
Future Generation Computer Systems 96 (2019) 336–347

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Energy-efficient crypto acceleration with HW/SW co-design for
HTTPS✩

Chunhua Xiao a,∗, Lei Zhang a, Weichen Liu b, Neil Bergmann c, Yuhua Xie a

a School of Computer Science, Chongqing University, Chongqing, China
b School of Computer Science and Engineering, Nanyang Technological University, Singapore
c School of Information Technology and Electrical Engineering, University of Queensland, Australia

h i g h l i g h t s

• Comprehensive analysis of the energy efficiency for HTTPS crypto process.
• Proposed a request reconstruction scheme to make full utilization of hardware crypto accelerators.
• Proposed an adaptive scheduling strategy to process crypto requests dynamically.
• Design a dynamic management mechanism to make full use of system resource.

a r t i c l e i n f o

Article history:
Received 16 May 2018
Received in revised form 25 January 2019
Accepted 14 February 2019
Available online 21 February 2019

Keywords:
Energy efficiency
HW/SW co-design
Hardware acceleration
HTTPS
OpenSSL

a b s t r a c t

Entering the Big Data era leads to the rapid development of web applications which provide high-
performance sensitive access on large cloud data centers. HTTPS has beenwidely deployed as an extension
of HTTP by adding an encryption layer of SSL/TLS protocol for secure communication over the Internet. To
accelerate the complex crypto computation, specific acceleration instruction set andhardware accelerator
are adopted.However, energy consumptionhas been ignored in the rush for performance. Actually, energy
efficiency has become a challengewith the increasing demands for performance and energy saving in data
centers. In this paper, we present the EECA, an Energy-Efficient Crypto Acceleration system for HTTPSwith
OpenSSL. It provides high energy-efficient encryption through HW/SW co-design. The essential idea is to
make full use of system resource to exert the superiorities of different crypto acceleration approaches for
an energy-efficient design. Experimental results show that, if only do crypto computations with typical
encryption algorithm AES-256-CBC, the proposed EECA could get up to 1637.13%, 84.82%, and 966.23%
PPW (Performance per Watt) improvement comparing with original software encryption, instruction set
acceleration and hardware accelerator, respectively. If considering thewholeworking flow for end-to-end
secure HTTPS based on OpenSSL with cipher suite ECDHE-RSA-AES256-SHA384, EECA could also improve
the energy efficiency by up to 422.26%, 40.14% and 96.05% comparing with the original Web server using
software, instruction set and hardware accelerators, respectively.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A strong tide of constructing green cloud computing data center
has engendered with the rapid development of data volume [1].
Continuously developing transaction-intensive Web applications
makes the security become increasingly important [2]. More and

✩ This work is supported by National Natural Science Foundation of China:
No. 61502061, Chongqing Application Foundation and Research in Cutting-edge
Technologies: No. cstc2015jcyjA40016, the Fundamental Research Funds for the
Central Universities: No. 106112017CDJXY180004, and also the financial support
from the program of China Scholarship Council: No. 201706055029.
∗ Corresponding author.

E-mail addresses: xiaochunhua@cqu.edu.cn (C. Xiao), zhanglei51@cqu.edu.cn
(L. Zhang), wchliu@gmail.com (W. Liu), bergmann@itee.uq.edu.au (N. Bergmann),
20151402021@cqu.edu.cn (Y. Xie).

more transactions require the transfer of sensitive information
kept on data center through the Internet. However, the Internet is
an insecure medium. Data transmitted from and stored on devices
will need to be protected [3,4]. Data security is of great concern
especially for enterprises that build their private clouds [5].

Luckily, Hypertext Transfer Protocol Secure (HTTPS) creates a
secure channel over an insecure network, with especially wide
deployment on the Internet. InHTTPS, the communicationprotocol
is encrypted by Transport Layer Security (TLS), or formerly, its
predecessor, Secure Sockets Layer (SSL) [6]. SSL/TLS is the indus-
try’s best and most accepted standard cryptographic protocols. In
order to protect the security of sensitive data during transmission,
more and more governments, enterprises and banks begin to de-
ploy HTTP over SSL/TLS. A large number of user requirements for

https://doi.org/10.1016/j.future.2019.02.023
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.02.023
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.02.023&domain=pdf
mailto:xiaochunhua@cqu.edu.cn
mailto:zhanglei51@cqu.edu.cn
mailto:wchliu@gmail.com
mailto:bergmann@itee.uq.edu.au
mailto:20151402021@cqu.edu.cn
https://doi.org/10.1016/j.future.2019.02.023


C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347 337

network transmission efficiency and speed of response higher and
higher.

The most widely deployed, freely available implementation of
SSL/TLS protocol is the OpenSSL [7]. The core library of OpenSSL
implements basic cryptographic functions and various utility func-
tions [8]. The cryptographic functions, such as symmetric key
ciphers, are extremely compute-intensive. OpenSSL does these ex-
pensive computations through software implementations. It may
not be able to compete with the increasing need for performance
of encryption services.

In order to improve the performance of crypto operations, two
approaches are exploited. One is the new instruction set which
can handle complex steps of cryptographic algorithms, such as
the Intel Advanced Encryption Standard New Instructions (AES-
NI) [9]. The other is the special hardware accelerator which is able
to offload the computation from CPU, such as the Intel QuickAssist
Technology (QAT) cards [10].

Unfortunately, for secure communication with SSL/TLS, soft-
ware encryption is not so energy-efficient as instruction set or
hardware accelerator. We find that both instruction set and hard-
ware accelerator have limited capacity in serving crypto requests
of diversity data sizes. On the one hand, the software and instruc-
tion set consumesmany CPU cycles when doing crypto operations.
The CPU resource can become the bottleneck for performance
improvement. On the other hand, when the data size is small, the
overhead of hardware initialization and interrupt processing neu-
tralizes the benefit of hardware acceleration and CPU offloading.
Why not take full advantages of these solutions in the same system
to select the most suitable encryption mechanism adaptively?

Furthermore, trends such as cloud computing and big data
applications require huge data centerswith thousands of servers as
well as a storage and communication network infrastructure [11,
12]. A 2016 report forecasted that data center workload will more
than double between 2015 and 2020, while the number of servers
installed is expected to grow by 25 percent [13,14]. This rapid
growth has been accompanied by increasing energy consump-
tion. Energy consumption has been widely studied for many years
in the computer engineering community, focusing on designing
processors that consume very little energy using Dynamic Volt-
age Frequency Scaling (DVFS) and on some other power saving
techniques [15]. Regarding server, green computing has been in-
troduced as a field that studies ways to address software solu-
tions from a green, sustainable, and energy efficient perspective.
Based on these works, we can observe how there is a trend in
building energy efficient Web server [16–18]. However, deploying
security mechanisms for Web server and HTTPS services con-
sumes a huge amount of power. During a secure session, the main
sources of energy consumption are session establishment, packet
transmission and reception, and cryptographic computation. For
encrypting smaller data packets, ECC-3DES-SHA is more energy
efficient, whereas for encrypting bigger data packets, RSA-RC5-
SHA consumes less energy [19]. Web server is rapidly being throt-
tled by the constraints of power delivery and cooling, generating
an energy wall for high-density servers that seek to maximize
commercial server encryption capacity [20]. Many companies are
also starting to be concerned with the energy consumption of
their computations [21]. Thus, the issue of energy efficiency is
becoming an emerging challenge growing with respect to tech-
nical, financial, and environmental reasons. As Luiz Andr Barroso
said [22], developing computing infrastructure, the focus should
be broader than performance alone. Breaking through this energy
wall requires a focus on Performance per Watt instead of absolute
performance [23].

In this paper, we propose EECA, an Energy-Efficient Crypto Ac-
celeration system for HTTPS with OpenSSL. The goal of this system

is to provide high energy-efficient encryption through HW/SW co-
design. The goals of this scheme are two folds: boost the Web
server energy efficiency and improve system resource utilization.

The essential idea is making full utilization of system resource
to exert respective superiorities of instruction set and hardware
accelerator for an energy-efficient design. We present Request Re-
construction scheme to aggregate SSL/TLS fragments and submit
the entire data to the hardware for encryption, so as to give full play
to the hardware accelerator. Besides, we proposed aDynamicMan-
agement Mechanism to choose the most energy-efficient method-
ology for crypto acceleration. Our contributions are concluded as
below:

• Comprehensive analysis of the energy efficiency for HTTPS crypto
process. We break down the working flow of secure HTTPS
connection through SSL/TLS in detail, and find out the most
important factors affecting the performance and energy con-
sumption. Thenwe explore and analyze the energy efficiency
of the existing crypto computation methodologies, including
the original software encryption through OpenSSL lib, in-
struction acceleration andhardware accelerator. Based on the
comprehensive analysis, we concluded the pros and cons of
different crypto techniques, which paves theway for HW/SW
co-design.
• Proposed a request reconstruction scheme to make full utiliza-

tion of hardware crypto accelerators. We found the crypto
accelerators are deficiency for existing working flow, which
invoke accelerators frequently for small data blocks. The pro-
posed request reconstruction scheme is able to aggregate the
fragments to one large data block before encryption, which
helps reduce the invocation overhead greatly, and improve
the energy efficiency.
• Proposed an adaptive scheduling strategy to process crypto re-

quests dynamically. To get the best performance per watt, we
adopt a dynamic request scheduler to choose the optimal
encryption approach, according to the request characters and
the utilization of system resource. It is able to exert respective
superiorities of both software/instruction set encryption and
hardware crypto computation.
• Design a dynamic management mechanism to make full use of

system resource. Besides exerting respective superiorities of
each encryption approaches by the request scheduler, our
designed dynamic management mechanism is able to take
full utilization of both software/instruction set and hardware
accelerator according to the utilization of hardware and CPU
to boost crypto energy efficiency.

The rest of this paper is organized as follows. Section 2 presents
the background and the challenges of the existing encryption ap-
proaches for secure HTTPS connection with based on SSL/TLS. The
proposed design methodology of EECA is described in Section 3.
Our experimental evaluation and comparisons are illustrated in
Section 4. Relatedwork is discussed in Section 5, andwe concluded
our work in Section 6.

2. Background &motivation

The proposed technique aims to improve the energy efficiency
of sensitive data transactions with HTTPS based on OpenSSL. In
this section, we first briefly describe the operation mechanism of
the HTTP over SSL/TLS. Then, we discuss the challenges of existing
crypto-acceleration approaches on the energy efficiency.



338 C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347

Fig. 1. SSL Record Protocol Process.

2.1. HTTP over SSL/TLS

HTTPS (Hypertext Transfer Protocol Secure) is an internet com-
munication protocol that protects the integrity and confidentiality
of data between clients and servers [24]. Clients expect a secure
and private online experience when connecting with servers. Data
transmission using HTTPS is secured via Transport Layer Security
protocol (TLS) or its predecessor, Secure Sockets Layer (SSL). It
allows clients and servers to communicate in a securemanner over
a TCP/IP network. SSL/TLS provides data encryption, server authen-
tication, message integrity and optional client authentication for
TCP/IP connections. Transmitted data is encrypted and hidden, so
that communications between client/server applications are not
eavesdropped by attackers and the data is not changed during
transmission, that is, to ensure the integrity of data. The identity
certificate is used to prevent identity impersonate.

SSL/TLS is not a single protocol but rather two main sublay-
ers of protocols. One is the higher-layer protocols including the
Handshake Protocol, the Change Cipher Spec Protocol, the Alert
Protocol and the Application Data Protocol, the other is the Record
Protocol. The Handshake Protocol is used before any application
data is transmitted. When a client and a server first start SSL/TLS
communication after establishing the TCP connection they agree
on a protocol version, select cryptographic algorithms, optionally
authenticate each other, and use public-key encryption techniques
to generate shared secrets. After the SSL/TLS session established,
the Record Protocol takes messages to be transmitted, fragments
the data into manageable blocks of 16 kB or less, optionally com-
presses the data, applies a MAC, encrypts, and transmits the result
by TCP packet. When the SSL/TLS session is ending, both the client
and the server close the TCP socket.

Fig. 1 shows the original SSL/TLS Record Protocol process. A
request data crypto operation is divided into six steps:

Step 1. Each upper-layer original data is fragmented into blocks of
16 kB or less.

Step 2. Each fragment is compressed in order to save Internet
bandwidth when transmitting. This step is optional and it
requires extra computation power to carry out compres-
sion.

Step 3. The compressed data is authenticated with a message au-
thentication code (MAC). For this purpose, a shared secret
key is used. In essence, the hash code is calculated over
a combination of the message, a secret key, and some
padding.

Step 4. Padding bits are added to the buffer so that the size meets
the requirement of encryption algorithms.

Fig. 2. Working flow of instruction set and hardware accelerator.

Step 5. The data buffer is encrypted one by one. Note that the
size of encryption request is around 16 kB, if hardware
accelerator is used, there is a large overhead for hardware
management, such as interrupt handling and hardware
initialization.

Step 6. SSL header is appended to the ciphertext and the buffer is
sent to the client via the network.

2.2. Cryptographic working flow

The cryptographic operations are transparent to the user space
applications. However, the cryptographic operations in SSL/TLS are
time-consuming, in order to accelerate the execution of encryp-
tion algorithm, the new instruction set, such as Intel Advanced
Encryption Standard New Instructions (AES-NI) [9], and the special
hardware accelerator, such as the Intel QuickAssist Technology
(QAT) cards [10], are designed to implement some of the complex
and performance intensive steps of cryptographic algorithms.

Fig. 2 shows the working flow of instruction set and hardware
accelerator. The working flow includes 5 basic parts: application,
Crypto API, instruction set, device driver and hardware accelerator.
For encryption requests, the application issues encryption system
call to pass the key, IV, and source data address to the kernel Crypto
API. Then, Crypto API passes requests to hardware accelerator
through device driver or directly uses the instruction set to finish
the encryption. Crypto API acts as the middle layer between ap-
plication and hardware accelerator. The Crypto API interacts with
the upper-layer application, receives delivered require data and re-
turns completed cryptograph. Downwards, Crypto API transforms
the received request as the data structure which can be identified



C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347 339

by the device driver. Device driver performs 4 major works for
accelerator invocation: initialization of hardware engines, device
loading and unloading, encryption algorithm registration and in-
terrupt processing. The driver provides API for the kernel to re-
ceive delivered data from Crypto API and constructs them as the
data block that hardware accelerator can resolve, then delivers
prepared data to hardware engines. Once interrupt signal from
hardware accelerator is detected, the driver will get encryption
results and return to the upper layer for further transmission.

2.3. Motivation

In order to optimize the energy efficiency ofWeb server,we first
investigate the working flow of the secure HTTPS connection for
Web server and present the time breakdown of the major steps.
Then, we discuss how the existing acceleration approaches bear
limited capacity in providing energy-efficient Web server system.

2.3.1. Breakdown of HTTPS working flow
WeuseNginx, a popularWeb server, with ECDHE-RSA-AES256-

SHA cipher suite, to analyze the working flow quantitatively. We
divide the working flow into five parts: handshake, read file,
crypto, network and others, as discussed in Section 2.1.

Fig. 3 shows the time breakdown of Nginx for various pages.
As the experiment results illustrated in Fig. 3(a), the time of hand-
shake decreases as the page size grows. This is because handshake
happens only once for a requested Web page, the RSA algorithm
is time-consuming and takes more than half of the time for small
pages (less than 32 kB). Besides, the time of crypto increases as the
page size grows. This is reasonable in that the large the pages,more
cryptographic operations are needed to encrypt the contents.

If we enable the keep alive option, an SSL/TLS connection can
be reused for different Web pages. The results in the keep-alive
working mode are showed in Fig. 3(b). As we can see, the time
for handshake drops dramatically, while the time for crypto and
network increases with keep alive. The crypto time increases from
40.47% to 62.82% for 2 MB pages.

Based on the above results, it is clear that the crypto operations
are time-consuming. Thus, in order to optimize the energy con-
sumption of Web server, the crypto operations must be energy-
efficient as much as possible. The energy efficiency for sending
packages in the network is hard to optimize since the network
condition cannot be controlled easily.

Fortunately, new acceleration approaches, such as instruction
set and special hardware accelerators are developed to achieve this
goal. In the next section, we discuss the state-of-the-art encryption
approaches behave in terms of performance and energy efficiency.

2.3.2. Challenges of existing crypto-acceleration approaches
In addition to software encryption, instruction set and hard-

ware accelerator are two main alternative methods to achieve
crypto operations for SSL/TLS. These approaches mainly devote to
improving the encryption performance. However, one fundamen-
tal property needs to be researched if the approaches should be
deployed in large data centers: How is the energy efficiency of
these approaches?

To explore the energy efficiency of state-of-the-art encryption
approaches, we run OpenSSL speed benchmark with algorithm
AES-256-CBC on an 8-CoreHUAWEI Taishan server connectedwith
a digital power meter. The server includes ARM Cortex-A57 CPUs
which support the ARMv8 Cryptography Extensions. The Cryp-
tography Extensions have new instructions that can be used to
accelerate the execution of AES, SHA1, and SHA2-256 algorithms,
which implement similar functionality as Intel AES-NI. Besides, the
HUAWEI Taishan server already includes hardware accelerators in
its own SoC.

As shown in Fig. 4, we use Performance per Watt (PPW) to
denote the energy efficiency for encryption methods, which is
defined by the maximum performance divided by its energy con-
sumption. The experimental results reveal problems of the existing
encryption approaches.

• For both encryption PPW and energy consumption, software
implementation is inferior to other two alternative methods.
• For small data size, hardware accelerator takes the highest

energy consumption but achieves lower PPW.
• For large data size, instruction set spends more energy than

hardware accelerator but gets lower PPW.
• Software and instruction set almost take up all the CPU re-

source. The limited CPU resource becomes the bottleneck
for further PPW improvement for software and instruction
set. While hardware accelerator can significantly release CPU
resource by offloading computing-intensive operations.

The reasons that lead to the above results are two folds. First,
the granularity of encryption is too small to take full advantages of
hardware accelerator. SSL/TLS uses 16 kB or less as the encryption
size. Thus, a large request data is split into multiple 16 kB small
fragments. However, it is inefficient to call hardware accelerator
for encryption offload, since the overhead of invoking hardware
accelerator can offset the offloading benefit. Small data blocks
result in many interrupts and the CPU has to spend more time
managing hardware. Second, when the system is available with
both instruction set and hardware accelerator, only one encryption
method can be utilized by OpenSSL, regardless of the data size.
This is because the kernel uses the encryption approach with the
highest priority when serving encryption requests by default, the
priority of hardware accelerator is higher than instruction set.

Based on the above analysis, we argue that in order to max-
imize the energy efficiency of Web server, the following design
choices should be considered. First, the appropriate approach to
implement the encryption is determined by the size of request
data. instruction set is efficient for small blocks while hardware
accelerator is efficient for large data blocks. Second, fragments of
large encryption request have to be aggregated to take the most
use of hardware accelerator, since it is more energy efficient for
large data blocks. Third, considering the underused CPU resource
in hardware case, we should enhance their PPW to increase the
energy efficiency for the whole system.

3. Related work

In this section, we discuss some works that are closely related
to ours.

(1) Encryption algorithm optimization with HW-SW
co-design
Encryption algorithm acceleration with hardware and soft-
ware has been considered as an effective method for perfor-
mance optimization [25–31]. Most of these schemes focus
on optimizing the operations of crypto algorithms through
hardware–software implementations on SoC or PSoC plat-
forms. The AES-ECC hybrid crypto-system in [25] use a
hardware–software co-design approach where AES runs on
a NIOS II soft-core processor and ECC’s scalar multiplication
is accelerated by a hardware crypto-processor. This work
optimized both AES MixColumn/InvMiColumn operation
and ECC Point Addition/Doubling layer. The PSoC hybrid
RSA-AES crypto-system in [27] implements AES on FPGA.
It also implements RSA and the KeyExpansion of AES in
software which runs on MicroBlaze processor available on
Xilinx FPGA circuit. This work optimized the hardware-
implemented operations for SubBytes and MixColumns of



340 C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347

Fig. 3. The time breakdown of Nginx.

Fig. 4. Energy efficiency of different encryption methods with algorithm AES-256-CBC.

AES. The hardware–software co-design of AES in [29] im-
plements the computationally intensive operations of AES
in hardware for better performance. This work also de-
signs the sub-byte calculation with MicroBlaze, a soft-core
processor from Xilinx. There is no doubt that these works
make effective efforts for the acceleration in encryption.
However, they concentrated more on the algorithm im-
plementation itself. In contrast, our work refers how to
utilize software/instruction set and hardware accelerators
efficiently with higher energy efficiency.

(2) Energy consumption optimization for web server
There are some works aim to optimize energy consumption
of Web server [32–38]. Dynamic Web-Server (DWS) archi-
tecture [32] control server allocation and the routing of re-
quests to selected servers through a reconfigurable switch-
ing unfractured. It promotes energy efficiency of Internet
server clusters by balancing the cost of energy against the
performance. The web server load balancer in [36] is able to
distribute requests in a power-efficient manner. This work
applied the strategies to a web server environment by al-
tering the balancing schemes to achieve an energy-efficient
usage of the nodes within the server farm. The distributed
dynamic voltage scaling (DVS) control algorithm in [38]
minimizes overall power consumption in a server pipeline
subject to end-to-end latency constraints. This work ex-
plored the benefits of DVS for power management in server

farms. However, this work solved the problem from the
hardware viewpoint, and very complex and not easy to
apply in the real application. MAS-SJ [39] optimally dis-
tributed power usage on both spoofing and jamming attacks
by applying dynamic programming. Our scheme differswith
other schemes is that wemake the breakdown for themajor
steps of processing HTTPS request by web server and found
out the energy-intensive process. We are more focused on
optimizing the energy efficiency of these stages. The design
concept of our proposed EECA can be deployed in other en-
cryption systems if instruction set or hardware accelerator
is present in the system.

4. EECA design

Based on the analysis in Section 2.3, we find that these two
encryption methods bear both pros and cons. Instruction set has
greater PPWand lower energy consumption than software encryp-
tion, but consumes too many CPU cycles the same as software.
Hardware accelerator is able to offload a large portion of CPU bur-
den and get higher PPW with lowest energy consumption only for
large data size. Therefore, we proposed EECA, an Energy-Efficient
Crypto Acceleration system for HTTPS through HW/SW co-design.
In this section,we first present the design overviewof EECA System.
Then we will discuss the design decisions in details.



C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347 341

Fig. 5. Architecture overview of EECA.

Fig. 6. SSL record protocol operation with request reconstruction.

4.1. Overview

The design of EECA is based on three observations.
First, hardware accelerator has advantages in large data encryp-

tion, but as discussed in Sections 2.1 and 2.2, the Record Protocol
first fragments the data into manageable blocks of 16 kB or less,
then submit these fragments to hardware for encryption. Each
time the hardware is called, it will generate Mode Switch and
Context Switch. Therefore, fragments of one request should be
reconstructed to do hardware encryption only one time.

Second, as discussed in Section 2.3, it is obvious that no matter
what size the data is, instruction set implementation has a stable
and nice energy efficiency. Nevertheless, for large data blocks,
hardware implementation has an edge over instruction set im-
plementation. For small data blocks, the overhead of hardware

initialization and interrupt processing neutralizes the benefit of
hardware acceleration. For higher energy efficiency, encryption
requests should be dispatched to appropriate method according to
the data size.

Third, as discussed in Section 2.3, each encryption task imple-
mented by instruction set occupies one CPU. Hardware accelerator
offloads compute-intense operations and frees up CPUs. The idle
resource in hardware case should be utilized to boost the system
performance even further and reduce the cost of energy consump-
tion.

Fig. 5 shows the architecture overview of EECA. It consists of
four parts: handshake, pre-processing, crypto and network. Before
any application data is transmitted, client and Web server need
to establish a session through the handshake step. As discussed
in Section 2.3, the overhead of handshake step can be reduced



342 C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347

by using keep alive. In the pre-processing step, the plaintext is
first fragmented if the data size is larger than 16 kB. Then each
fragment is processed with regular SSL/TLS processing before en-
cryption. Then the requests are reconstructed by their respective
SSL/TLS processed fragments. After that each request is scheduled
to be encrypted at once in the crypto step. Encryption requests
are dynamically managed between instruction set and hardware.
Finally, the ciphertext is encapsulated in TCP packets according to
the specified data size and transmitted through the Internet. We
make the following design decisions.

(1) Encrypt a request data at once no matter how large it is.
Encryption fragments have to be aggregated to take themost
of hardware accelerator, since hardware accelerator is more
energy-efficient for large data blocks. However, each invo-
cation to the hardware accelerator generates twice Mode
Switch and thrice Context Switch. In order to reduce these
overheads, a request is reconstructed by all its SSL processed
fragments before encryption and is encrypted at once. Ap-
propriate encryption methods can be determined according
to the request data size and system resource state.

(2) Schedule encryption requests according to the request data size.
As discussed in Section 2.3, instruction set is energy-efficient
for small blocks while hardware accelerator is energy-
efficient for large data size. In order to take full energy-
efficient advantages of different encryption methods, re-
quest scheduler is responsible for choosing appropriate en-
cryptionmethods. For small requests, instruction set is used.
For large blocks, hardware accelerator is used.

(3) Manage encryption requests according to the hardware accel-
erators utilization and CPU idle. As discussed in Section 2.3,
considering the underused CPU resource in hardware case,
if the hardware accelerators are fully loaded, requests data
can be dynamically encrypted using instruction set.

4.2. Request reconstruction

As discussed in Sections 2.1 and 2.2, one of the bottlenecks of
encryption is the data fragmentation of SSL/TLS Record Protocol
and the overhead of calling hardware accelerator. Thus, it is neces-
sary to reconstruct encryption request in order to reduce overhead
of calling hardware accelerator. In this section, we discuss in detail
how request reconstruction works.

The problem of the original SSL/TLS Record Protocol process (as
shown in Fig. 1) is that the encryption fragments are too small to
fully utilize hardware accelerator. It is impossible to get the best
hardware performance even with multiple concurrent encryption
requests. In order to reduce offloading overhead and take full
advantage of hardware accelerator. Only Step 5 (as discussed in
Section 2.1) can be optimized. This is because the fragment size
is defined in SSL/TLS protocol and cannot be enlarged arbitrarily.

Fig. 6 shows the working flow of the proposed Request Re-
construction. The essential idea is to aggregate fragments for en-
cryption and split ciphertext for network transmission. It major
differences with the original SSL/TLS record process are listed as
follows:

(1) In Step 5 (as discussed in Section 2.1), after padding, all
the data buffers are aggregated to form a large encryption
request. The data buffers appear in the fragmentation order.

(2) The large buffer is encrypted once instead of many times. If
hardware is used for encryption, only one-time initialization
and interrupt is required to handle the whole request.

(3) The individual ciphertext is extracted from the resulting
buffer and SSL header is pre-appended to each ciphertext. It
is impossible to send the whole ciphertext at once, because
the SSL protocol defines the maximum packet size for each
SSL record. Request Reconstruction can make sure that the
data received by clients is able to be decrypted correctly.

Fig. 7. The scheme of Adaptive Control Crypto engine.

The proposed Request Reconstruction can greatly improve the
performance of hardware accelerator. The optimized hardware
encryption also requires cooperation of instruction set and CPU
resource. Thus, efficient Adaptive Control Crypto engine is critical
to achieve great energy efficiency. In the following sections, we
describe other design concepts in detail.

4.3. Adaptive control crypto engine

Nowadays, using OpenSSL to implement SSL/TLS is economical,
efficient and easy to manage [40]. OpenSSL itself implements basic
software library for cryptographic functions and provides various
utility functions [8]. When compiling OpenSSL, we can choose
whether to use the instruction set function via the configuration
options ./configure [no-asm]. Besides, OpenSSL supports ENGINE
mechanism since version 0.9.6 [41]. The ENGINE framework ex-
tends OpenSSL by providing the ability to add various hardware
encryption devices to the system. It makes hardware accelerators
more transparent and easy to be used.

However, the conventional EGNINE framework can only sup-
port either hardware or software/instruction set. TomakeOpenSSL
compatibly work with both hardware algorithms and instruction
set algorithms at the same time, we design an Adaptive Control
Crypto engine named ac_crypto based on traditional ENGINE mech-
anism. Fig. 7 shows the scheme of the Adaptive Control Crypto
engine. To implement HW/SW co-design, the ac_crypto engine
needs to contain the following components.

(1) Register unit. It registers the third-party algorithms to
OpenSSL protocol library, such as ac_crypto_aes_cbc,
ac_crypto_aes_192_cbc and ac_crypto_aes_256_cbc. After
loading ac_crypto engine, the newly added algorithms will
replace the default encryption algorithm of OpenSSL.

(2) Scheduler unit. Through a function pointer, OpenSSL gets the
interface of instruction set and expands it to the process
of hardware implementation. Therefore, ac_crypto engine
supports instruction set encryption and hardware encryp-
tion in the meantime. In order to take full energy efficient
advantages of different encryption methods and make the
most use of system resource, scheduler unit dynamically
manages encrypted tasks betweenhardware and instruction
set.

(3) Control unit. The parameters of encryption, such as IV, key
and source data address, are encapsulated into the data
structure which saves the context of the engine. The data
object from OpenSSL needs to be processed for supporting
hardware algorithm. If the hardware encryption function
returns error message, control unit will call the instruction
set algorithm to encrypt the data. Control unit makes the
system run in a safe and stable state.



C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347 343

(4) Interaction unit. It receives requests fromOpenSSL and trans-
mits them to Crypto API, which is the standard encryption
frame for dealing with various encryption operations in
Linux kernel.

In order to ensure hardware accelerators for normal use when
encryption requests arrive at Crypto API, hardware driver must
register corresponding encryption algorithm with the highest pri-
ority to Crypto API first. Hardware encryption is based on asyn-
chronous mechanism. Processes submit encryption requests to
hardware device in an asynchronous manner, and then processes
enter the sleeping state. After finishing the operation of encryption,
hardware accelerator wakes up the correspondingly sleeping pro-
cess by interruption and returns the result asynchronously. There-
fore, when OpenSSL encrypts large data blocks with hardware, the
system has a lot of idle CPU resource.

The essential part of ac_crypto engine is the schedule unit,
which dispatches requestswith aDynamicManagementMechanism
according to the request size and system resource. In the next sec-
tion,we discuss in detail how theDynamicManagementMechanism
works.

4.4. Dynamic management mechanism

In EECA, we propose RequestAllocation algorithm and Dynamic-
Scheduler algorithm to implement theDynamicManagementMech-
anism for schedule unit in ac_crypto engine. From the previous
analysis in Section 2.3, we can know that, for large data blocks,
hardware encryption with accelerating device can get better PPW
and has the advantages of energy consumption comparing with
software and instruction set encryption. But when the data size
is small, even software encryption has advantages over hardware.
In EECA, OpenSSL and engine run in user space. To guarantee the
universality, the system adopts standard Crypto API framework
in kernel space for the invocation of hardware, which includes
the overhead of mode switch and context switch. The overhead
of hardware implementation is inevitable, and neutralizes the
benefit of hardware acceleration for small data blocks. Besides, as
to instruction set, the encryption function is accelerated directly
through instructions without additional operations needed. Thus,
for small data blocks, the performance of hardware is inferior to
instruction set.

Algorithm 1: RequestAllocation
Input: Req: Encrypted requests from applications to OpenSSL.
Output: HW_Queue: request queue encrypted by hardware.

IS_Queue: request queue encrypted by instruction set.
Get Req from the upper-level applications;
Let Size← get_request_size(Req);
if size > T then

Add Req to HW_Queue;
else

Add Req to IS_Queue;
end

In order to bring respective superiorities of instruction set and
hardware accelerators into full play, we set up a threshold pol-
icy to dynamically dispatch requests between instruction set and
hardware. As shown in Algorithm 1, when the upper application
submits a new encryption request to OpenSSL, RequestAllocation
obtains the size of plaintext first. If the data size is greater than
the given threshold T, this request will be pushed into hardware
encryption queue HW_Queue, otherwise it will be assigned to
instruction set queue IS_Queue.

Algorithm 2: DynamicScheduler
Input: HW_Queue: original queue encrypted by hardware.

IS_Queue: original queue encrypted by instruction set.
Output: HW_Queue: queue after scheduling encrypted by

hardware. IS_Queue: queue after scheduling encrypted
by instruction set.

while 1 do
if hardware utilization is full then

if HW_Queue not empty then
Req← get_hw_queue_req();
migrate Req from HW_Queue to IS_Queue;

end
else

if IS_Queue not empty then
Req← get_is_queue_req();
Size← get_request_size(Req);
if size > T then

migrate Req from IS_Queue to HW_Queue;
end

end
end

end

Each request in IS_Queue needs one CPU to implement encryp-
tion. However, requests in HW_Queue have low utilization rate
of CPUs. In order to enhance the energy efficiency of these free
CPUs in hardware case, we propose DynamicScheduler algorithm
dynamically managing requests between HW_Queue and IS_Queue
according to the utilization of hardware accelerators to maximize
the use of system resource.

EECA adopts a background daemon to continuously monitor
the utilization rate of hardware device. Algorithm 2 shows how
this scheme works. If hardware resource has been fully used and
there are still some requests in HW_Queue, DynamicScheduler will
migrate requests from HW_Queue to IS_Queue. Otherwise, Dynam-
icScheduler will transplant request, whose data size is greater than
the given threshold T, from IS_Queue toHW_Queue. DynamicSched-
uler can make sure that hardware accelerators be fully used first,
and then make the rest of CPU resource bring more PPW with
instruction set for OpenSSL.

5. Evaluation

In this section, we evaluate the energy efficiency of the pro-
posed EECA.We first present experimental setup and then evaluate
EECA with benchmarks.

5.1. Experimental setup

To reflect the real working environments satisfying the high
concurrent requirements from mass clients, the test platform for
the experiments are established with 4 Network Interface Con-
troller, and each contributes 10 Gbps network bandwidth. The ex-
periments are conducted on two 8-Core HUAWEI Taishan servers,
with ARM Cortex-A57 CPU running at 2.10 GHz and hardware ac-
celerators in SoC. These ARM Cortex-A57 CPUs support the ARMv8
Cryptography Extensions. The Cryptography Extensions have new
instructions that can be used to accelerate the execution of AES,
SHA1, and SHA2-256 algorithms. The system is equipped with 128
GB memory. The operating system is adopted as Linux-4.1.27.



344 C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347

Fig. 8. Overview of energy measurement environment.

As shown in Fig. 8, the energy measurement environment con-
sists of several hardware components that are necessary to per-
form the test. The following components work together to collect
energy consumption and performance data of a Web server by
exercising the System Under Test with different benchmark work-
loads.

One of the two servers is used as a Web server to response
HTTPS accesses, that is the System Under Test whose induced en-
ergy consumption andperformance datawill be collected and eval-
uated by theDataAggregator and Evaluator.We adoptNginx 1.11.6
as the HTTP server, which uses an asynchronous event-driven
approach to handle requests. OpenSSL-1.0.2j is utilized to perform
software encryption and instruction set encryption through the
cryptographic library libcrypto. All the hardware cryptographic
operations are executed through the SoC hardware accelerator.
RequestAllocation and DynamicScheduler are also integrated into
OpenSSL with the ac_crypto engine for efficient utilization of in-
struction set and hardware accelerator. In this paper, we set the
threshold T to 8 kB based on the above experimental results in
Section 2.3. The other server is utilized as a client that access
an interactive, transaction-based application on the remote Web
server to generate the statistically reproducible workloads that are
applied to the System Under Test, that is the Workload Generator.

In this paper, we use YOKOGAWA WT310E digital power me-
ter [42] as the Power Meter, whose readings and setting can be
accessed and changed remotely by the Data Evaluator and Aggre-
gator via software WTViewerFreePlus. This Power Meter accepts
two input parameters: voltage and current; the accuracy is ±0.1%
of reading +0.05% of range [43]. Moreover, it is only connected to
the System Under Test and get the maximum active power every
third of a second. We keep the temperature in the server room
constant.

5.2. Experimental benchmarks

5.2.1. Web server benchmark
ApacheBench (ab) is a command line computer program for

benchmarking theHTTPS server [44]. It can accept a singleURL, and
then repeatedly load the specified multiple independent threads,
and use different command line parameters to control the number
of visits, the maximum number of concurrent access and so on. At
the end of testing, ab outputs detailed reports including howmany
requests per second (RPS) the Web server is capable of serving.

Fig. 9. Energy efficiency of 4 different encryption methods with algorithm AES-
256-CBC.

5.2.2. Encryption benchmark
Benchmark speed, a part of OpenSSL package, runs for the en-

cryption performance tests. It measures the throughput on various
ciphers in terms of the number of bytes processed in a time unit.
TheOpenSSL speed command, by default, runs through every single
algorithm in every single supportedmode and option, with several
different sizes of data, for 3 s [45]. At the end of testing, speed
reports the encryption performance results in 1000 s of bytes per
second (kB/s) processed. Before the experiment, in order to get
steady and multiple results of energy consumption and perfor-
mance, we control the testing time from 3 to 10 s bymodifying the
SECONDES in OpenSSL-1.0.2j/apps/speed.c and add several different
data size cases.

5.3. Encryption energy efficiency

We first use speed to evaluate the energy efficiency of OpenSSL
layerwith different encryptionmethods to performalgorithmAES-
256-CBC. We record the throughput (TP) and energy consumption
(Power) of different encryption approaches in the condition of
variable data size, including 1 kB, 2 kB, 4 kB, 8 kB, 16 kB, 32 kB,
64 kB, 128 kB and 256 kB, and divide the performance by its cor-
responding energy consumption to get the PPW. Fig. 9 shows the
energy efficiency of four different encryption methods, including
software, instruction set, hardware and EECA. To better present
the OpenSSL energy-efficiency improvement with our proposed
EECA, we show the incremental multiples of PPW for EECA (Imprv.)
comparing with software, instruction set and hardware in Table 1.

As shown in Fig. 9, when data size is smaller than 8 kB, the
PPWof EECA gradually increased from39441.74 kB/W to 42612.48
kB/W. Furthermore, when data size is larger than 8 kB, the PPW
of EECA increased from 50668.60 kB/W to 78665.05 kB/W. Re-
gardless of data size, EECAmakes the utmost of CPU and hardware
accelerators resource.

(1) EECA vs. software encryption
The performance of software encryption is poor, because it
has no accelerating measures. As shown in Table 1, for dif-
ferent data size, the throughput of EECA remarkably outper-
forms softwaremethod. EECA gets 766.85% to 1637.13% PPW
improvement comparing with software implementation.

(2) EECA vs. instruction set encryption
When data size is larger than 8 kB, the throughput of EECA
outperforms instruction set. EECA improves 18.02% to 84.82%
PPW over instruction set. Beyond that, the throughput and
PPW of EECA is a little bit lower than instruction set. The
reason is that a fraction of CPU resource is occupied for data



C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347 345

Table 1
OpenSSL energy efficiency comparison of EECA, Software, instruction set and hardware accelerator.
Block
size (kB)

EECA Software Instruction set Hardware accelerator

TP (kB/s) Power
(W)

TP (kB/s) Power
(W)

EECA PPW
imprv.

TP (kB/s) Power
(W)

EECA PPW
imprv.

TP (kB/s) Power
(W)

EECA PPW
imprv.

1 5506942 139.622 647447 142.295 766.84% 5912479 140.779 −6.09% 556045 141.072 966.23%
2 5765027 139.588 650029 142.333 804.32% 5986630 140.819 −2.85% 1110012 141.184 479.47%
4 5862733 139.459 651133 142.174 817.92% 6025041 140.883 −1.70% 2175144 141.526 204.51%
8 5946091 139.539 650857 142.380 832.18% 6037716 141.109 −0.41% 4110016 141.717 62.72%

16 7113426 140.391 649313 142.208 1009.71% 6043481 140.762 18.02% 6095124 141.003 19.77%
32 8996049 140.953 647004 142.527 1305.94% 6047764 141.115 48.92% 6066890 139.571 46.63%
64 11010608 141.770 646754 142.577 1612.13% 6049740 141.188 81.25% 6055810 138.783 76.80%

128 11112462 141.507 646624 142.555 1631.26% 6051503 141.358 83.44% 6032583 138.342 77.89%
256 11155597 141.811 645110 142.457 1637.13% 6033402 141.750 84.82% 6271619 138.050 77.67%

size checkout and scheduling decision. Therefore, for small
data block, the maximum performance of EECA is somewhat
lower than instruction set implementation. However, this
influence is decreased with the increase of data size, on
account of the reduced frequency for scheduling checkout.

(3) EECA vs. hardware encryption
As shown in Fig. 9 the energy efficiency of hardware encryp-
tion is worse for small data block. Smaller the data block,
worse the energy efficiency. As we can see from the results
in Table 1, the throughput of EECA remarkably outperforms
hardware accelerator method. For small data block that less
than 8 kB, EECA could get several times PPW improvement
comparing with hardware accelerator encryption. Smaller
the data block, bigger the improvement. The reason behind
this is the adaptive scheduling avoiding low performance of
accelerators. For large data blocks, which typically performs
well for hardware accelerators, the proposed EECA still could
get around 19.77% to 77.89% PPW over hardware accel-
erator implementation. This contribution comes from best
utilization of system resource throughDynamicManagement
Mechanism.

5.4. Web server energy efficiency

We adopt pressure test ab to evaluate the energy efficiency of
the whole Web server for serving the HTTPS requests with cipher
suite ECDHE-RSA-AES256-SHA384 when using software, instruc-
tion set, hardware accelerator and EECA, respectively. We record
the RPS and energy consumption (Power) of different encryption
methods in the condition of variable page size, including 1 kB, 2 kB,
8 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB, 1MB and 2MB. For a clear
comparison and analysis, we transit RPS to network bandwidth
(kB/s) and divide it by corresponding energy consumption to get
the PPW as shown in Fig. 10. The PPW of EECA increased from
418.37 kB/W to 14189.82 kB/W. Regardless of page size, EECA
makes the utmost of CPU and hardware accelerators resource.
To better present the HTTPS energy-efficiency improvement with
our proposed EECA, we show the incremental multiples of PPW
for EECA (Imprv.) comparing with software, instruction set and
hardware in Table 2.

(1) EECA vs. software implementation
As we discussed before, software encryption has a poor
performance for no acceleration. Thus, for the whole Web
server system, it can only have a general energy efficiency.
The PPW improvement of EECA against the original Web
server with software encryption is 21.34% to 414.37%.

(2) EECA vs. instruction set implementation
When data size is larger than 32 kB, the PPW improvement
of EECA against the original Web server with instruction set
is 1.25% to 40.14%. Beyond that, the PPW with EECA is a
little bit lower than instruction set. As we discussed before,

Fig. 10. Energy efficiency of 4 different encryption methods with cipher suite
ECDHE-RSA-AES256-SHA.

the cost for request scheduling detection and management
has a slight impact on performance. Therefore, for the small
page size, the performance of EECA is somewhat lower than
instruction set implementation. However, this influence is
decreased with the increase of page size, on account of the
reduced frequency for scheduling checkout.

(3) EECA vs. hardware accelerators implementation
The PPW improvement of EECA against the original Web
server with hardware accelerator is 93.22% to 96.05%. As we
can see from Fig. 10, EECA can get greater PPW compared
with original Web server with hardware encryption. The
reason is due to great reduction of invocation cost through
proposed Request Reconstruction and Dynamic Management
Mechanism. The influence is more obvious for large page
sizes. For example, the maximum improvement achieves
96.05% for case page 1 MB.

5.5. Experimental conclusion

Based on the above experiments and analysis, we can get the
following conclusions. EECA can significantly improve energy ef-
ficiency for Web server, regardless of the request data size. On
one hand, Dynamic Management Mechanism cooperating hardware
accelerators and instruction set in EECA exerts their respective
superiorities and makes full use of system resource which con-
tributes a better energy efficiency for encryption in the case of
various data size. On the other hand, Request Reconstruction can
further improve the energy efficiency for Web server. When a
client requests for a large data, the whole plaintext of the request
invoke the hardware accelerator one time to reduce the overhead
of hardware invocation.



346 C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347

Table 2
HTTPS energy efficiency comparison of EECA, software, instruction set and hardware accelerator.
Block size EECA Software Instruction set Hardware accelerator

TP (kB/s) Power
(W)

TP (kB/s) Power
(W)

EECA PPW
imprv.

TP (kB/s) Power
(W)

EECA PPW
imprv.

TP (kB/s) Power
(W)

EECA PPW
imprv.

1 kB 59241 141.600 48877 141.765 21.34% 61047 141.464 −3.05% 41373 141.522 43.11%
2 kB 54849 141.580 42441 141.789 29.42% 56001 141.463 −2.14% 38596 141.554 42.09%
8 kB 48705 141.698 28519 141.842 70.95% 49956 141.489 −2.65% 34939 141.701 39.40%
16 kB 34158 141.823 16751 142.032 104.21% 34718 141.573 −1.79% 24530 141.791 39.22%
32 kB 26040 142.175 9992 142.163 160.57% 25609 141.568 1.25% 17876 141.882 45.37%
64 kB 17468 142.609 5525 142.208 215.27% 16240 141.596 6.80% 11476 141.981 51.54%
128 kB 11881 143.173 2916 142.334 305.05% 9542 141.594 23.14% 6764 142.066 74.31%
256 kB 7175 144.121 1493 142.362 374.62% 5204 141.656 35.52% 3695 142.127 91.50%
512 kB 3863 144.308 761 142.392 400.71% 2737 141.635 38.52% 1953 142.126 94.79%
1 MB 1984 144.417 375 142.415 422.26% 1389 141.640 40.14% 997 142.179 96.05%
2 MB 1001 144.417 192 142.433 414.37% 705 141.593 39.18% 505 142.046 94.98%

6. Conclusion

In this paper, we reveal the serious energy-efficient problem of
HTTPS with state-of-the-art encryption approaches. We find that
instruction set and hardware accelerator cannot be efficiently uti-
lized byWeb server to improve the PPW. One of the reasons is that
the encryptions are all handled using small data size (nomore than
16 kB), which poses considerable management overhead to call
hardware. The other one is that the limited CPU resource becomes
the bottleneck for further PPW improvement for instruction set.
In this paper, we propose a novel scheme to improve the energy
efficiency of HTTPS secure access with OpenSSL through HW-
SW co-design, called EECA. The essential idea is to use respective
energy-efficient advantages of instruction set and hardware accel-
erator for different cases. In order to take full advantage of system
resource, we propose to reorganize and schedule HTTPS requests
according to the data size. The proposed Request Reconstruction
reducing the overhead of calling hardware by submitting request
data for encryption at once. We design the Adaptive Control Crypto
(ac_crypto) enginewith aDynamicManagementMechanism, includ-
ing RequestAllocation algorithm and DynamicScheduler algorithm.
It exerts the superiorities of the instruction set and hardware and
makes full use of system resource. The RequestAllocation algorithm
divides the encryption requests into different task queues accord-
ing to the data size of each request, meanwhile the Dynamic-
Scheduler algorithm dynamically manages these requests between
these task queues. Evaluations show that the proposed EECA can
improve the energy efficiency of Web server by up to 422.26%,
40.14% and 96.05% comparing with the original Web server using
software, instruction set and hardware accelerators, respectively.
The experimental results also show that, for typical encryption
algorithmAES-256-CBC, the proposed EECA can provide the energy
efficiency of encryption improvement by up to 1637.13%, 84.82%,
and 966.23% comparing with software encryption, instruction set
and hardware encryption, respectively. Proposed design method-
ology possesses universal properties. It could be applicable to other
applicationswith different kinds of encryption algorithmbut differ
in effect.

References

[1] D. Kline, N. Parshook, X. Ge, E. Brunvand, R. Melhem, P.K. Chrysanthis, A.K.
Jones, Holistically evaluating the environmental impacts in modern comput-
ing systems, in: Green and Sustainable Computing Conference, 2017, pp. 1–8.

[2] S. Subashini, V. Kavitha, A survey on security issues in service deliverymodels
of cloud computing, J. Network Comput. Appl. 34 (1) (2011) 1–11.

[3] K. Gai, K.-K.R. Choo, M. Qiu, L. Zhu, Privacy-preserving content-oriented
wireless communication in internet-of-things, IEEE Internet Things J. (2018).

[4] K. Gai, M. Qiu, Blend arithmetic operations on tensor-based fully homomor-
phic encryption over real numbers, IEEE Trans. Ind. Inf. 14 (8) (2018) 3590–
3598.

[5] Z. Jia, X. Tian, A novel security private cloud solution based on ecryptfs, in: In-
formation Management, Innovation Management and Industrial Engineering
(ICIII), 2013 6th International Conference on, Vol. 3, IEEE, 2013, pp. 38–41.

[6] J. Wilson, R.S. Wahby, H. Corrigan-Gibbs, D. Boneh, P. Levis, K. Winstein,
Trust but verify: auditing the secure internet of things, in: Proceedings of the
15th Annual International Conference on Mobile Systems, Applications, and
Services, ACM, 2017, pp. 464–474.

[7] J. Viega, M. Messier, P. Chandra, Network Security with OpenSSL: Cryptogra-
phy for Secure Communications, " O’Reilly Media, Inc.", 2002.

[8] E.A. Young, T.J. Hudson, R. Engelschall, Openssl: The open source toolkit for
ssl/tls, 2011.

[9] S. Gueron, Intel Advanced Encryption Standard (AES) Instruction Set White
Paper., September 2012.

[10] I. McCallum, Intel QuickAssist Technology Accelerator Abstraction Layer
(AAL), Intel Corporation, 2007.

[11] H. Klemick, E. Kopits, A.Wolverton, et al., Data center energy efficiency invest-
ments: qualitative evidence from focus groups and interviews, in: Tech. rep.,
National Center for Environmental Economics, US Environmental Protection
Agency, 2017.

[12] J. Lenhardt, W. Schiffmann, Energy efficient processing of fine-grained loads
in heterogeneous server farms, in: Computing and Networking (CANDAR),
2016 Fourth International Symposium on, IEEE, 2016, pp. 105–111.

[13] C.G.C. Index, Forecast and methodology, 2015-2020 white paper, Retrieved
1st June, 2016.

[14] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E. Masanet, N.
Horner, I. Azevedo, W. Lintner, United states data center energy usage report,
2016.

[15] C. Reams,Modelling Energy Efficiency for Computation (Ph.D. thesis), Univer-
sity of Cambridge, 2012.

[16] A. Hooper, Green computing, Commun. ACM 51 (10) (2008) 11–13.
[17] S. Murugesan, Harnessing green it: principles and practices, IT Professional

10 (1) (2008).
[18] A. Freire, C. Macdonald, N. Tonellotto, I. Ounis, F. Cacheda, A self-adapting

latency/power tradeoff model for replicated search engines, in: Proceedings
of the 7th ACM international conference on Web search and data mining,
ACM, 2014, pp. 13–22.

[19] N.R. Potlapally, S. Ravi, A. Raghunathan, N.K. Jha, A study of the energy con-
sumption characteristics of cryptographic algorithms and security protocols,
IEEE Trans. Mob. Comput. 5 (2) (2006) 128–143.

[20] A.K. Jones, Green computing: new challenges and opportunities, in: Proceed-
ings of the on Great Lakes Symposium on VLSI 2017, ACM, 2017, 3–3.

[21] R. Evans, J. Gao, DeepMind AI Reduces Google Data Centre Cooling Bill by
40%, 2016, URL https://deepmind.com/blog/deepmind-ai-reduces-google-
data-centre-cooling-bill-40/.

[22] L.A. Barroso, The price of performance, Queue 3 (7) (2005) 48–53.
[23] J. Laudon, Performance/watt: the new server focus, ACM SIGARCH Comput.

Archit. News 33 (4) (2005) 5–13.
[24] E. Rescorla, Http over tls, 2000.
[25] A. Hafsa, N. Alimi, A. Sghaier, M. Zeghid, M. Machhout, A hardware-software

co-designed aes-ecc cryptosystem, in: Advanced Systems and Electric Tech-
nologies (IC_ASET), 2017 International Conference on, IEEE, 2017, pp. 50–54.

[26] L. Batina, D. Hwang, A. Hodjat, B. Preneel, I. Verbauwhede, Hardware/software
co-design for hyperelliptic curve cryptography (hecc) on the 8051 µp, in:
InternationalWorkshop on Cryptographic Hardware and Embedded Systems,
Springer, 2005, pp. 106–118.

[27] A. Nadjia, A. Mohamed, Aes ip for hybrid cryptosystem rsa-aes, in: Systems,
Signals & Devices (SSD), 2015 12th International Multi-Conference on, IEEE,
2015, pp. 1–6.

[28] M.A. Hasamnis, S. Limaye, Design and implementation of rijindael’s encryp-
tion algorithm with hardware/software co-design using nios ii processor, in:
Industrial Electronics and Applications (ICIEA), 2012 7th IEEE Conference on,
IEEE, 2012, pp. 1386–1389.

[29] S. Baskaran, P. Rajalakshmi, Hardware-software co-design of aes on fpga,
in: Proceedings of the International Conference on Advances in Computing,
Communications and Informatics, ACM, 2012, pp. 1118–1122.

[30] M.A. Hasamnis, S. Limaye, An approach to design advanced standard encryp-
tion algorithm using hardware/ software co-design methodology, Int. J. Eng.
Sci. Technol. 4 (5) (2012).

http://refhub.elsevier.com/S0167-739X(18)31197-X/sb1
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb1
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb1
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb1
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb1
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb2
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb2
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb2
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb3
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb3
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb3
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb4
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb4
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb4
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb4
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb4
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb5
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb5
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb5
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb5
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb5
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb6
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb6
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb6
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb6
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb6
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb6
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb6
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb7
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb7
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb7
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb10
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb10
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb10
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb11
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb11
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb11
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb11
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb11
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb11
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb11
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb12
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb12
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb12
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb12
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb12
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb15
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb15
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb15
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb16
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb17
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb17
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb17
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb18
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb18
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb18
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb18
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb18
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb18
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb18
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb19
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb19
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb19
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb19
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb19
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb20
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb20
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb20
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb22
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb23
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb23
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb23
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb25
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb25
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb25
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb25
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb25
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb26
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb26
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb26
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb26
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb26
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb26
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb26
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb27
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb27
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb27
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb27
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb27
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb28
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb28
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb28
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb28
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb28
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb28
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb28
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb29
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb29
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb29
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb29
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb29
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb30
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb30
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb30
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb30
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb30


C. Xiao, L. Zhang, W. Liu et al. / Future Generation Computer Systems 96 (2019) 336–347 347

[31] L. Amaral, G. Araujo, J. López, Hw/sw co-design of identity-based encryption
using a custom instruction set, in: Field-Programmable Technology, 2009. FPT
2009. International Conference on, IEEE, 2009, pp. 510–513.

[32] C.-H. Lien, Y.-W. Bai, M.-B. Lin, P.-A. Chen, The saving of energy in web server
clusters by utilizing dynamic sever management, in: Networks, 2004.(ICON
2004). Proceedings. 12th IEEE International Conference on, Vol. 1, IEEE, 2004,
pp. 253–257.

[33] T. Horvath, K. Skadron, T. Abdelzaher, Enhancing energy efficiency in multi-
tierweb server clusters via prioritization, in: Parallel andDistributed Process-
ing Symposium, 2007. IPDPS 2007. IEEE International, IEEE, 2007, pp. 1–6.

[34] E.M. Elnozahy, M. Kistler, R. Rajamony, Energy-efficient server clusters, in:
InternationalWorkshop on Power-Aware Computer Systems, Springer, 2002,
pp. 179–197.

[35] A. Beloglazov, R. Buyya, Y.C. Lee, A. Zomaya, A taxonomy and survey of
energy-efficient data centers and cloud computing systems, in: Advances in
Computers, Vol. 82, Elsevier, 2011, pp. 47–111.

[36] J. Lenhardt, K. Chen, W. Schiffmann, Energy-efficient web server load balanc-
ing, IEEE Syst. J. 11 (2) (2017) 878–888.

[37] Y. Yang, N. Xiong, A. Aikebaier, T. Enokido, M. Takizawa, Minimizing power
consumption with performance efficiency constraint in web server clusters,
in: Network-Based Information Systems, 2009. NBIS’09. International Confer-
ence on, IEEE, 2009, pp. 45–51.

[38] T. Horvath, T. Abdelzaher, K. Skadron, X. Liu, Dynamic voltage scaling in
multitier web servers with end-to-end delay control, IEEE Trans. Comput. 56
(4) (2007) 444–458.

[39] K. Gai,M. Qiu, Z.Ming, H. Zhao, L. Qiu, Spoofing-jamming attack strategy using
optimal power distributions in wireless smart grid networks, IEEE Trans.
Smart Grid 8 (5) (2017) 2431–2439.

[40] L. Gui-hong, Z. Hua, L. Gui-zhi, Building a secure web server based on openssl
and apache, in: E-Business and E-Government (ICEE), 2010 International
Conference on, IEEE, 2010, pp. 1307–1310.

[41] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, G. Gogniat, Architectures of flexible
symmetric key crypto enginesa survey: from hardware coprocessor to multi-
crypto-processor system on chip, ACM Comput. Surv. 45 (4) (2013) 41.

[42] C.B. Barth, I. Moon, Y. Lei, S. Qin, C. Robert, et al., Experimental evaluation of
capacitors for power buffering in single-phase power converters, in: Energy
Conversion Congress and Exposition (ECCE), 2015 IEEE, IEEE, 2015, pp. 6269–
6276.

[43] Y.D.P. Meter, WT310/WT310HC/WT330 Digital Power Meter User’s Manual,
2013.

[44] Apache, ab - Apache HTTP server benchmarking tool., October 2014.
[45] A.J. Stieber, OpenSSL hacks, Linux J. (147) (2006) 74–77.

Chunhua Xiao, born in 1987. She is currently an asso-
ciate professor at School of Computer Science, Chongqing
University, China. She received the Ph.D. degree from
the Beijing University of Technology, China. She did
one year (2011–2012) academic research as a joint-
training Ph.D. student in University of California, Los An-
geles. Dr. Xiao has authored and co-authored more than
30 publications in peer-reviewed journals and confer-
ences. She has been an independent PI for a standard
(2016–2018) NSFC(National Nature Science Foundation
of China) grant, and also an independent PI (2016–2017)

for a CrossingResearch ProjectswithHuawei Technologies Co. Ltd; Shewashonored
with Science and Technology Progress Award from Beijing municipality in the year
2012. Her research interests includeMPSoCs, hardware and software co-design, and
embedded systems.

Lei Zhang is currently pursuing the master’s degree un-
der the supervision of Dr. C. Xiao with Chongqing Uni-
versity. She received the B.E. degree from the School of
Computer Science and Technology, Chongqing University
of Posts and Telecommunications, Chongqing, China, in
2016. Her current research interests include hardware
security, hardware and software co-design, and energy-
efficient computing and applications.

Weichen Liu (S07-M11) is an assistant professor at
School of Computer Science and Engineering, Nanyang
Technological University, Singapore. He received the
Ph.D. degree from the Hong Kong University of Science
and Technology, Hong Kong, and the BEng and MEng
degrees from Harbin Institute of Technology, China. Dr.
Liu has authored and co-authored more than 70 publica-
tions in peer-reviewed journals, conferences and books,
and received the best paper candidate awards from ASP-
DAC 2016, CASES 2015, CODES+ISSS 2009, the best poster
awards from RTCSA 2017, AMD-TFE 2010, and the most

popular poster award fromASP-DAC 2017. His research interests include embedded
and real-time systems, multiprocessor systems and network-on-chip.

Neil Bergmann has been Professor of Embedded Systems
in the School of ITEE at The University of Queensland
since 2001. He has Bachelor degrees in Engineering, Sci-
ence and Arts from University of Queensland, and a Ph.D.
in Computer Science from the University of Edinburgh,
UK (1984). He is a member of IEEE and a Fellow of the
Institution of Engineers, Australia. His research interests
are in computer systems, especially reconfigurable com-
puting and wireless sensor networks.

Yuhua Xie is currently pursuing the master’s degree un-
der the supervision of Dr. C. Xiao with Chongqing Uni-
versity. He received the B.E. degree from the School of
Computer Science and Technology, Chongqing Univer-
sity of Posts and Telecommunications, Chongqing, China,
in 2015. His research interests include NoCs based on
emerging interconnect technology and information secu-
rity.

http://refhub.elsevier.com/S0167-739X(18)31197-X/sb31
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb31
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb31
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb31
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb31
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb32
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb32
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb32
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb32
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb32
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb32
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb32
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb33
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb33
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb33
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb33
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb33
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb34
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb34
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb34
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb34
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb34
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb35
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb35
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb35
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb35
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb35
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb36
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb36
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb36
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb37
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb37
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb37
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb37
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb37
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb37
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb37
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb38
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb38
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb38
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb38
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb38
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb39
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb39
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb39
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb39
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb39
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb40
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb40
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb40
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb40
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb40
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb41
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb41
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb41
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb41
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb41
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb42
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb42
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb42
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb42
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb42
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb42
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb42
http://refhub.elsevier.com/S0167-739X(18)31197-X/sb45

	Energy-efficient crypto acceleration with HW/SW co-design for HTTPS
	Introduction
	Background & motivation
	HTTP over SSL/TLS
	Cryptographic working flow
	Motivation
	Breakdown of HTTPS working flow
	Challenges of existing crypto-acceleration approaches


	Related work
	EECA design
	Overview
	Request reconstruction
	Adaptive control crypto engine
	Dynamic management mechanism

	Evaluation
	Experimental setup
	Experimental benchmarks
	Web server benchmark
	Encryption benchmark

	Encryption energy efficiency
	Web server energy efficiency
	Experimental conclusion

	Conclusion
	References


