

rt (st, at ) FMC controller’s reward at time t.
φt (st ) function at time t about mapping from one

state st to an action decision.
φ∗t optimal action decision at time t. an action

decision.
γ the discount rate
α the learning rate
ε the trade-off between exploitation and

exploration

location index lt is not necessary equal to the location ls where
he/she offloaded hisher task due to user’s movement. We define
ut = |lt − ls | as the distance between user’s current location
and user’s location where he offloaded his task to MEC server.
Whenever user moves to a new location, FMC controller have to
make a decision whether to migrate the task from MEC server
at location ls to the MEC server at current location lt .

We utilize the reinforcement learning technique for FMC
controller to make the task migration decision.

The general idea of reinforcement learning is that by gradually
interaction with the environment ( shown as Fig. 2), agent will
be able to make better decisions using the past experience. At
the initial state, the agent rarely has the idea about how to
take action or even what the task is. Then according to agent
performance of this task, it will obtain a reward as the feedback.
Theoretically, agent could make the optimal decisions if it can
explore whole states and obtain corresponding values of its
action. Nevertheless, it seems impractical to experience the
total situations. When some unknown situations occur, the
agent could have difficulties making good decision because it

Figure 3: An deep Q-network based modeling.

lacks the abilities of generalizing the past experiences. Because
of this, DQN [21] was introduced to deal with generalizing agent
experience problem. DQN can help agent predict Q-value based
on general Q-learning [22] by utilizing deep neural networks
(DNN) [23]. DQN will establish maps between the agent
different states actions to its corresponding reward values shown
as Fig. 3. Therefore, agent could make optimum task offloading
decision by directly choosing the action that achieve the highest
Q-value.

We formally define the elements in reinforcement learning
model for our system as follows.

• agent: The agent is FMC controller. The FMC controller
has all the information of eNBs and corresponding MEC
servers. The FMC controller also knows which eNB the
user is associated with and the MEC server that the user
has offloaded the tasks. The FMC controllers determine
whether migrated UE’s task on MEC servers.

• state: The state at time slot t ∈ T is defined as st = ut .
Please note that ut is absolute difference between user’s
current location index and the location index where he
offloaded his task to MEC server. User’s movement
changes the state st . If st = 0, it means that user is still
in the same location as the MEC server with the user’s
offloaded tasks.

• action: The agent, FMC controller, takes action to migrate
user’s tasks to the current MEC server from original MEC
server, or do not migrate. The action at time t is denoted
as at ∈ A = {a0, a1}, where A is the action set, a0 means
the action of no task migration, and a1 means the action of
task migrations.

• reward: At each time t, FMC controller gets reward based
on its action, and current state. The reward is defined
as the difference between the quality of service and the
migration cost. The quality of service is determined by ut ,
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the difference between user’s current location index and the
location index where he offloaded his task to MEC server.

q(st ) = D − λut (1)

where D is the maximal quality the user can enjoy, and
it is a decreasing function of ut , which means that the
user’s quality decreases when the user gets far away from
the offloaded MEC server. Then, task migration become
necessary. As for the cost needed to migrate a task from
one MEC server to another one: (i) the cost of converting
a task to be executed on a new MEC server; (ii) the cost
needed for transferring the task itself over the network.
Here, we assume that different MEC server has the same
VM environment, and task can be migrated among MEC
servers without conversion. Formally, the cost of FMC
controller is defined as follows.

ct (st, at ) =
{

0 if qt = a0

C(st ) if at = a1 (2)

where the function C(st ) determines the time delay of task
migration. It dependents on ut , one simple implementation
of this function is C(st ) = βut , where β is a parameter that
measure the cost of one hop task migration between eNB.
Therefore, the reward rt (st, at ) is defined as follows in Eq.
(3)

rt (st, at ) = q(st ) − ct (st, at ) =
{

q(st ) if at = a0

D − C(st ) if at = a1

(3)

4. Problem Formulation

FMC controller aims to maximize the total sum reward of
these time epochs through deciding the actions of every time
epoch from the first to the last one. policy is defined as the
action sequences, the details shown as the following.

Definition 1. The FMC controller’s policy is about taking
actions from the time t = 1 to t = ∞, defined as the following
Eq. (4)

π =

{
φt (st ), ∀ t ∈ {1, ...,∞}

}
(4)

here φt (st ) is a function at time t about mapping from one state
st to an action decision.

The Π is to represent the set of π. If the task migration policy
π is employed, the corresponding state is expressed as sπt .
The goal of the FMC controller is to reduce total expected

reward from the time t = 1 to t = ∞ with an optimal policy π∗
( shown as Eq. (5))

max
π∈Π

Eπ
s1

[
∞∑
t=1

γrt (sπt , at )

]
(5)

where γ is the discount-rate and γ ∈ [0, 1].

The optimal policy represents the optimum solution to the
defined problem in the Eq. (5). Note that in order to achieve
the global optimum, the action at every particular time t should
consider about the both current and future expected cost. In
other words, at time t the optimal action for the problem shown
as Eq. (5) may not be the best action for its current time. The
objective function aims at minimizing the total cost including
the problem Eq.(5) and delay cost caused by the migration.

5. DQN Based Task Migration Algorithm
The reinforcement learning model is that an agent can

make optimal actions by gradually interact with the unknown
environment to obtain information. In this paper, the agent is
FMC controller. The state is the distance between the optimal
MEC server and original MEC server that have user’s offloaded
task. The action is whether to choose task migration from the
original MEC server to the optimal MEC server or not. There is
a reward related to FMC controller’s action selection for every
time epoch. The FMC controller’s object is to get the maximum
total reward of the whole time epochs.

There is one crucial part in the reinforcement learning: it
has to make tradeoff between the between exploration and
exploitation.

exploitation: Based on current known information, the best
decision is made by FMC controller. exploration: Explore
unknown areas, such as actions that are not executed in this state
before a state is executed. So the purpose of the FMC controller
using exploitation and exploration is to obtain a strategy with
the highest long-term benefit, which may have a loss to the
short-term reward. If there are too many exploitations, then the
model is more likely to fall into local optimum, but there are too
many explorations and the model converges too slowly.

At the beginning, the FMC controller has no experience.
Hence, it need explore to obtain the information of reward
caused by taking some actions in the states. As long as the
FMC controller has the experiences, it will exploit the known
information of the states while keep exploration. In Algorithm
1, the parameter ε is set as the trade-off between exploitation
and exploration.

Our proposed reinforcement learning is model-free. This
strategy evaluation is to calculate each state value of a strategy
without knowing the transition probability and reward function
of the Markov decision process. There are two main algorithms
to fulfill the goal, one is Monte Carlo algorithm and the other is
temporal difference (TD) learning algorithm [22]. Sometimes
the reinforcement learning problems are continuous. Therefore,
this Monte Carlo algorithm does not apply. In order to solve
this problem, TD has been proposed which utilizes the Markov
property and only utilizes the next information. The TD allows
the system to explore according to the policy guidelines, and
updates the state value at each step of the exploration. The
update formula is using the Bellman equation in Eq. (6) [24]

Q∗t (st, at ) = Est+1

[
rt (st, at )+γmax

at+1
Qt (st+1, at+1)|st, at

]
(6)

here γ represents a factor between (0,1). It is usually called
discount factor. Q-value is a function of state and action. In the
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Algorithm 1: Task Migration Algorithm for FMC
1: Replay memory H initialization.
2: Q function initialization with random parameters θ
3: Q̄ function initialization with parameters θ−
4: t ← 1; l1← random value from L.
5: Set s1 = l1
6: while t ≤ T :
7: lt is fetched by FMC controller from eNB
8: generate a random number rnd in [0,1]
9: if rnd > ε :
10: Select action a according to Eq. (8)
11: else:
12: Select action a randomly
13: end if
14: st+1← lt
15: Calculate rt (st, at ) by Eq. (3)
16: Store experience (st, at, rt, st+1) in H
17: Sample minibatch of (sj, aj, rj, sj+1) randomly from H
18: if j + 1 is the final one:
19: Set zj = rj
20: else:
21: Set zj = rj + γmaxa j+1 Qt (sj+1, aj+1; θ−j )
22: end if
23: Gradient descent step is executed on (zj−Qt (st, at ; θ)2

by θ.
24: Reset Q̄=Q in every C steps
25: t ← t + 1
26: end while

basic Q-learning, optimum policy could simple be gotten from
the best Q-value, Q∗t (st, at ), that is expressed in the following
Eq. (7)

φ∗t = arg max
at ∈A

Q∗t (st, at ) (7)

The mobility of the user is the transition probability in our
proposed Q-learning model which assumes unknown. The
pre-requirement in [25] will not affect the offloading algorithm
based on the Q-learning. Still two problems remain as in the
paper [26] .

• (i) Great amount of states makes it tough to directly
implement the Q-learning. One common solution is to
established a two-dimension table which can reserve the
Q-value. The row and column of the table indicates actions
and states. However, this method also becomes infeasible
when the sizes of states and actions increases. As shown
in [13], the defined Markovian model also faced a state
space explosion problem, especially when there are a large
number of locations. The solution in [13] is to this problem
is to reduce the state space by aggregating states that show
the same behavior.

• (ii) The algorithm converges at decreasing rate if the user
experience more and more states and finally proves to be
very slow. Besides, the agent lacks generalization ability
from the past experiences to some unknown states.

Hence, in this paper, using algorithm based on DQN [21] to
deal with the problem defined in Eq.(5). DNN [23] can help
FMC controller generalize its past experience to predict Q value
about unexplored states. Hence, great amount of states is not a
problem for our DQN based algorithm.

In DQN, an approximator Qt (s, a; θ) in the action-value
function is designed for estimation with parameters θ. Then
FMC controller’s policy can be achieved by the following Eq.(8)

φ∗t = arg max
at ∈A

Q∗t (st, at ; θ) (8)

Q-network contains an approximator with weights θ. We train
the Q-network model during each iteration i so that lessen
the mean-squared error(MSE) in mentioned Bellman equation
by changing the value of parameters θi . Here, the optimal
objective values in Eq.(6), rt (st, at ) + γmaxat+1 Qt (st+1, at+1),
are substituted by the expected object values

z = rt (st, at ) + γmax
at+1
Qt (st+1, at+1; θ−i ) (9)

here the parameter θ−i represents the previous iterations.
The MSE or the loss function is shown as in Eq.(10).

Li(θi) = Est,at,rt,st+1

[
(z − Qt (st, at ; θi))2

]
(10)

Using differentiating to get the loss function’s gradients.

∇θi Li(θi) =

Est,at,rt,st+1

[ (
z − Qt (st, at ; θi)

)
∇θiQt (st, at ; θi)

] (11)

The gradient ∇θiQt (st, at ; θi) guides loss function in Eq.(10)
to be reduced at a feasible direction. Therefore, update the
paremeter as the following the Eq.(12)

θi+1 = θi+1 + α∇θi Li(θi) (12)

here α denotes the learning rate with values among (0,1).
Algorithm 1 shows our proposed DQN based task migration
algorithm. As indicated from line 16 in Algorithm 1, the
experience of the FMC controller’s (st, at, rt, st+1) is reserved
in replay memory, thus without needing transition probabilities.

6. Performance Evaluation

In this section, numeric analysis is conducted to validate the
effectiveness of our our proposed DQN based task migration
algorithm. We compare the proposed DQN with the following
two other cases: (i) the case when dynamic programming
based algorithm (DP) is applied [6]; (ii) the case when no task
migration is applied (No Migration).

Please note that the dynamic programming based algorithm
requires transition probability. The dynamic programming
based algorithm can obtain optimal solutions if the transition
probability is correct. However, it is difficult to get the ground
truth transition probability. We would use several "incorrect"
transition probability because user’s ground truth transition
probability usually contains noise. On the other hand, our deep
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Table 2: Parameters in the simulation.
Parameters Value

L 36
T 80
M 18

time slot 1 seconds
Pr(l |l) 0.5

Pr(lt+1 |lt )
1−Pr(l |l)

#neighbour locations
D 36
β 10
λ 18

0 5 10 15 20 25 30
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Figure 4: Total reward vs. No. of MEC servers when Pr(l |l) = 0.1.

Q-learning based algorithm has no requirement for transition
probability.

We use a four by four grid area in the simulation, and the
number of locations is 16. At each locations, there are eNB and
corresponding MEC server. The user randomly walks in the
area with assumption that the length of time slot is 5 seconds.
Also set the parameter ε to 0.05. The transition probability from
location l to l ′ is denoted as Pr(l ′ |l). For instance, Pr(l |l) = 0.5
represents that the user will have 0.5 probability at the same
place during the time period t to t ′.

Also assume that user has the same intention moving to the
nearby areas. In other word, the probability of nearest locations
for user to choose next is the same. Therefore, use Pr(lt+1 |lt ) =

1−Pr(l |l)
# of neighbour locations . This transition probability is used for DP
algorithm, while our proposed method does not require it.

We perform the simulation by the Python 2.7 version.
Figure 4 shows how total rewards alter with the different

number of MEC servers among our Proposed DQN algorithm,
DP algorithm, and Non Migration algorithm when Pr(l |l) =
0.1. Total reward of both DP algorithm and Proposed DQN
algorithm increase with the number of MEC servers deployed.
The reason behind the phenomena is that it is much easier for
user to migrate his/her tasks to a new optimal MEC server
when there are many more MEC servers, and the reward for a
new optimal MEC server is much higher. The total reward for
our Proposed DQN algorithm is highest and Non Migration
algorithm’ reward is lowest, while the total reward of DP
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Figure 5: Total reward vs. No. of MEC servers when Pr(l |l) = 0.5.
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Figure 6: Total reward vs. No. of MEC servers when Pr(l |l) = 0.9.

algorithm is between that of Non Migration algorithm and
Proposed DQN algorithm. The reason that Non Migration
algorithm’s total reward is lowest is that user does not always
connect to an optimal MEC server if there is no task migration.
While for our Proposed DQN algorithm, optimal task migration
decision is held based on the long term reward for the user.
An interesting phenomena is that the total reward of three
algorithms is zero when the number of MEC server is zero. The
reason is that both Proposed DQN algorithm and DP algorithm
degenerate to Non Migration algorithm when there is no MEC
server deployed.

Figure 5 and Figure 6 show how total rewards alter with
the different number of MEC servers among Proposed DQN
algorithm, DP algorithm, and Non Migration algorithm, when
Pr(l |l) is 0.5 and 0.9, respectively. Both of Figure 5 and Figure
6 share the same characteristics with Figure 4. The overall total
reward in Figure 6 is much higher than that of Figure 5, and
the overall total reward in Figure 5 is much higher than that of
Figure 4. The reason that when the user is much more dynamic
(when Pr(l |l) is low), the probability for taskmigration is higher.
Then, the reward decreases since there is cost for task migration.

Figure 7 shows how total reward alters with the different
Pr(l |l) when the number of MEC servers is 6. Please note that
Pr(l |l) measures the dynamicity of a user. When Pr(l |l) is low,
it means that the user is dynamic and tend to move. When
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Figure 7: Total reward vs. Pr(l |l) when the number of MEC servers is 6.

0.0 0.5 1.0
Pr(l|l) (No. of MEC server is 12)

500

0

500

1000

1500

2000

2500

3000

To
ta

l R
ew

ar
d

Proposed DQN
DP
No Migration

Figure 8: Total reward vs. Pr(l |l) when the number of MEC servers is 12.

Pr(l |l) is high, it means that the user tends to stay in the same
place, and less dynamic. Total reward of bothDP algorithm and
Proposed DQN algorithm increase with Pr(l |l). The reason is
that less task migration is needed when user tends to stay in the
same place (when Pr(l |l) is high). Less task migration means
less cost for task migration, then much higher reward can be
achieved. An interesting phenomena is that the total reward of
three algorithms is the same when Pr(l |l) is 1. The reason is that
both when user stay in the same place all the time (when Pr(l |l)
is 1), task migration is no longer needed for the user. Then there
is no cost for task migration no matter what the task migration
algorithm is.

Figure 8 and Figure 9 show how total rewards alter with the
different Pr(l |l) when the number of MEC servers is 12 and
30, respectively. Both of Figure 8 and Figure 9 share the same
characteristics with Figure 7. The overall total reward in Figure
9 is much higher than that of Figure 8, and the overall total
reward in Figure 8 is much higher than that of Figure 7. The
reason that when the there are more MEC servers, it is easier
for user to migrate to a MEC server to increase the quality of
service. Then, the reward increase when there are more MEC
servers deployed.

The quality decrease rate parameter λ and the cost migration
parameter for task migration β are also very important for the
algorithms. We evaluate how the total reward of Proposed DQN
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Figure 9: Total reward vs. Pr(l |l) when the number of MEC servers is 30.
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Figure 10: Total reward vs. No. of MEC servers when λ < β.
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Figure 11: Total reward vs. No. of MEC servers when λ > β.

algorithm,DP algorithm, andNonMigration algorithm changes
with different number of MEC servers in the case of λ < β in
Figure 10, and λ > β in Figure 11. λ < β means that the
quality of service drops slower than the cost of task migration,
and λ > β means that the quality of service drops faster than
the cost of task migration. Then in the case of no task migration
in Non Migration algorithm, λ < β can achieve higher reward
compared to λ > β, which is the exactly the results showed in
10 and Figure 11. When the number of MEC server is relative
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low, total rewards of Proposed DQN algorithm, DP algorithm
are much higher in the case of λ < β than in the case λ > β. The
reason is that less MEC servers means that less task migration
is held, then the high cost for task migration can be saved.

7. Conclusion

In this paper, we studied task migration problem in which a
FMC controller has to determine where and when to migrate its
task from one MEC server to another. We proposed to use a
deep reinforcement learning based algorithm with the goal that
maximizing the user’s total reward. It can work even without
knowing the users’mobilities in advance. The simulation results
of the MEC system validate our proposed method. In the
process of task migration, the related data should be encrypted
to protect users’ data as security problem has become a severe
problem nowadays [27]. In the future work, we may adopt data
encryption for UEs’ tasks.
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Task Migration for Mobile Edge Computing Using 
Deep Reinforcement Learning 

 
 Mobile edging computing (MEC) is an effective way to reduce the computation time 

for users. 
 

 Task migration is necessary for high mobility users. 
 

 Deep reinforcement learning is effective for task migration in MEC. 
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