
Accepted Manuscript

One secure data integrity verification scheme for cloud storage

Yongkai Fan, Xiaodong Lin, Gang Tan, Yuqing Zhang, Wei Dong,
Jing Lei

PII: S0167-739X(18)31100-2
DOI: https://doi.org/10.1016/j.future.2019.01.054
Reference: FUTURE 4747

To appear in: Future Generation Computer Systems

Received date : 8 May 2018
Revised date : 19 January 2019
Accepted date : 27 January 2019

Please cite this article as: Y. Fan, X. Lin, G. Tan et al., One secure data integrity verification
scheme for cloud storage, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.01.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.01.054

One Secure Data Integrity Verification Scheme for Cloud Storage

Yongkai Fan
1,2

, Xiaodong Lin
1,2

, Gang Tan
3
, Yuqing Zhang

4
, Wei Dong

5
, JingLei

1,2

1Beijing Key Lab of Petroleum Data Mining, China University of Petroleum, Beijing, China

2Dept. of Computer Science and Technology, China University of Petroleum, Beijing, China

3Dept. of Computer Science and Engineering, Penn State University, PA, USA

4National CNIP Center, University of Chinese Academy of Sciences, Beijing, China

5Research Institute of Information Technology, Tsinghua University, Beijing, China

Abstract. Cloud computing is a novel kind of information technology that users can enjoy sundry cloud services from the shared

configurable computing resources. Compared with traditional local storage, cloud storage is a more economical choice because

the remote data center can replace users for data management and maintenance, which can save time and money on the series of

work. However, delivering data to an unknown Cloud Service Provider (CSP) makes the integrity of data become a potential

vulnerability. To solve this problem, we propose a secure identity based aggregate signatures (SIBAS) as the data integrity

checking scheme which resorts Trusted Execution Environment (TEE) as the auditor to check the outsourced data in the local side.

SIBAS can not only check the integrity of outsourced data, but also achieve the secure key management in TEE through Shamir’s

(𝑡, 𝑛) threshold scheme. To prove the security, security analysis in the random oracle model under the computational

Diffie-Hellman assumption shows that SIBAS can resist attacks from the adversary that chooses its messages and target identities,

experimental results also show that our solution is viable and efficient in practice.

 Keywords: Trusted Execution Environment, Cloud Storage, Integrity Verification, Identity-Based Aggregate Signatures,

Shamir’s (𝑡, 𝑛) threshold scheme

1 Introduction

Cloud computing was treated as a new network information technology architecture to meet the increasing need of computing

owing to its own unprecedented characteristics: broad network access, on-demand self-service, resource pooling that location

independence, the rapid elasticity of the resource and high-quality of measured services [1]. Different from the traditional

technology, cloud computing allows individuals and IT enterprises to outsource the data to the cloud, which provides users with

more flexible access services. Cloud computing is widely used in various networks, such as wireless sensor network[2,3]. The

wireless sensors can be treated as the cloud nodes, the collected signals of which are transmitted to the cloud for secure storage.

 As one of the core techniques in cloud computing, cloud storage was widely discussed because of its lower cost and higher

efficiency. Together with the computing architecture called "software as a service" (SaaS), cloud data storage commits to

switching data centers to pools of computing service on a large scale. At the meantime, by the rapid growth of the network

bandwidth with the reliable and flexible network connection, it’s possible that cloud users can enjoy high-quality cloud services

from data that reside solely in the remote data centers [1]. Different from the traditional storage technology (direct attached

storage, redundant arrays of independent disks, storage area network), cloud storage provides users with large storage space and

data access through independent geographical locations. Namely, cloud users can access the outsourced data easily anytime,

anywhere, through any networked device that connected to the cloud.

 Although the cloud data storage brings great convenience to end users, security issues should not be neglected for computer

systems are subjected to an increasing range of attacks. While users deliver their data to the efficient yet unreliable CSP, due to

lack of secure identity authentication and high-intensity access control on the identification, protection of the data integrity and

privacy in remote cloud servers will be a great challenge. For example, a cross-VM-side-channel attack may be launched by

sophisticated attackers and caused a data leakage of legitimate users [20]. Moreover, data loss could occur in any cloud

infrastructure, even the cloud provider with the highest degree of protection is no exception. Sometime, several CSPs may choose

to discard the data that has been accessed infrequently to save the storage space and maximize their profit. More abominable, they

even concealed the fact that the data was lost to the user and pretended that the user’s data was still intact and stored in the cloud

[4,5]. Ultimately, users must bear these unnecessary losses by themselves. Security issues make users nervous and hesitate to

outsource their data to the cloud. To some extent, the tension of losing data hinders the widespread of cloud technology.

 To mitigate the tension, data integrity verification is proposed. A popular method is to resort an independent third-party auditor

(TPA) services to check the integrity of the outsourced data, which is called “public verification” [24]. Such a concept was used in

lots of work. Recently, such a concept has been applied to many different systems and security models [19,20,21]. In these

research work, all the auditing tasks were done by TPA, it can interact with both CSPs and users to gain the information required

for integrity verification. Throughout the process, users do not need to know how TPA performs the verification to check the

integrity of outsourced data. Instead, they will receive an audit report of outsourced data from TPA, which hints at whether the

integrity of the data has been destroyed. It seems that users can perform secure data integrity verification and save a lot of

overhead by introducing TPA, but there are two fundamental requirements have to meet: 1) TPA is efficient to check the integrity

of outsourced data without a data copy and eliminating the online burden of users. 2) TPA should not bring new vulnerabilities to

users' security and privacy [5]. In other words, users must take default that TPA is trusted and will not deceive the users or infringe

on the user's privacy. However, it is based on the assumption of the ideal state and difficult to realize in the commercial context

since that it cannot avoid skillful attacks (i.e. the Man-in-the-Middle attack) [29]. Besides, the introduction of TPA in cloud

infrastructure means that users need to pay extra fees in addition to the cloud service, as users also have to pay for the

management and maintenance of TPA.

 In this paper, we propose a new scheme to replace TPA with one secure environment on the client side which securely checks

the integrity of outsourced data without using meta-data stored in the cloud. Specifically, we resort to Trusted Execution

Environment (TEE) [17] that is running on local infrastructure acts as an auditor to verify the outsourced data and perform secure

key management. A Trusted Execution Environment (TEE) holds its own independent running space that is isolated from a Rich

Execution Environment (REE), which ensures that any adversary in REE cannot grab the privacy information or pry into the

results of verification without the knowledge of the users. Therefore, users do not need to worry about disclosure of their private

information while requesting for data verification. In addition, it can help users to save unnecessary costs while enjoying the cloud

services.

In our approach, we present our scheme based on TEE which aims to protect user’s assets, which is referred to SIBAS. Our

contributions can be summarized into five main points as follows:

 To the best of our knowledge, we firstly put forwards integration of the advantages of TEE and identity-based encryption to

construct a secure data integrity verification scheme, and it is extended to fully support dynamic data operations such as

addition, deletion, and modification.

 We design and implement a secure terminal architecture based on Trusted Execution Environment. Since TEE is an

independent execution space isolated from Rich Execution Environment (REE), such a mechanism can support adequate

security in the process of data integrity verification.

 While outsourcing a large-scale file to the cloud, we utilize Shamir’s (𝑡, 𝑛) threshold scheme to encrypt the private key and

transmit it to the cloud to reduce the storage consumption of the local side.

 Our scheme not only supports the integrity verification for a single file, but also achieves concurrent verification for multiple

files.

 To test the feasibility and reliability of our scheme, theoretical and experimental analysis have been done.

The remainder of this paper is organized as follows: We first introduce some background information in section 2. In Section 3,

the system model will be presented in detail. Then we prove that SIBAS is secure against the adversary that aim to deceive users

and evaluate the performance of our proposal in section 4 and section 5, respectively. In section 6 we describe the related works

that have been done. Finally, we conclude the paper in Section 7.

2 Problem formulation

 Identity-based encryption was proposed by Shamir [18], then Boneh et al. [22] first proved that a fully functional and effective

identity-based encryption scheme can be constructed through any bilinear map, a lot of research encryption schemes were

proposed based on the bilinear map. In our work, we construct SIBAS base on the bilinear map as same as the other previous

works. Before we describe the whole scheme in detail, some preparations of our scheme are shown in this section.

2.1 Preliminaries

2.1.1 Bilinear maps

 Let 𝐺1 , 𝐺2 be the cyclic group of prime order 𝑝, 𝑒 is a bilinear map that satisfies e: 𝐺1 × 𝐺1 → 𝐺2 and meets the following

properties.

1. Bilinear: There exists e(𝑎𝑋, 𝑏𝑌 + 𝑐𝑍) = 𝑒(𝑎𝑋, 𝑏𝑌) ∙ 𝑒(𝑎𝑋, 𝑐𝑍), for ∀𝑎, 𝑏, 𝑐 ∈ 𝑍𝑝, ∀𝑋, 𝑌, 𝑍 ∈ 𝐺1.

From the bilinear mapping we can get the following equation:𝑒(𝑎𝑋, 𝑏𝑌) = 𝑒(𝑋, 𝑌)𝑎𝑏, ∀𝑎, 𝑏 ∈ 𝑍𝑝, ∀𝑋, 𝑌 ∈ 𝐺1.

2. Non-degenerate: There exists ∀𝑋, 𝑌 ∈ 𝐺1 to meet the inequality 𝑒(𝑋, 𝑌) ≠ 1.

3. Computable: For ∀𝑋, 𝑌 ∈ 𝐺1, there exists an appropriate algorithm to compute 𝑒(𝑋, 𝑌).

2.1.2 Gap Diffie–Hellman (GDH) groups

Let 𝐺 be a cyclic multiplicative group generated by 𝑔 with the prime order 𝑞. We can define the following cryptography

problem in 𝐺.

(1) Discrete Logarithm Problem (DL): Given 𝑔, 𝑕 ∈ 𝐺, find out an integer 𝑛, then we can construct the equation g = 𝑛𝑕

while the integer exists.

(2) Computation Diffie–Hellman problem (CDH): Given 𝑃, 𝑎𝑃, 𝑏𝑃 ∈ 𝐺 for unknown ∀𝑎, 𝑏 ∈ 𝑍𝑝 and a bilinear map

e: 𝐺1 × 𝐺1 → 𝐺2, then compute 𝑎𝑏𝑃.

(3) Decision Diffie–Hellman problem (DDH): Given 𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃 ∈ 𝐺 for unknown ∀𝑎, 𝑏, 𝑐 ∈ 𝑍𝑝. Determine whether the

following equation holds: 𝑐 ≡ 𝑎𝑏 mod 𝑞 ⟺ 𝑒(𝑃, 𝑐𝑃) = 𝑒(𝑎𝑃, 𝑏𝑃) .

Given a bilinear map e: 𝐺1 × 𝐺1 → 𝐺2, we call 𝐺1 is a GDH group if the CDH problem in 𝐺1 is believed to be hard, while

the DDH problem in 𝐺1 is easy to be calculated. Specially, if there is no polynomial-time probabilistic algorithm 𝒜 can solve

the CDH problem with a negligible advantage ε, we say that it is computationally infeasible to solve the CDH problem in 𝐺1.

2.1.3 Identity-based aggregate signatures

 Identity-based aggregate signatures (IBAS) was firstly introduced by Gentry and Silverberg [23], which is consisted by five

phases: Setup, Private key generation, Individual signing, Aggregation, Verification. In Gentry`s scheme, a location-independent

private key generator (PKG, generally a trusted third party server) is first laid out and generates a master secret 𝑠 ∈ 𝑍𝑝 as well as

the system parameter 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝐺1, 𝐺2, 𝑒, 𝑃, 𝑄, 𝐻1, 𝐻2, 𝐻3). For 𝐺1 and 𝐺2 are the bilinear group of prime order 𝑝, 𝑃 is an

arbitrary generator and sets 𝑄 = 𝑠𝑃 (𝑃, 𝑄 ∈ 𝐺1), 𝐻𝑖 (for 𝑖 = *1,2,3+) are cryptographic hash functions that satisfy 𝐻1, 𝐻2 ∶

*0,1+∗ ∈ 𝐺1 and 𝐻3 ∶ *0,1+
∗ ∈ 𝑍𝑝. Then the private key 𝑠𝑃𝑖,𝑗 is generated based on the user ID 𝑖𝑑𝑖, where 𝑃𝑖,𝑗 = 𝐻1(𝑖𝑑𝑖 , 𝑗) for

𝑗 ∈ *0,1+. While the signing phase, the user 𝑖𝑑𝑖 signs the message 𝑚𝑖 to be processed with the private key as well as a “dummy

message” ω. It first computes the two values 𝑃𝜔 = 𝐻2(𝜔) and 𝑐𝑖 = 𝐻3(𝑖𝑑𝑖 , 𝑚𝑖 , 𝜔), then it generates a random value 𝑟𝑖 ∈ 𝑍𝑝

and computes its signature (ω, 𝑆𝑖 , 𝑇𝑖), where 𝑆𝑖 = 𝑟𝑖𝑃𝜔 + 𝑠𝑃𝑖,0 + 𝑐𝑖𝑠𝑃𝑖,1, 𝑇𝑖 = 𝑟𝑖𝑃. After that, a collection of the individual

signatures can be aggregated into one signature (ω, 𝑆𝑛, 𝑇𝑛), where 𝑆𝑛 = ∑ 𝑆𝑖
𝑛
𝑖=1 and 𝑇𝑛 = ∑ 𝑇𝑖

𝑛
𝑖=1 . If anyone attempts to verify

the aggregate signature, a corresponding information will be taken as input to proof the correctness of the signature by 𝑒(𝑆𝑛, 𝑃) =

𝑒(𝑇𝑛, 𝑃𝜔)𝑒(𝑄, ∑ 𝑃𝑖,0 +
𝑛
𝑖=1 ∑ 𝑃𝑖,1

𝑛
𝑖=1).

2.1.4 Shamir’s (𝒕, 𝒏) threshold scheme

 Shamir’s (𝑡, 𝑛) threshold scheme (Shamir’s secret sharing scheme) is well-known in cryptography, which is used to share a

secret among a group of participants. In this scheme, each participant holds partial information about the sharing secret,

then the secret can be reconstructed if the number of shared participants meets the requirements. The mathematical

Untrusted Environment Trusted Environment

Memory Memory

System Hardware

OS and Apps Trusted Apps

Fig. 1. Trusted Execution Environment (TEE) architecture [28].

description of Shamir’s (𝑡, 𝑛) threshold scheme is given as follow. Assume that there are 𝑛 participants (𝑃 = *𝑃1, 𝑃2, ⋯ , 𝑃𝑛+)

for sharing the secret s, and set a threshold value 𝑡, for (𝑡 ≤ 𝑛). Then given a finite field 𝔽𝑞
∗ , each participant is allocated with

an identification, which can be denoted as 𝑥1, 𝑥2, ⋯, 𝑥𝑛 ∈ 𝔽𝑞
∗ and the value of 𝑥𝑖 is publicly available. First, the system

randomly chooses 𝑎𝑖 ∈ 𝔽𝑞
∗ (𝑖 = 1,2,⋯ , 𝑡 − 1) and constructs 𝑡 time polynomial 𝑓(𝑥) = 𝑠 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥

𝑡−1 . After

that, the system computes 𝑓(𝑥𝑖) and send them to each participant 𝑃𝑖 as the sub-secret. While someone wants to recovery

the secret s, he/she first requests any t participants from n participants to help. While the requester gets t sub-secrets (𝑥𝑖 , 𝑓(𝑥𝑖)),

he/she can reconstruct the 𝑡 time polynomial 𝑓(𝑥) using the Lagrange interpolation by 𝑓(𝑥) = ∑ 𝑓(𝑥𝑖)
𝑡
𝑖=1 ∏

𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗

𝑡
𝑗=1
𝑗≠𝑖

. Then

the secret s can be calculated as s = 𝑓(0) = ∑ 𝑓(𝑥𝑖)
𝑡
𝑖=1 ∏

𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗

𝑡
𝑗=1
𝑗≠𝑖

 (𝑚𝑜𝑑 𝑞).

2.1.5 Trusted Execution Environment (TEE)

The concept of TEE was proposed by the Global Platform in 2011. A complete system of TEE includes two execution

environments that are physically separated: one is untrusted and responsible for hosting the main operating system and

applications, while the other one hosts trusted applications and responsible for the operations data encryption or decryption. For

these two separate environments, they are co-existing in the system. Meanwhile, each one maintains its own software stack. TEE

is an isolated execution environment, for any application in the untrusted environment, which we call it a CA, it cannot

communicate with the trusted environment without an allocated permission. Namely, TEE does not allow unauthenticated CAs in

untrusted environments to access any data in TEE freely, which guarantees the security of the TEE. A TEE architecture can be

abstracted as Fig. 1.

2.2 System model

Fig. 3-(a), 3-(b). The framework of SIBAS, we show the setup, private key generation, signature generation and

challenge phases in (a) and the signature aggregation and verify phases in (b).

Fig. 2. Cloud architecture of NaEPASC [20]

SIBAS aims at checking the integrity of data while user’s privacy preserving. However, we take a slightly different approach

from Gentry`s scheme [23]. While Tan et al. [20] consider splitting their verification scheme NaEPASC into 5 phases, we choose

to divide our scheme into 6 phases (setup, private key generation, signature generation, challenge, signature aggregation and

verify). At the same time, there are two different entities involved in SIBAS: cloud service provider (CSP), cloud user (it can be

divided into the client application (CA) and a trusted execution environment (TEE)), while Tan`s scheme contains multiple

entities. The comparison between the two schemes is shown as Fig. 2, Fig. 3-(a) and Fig. 3-(b) (Fig. 3-(a) contains the first three

stages while Fig. 3-(b) includes the last three stages). Next, we describe the responsibilities of each entity and how they interact

with each other.

CSP: CSP is responsible for storing the outsourced data of cloud users. We assume that CSP is “honest but curious”, which

means it cannot be trusted totally.

CA: CA is responsible for interacting with the CSP. Besides, it can choose to issue a request to checking the integrity of

outsourced data.

TEE: TEE is an isolated small-scale operating system. In our scheme, it replaces the PKG server and the trusted audit server to

perform key management as well as auditing data integrity. Due to the unique design mechanism of TEE, we can ensure that key

management is secure enough.

2.3 Design goal

 In this paper, we aim at achieving the following goals from the aforementioned threaten:

 Security: Ensuring that no one can obtain the master secret that users hold and the sensitive information storing in TEE.

 Efficiency: checking the integrity of the outsourced data with a minimum overhead of computation.

 Independence: Without involved the PKG server and the audit server to generating the secret key and verifying the outsourced

data, we take TEE to replace them

 Note that our scheme aims at verifying the integrity of outsourced data, so we do not take the metadata encryption into account.

3 Model statements

 In this section, we present the SIBAS in detail. First, we introduce some useful information about TEE. TEE is an isolated

system that enables to task the high level of security work while running in parallel to the ordinary operation system (CA). If the

CA attempts to ask for the assistance of TEE, it first authenticates its identity to TEE by a uuid, which is the unique identifier for

connecting TEE and CA. Without it, the communication will be failed. By such unique mechanism, the potential attackers are

unable to obtain the sensitive information from TEE. In our study, we assume that there is a file 𝐹 waiting for upload. To ensure

the integrity while it is outsourcing, we launch a scheme with the following steps.

3.1.1 The basic construction of our scheme

 In the first place, we present some related definitions in our proposal. Let 𝐺1, 𝐺2 be the cyclic group of order 𝑝, there exist a

bilinear group 𝑒: 𝐺1 × 𝐺1 → 𝐺2 . We use three cryptographic hash functions 𝐻1, 𝐻2: *0,1+
∗ → 𝐺1 , 𝐻3: *0,1+

∗ → 𝑍𝑝 and

𝐻4: *0,1+
∗ → *0,1+∗.

 Setup: TEE generates the parameters and the secret as PKG. It first chooses an arbitrary generator 𝑃 ∈ 𝐺1, randomly pick a

value 𝑠 ∈ 𝑍𝑝 to compute 𝑄 = 𝑠𝑃. Constructing the system parameter: *𝐺1, 𝐺2, 𝑒, 𝐻1, 𝐻2, 𝐻3, 𝑃, 𝑄+, and the master secret is

𝑠 ∈ 𝑍𝑝.

 Private key generation: While CA is communicating with TEE, it first publishes its uuid as well as the data file to TEE, so

TEE can take CA’s uuid as input to compute the private key as follows:

 For 𝑗 ∈ *0,1+, it computes two hash values where 𝑃𝑗 = 𝐻1(𝑢𝑢𝑖𝑑, 𝑗), 𝑃𝑗 ∈ 𝐺1. Then outputs the secret key as 𝑄𝑗 = 𝑠𝑃𝑗.

 Signature generation: While the cloud user retrieves the outsourced file, the signature needs to be computed. For a file 𝐹

can be split into n blocks: 𝐹 → *𝑏1, 𝑏2, ⋯ , 𝑏𝑛−1, 𝑏𝑛+, 𝑛 ∈ 𝑍
∗. TEE can generate the signature pair *𝑆𝑖 , 𝑇𝑖+ of each file block 𝑏𝑖

as follows:

(i) Computing two hash value as: 𝑃𝜔 = 𝐻2(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒), 𝑐𝑖 = 𝐻3(𝑎𝑖 , 𝑢𝑢𝑖𝑑, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒), where 𝑎𝑖 is the index of the block 𝑏𝑖

in the data file 𝐹 , 1 ≤ 𝑖 ≤ 𝑛.

(ii) Initializing an instance of Shamir’s (𝑡, 𝑛) threshold scheme ℐ𝒩𝒮(𝑡,𝑛) with 𝑓(𝑥) = 𝑃𝜔 + 𝑎1𝑥 +⋯+ 𝑎𝑡−1𝑥
𝑡−1 and

computes 𝑡 − 1 points 𝑝𝑝 = {(𝑣1, 𝑓(𝑣1)), (𝑣2, 𝑓(𝑣2)), ⋯ , (𝑣𝑡−1, 𝑓(𝑣𝑡−1))| 𝑣𝑖 ∈ *0,1+
∗+, 𝑝𝑝 is a public parameter. Then

the algorithm computes 𝑣′ = 𝐻4(𝑢𝑢𝑖𝑑), 𝑦 = 𝑓(𝑣
′), 𝑒𝑛𝑐 =

𝑣′∥ 𝑓(𝑣′)

𝑄0 ∥ 𝑄1
.

(iii) Generating 𝑛 random values as: 𝑟𝑖 ∈ 𝑍𝑝, 1 ≤ 𝑖 ≤ 𝑛, then computes 𝑇𝑖 = 𝑟𝑖𝑃.

(iv) Computing 𝑆𝑖 = 𝑟𝑖𝑃𝜔 + 𝑐𝑖𝑄0 + 𝑏𝑖𝑄1, (1 ≤ 𝑖 ≤ 𝑛).

(v) TEE packs two values 𝑇𝑖 and 𝑆𝑖 into a signature 𝜓𝑖 = *𝑆𝑖 , 𝑇𝑖 , 𝑒𝑛𝑐+, and then commits 𝜓𝑖 with the file 𝐹 to the cloud

data center.

Challenge: Before the cloud user aggregates the signature to check the integrity of outsourced file, TEE picks a 𝑚 elements

subset 𝑆𝑠𝑢𝑏 = *𝑠1, 𝑠2, ⋯ , 𝑠𝑚−1, 𝑠𝑚+ in randomly for 𝑆𝑠𝑢𝑏 ⊆ *1,2,⋯ , 𝑛 − 1, 𝑛+ , where there exists 𝑎𝑗 equal to an unique

𝑠𝑖 ∈ 𝑆𝑠𝑢𝑏 (1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑚). Then, with the corresponding value 𝑥𝑖 ∈ 𝑍𝑞 (𝑞 = 𝑝 ∕ 2) in randomly and sends the value

𝑆𝑠𝑢𝑏 = *𝑠1, 𝑠2, ⋯ , 𝑠𝑚−1, 𝑠𝑚+ and 𝑋𝑠𝑢𝑏 = *𝑥1, 𝑥2, ⋯ , 𝑥𝑚−1, 𝑥𝑚+ to CSP.

Aggregation: Upon CSP receives these two sets, it will search for the corresponding file blocks as

𝑏𝑆𝑠𝑢𝑏 = *𝑏𝑠1 , 𝑏𝑠2 , ⋯ , 𝑏𝑠𝑚−1 , 𝑏𝑠𝑚+ and computes the linear value of the single block as 𝑏𝑠𝑖𝑥𝑖 ∈ 𝑍𝑝. After that, a proof

*𝑒𝑛𝑐, 𝑆𝑚 =∑𝑥𝑖𝑆𝑠𝑖

𝑚

𝑖=1

, 𝑇𝑚 =∑𝑥𝑖𝑇𝑠𝑖 ,

𝑚

𝑖=1

𝑅𝑚 =∑𝑥𝑖𝑏𝑠𝑖 | 𝑆𝑚

𝑚

𝑖=1

, 𝑇𝑚 ∈ 𝐺1, 𝑅𝑚 ∈ 𝑍𝑝+

is calculated by CSP and send back to the user as a response.

Verify: With the response proof from CSP, CA commits the proof to TEE in a secure way. First, the algorithm decrypts the

secret 𝑒𝑛𝑐 as follow:

(i) It extracts (𝑣∗ = 𝑣′, 𝑓(𝑣∗) = 𝑓(𝑣′)) from 𝑒𝑛𝑐 by 𝑣′ ∥ 𝑓(𝑣′) = 𝑒𝑛𝑐(𝑄0 ∥ 𝑄1).

(ii) The algorithm reconstructs the polynomial 𝑓(𝑥) of Shamir’s (𝑡, 𝑛) threshold scheme ℐ𝒩𝒮(𝑡,𝑛) through Lagrange

polynomials, which can be achieved by interpolating with 𝑝𝑝 = *(𝑣1, 𝑓(𝑣1)), (𝑣2, 𝑓(𝑣2)), ⋯ , (𝑣𝑡−1, 𝑓(𝑣𝑡−1))+ and

(𝑣∗, 𝑓(𝑣∗)).

(iii) The algorithm recovers 𝑃𝜔 by 𝑃𝜔 = 𝑓(0).

Then, TEE can check the integrity of the outsourced data by the following equation:

𝑒(𝑆𝑚, 𝑃) = 𝑒(𝑇𝑚, 𝑃𝜔)𝑒(𝑄,∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑃0 + 𝑅𝑚𝑃1)

 [1]

for 𝑃𝑗 = 𝐻1(𝑢𝑢𝑖𝑑, 𝑗), 𝑗 ∈ *0,1+, 𝑃𝜔 = 𝐻2(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒), 𝑐𝑖 = 𝐻3(𝑎𝑖 , 𝑢𝑢𝑖𝑑, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒).

Remark 1. We give a proof of the correctness of the integrity verification when the equation [1] was established. The proof is

listed as follows:

Right = 𝑒(𝑇𝑚, 𝑃𝜔)𝑒 (𝑄,∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑃0 + 𝑅𝑚𝑃1)

= 𝑒(𝑇𝑚, 𝑃𝜔)𝑒 (𝑄,∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑃0 +∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

𝑃1)

= 𝑒 (∑𝑥𝑖𝑟𝑖𝑃

𝑚

𝑖=1

, 𝑃𝜔)𝑒 (𝑄,∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑃0 +∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

𝑃1)

= 𝑒 (∑𝑥𝑖𝑟𝑖𝑃

𝑚

𝑖=1

, 𝑃𝜔)𝑒 (𝑠𝑃, 𝑥𝑖∑(𝑐𝑖𝑃0

𝑚

𝑖=1

+ 𝑏𝑖𝑃1))

= 𝑒 (𝑃,∑𝑥𝑖𝑟𝑖

𝑚

𝑖=1

𝑃𝜔)𝑒 (𝑃, 𝑠𝑥𝑖∑(𝑐𝑖𝑃0

𝑚

𝑖=1

+ 𝑏𝑖𝑃1))

= 𝑒 (𝑃,∑𝑥𝑖𝑟𝑖

𝑚

𝑖=1

𝑃𝜔 +∑(𝑐𝑖𝑥𝑖𝑠𝑃0

𝑚

𝑖=1

+ 𝑏𝑖𝑥𝑖𝑠𝑃1))

= 𝑒 (𝑃,∑𝑥𝑖(𝑐𝑖𝑄0

𝑚

𝑖=1

+ 𝑏𝑖𝑄1 + 𝑟𝑖𝑃𝜔)) , 𝑄0 = 𝑠𝑃0, 𝑄1 = 𝑠𝑃1

= 𝑒(𝑆𝑚, 𝑃) = Left

Batch aggregation: With the popularity of cloud computing, the way of individual signature no longer meets the need of users.

Therefore, we consider the situation of multiple files request for outsourcing concurrently, which can significantly improve the

efficiency of integrity checking. Suppose the user attempts to verify 𝐾 files concurrently, we take a dual aggregation signature

scheme, which supports the aggregation of multiple signatures by the user on distinct outsourced files into a single signature. The

B-aggregation signature is constructed as follows:

*∑𝑒𝑛𝑐𝑗

𝐾

𝑗=1

,∑𝑆𝑚,𝑗

𝐾

𝑗=1

=∑∑𝑥𝑖𝑆𝑠𝑖,𝑗

𝑚

𝑖=1

𝐾

𝑗=1

,∑𝑇𝑚,𝑗

𝐾

𝑗=1

=∑∑𝑥𝑖𝑇𝑠𝑖,𝑗 ,

𝑚

𝑖=1

𝐾

𝑗=1

∑𝑅𝑚

𝐾

𝑗=1

=∑∑𝑥𝑖𝑏𝑠𝑖,𝑗

𝑚

𝑖=1

𝐾

𝑗=1

 | 𝑆𝑚, 𝑇𝑚 ∈ 𝐺1, 𝑅𝑚 ∈ 𝑍𝑝+

 Then, it can verify the equation as:

𝑒 (∑𝑆𝑚,𝑗

𝐾

𝑗=1

, 𝑃) = 𝑒(∑𝑇𝑚,𝑗

𝐾

𝑗=1

,∑(𝑃𝜔)𝑗

𝐾

𝑗=1

)𝑒(𝑄,∑∑𝑐𝑖,𝑗𝑥𝑖

𝑚

𝑖=1

𝑃0

𝐾

𝑗=1

+∑𝑅𝑚,𝑗

𝐾

𝑗=1

𝑃1)

[2]

 Remark 2. We give a proof of the correctness of the integrity verification when the equation [2] was established. The proof is

listed as follows:

Right = 𝑒(∑𝑇𝑚,𝑗

𝐾

𝑗=1

,∑(𝑃𝜔)𝑗

𝐾

𝑗=1

)𝑒(𝑄,∑𝑥𝑖 ∙∑𝑐𝑖,𝑗

𝐾

𝑗=1

𝑃0

𝑚

𝑖=1

+∑𝑅𝑚,𝑗

𝐾

𝑗=1

𝑃1)

= 𝑒(∑𝑇𝑚,𝑗

𝐾

𝑗=1

,∑(𝑃𝜔)𝑗

𝐾

𝑗=1

)𝑒(𝑄,∑(𝑥𝑖 ∙∑𝑐𝑖,𝑗

𝐾

𝑗=1

𝑃0)

𝑚

𝑖=1

+∑𝑏𝑖,𝑗𝑥𝑖

𝐾

𝑗=1

𝑃1)

= 𝑒(∑∑𝑥𝑖𝑟𝑖,𝑗𝑃

𝑚

𝑖=1

𝐾

𝑗=1

,∑(𝑃𝜔)𝑗

𝐾

𝑗=1

)𝑒(𝑄,∑(𝑥𝑖 ∙∑𝑐𝑖,𝑗

𝐾

𝑗=1

𝑃0)

𝑚

𝑖=1

+∑𝑏𝑖,𝑗𝑥𝑖

𝐾

𝑗=1

𝑃1)

= 𝑒(∑∑𝑥𝑖𝑟𝑖,𝑗𝑃

𝑚

𝑖=1

𝐾

𝑗=1

,∑(𝑃𝜔)𝑗

𝐾

𝑗=1

)𝑒(𝑠𝑃,∑(∑𝑐𝑖,𝑗𝑥𝑖

𝑚

𝑖=1

𝑃0)𝑗

𝐾

𝑗=1

+∑𝑏𝑖,𝑗𝑥𝑖

𝐾

𝑗=1

𝑃1)

= 𝑒(𝑃,∑∑𝑥𝑖𝑟𝑖,𝑗

𝑚

𝑖=1

(𝑃𝜔)𝑗

𝐾

𝑗=1

)𝑒(𝑃, 𝑠𝑥𝑖∑∑(𝑐𝑖,𝑗𝑃0

𝑚

𝑖=1

+ 𝑏𝑖,𝑗𝑃1)

𝐾

𝑗=1

)

= 𝑒(𝑃,∑∑𝑥𝑖𝑟𝑖,𝑗

𝑚

𝑖=1

(𝑃𝜔)𝑗

𝐾

𝑗=1

+∑∑𝑥𝑖(𝑠𝑐𝑖,𝑗𝑃0

𝑚

𝑖=1

+ 𝑠𝑏𝑖,𝑗𝑃1)

𝐾

𝑗=1

)

= 𝑒(𝑃,∑∑𝑥𝑖(𝑐𝑖,𝑗𝑄0

𝑚

𝑖=1

+ 𝑏𝑖,𝑗𝑄1 + 𝑟𝑖,𝑗(𝑃𝜔)𝑗)

𝐾

𝑗=1

) , 𝑄0 = 𝑠𝑃0, 𝑄1 = 𝑠𝑃1

= 𝑒(∑𝑆𝑚,𝑗

𝐾

𝑗=1

, 𝑃) = Left

Therefore, SIBAS can verify the integrity of the outsourced file efficiently. However, while the user takes the batch aggregation

scheme to check the integrity of multiple files at once, if the integrity of anyone in these files is compromised, then the output of

file verification is a verification failure. In this case, we cannot detect which one is corrupted. Therefore, it may be convenient to

use batch aggregation if the number of files is large, but it can also make the problem more troublesome if the accident occurs.

4 Security analysis

 According to the above assumption, we consider the following adversaries in our integrity checking scheme: (1) an adversary

who lurks in local side and attempts to obtain some privacy from CA. This kind of adversary may contain Trojans, malware and

implantation procedures who try to obtain the sensitive information. (2) an internal adversary who aim to extract some useful

information of the outsourced data in the cloud. In this type of attackers, we consider the attack model of revoked users and

unauthorized users, who may apply for the sensitive information as the legal users. In this section, we will put forward a proof to

show that our scheme is secure enough to resist the attack from the second one. Namely, there are not attackers can forge a correct

signature to cheat TEE and output “true” only in the case that the attackers hold a correct user ID. After that, we apply the

closedness of TEE to prove that our solution can defend against the first kind of adversaries.

Definition 1. Supposing that there is an adversary 𝒜 can make 𝑞𝐸 adaptive key extraction queries, 𝑞𝑆 adaptive signature

queries and 𝑞𝐻 hash queries and forge an aggregation signature by the advantage ε over time t .We say that there exists an

adversary 𝒜 − (ε, t, 𝑞𝐻1, 𝑞𝐻2, 𝑞𝐻3, 𝑞𝐸 , 𝑞𝑆) is capable of breaking our scheme. Else, we say that our scheme is security and the

signature is unforgeable.

Theorem 1. If the CDH problem is difficult to solve in bilinear group 𝐺1, then our scheme is impossible to be broken by any

adversary unless it can respond with the correct aggregation signature.

Proof: Assume that adversary 𝒜 − (ε, t, 𝑞𝐻1, 𝑞𝐻2, 𝑞𝐻3, 𝑞𝐸 , 𝑞𝑆) can break our scheme, there is an algorithm ℬ can solve the

computational Diffie-Hellman (CDH) problem by interacting with the adversary 𝒜. During the interaction, ℬ must respond

correctly to 𝒜 to break our scheme or abort. Next, we describe how ℬ can solve the CDH problem.

Given 𝑋 = 𝑥𝑃 ∈ 𝐺1 , 𝑌 = 𝑦𝑃 ∈ 𝐺1 . The goal of ℬ is output 𝑥𝑌 = 𝑥𝑦𝑃 . Let ℬ arbitrarily interacts with adversary

𝒜 − (ε, t, 𝑞𝐻1, 𝑞𝐻2, 𝑞𝐻3, 𝑞𝐸 , 𝑞𝑆) as follows:

Setup: The algorithm ℬ sets the public key as 𝑋 = 𝑥𝑃, and then transmits the key to the adversary 𝒜. Now, 𝒜 can make the

hash queries from the random oracles (𝐻1, 𝐻2, 𝐻3) which are controlled by ℬ.

Hash Queries: 𝒜 is allowed to make 𝐻1-query, 𝐻2-query, 𝐻3-query at any time. Whenever 𝒜 initiate its query, ℬ must

make a unique response to 𝒜`s query.

Query on oracle 𝐻1: In this phase, ℬ maintains a list 𝐿1 of tuples 〈𝐼𝐷, 𝑡0, 𝑡1〉 to respond to the query of 𝐻1 oracle. While

𝒜 submits its ID to 𝐻1, ℬ interacts with 𝒜 as follows:

(1) If the ID already exists, ℬ searches list 𝐿1 and recovers the value 𝐻1, 𝐻2 from 𝐿1.

(2) Otherwise, ℬ generates random values 𝑡0, 𝑡1 ∈ 𝑍𝑝, and responds to 𝒜 with 𝐻1(𝐼𝐷, 𝑗) = 𝑡𝑗𝑦𝑃 for 𝑗 ∈ *0,1+.

Query on oracle 𝐻2: In order to ensure consistency, ℬ also maintains with list 𝐿2 of tuple 〈𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝜆〉 to responds to the

query on oracle 𝐻2. While 𝒜 initiates its query to 𝐻2, ℬ interacts with 𝒜 as follows:

(1) If the filename already exists, ℬ recovers λ from the 𝐿2.

(2) Otherwise, ℬ generates a random value λ ∈ 𝑍𝑝, and log it with the filename to the dual tuple 〈𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝜆〉.

(3) ℬ responds to 𝒜 with 𝐻2(𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒) = 𝜆𝑃.

Query on oracle 𝐻3: In this query, ℬ maintains a list 𝐿3 of tuples 〈𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝑖 , 𝑕𝑖〉. When 𝒜 initiates its query and

submits a tuple 〈𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝒜〉 to 𝐻3, ℬ interacts with 𝒜 as follows:

(1) If the tuple 〈𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝑖〉 already exists, ℬ recovers 𝑕𝑖 from the 𝐿3.

(2) Otherwise, ℬ generates a random value 𝑕𝑖 ∈ 𝑍𝑝, and log it with the tuple 〈𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝑖〉 to 𝐿3.

(3) ℬ responds to 𝒜 with 𝐻3(𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝑖) = 𝑕𝑖.

Extraction queries: When 𝒜 requests for the private key that bind with the unique ID, ℬ searches for the corresponding tuple

〈𝐼𝐷, 𝑡0, 𝑡1〉 from the list 𝐻1. If the ID does not exist, ℬ outputs “failure” and halts. Otherwise, the values 〈𝑡0𝑏𝑋, 𝑡1𝑏𝑋 〉 is set

as private key and return to 𝒜.

Signature queries: When 𝒜 queries for the single signature of a file block 𝑏𝑖, ℬ first checks whether 𝒜 has initiated such a

query or not. If not, ℬ allows to generate the signature of the block 𝑏𝑖 by the private key 𝑡𝑗𝑏𝑃 for j ∈ *0,1+. It first generates

two random values 𝑟𝒜,𝑕𝒜 ∈ 𝑍𝑝. Then, ℬ responds as follows:

(1) If the tuple 〈𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝒜〉 exists. However, 𝑕𝒜 ≠ 𝑕𝑖. ℬ outputs “failure” and halts.

(2) If the tuple 〈𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝒜〉 exists and 𝑕𝒜 = 𝑕𝑖. ℬ computes the signature (𝑆𝑖
`, 𝑇𝑖

`) as 𝑆𝑖
` = 𝑕𝑖𝑎𝑃0 +𝑚𝑖𝑎𝑃1 + 𝑟𝑖𝑃𝜔

and 𝑇𝑖
` = 𝑟𝑖𝑃 for 𝑃0 = 𝑡0𝑏𝑃, 𝑃1 = 𝑡1𝑏𝑃 and 𝑃𝜔 = 𝛼𝑃.

(3) If the tuple 〈𝐼𝐷, 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒, 𝑎𝒜〉 does not exist in the list 𝐿3 . ℬ computes the signature (𝑆𝑖
`, 𝑇𝑖

`) as 𝑆𝑖
` = 𝑕𝑖𝑎𝑃0 +

𝑚𝑖𝑎𝑃1 + 𝑟𝑖𝑃𝜔 and 𝑇𝑖
` = 𝑟𝑖𝑃 for 𝑃0 = 𝑡0𝑏𝑃, 𝑃1 = 𝑡1𝑏𝑃 and 𝑃𝜔 = 𝛼𝑃.

Output: If 𝒜 is successful and proceeding to forge the signature as {𝑆𝑚
` , 𝑇𝑚

` , 𝐶𝑕𝑎`} for 𝐶𝑕𝑎` = *𝑠𝑖
`, 𝑥𝑖

`+ . Obviously,

{𝑆𝑚
` , 𝑇𝑚

` , 𝐶𝑕𝑎`} is satisfied the verification equation [1] as follows:

𝑒(𝑆𝑚
` , 𝑃) = 𝑒(𝑇𝑚

` , 𝑃𝜔)𝑒(𝑋,∑𝑕𝑖𝑥𝑖
`

𝑚

𝑖=1

𝑃0 +∑𝑏𝑖
`𝑥𝑖
`

𝑚

𝑖=1

𝑃1)

 [3]

Additionally, ℬ holds the correct signature *𝑆𝑚, 𝑇𝑚, 𝐶𝑕𝑎+ from an honest prover, which is satisfied the following equation

𝑒(𝑆𝑚, 𝑃) = 𝑒(𝑇𝑚, 𝑃𝜔)𝑒(𝑄,∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑃0 +∑𝑏𝑖𝑥𝑖

𝑚

𝑖=1

𝑃1)

[4]

If 𝑕𝑖 = 𝑐𝑖, and 𝑋 = 𝑥𝑃 is the public key that equal to 𝑄. Then we construct another equation that dividing equation [3] by

equation [4]. We can get a following equation:

𝑒(𝑆𝑚 − 𝑆𝑚
` , 𝑃) = 𝑒(𝑇𝑚 − 𝑇𝑚

` , 𝑃𝜔)𝑒(𝑄,∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑃0 +∑(𝑏𝑖𝑥𝑖 − 𝑏𝑖
`𝑥𝑖
`)

𝑚

𝑖=1

𝑃1)

⇒ 𝑒(𝑆𝑚 − 𝑆𝑚
` , 𝑃) = 𝑒(𝑇𝑚 − 𝑇𝑚

` , 𝜆𝑃)𝑒(𝑥𝑃,∑𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑡0𝑦𝑃 +∑(𝑏𝑖𝑥𝑖 − 𝑏𝑖
`𝑥𝑖
`)

𝑚

𝑖=1

𝑡1𝑦𝑃)

⇒ 𝑒(𝑆𝑚 − 𝑆𝑚
` , 𝑃) = 𝑒(𝜆(𝑇𝑚 − 𝑇𝑚

`), 𝑃)𝑒(𝑃, 𝑥𝑦𝑃∑(𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑡0 + (𝑏𝑖𝑥𝑖 − 𝑏𝑖
`𝑥𝑖
`)𝑡1))

⇒ 𝑆𝑚 − 𝑆𝑚
` = 𝜆(𝑇𝑚 − 𝑇𝑚

`) + 𝑥𝑦𝑃∑(𝑐𝑖𝑥𝑖

𝑚

𝑖=1

𝑡0 + (𝑏𝑖𝑥𝑖 − 𝑏𝑖
`𝑥𝑖
`)𝑡1)

⇒ 𝑥𝑦𝑃 =
(𝑆𝑚 − 𝑆𝑚

`) − 𝜆(𝑇𝑚 − 𝑇𝑚
`)

∑ (𝑐𝑖𝑥𝑖
𝑚
𝑖=1 𝑡0 + (𝑏𝑖𝑥𝑖 − 𝑏𝑖

`𝑥𝑖
`)𝑡1)

Thence, we say that 𝑥𝑦𝑃 is solvable and the CDH problem can be solved by the algorithm ℬ.

Next, we explain the security of our integrity verification that running in TEE.

Access to security management. We take TEE as a trusted execution environment to perform security management, TEE is a

trusted computing platform which can be regarded as a black box. In other words, it is invisible to the malicious software or virus

that how TEE checks the integrity of outsourcing files. If the adversary attacks the client in the local device, the sensitive data that

send from TEE to CA are encapsulated. Therefore, the adversary cannot obtain valuable data through the trusted interface.

Advantage of key storage. In this scheme, it is our advantage to ensure the confidentiality of secret keys while committing

them to the cloud. The outsourced keys are divided into two parts, one is derived from the uuid of user, and the other one is

calculated by the filename of outsourced files. Since that the uuid is transmitted over a trusted side-channel between TEE and CA,

there are no adversaries can threaten the reliability of it. Next, we prove that how Shamir’s (𝑡, 𝑛) threshold scheme works to

protect the confidentiality of 𝑃𝜔.

Theorem 2. If the adversary cannot catch the value of (𝑣∗, 𝑓(𝑣∗)), it is unable to reconstruct 𝑓(𝑥) with non-negligible

probabilities and then get the value of 𝑃𝜔.

Proof. We consider the following two situations:

Question 1: If the adversary knows 𝑝𝑝 = *(𝑣1, 𝑓(𝑣1)), (𝑣2, 𝑓(𝑣2)), ⋯ , (𝑣𝑡−1, 𝑓(𝑣𝑡−1))+ yet has no other information

about (𝑣∗, 𝑓(𝑣∗)), whether it can reconstruct 𝑓(𝑥) through the information that it holds?

Answer 1: Suppose an adversary attempts to reconstruct 𝑓(𝑥) through *(𝑣1, 𝑓(𝑣1)), (𝑣2, 𝑓(𝑣2)), ⋯ , (𝑣𝑡−1, 𝑓(𝑣𝑡−1))+ .

According to the formula 𝑃𝜔 = 𝑓(0) = ∑ 𝑓(𝑣𝑖)
𝑡
𝑖=1 ∏

𝑣−𝑣𝑗

𝑣𝑖−𝑣𝑗

𝑡
𝑗=1
𝑗≠𝑖

 (𝑚𝑜𝑑 𝑞), we can construct the following equations:

{

 𝑠1 = 𝑓(𝑣1) =∑𝑎1𝑣1

𝑖 (𝑚𝑜𝑑 𝑞)

𝑡−1

𝑖=0

𝑠2 = 𝑓(𝑣2) =∑𝑎𝑖𝑣2
𝑖 (𝑚𝑜𝑑 𝑞)

𝑡−1

𝑖=0

⋮

𝑠𝑡−1 = 𝑓(𝑣𝑡−1) =∑𝑎𝑖𝑣𝑡−1
𝑖 (𝑚𝑜𝑑 𝑞)

𝑡−1

𝑖=0

Which can convert to a matrix group as:

𝑋𝐴 = 𝑆 ⇒

[

1 𝑣1 ⋯ 𝑣1

𝑡−1

1 𝑣2 ⋯ 𝑣2
𝑡−1

⋮ ⋮ ⋮ ⋮
1 𝑣𝑡−1 ⋯ 𝑣𝑡−1

𝑡−1]

[

𝑎0
𝑎1
⋮

𝑎𝑡−1

] = [

𝑠1
𝑠2
⋮

𝑠𝑡−1

]

Obviously, the rank of matrix 𝑋 is 𝑟(𝑋) ≤ (𝑡 − 1). Therefore, it is impossible to get the value of 𝑃𝜔 by *(𝑣1, 𝑓(𝑣1)),

(𝑣2, 𝑓(𝑣2)), ⋯ , (𝑣𝑡−1, 𝑓(𝑣𝑡−1))+.

Question 2: What is the probability that an attacker would model (𝑣𝑡 , 𝑓(𝑣𝑡)) to reconstruct 𝑓(𝑥)?

Answer 2: Suppose the adversary mimics a point (𝑣𝑡 , 𝑓(𝑣𝑡)). Then it can construct 𝑓′(𝑥) = 𝑠′ + 𝑎1
′𝑥 +⋯+ 𝑎𝑡−1

′ 𝑥𝑡−1 by

𝑝𝑝 = *(𝑣1, 𝑓(𝑣1)), (𝑣2, 𝑓(𝑣2)), ⋯ , (𝑣𝑡−1, 𝑓(𝑣𝑡−1))+ and (𝑣𝑡 , 𝑓(𝑣𝑡)). It computes 𝑃𝜔
′ = 𝑓′(0). Obviously, the probability of

𝑃𝜔 = 𝑃𝜔
′ is 1 𝑞⁄ , which means that the adversary cannot forge the value of 𝑃𝜔 with non-negligible probabilities.

5 Performance Evaluation

 In this section, we assess the performance of the proposed integrity verification scheme. In order to show the feasibility and

efficiency of our scheme, computation cost and the computation overhead are the main considerations for the experiment. The

experiment is conducted using C on an Ubuntu 14.04 with an Intel Core 4 processor running at 2.60 GHz and 4096 MB of

RAM as the client, while a 7200 RPM Western Digital 1 TB Serial ATA drive with an 8 MB buffer for the server. Our algorithm

uses the Pairing-Based Cryptography (PBC) library version 0.5.14 and the OpenSSL version 1.0.2n for programming. Moreover,

the elliptic curve which we apply is an MNT curve, with a base field size of 159 bits and an embedding degree of 6. All of our

experimental data are the result of averaging over 50 trials.

5.1 Computation cost and communication overhead

 First, we estimate the computation cost and the communication overhead of our scheme. In table I, we list the cost of

calculation operations and basic cryptographic operations. Assuming that a file 𝐹 is divided into 𝑐 blocks as the experimental

sample, the computation cost of our scheme is almost as same as the NaEPASC scheme on the server side. According to the

calculation formula in section 3, the response proof *𝑆𝑚, 𝑇𝑚, 𝑅𝑚, 𝑒𝑛𝑐+ in challenge phase is the whole computation cost, it is

quite obvious that the cost of 𝑆𝑚 is equal to 𝑇𝑚 as
𝑐

2
‐ AddMult𝐺1

2 (𝑚), and the 𝑅𝑚`s cost is Add𝑍𝑝
𝑐−1 +Mult𝑍𝑝

𝑐 . Therefore, a

total cost can be denoted as 𝑐‐ AddMult𝐺1
2 (𝑚) + Add𝑍𝑝

𝑐−1 +Mult𝑍𝑝
𝑐 + 𝐼𝑁𝑆*0,1+∗

𝑡 , the corresponding communication is c(|𝑛| +

|𝑝| 2⁄) + 3|𝑝| + 1 (for a set 𝑛, |𝑛| denotes the number of elements in 𝑛) in the whole verification procedure.

Table 1. Notation of cryptographic operations

𝐻𝑎𝑠𝑕𝐺1
𝑡 hash t value into the group 𝐺1

𝐴𝑑𝑑𝐺1
𝑡 t additions in the group 𝐺1

𝑀𝑢𝑙𝑡𝐺1
𝑡 t multiplications in the group 𝐺1

𝑟‐ AddMult𝐺1
𝑡 (|𝑎𝑖|) t r‐ term multiplications ∑ 𝑎𝑖𝑃

𝑟
𝑖=1 , |𝑎𝑖| denotes the number of elements

in the set 𝑎𝑖

𝑃𝑎𝑖𝑟𝐺1,𝐺1
𝑡 t pairings 𝑒(𝑈, 𝑉), where 𝑈 and 𝑉 is belong to 𝐺1

 𝐼𝑁𝑆*0,1+∗
𝑡 t points of interpolation calculation

5.2 Auditing efficiency and Comparison results

 In table 2, we compare our scheme with Wang`s [5] and Tan`s [20] in communication overhead and computation time. In their

schemes, they take a file with the size of 1 GB and split it into 𝑐 blocks as the experimental sample. According to Ateniese et al.

[11], we know that it is more likely to detect the misbehavior when 𝑐 = 300 or 𝑐 = 460. Our experiment results show that the

communication overhead is not much different from the two schemes. Furthermore, since that our auditing time contains the extra

interacting time between TEE and CA, we can observe that our auditing time is longer than that of Tan`s yet it also performs better

than Wang`s scheme. Considering the server computation time, our scheme is more rapid than the two schemes while the cloud

server computes the response proof. Moreover, with the increasing of the sample blocks from 300 to 460, Wang`s scheme

increases more than 300ms in both TPA computation time and server computation time, Tan`s also increases more than 600ms in

server computation time, while the increasing time is less than 100ms in our scheme.

Table 2. Performance comparison between three different schemes

Three different schemes Communication overhead

(KB)

TPA computation time

(ms)

server computation time

(ms)

c = 300 c = 460 c = 300 c = 460 c = 300 c = 460

Wang`s scheme 4.24 6.43 639.0 968.5 639.8 975.3

NaEPASC 4.16 6.34 35.2 40.6 1240.5 1902.6

SIBAS 4.20 6.40 62.0 77.4 445.7 469.4

5.3 Computation cost of individual signature

 To evaluate the effect of different file size on computation cost, we take 5 files in the size of 50MB, 100MB, 200MB, 500MB,

and 1GB, and let the sample blocks as 𝑐 = 300 and 𝑐 = 460 for comparing, the experiment results are plotted as Fig. 4, Fig. 5,

Fig. 6.

In Fig. 4, we show the computation time when the user generates the individual signatures in different file size. With the

increasing of the file size, the computation time holds an approximately linear growth in two different cases. For 𝑐 = 300, the

Fig. 4. Individual signatures computation time for TEE with file size as

50 MB, 100 MB, 200MB, 500MB and 1000MB and c = 300 or 460.

Fig. 5. Individual signatures computation time for cloud server with file size

as 50 MB, 100 MB, 200MB, 500MB and 1000MB and c = 300 or 460.

computation time is increasing from 1940.8ms to 2442.6ms, while the time cost is from 2878.1ms to 3409.6ms for 𝑐 = 460.

Obviously, while 𝑐 = 460, it takes about 1000ms more time than that 𝑐 = 300 in the same file size. A total time of signatures

computation includes the duration of the file slicing, the time of data-blocks signing and encrypting the secret key with Shamir’s

(𝑡, 𝑛) threshold scheme. Then, we calculate the data-blocks signing and encrypt the secret, we find that the time cost between

them is in a minimal difference. In other words, due to the difference of time cost in file slicing, it leads to a great different of time

cost between them. In Fig. 5, the computation time of the cloud server is shown. For both two cases, the time costs are growing in

a linear way. Furthermore, we can observe that the time disparity always less than 30ms between the two cases for the same file

size. In Fig. 6, we compare the verification time under two cases. Because the verification time is independent of the file size, we

find that the time cost is fluctuating around 60ms, but it is also within the margin of error. In both 𝑐 = 300 and 𝑐 = 460, the time

cost is always stable in the range of 60ms.

5.4 Computation cost of batch Aggregation

 In the case of large number of files, it is cumbersome to check the integrity of the files one by one. Therefore, we propose the

batch aggregation scheme to check the integrity of multiple files concurrently. Compared with individual signature, batch

aggregation requires for more operation of multiplications (4𝐾 multiplications for multiple signatures aggregation). However, it

reduces the operation of multiplications, which significantly improves the efficiency of data integrity checking. Following an

experimental that sets file size as 500MB and 𝑐 = 300 | 460, the average of per signature computing time which is obtained by

dividing the total time cost by the number of files, is given in Fig. 7. In this experiment, the number of files is increased from 1 to

200 with intervals of 10. It can be shown that the computation cost of signing in the cloud is reduced for both 𝑐 = 300 and

𝑐 = 460. It cost about 255ms for individual signature while 𝑐 = 300 and 285ms while 𝑐 = 460. However, with the batch

aggregation, the average time cost on each file drops to 90ms and 65ms, respectively.

6 Related Works

In some research work, proof of retrievability (POR) was proposed to ensure the possession and retrievability of the data on

remote storage nodes through spot-checking and error-correcting codes [9]. Ateniese et al. [11] proposed a model for provable

data possession (PDP), which aimed to allow users who have stored data at an untrusted server to verify the original data without

retrieving it. Without considering the data dynamic storage, they utilized RSA-based homomorphic tags for auditing outsourced

Fig. 6. Computation time of TEE to verify the signature with file size as 50

MB, 100 MB, 200MB, 500MB and 1000MB and c = 300 or 400.

Fig. 7. Time computation of batch aggregation with file size as 500MB and

c = 300 or 400. The y-axis represents the average time cost of each file.

data. Later, they presented a new PDP scheme [12] that provided partially dynamic operations, but it did not support public

auditability.

Wang et al. [5,13] proposed the privacy-preserving public auditing protocol, which first achieved both public verifiability and

dynamic data storage operations by manipulating the classic Merkle Hash Tree (MHT) [14] construction for block tag

authentication. Then they introduced another scheme that utilizes the public key based homomorphic authenticator with random

masking to implement the privacy-preserving public auditing [4]. However, it may lead to the disclosure of documents because

the third-party auditor can obtain the private message of users easily. Wassim Itani et al. [15] introduced an energy-efficient

protocol to ensure the integrity of storage services in mobile cloud computing, which utilized a coprocessor to allocate an

encryption key for mobile client, which can generate a message authentication code (MAC) [10] storing in local and update the

MAC that used to implement integrity verification while client applied for the outsource data in the cloud. Kan Yang et al. [16]

presented data access control for multiauthority cloud storage (DAC-MACS), a scheme that based on Ciphertext-policy

attribute-based encryption (CP-ABE) [6] to apply effective data access control for multiauthority cloud storage systems. However,

the analysis and investigation by J Hong et al. [7] show that there is a security vulnerability because a revoked user can still

decrypt a new ciphertext which seems that only can be decrypted by the new-version secret keys.

 In other related works, Wang et al. [25] first present the ID-based public auditing protocol, which was proved to be secure under

the assuming the hardness of the computational Diffie–Hellman problem. Then, Tan et al. [20] constructed another data auditing

scheme based on identity-based aggregate signatures. Li et al. [26] proposed a revocable IBE scheme that first introducing

outsourcing computation into IBE to tackle the issue of identity revocation. Recently, Li and Yu et al. [27] introduced fuzzy

identity-based auditing by utilizing biometrics as the fuzzy identity to achieve the goal of efficient key management. Yu et al. [8]

proposed the protocol ID-CDIC, which is based on the user`s identity to eliminate the complex certificate management.

7 Conclusions

 In this paper, we propose a scheme called SIBAS to verify the integrity of the outsourced data. In our scheme, we resort TEE to

play the role of an auditor to check the correctness of the aggregate signature. Because of the closeness of TEE, it reduces the

probability of key leakage and the cloud users do not have to fear that their secret information is embezzled by the other attackers.

Furthermore, the extensive performance analysis and experiments are conducted, and the results show that it is feasible and

efficient for our scheme while checking the data integrity of the outsourced data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by CERNET Innovation Project-Research on Key Technologies of Data Security Access

Control Mechanism Based on IPv6 (No. NGII20180406), by Beijing Higher Education Young Elite Teacher Project

(No.YETP0683), by Beijing Higher Education Teacher Project (No. 00001149).

Reference

1. Mell T., Grance P.: Draft NIST Working Definition of Cloud Computing. Referenced on 53(6), 50-50 (2009).

2. Liang W., Xie Y., Xiao W., Chen X.: A Two-step MF Signal Acquisition Method for Wireless Underground Sensor Networks.

Computer Science and Information Systems 13(2), 623-638(2016).

3. Liang W., Huang Y., Xu J., Xie S.: A Distributed Data Secure Transmission Scheme in Wireless Sensor Network. International

Journal of Distributed Sensor Networks 12(4), 1-11(2017).

4. Kamara S., Lauter K.: Cryptographic cloud storage. In: International Conference on Financial Cryptograpy and Data Security.

Springer-Verlag, pp.136-149 (2010).

5. Wang C., Wang Q., Ren K.: Privacy-Preserving Public Auditing for Data Storage Security in Cloud Computing. In: Proc. of

IEEE INFOCOM’1, pp. 525-533. IEEE, San Dieg (2010).

6. Bethencourt J., Sahai A., Waters B.: Ciphertext-Policy Attribute-Based Encryption. In: IEEE Symposium on Security and

Privacy, pp.321-334. IEEE Computer Society, Oakland (2007).

7. Hong J., Xue K., Li W.: Comments on “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage

Systems”/Security Analysis of Attribute Revocation in Multiauthority Data Access Control for Cloud Storage Systems. IEEE

Transactions on Information Forensics & Security 10(6),1315-1317 (2017).

8. Yu, Y., Xue, L., Man, H. A., Susilo, W., Ni, J., & Zhang, Y., et al.: Cloud data integrity checking with an identity-based auditing

mechanism from RSA. Future Generation Computer Systems 62(C), 85-91 (2016).

9. Juels A.: Pors: proofs of retrievability for large files. In: ACM Conference on Computer and Communications Security, pp.

584-597. ACM, Alexandria (2007).

10. Bellare M, Ran C, Krawczyk H.: Message Authentication using Hash Functions--- The HMAC Construction. Cryptobytes, 2

(1996,).

11. Ateniese G, Burns R, Curtmola R.: Provable data possession at untrusted stores. In: ACM Conference on Computer and

Communications Security. pp. 598-609. ACM, Alexandria (2007).

12. Ateniese G., Burns R., Curtmola R.: Remote data checking using provable data possession. Acm Transactions on Information

& System Security 14(1), 12-12 (2011).

13. Wang Q., Wang C., Ren K.: Enabling Public Auditability and Data Dynamics for Storage Security in Cloud Computing. IEEE

Transactions on Parallel & Distributed Systems 22(5), 847-859 (2011).

14. Merkle R C.: Protocols for Public Key Cryptosystems. IEEE Symposium on Security & Privacy (3), 122-122 (1980).

15. Itani W, Kayssi A, Chehab A.: Energy-efficient incremental integrity for securing storage in mobile cloud computing. In:

International Conference on Energy Aware Computing. pp.1-2. IEEE, Cairo (2010).

16. Yang K, Jia X, Ren K: DAC-MACS: Effective data access control for multi-authority cloud storage systems. In: INFOCOM,

2013 Proceedings IEEE. pp. 2895-2903. IEEE, Turin (2013).

17. Global Platform: The Trusted Execution Environment: Delivering Enhanced Security at a Lower Cost to the Mobile Market.

Global Platform white paper, pp. 1-26 (2011).

18. Shamir A.: Identity-Based Cryptosystems and Signature Schemes. Lect.notes Comput.sci 196(2), 47-53 (1985).

19. Liu H., Zhang P., Liu J.: Public Data Integrity Verification for Secure Cloud Storage. Journal of Networks 8(2), 373-380

(2013).

20. Tan S., Jia Y.: NaEPASC: a novel and efficient public auditing scheme for cloud data. Frontiers of Information Technology &

Electronic Engineering 15(9), 794-804 (2014).

21. Kumar P S., Subramanian R.: RSA-based dynamic public audit service for integrity verification of data storage in cloud

computing using Sobol sequence. IEEE Wireless Communications Letters 3(3), 289-292 (2012).

22. Boneh D., Franklin M.: Identity based encryption from the Weil pairing. Crypto 32(3), 213-229 (2001).

23. Gentry C., Ramzan Z.: Identity-Based aggregate signatures. In: Moti Y., International Conference on Theory and Practice of

Public-Key Cryptography. LNCS, Vol.3958, pp.257-273. Springer-Verlag (2006).

24. Shacham, H., Waters, B.: Compact proofs of retrievability. In: International Conference on the Theory & Application of

Cryptology & Information Security, LNCS. Vol.26, pp.90-107. Springer, Berlin, Heidelberg (2008).

25. H. Wang, J. Domingo-Ferrer, Q. Wu, and B. Qin: Identity-based remote data possession checking in public clouds. IET

Information Security 8(2), pp. 114–121 (2014).

26. Li J., Li J., Chen X.: Identity-Based Encryption with Outsourced Revocation in Cloud Computing. IEEE Transactions on

Computers 64(2) 425-437 (2015).

27. Li Y., Yu Y., Min G.: Fuzzy Identity-Based Data Integrity Auditing for Reliable Cloud Storage Systems. IEEE Transactions on

Dependable & Secure Computing, pp. (99):1-1 (2017).

28. Fan Y, Liu S, Tan G, et al. Fine-grained access control based on Trusted Execution Environment[J]. Future Generation

Computer Systems, 2018, In press. https://doi.org/10.1016/j.future.2018.05.062.

29. Hu F, Qiu M, Li J, et al. A review on cloud computing: Design challenges in architecture and security[J]. Journal of computing

and information technology, pp. 19(1): 25-55 (2011).

Yongkai

Universit

to 2009,

current

Petroleum

theories o

Xiaodong L

Science from

2016.And n

Technology

interests inc

Gang Tan

1999, and

He is an A

He was a

Developm

Penn Stat

secure sof

Yuqing

Univers

degree

1990 r

Xidian

wireles

Fan received

ty, Changchu

he was a as

appointment

m (Beijing)

of software en

Lin has receiv

m China Uni

now is app

y in China U

clude theories

Received his

d his Ph.D. in

Associate Pro

recipient of

ment Professo

te. He is inte

ftware system

g Zhang is a p

sity of Chine

in computer

respectively.

University i

s security and

d the Bachel

un, China, in

ssistant resear

is an assi

since 2010

ngineering an

ved a bachel

iversity of Pe

lying for m

University of

s of software

s B.E. in Com

n Computer S

ofessor in Pen

an NSF Car

orship. He le

erested in m

ms.

professor and

ese Academy

r science fro

He received

in 2000. His

d trust manag

lor, Master A

2001, 2003, 2

rcher in Tsin

stant profes

. His curren

nd software s

lor's degree in

etroleum (Ea

master degree

Petroleum (B

engineering a

mputer Scienc

Science from

nn State Univ

eer award an

eads the Secu

methodologies

d supervisor

of Sciences.

m Xidian U

d his Ph.D d

s research in

gement.

And Ph.D. d

2006, respect

nghua Univer

sor in Chin

nt research

ecurity.

n Information

ast China), Q

e of Compu

Beijing). His

and software

ce from Tsing

Princeton Un

versity, Univ

nd won Jam

urity of Softw

that help cr

of Ph.D. stud

He received

niversity, Ch

degree in Cr

nterests inclu

degrees from

tively. From

rsity, Beijing

na Universit

interests inc

n and Comp

Qingdao, Chin

uter Science

s current rese

security.

ghua Univers

niversity in 2

versity Park, U

mes F. Will C

ware (SOS) l

reate reliable

dents of Grad

his B.S. and

hina, in 1987

ryptography

ude cryptogra

Jilin

2006

g. His

ty of

clude

uting

na, in

and

earch

ity in

2005.

USA.

Career

lab at

e and

duate

M.S.

7 and

from

aphy,

and

algorithm/ha

WeiDong

Engineerin

Tsinghua U

Lanzhou

include en

ardware co-de

Jing Lei has

Agricultural

Computer S

Her current

is currently

ng, Tsinghua

University, C

University,

nergy-efficien

esign for mov

s received a

l University

Science and T

research inte

y an associat

a University,

China, in 200

China, in 2

nt integrated

ving robots.

bachelor's de

, in 2017. A

Technology in

erests include

te professor

China. He r

06, and recei

2000, respect

perception s

egree in softw

And now is a

n China Univ

machine lear

in Departme

eceived his P

ved his bach

tively. His r

systems for i

ware enginee

applying for

versity of Pet

rning and Info

ent of Elect

PhD degree

helor degree

research inte

intelligent ro

ering from Sh

master degre

troleum (Beij

formation Saf

tronic

from

from

erests

obots,

hanxi

ee of

jing).

fety .

	One secure data integrity verification scheme for cloud storage

