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Abstract: In mobile social networks (MSNs), the social attr.. “tes vt nodes are important factors
driving the mobility of nodes. By studying the mobilit, of the laily activities of node carriers,
an intelligent distributed routing algorithm based on . >cial .uatext information prediction was
proposed. First, we study the data forwarding problem ~* -~ social networks from two aspects, the
daily behavior of mobile nodes and the similarity of socia. ~ttributes respectively. Then, our algorithm
uses BP neural network to predict the encounter rey 'lar , . mobile nodes in terms of time and space
dimensions. This information can provide a br “is fo1 “outing decisions. Finally, a routing algorithm
with predictive capability is designed in combin tio. with synchronous delivery and asynchronous
delivery. Simulation analysis and experimen. ' ie..* 3 show that the proposed routing algorithm can
effectively improve the message delivery ratio and . :duce the network overhead.

Keywords: mobile social network; soc al su. ‘larity; prediction model; routing; social context

1. Introduction

Mobile social networks (MSN." a2 on of the important development directions of mobile ad hoc
networks. In the real world. chere arc a lot of phenomena such as node movement, frequent link
interruption and network pa.tition .~ MSNs. Therefore, there is often no end-to-end path between two
nodes when they need to .om 1unicate. Especially the distributed MSNs systems, where no centralized
infrastructure is availav. can greatly benefit from efficient opportunistic networking [1]. The
emergence of oppor anis“ic routing is precisely to solve this problem [2]. It allows nodes deliver
messages as the wa, <. sto g, carrying and forwarding. When there is no forwarding path to the
destination nodr, we relay, node stores the information in its own cache, and then waits for the
opportunity to ¢ ntact of 1er nodes in order to send the message towards the destination node. Based on
this forward .._ meuuanism, in the past few years, researchers have put a lot of effort into optimizing
routing prc ‘ocols ar 1 forwarding strategies [3-5].

There have © - .. numerous approaches attempting to devise new socially-aware metrics, in order to
increasc the eucctiveness and efficiency of the opportunistic routing algorithms [6]. Research shows
that, in the outing protocol design, the context information of the network can effectively improve the
performance of the routing protocol. The context information in the network includes the current
network operating environment, the behavior of the device carrier and the information about the device
carrier, such as the location of work, the time of visiting a location or seeing a user, and so on. Any

information that helps to facilitate network routing decisions is considered context information. Using



this context information, the routing protocol can easily find a suitable forwarding node and improve
the forwarding efficiency of data packets. At present, some researchers studied the mobile social
network composed of smart devices [7] carried by people. They believe that the mobile social network
is a collection of social relationships, and social relations significantly affect the .~counter mode
between network nodes. Therefore, it is very important to collect and utilize confext info..aation in
MSNs to optimize routing strategy [8-10].

In this paper, we propose an intelligent distributed routing scheme based on »s. ~ial similarity for
MSNs, called Similarity-Aware Intelligent Routing (SAIR). The routing =lgor.."m uses BP neural
network (Back-Propagation Neural Networks, BNN) model to predict rontas . .. “ormation between
nodes, and then use prediction information to make routing decisions. Accoi. ng to the current context
information of the node and the destination node, the forwarding no .e start. the message forwarding
process at an appropriate time and place. This method can reduce he del’/ery delay and network
overhead.

The structure of this paper is organized as follows. Section 2 ~ .odur :s the related research work.
The system model and assumptions is presented in Section 3, . ~luaing the definition of encounter
probability and neural network prediction model. Section 4 troduc' s the Routing algorithm based on
social similarity. We experimentally compare the performai. = ot we routing proposed by us with other

state-of-art routing protocols in Section 5. Finally, Sec’” ... J coucwudes our work.

2. Related Work

The original opportunistic routing algorithm = .~d a 1. ~od-based approach to forwarding data. It went
from the initial blind flooding to control flooding lai... The more famous algorithms in this type of
algorithm are Epidemic routing [11] and nc vork coding routing [12]. However, social relations
significantly affect the encounter pattern between nodes in MSNs. Therefore, researchers are actively
exploring the use of social context infc matio. in the network to optimize routing strategies.

The researchers proposed some . mmur ity-based routing protocols. People with social ties,
common interests, and similarities asus ly form a group. Compared with the social interaction between
groups, the social interaction amo. ~ che r .embers in the same group will be more frequent. In mobile
social networks, we call the: * groups communities. First, the community detection algorithms are
used to assign nodes to different co.. munities. The social graph structure is then designed based on the
detected community latr.. 1 order to forward data between different communities, active nodes
between communities can . - used as a bridge for data delivery. The premise of this approach is that the
community must be cstal lishea firstly. However, the construction of the community will incur some
costs. These are some f thr more well-known community-based routing protocols, such as LABEL
[13], Bubble Ra, [14], “AUR [15], SGBR [16], etc.

If a network does n .t have obvious community characteristics, community detection not only
consumes - aiuable network resources but also cannot achieve the desired effect. As a result,
researcher. have p1)posed routing protocols that do not require community support, such as SimBet
[17], PRoPHE. |13], FairRoute [19], PeopleRank [20] and LASS [21].

The s <ir. context-aware algorithm not only uses the context information related to node mobility,
but also co. ~iders the social aspects of the node as an important parameter. In fact, in most cases, the
moving characteristics of a node are determined by the behavior of the carrier which may be a person,
an animal or a vehicle. Therefore, the social relationship of the carrier greatly affects the encounter of

nodes in the network. The advantage of this method is that it is more adaptable to the real world. There



are three typical social context-based routing algorithms, HiBOp [22] *", Rubble Rap [14] and dLife
[23] respectively.

Although researchers have proposed some context-based routing algorithms, these al rorithms rarely
take advantage of both time and space factors. Even if there is no neighbor node with . “igh probability
of delivery around the sending node, the sending node still starts the process of data forwaru.ag. If we
solve this problem, it is possible to further improve the forwarding efficiency ar d rer ace the network

overhead.

3. System Model

Observing the mobile behavior in MSNss, it is found that the mobile m. ‘@ of the node carrier is
usually repetitive. Therefore, we can obtain the contact informatior betwe. 1 nodes by utilizing the
social context information of carriers. It provides a new research idea 1 ‘v impr ving the performance of
routing algorithm. The relay node carrying the information atten pts to “nd the best relay node among
the neighbor nodes in order to efficiently forward the data to thc “_stina ion. It is more flexible when

forwarding messages by predicting the time and space informatio.. ~vhen nodes meet.

3.1. Description of the problem

In a mobile social network, the success rate of date "_.....u.u is not high enough, and the delivery
overhead is large. Based on the current international re.~arch progress, we summarize the main
problems faced by mobile social networks.

1. It is common to design routing protc .'s ba =d on community characteristics. However,
community detection and maintenance is a difficu’* pi.blem, and requires the consumption of certain
network and computing resources. Routing ~sigu .vithout considering community information can
avoid the cost of community detection and maiutenance. This is especially suitable for network
environments where the community ch .racte. “tic isn't obvious.

2. When there is no end-to-end pau. ‘n the ietwork, how does the relay node effectively select the
optimal carrier and the forwarding dme?

3. The resources (energy, buftc. ~ ace. and bandwidth) of the nodes in the mobile social networks
are very limited. Although tb multi-copy forwarding mode can improve the forwarding efficiency of
data, it is a huge waste of valuav. network resources by using the method of flooding or similar
algorithms. Therefore, it s gt at significant to study the efficient data forwarding algorithm based on
resource-saving single cop, aode.

4. The accuracy of nod’ movement prediction is a key problem in routing design. We can analyze the
social attributes and 1.~ sile “ 10del characteristics of mobile nodes, and then make full use of the social
context informa .on of *he carriers. In this way, the accuracy of encounter prediction can be improved

and the forward. g effic' :ncy of data can be further improved.

3.2. Moc 2ls an' Assumptions

To formalize e routing problem in mobile social networks, we propose some assumptions for the
models . -e 7 esigned.

1. Mobil social networks are described as G (V, E). Nodes in a network are carried by people. G is
an undirected unconnected graph. In the graph, V' is the set of nodes and E is the set of links between
nodes.

2. When nodes x and y are in communication range with each other, the communication links



between them are bidirectional. The connection state of a link varies with time. In other words, at
different times the links may be connected or disconnected.

3. In the graph G, there is at least one cut point and one cut edge. If any cut edge or the cut point is
deleted, then the network G will evolve into a disconnected graph composed of seve .. cubgraphs. We
think of the single subgraph as a connected domain.

4. Each node in the network has a limited cache space, and it is the same siz- . Ea' h node does not
refuse to forward data for other nodes.

5. The nodes in the network are all in a dynamic moving state. During the n.. “ement, the nodes
continuously meet other nodes, and the movement of the nodes shows a certe . . ~svement law for a
long time.

6. If the carriers of the two nodes have similar social context attrib ¢es, the = is a high probability of

encounter between them.

3.3. Social similarity and encounter probability

The movement of nodes is closely related to the social activitic. ot the node carriers. First we create
a social attribute list (SAL) for each node to store relevant . ~cial cor text information. The appropriate
weight is then set according to the importance of the contea inforination. Finally, the prediction model
of BP neural network is used to calculate the delivery 1 _L.C.y.

The social attribute list contains information about the « vice carrier, such as name, address, work
unit, hobbies, etc. The node's social attribute list co. <ist 01 the social evidence and the corresponding
value. The social attribute list plays an import. * role  calculating the social similarity between two
nodes and predicting the movement of nodes. ~"he .iodes in the mobile social network are not
completely random moving. They have repe. 1 1. ements at different times, so the movements are
predictable. If a node has visited a place several times before, it will probably also visit this place next
time. Social network theory holds that .ne hi. “er the similarity of social attributes between people, the
greater the encounter probability. Therc e, th | social similarity of carriers can be used to represent the
encounter probability between n- des. The set of evidence and corresponding values in the social
attribute list is denoted as N(e ,v,. ™ .e sc .1al attribute list of destination node D is denoted as D (e ,v).
The intersection of social attr’ ~ute list between the node N and destination D is formalized as M(e ,v),

which is expressed as formua (1).
M (e,v)=N(e,v)ND(e,v) (1)

The encounter prr vabi'ity between network node N and network node D can be expressed by the
matching degree of 5.' . be* veen N and D. We calculate the matching degree by comparing the hash
values of the c¢ rrespending attributes in the two SALs. The calculation method of the encounter
probability betw »en the wo nodes is shown in formula (2). Where, W is the set of attribute weight W,
in #(e,v) wud Wp s the set of attribute weight W;in D(e, v) .

Quver ¥

2)
Zdell’l, Wd

The enchunter probability of period refers to the probability that node S meets the

P[/V,D] =

destination D during the time period i, denoted as P;. Assume Xi is a set of nodes encountered by the
relay node S in the period i, and the probability of nodes in Xi meeting the destination D are higher than
the probability of node S meeting the destination D. |Xj| is the absolute value of X;. The calculation



method of the encounter probability between network node .S and destination node D in period i is

shown in formula (3).

— 3)

In daily life, people's activities have periodic trend. In order to analyze this cule. the activities of
nodes are divided into cycles (historical parameters) and periods (current parameter., as shown in Fig.
1. Device carriers are likely to repeat their activities day after day. When the <ource ~ode needs to send
messages, it first predicts the encounter probability in the next period, and .nen .>.. *his information to
send the messages to the receiving node at the appropriate time. Therefo.. based on the predicted

information, the relay node knows when and where to send the messays ¢ with . high success ratio.
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Fig. 1. _urren. and historical parameters

3.4. Prediction model

In order to calculate the encou * r pr oability of the sending node with other nodes in the next
period, it is necessary to knov the contact history of the sending node with other nodes. As long as the
sender obtains the historicai encou. “er information of other nodes, it will be able to predict contact
information in the next pr siod

In this paper, BP neura: = twork is used to design the prediction model. In order to model, we need
to introduce the follc #ing two parameters, the encounter probability in the current period (current input)
and the historical enc. * ater ,robability of the same period in the previous cycle (historical input). The
node of MSNs calculetes the encounter probability in each period and stores these values for the
prediction of the next cy le.

3.4.1. Pred’ .uun process

As shown, inFi | 1, P/(j e (..., T]) , (7 ell,..., R]) is the probability that the

current ,» d- meets the destination node at period i in cycle j. T is the number of historical periods. R is

the number ~f periods divided into each period. For example, the encounter probability at the period

(i-1) of the cycle 0 can be expressed as Bgl . Because mobile nodes have limited resources, simple

solutions should be used to solve problems. Considering the practicality, the calculation of the



historical input in time period i is the cumulative probability of two encounters, as shown in formula

(4).

P' + Pc?
Pcil= 1 2 cl (4)

In the equation (4), PC? is the cumulative value of the encounter probability ..” nr .iod 7 in the cycle

2. Pcll- is the cumulative value of the encounter probability at period i int'.e c_cle 1.

Current input
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Historical input W —historical [
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Fig. 2. Prediction process of BP .. ral network model

Fig. 2 shows the basic model based on BP neu al r eiwork. There are two input parameters, the

current input [, and the historical input /,. The c.renc input [, is formalized as v h = Pl(i .- The

historical input /, is the cumulative value of [J.i( 7 e (ll,...,T]), formalized as / , = Pcll.

Its calculation method is shown in fo mula (1). The synaptic weights of current input and historical

input correspond to W, and W,, respec. vely. ~ he summing junction function is described in formula
().

F=1W +1,W, 5)

The activation function is a .. *malized function whose output is between 0 and 1. The output

value of the activation “unct on is the encounter probability at the next period, and the encounter

probability P, in the nex. - zriod is as shown in formula (6).

LW LW, (6)

Pred:(D: -
WoAW, W,

p

3.4.2. Error cal .ulation

The BP neura networ . algorithm uses the gradient descent method to find the minimum value of the
error functi- u. The error function is used to calculate the mean square error between the true value and
the expectc 1 value - »r a given sample.

In this papei, e expected output is the predicted output value. The error is calculated in formula (7).
(Ppred - Pactual)z
2
In above equation, P, is the predicted value of the period, and P, refers to the true value of the

E= @)

period.



4. Routing algorithm

Mobile social networks are often divided into interconnected domains. As the nodes ~re in a moving
state, the nodes in the connected domain are constantly changing. Our proposed - . “ting algorithm
adopts two methods for data forwarding, namely synchronous forwarding and asy..chronous
forwarding. When the receiving node and the sending node are in the same conr .cted domain, there is
an end-to-end path between the two nodes. At this point, the sending node forwa. ‘s the data packet
directly to the receiving node in a synchronous manner. On the contrary, when two . ~des are not in the
same connected domain, the asynchronous forwarding such as the opportu dstic iv. ~arding is adopted.
In asynchronous forwarding, firstly, the node with the highest delivery prob.” lity to the destination is
searched in the connected domain. This node is selected as the relay n de. Th. sending node then sends
the message to the relay node by synchronous forwarding. The rela, node ')oks for the appropriate
opportunity to send the message to the next relay node by async’.rono~ forwarding until the message
is received by the destination node. The delivery probability 1. .tione | in this paper refers to the

probability that a node meets the destination node in a certain per.. 1.

4.1. Algorithm summary

The schematic diagram of message forwarding ir I._ I..0.vs is shown in Fig. 3. There are two
connected domains. In Fig. 3 (a), the node HI needs to sen. ~ message M to the node H8. However, at
this time, there is no end-to-end path between two nc les so synchronous forwarding cannot be adopted.
Fig. 3 shows the delivery probability of each n< '~ to E.°. At this time, in the connected domain where
H1 is located, the node with the highest deliver, picbability to H8 is H4. Therefore, H1 uses the
synchronous forwarding to send M directly . nouc ..4. H4 adds M to its cache. After some time, H4
moves to another connected domain, as shown in rig. 3 (b). At this time, H4 and H8 are in the same
connected domain, and then the synch' vnous ™rwarding is used. H4 immediately sends the message to

HS, and the final message M is delivere ' to the destination.

H4 0.6 5 HS
H H7
H2 H3
H? 0.5
H10.3 H4
H6 H6
HI

HI0.. HS HS

(a’ time t-1 (b) time t

Fig. 3. Process of message forwarding
In this paper, an imr .oved DSDV [24] routing algorithm (I-DSDV) is adopted for synchronous
forwarding .1 the connected domain. The original DSDV routing table item is extended to include the
best carrie. ID (bes Carrier) and corresponding delivery probability (deliveryProb), as shown in Fig. 4.
The prediction ...odule in each node periodically calculates the delivery probability of that node to
other nc 'es and then stores it in the delivery probability table. Each node periodically broadcasts

routing inf¢ mation and delivery probability tables to its neighbors.

| targetld | nextld | dist | bestCarrier | deliveryProb

Fig. 4. Key fields of routing table



This algorithm makes full use of node mobility, network topology changes and social attributes of
nodes. According to whether two nodes need to communicate are in the same connected domain,

different data forwarding mode is selected to improve the efficiency of forwarding.
4.2. Route Table Building

I-DSDV algorithm is needed for synchronous forwarding in the connected d smai . Therefore, the
routing table will be established. To facilitate the description of the algorithm we . ~ve defined some
symbols. The key symbols used in the algorithms are described as Table 1.

Table 1
Key symbols used in the algorithms

Symbol Description
BPPM BP neural network prediction model
Py The probability of encounter betwee” ~ode .. _u
node D a - W
L, Neighbor set of m
RA Router Advertisements
Tperiod The time period of predicti~n model
AT The interval between the ~urrei. “‘me .nd time of

the latest prediction ( or initia. = routing table )

d destination node of 2 <
MSG The message waiting to be sc *
CD The same connecte * de aain in MSNs

Algorithm 1 describes the pseudo code of the rov ‘ing .able building. The prediction module BPPM is
deployed on any node m in the network. The . ut parameters of the algorithm are: Pjypj, Ly, and RA.
First, the routing table is initialized. Then, the algonthm enters the loop. Node m gets the neighborhood
set L, at this time. In each period T, ; the » °PM module runs once and stores the calculation results
in the delivery probability table (DP1,. At thr same time, node m updates the corresponding items in
the routing table and broadcasts ¢4 f. the neighbors. When m receives the R4 from a neighbor, it
updates its routing table and relaw ' jarar .eters. If the time interval exceeds the period T4, N0de m

still does not receive R4 from ~eighbor «, then node » is considered unreachable.

Algurithn, * Route Table Building
| (* vac n is a node where BPPM are deployed.)
~out’ Py py, Ly, RA
initi.. e the routing table
P _peat
OF ain the neighborhood set L, of m
" AT =T,eioq then
Execute BPPM(Ppy,py)
Return delivery probability table=DPT
Update routing table=R
Broadcast RAton (nEL,,)
End if
While m receive R4 of n (n€L,,) do
Update R of m
Update bestCarrier and deliveryProb
End while
If AT >T,.1ioa m don’t receive the R4 from n (n€L,,)
then
nextlde—null
dist—16




End if
Until {m shutdown or routing disable}

4.3. Message fowarding

Algorithm 2 describes the process of node m forwarding messages in the mobil soc al network. This
algorithm explains in detail how to choose synchronous and asynchronous forwa..”" g under different
circumstances. This algorithm will be started when there are messages needing «. be torwarded. The
input parameters of the algorithm are: d, MSG. If both source and destinati- n ar . the same connected
domain, node m adopts the method of synchronous forwarding. Otherwisc, . message is sent to the
relay node with the highest delivery probability in the same cr.necte! domain, and then the
asynchronous forwarding is started. The relay node stores and carrie. the me ;sages, sending it to the
next relay node at the appropriate time and place until the messag’ » 1nally reaches its destination.

Algorithm 2 Message Fowarding
(Node m is a node in MSNs.)
Input: d, MSG
If d=m then
Node m receive and process MSG
Else if m& CD and d€ CD then
Deliver MSG using I_DSD), -~vnchronously
Else
Relay node={m’E (| v ax\ueliveryProb}
Deliver MSG to ~2lay n e
relay_node forwa 1. ‘SG asynchronously at right

time and place
End if
End if

5. Performance evaluation

In order to evaluate the perf. 'ma .ce r. the SAIR routing, we adopted the widely used network
simulation platform ONE [25” We con., ire the SAIR route with the other three classic routes, namely
Epidemic [11], PRoPHET [.8] a. * dLife [23]. Then the experimental results are analyzed in detail.
The simulation experime .. v ‘es the following four statistics: delivery ratio, overhead ratio, average

delay, and average hop v. n*

5.1. Simulation ~.nvi onment

In this paper, .. abstra.. the nodes’ mobile behavior at the network layer, mainly focusing on the
encounter infor 1ation a1 d connectivity between nodes. We ignored issues with radio reception and the
MAC layer. ~ch a. _ .cket loss due to information interference.

The simr 1lation ¢ "periment is based on the following assumptions. When two nodes are within the
communicat.. ~ v~ ,ge of each other, the message can be forwarded. The constraints of battery power
and sto age ,p...e in nodes are not considered. When a node sends messages to another node, it can
receive it  “rrectly without losing packet. The network uses a social-based mobile model (CMM) [26],
and the experiment simulates the social contact situation for 10 days. The initial values of current
weight and historical weight are set to 0.5 respectively. The learning rate is set to 0.5 and the number of

iterations is 550. In the simulation process, the nodes sending message were randomly selects, and the



final simulation result isthe average of 20 simulation results. The other parameters in simulation

processes are shown in Table 2.

Table 2

Detailed simulation parameters
parameter value unit
Topological area 3000 x 2500 m’
Mobility model CMM -
Number of nodes 50~100 -
Number of connected domain 15 -
Communication mode WiFi - o
Transmission radius 40 r _!
Cache space 6~22 M I
Message size 512 B+
Traffic model Random pairs | - o
Packet transmission rate 4 | nacket/s

5.2. Prediction accuracy

The BP neural network model has the self-lea. i, *“*'ity. The process of information forward
propagation and error back propagation can adjus. the weights and thresholds of the network
continuously. After several cycles, the predicted . au. is close to the expected value. Fig. 5 shows the
error ratio for prediction using BP neural nc ~..- = del. In the first four cycles, there was a large gap
between the predicted value and the expected valu. due to insufficient data samples. With the increase

of cycle number, BP neural network m~ uc. _adually adjusts the weight through self-learning and back

propagation of error, so that the err. - of pre iction gradually decreases. After the fourth cycle, the
prediction error stabilized at about 0%. Giv. . the inherent nature of mobile social networks, this level

of error is acceptable.

0.6

24t

Error P tio

0.2

Cycles

Fig. 5. Error ratio of the prediction

5.3. Impa. t of the node number

Obviously, after giving network area and speed of node movement, the total number of nodes’
encountering is directly related to the number of nodes in the network. This section mainly verifies the

impact of changes in the number of nodes on message forwarding. The evaluation is mainly based on



the following four aspects: delivery ratio, overhead ratio, average delay, and average hop count. Here
the cache for each node is set to 12MB.

The delivery ratio of the four routing at different node numbers is shown in Fig. 6. The results show

that the network delivery ratio increases as the number of nodes increases. The deliv .. - ratio of SAIR
is on average 14% higher than that of Epidemic, 12% higher than that of ProPHET and 5% 1. gher than

that of dLife.

0.85 |

Delivery Ratio

0.55 |

0.5

0.8 |
0.75 |
0.7 |

0.6 |

f ——" ..
—=  ProPH [
—a—dLi"

| —SAIR

50 55 60 65 70 7R s, Lo 90 95

Number of nc. '~s

Fig. 6. Delivery ratios vs. n. ' number

The effect of the node numbers on the network ¢ -erb .au ratio is shown in Fig. 7. As the number of

nodes increases, the overhead ratio of the fou “vpes ~f routing all appear the increasing tendency.

Epidemic’s overhead ratio is much higher than ‘the. routing algorithms, and dLife and SAIR have

similar overhead ratio. The difference in ove.” ~aa 1..i0 between dLife and SAIR is small. Compared

with Epidemic, ProPHET, and dLife, the overhead ratio of SAIR was reduced respectively by an
average of 71%, 39%, and 16%. It is s’ own 1. Fig. 7 that SAIR has the lowest network overhead in the

same network scenario.
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Fig. 7. Overhead ratios vs. node number

The 1. ‘lv .nce of the number of nodes on the average delay for data forwarding is described in Fig. 8.

The averag. delay of the four algorithms decreases rapidly with the increase of the number of nodes.

Concerning the Epidemic algorithm, the average delay is the smallest, while the ProPHET algorithm

has the largest. DLife and SAIR have similar average delay. The average delay of SAIR was 22%




higher than the Epidemic. However, the average delay of SAIR was respectively 16% and 5% lower
than the ProPHET and dLife.
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The average hop count of each algorithm varies with tt 2 number of nodes asshown
in Fig. 9. According to the figure, the Epidemic algorithm 1. = the mighest average hop count because it
employs a flooding method. The average hop count I T......T is also at a high level. When the
number of nodes is 95, SAIR is 0.1 higher than dLife. Win.~ the number of nodes is 95, SAIR is 0.1

higher than dLife, while it is 4.5 and 1.7 lower than .™»id .nuv and ProPHET respectively.
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Fig. 9. Average hop count vs. node number

Next, the simr .lation vesults are analyzed. Epidemic forward messages using flood methods without
taking advantag of any context information. Although the minimum average delay can be obtained, it
is a great v .sie of limited network resources. ProPHET fails to consider the social mobility mode of
the node c. 'rier, an  overestimates the link between nodes, resulting in the increase of data forwarding
times. This inu.cases overhead ratio of the network and affects the delivery ratio. Like SAIR, dLife
makes u. = c. the laws of carriers' daily activities and social relations to help improve routing efficiency.
However, L - using the BP neural network model to predict the future movement of nodes, SAIR has
achieved better performance. In particular, when the number of nodes increases, SAIR uses the
prediction information to start the forwarding process at an appropriate time and place, which can

reduce the network overhead and improve the delivery ratio.



5.4. Impact of the memory capacity

The nodes of the mobile social network are generally resource-constrained nodes, and the cache
capacity of the nodes is also very limited. The cache capacity of a node determine . the amount of
messages it can carry. Therefore, the size of cache space has a great impact on t'.e pc. ““rmance of
routing algorithm. Then, through simulation experiments, we analyze the impact i « xche capacity on
the performance of routing algorithms. The number of nodes in the MSNSs is set o. 40 .ere.

Based on different cache Spaces, the delivery ratio of the four routing is sho. ~ in 1 .z. 10. With the
increase of node cache space, the delivery ratio of the four routing algorithr s 1.. >reases. When the node
cache space is small, dLife and SAIR have a big advantage. However, “e » erformance growth rate
decreases as the cache space increases. When the size of cache space * .8MB, “pidemic has a higher
delivery ratio than ProPHET.
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The effect of the size of the cache s race on t e network overhead ratio is shown in Fig. 11. With an
increase in the size of the cache spz e, the " demic overhead ratio exhibits a rapidly decreasing trend.
The change trend of the other thr ¢ als oritb as is relatively gentle. SAIR has the best overhead ratio.
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Fig. 11. Overhead ratio vs. memory capacity
Fig. 12 suows the impact of cache space changes on the average latency of message delivery.
According to the comparison results, with the increase of node cache space, the average delay of
Epidemic falls rapidly, while the average delay of SAIR is stable. When the cache space is less than
8MB, the average delay of Epidemic is larger than that of the other three algorithms. With an increase



in the cache space, when it is larger than 8MB, the average delay of Epidemic rapidly becomes smaller

than the other three algorithms.
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The average hop count of each algorithm vary with the . ~he spac :, as shown in Fig. 13. According
to the figure, the Epidemic has the highest average hop co.. *t because of flooding method. In general,
regarding the Epidemic and ProPHET, the average h- . __.... we decreasing with the increase of the
cache space. This phenomenon indicates that the two alg. -ithms have a greater dependence on the
cache space of the nodes, and that they consume a . rge cache space. When the cache space changes,
the average hop count of dLife and SAIR che >= sliz"tly. This phenomenon indicates that the two
algorithms mainly use the encounter prediction in1. rme.ion to forward data. The number of replicas of
messages in the network is relatively small, u. °< sav..g the resources of cache space in node. As show
in the Fig. 13, the average hop count of dLife is tue best. Our proposed SAIR is slightly worse than

dLife, while the performance of Epide’ ac an. ProPHET is poor.
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Fig. 13. Average hop count vs. memory capacity
From he above analysis, it can be seen that when the cache space increases, more messages can be
carried by 1. des, and more messages can be exchanged when nodes meet. Therefore, it is beneficial to
improve the performance of message forwarding, such as delivery ratio and average delay. SAIR
considers not only the context information, but also the synchronous forwarding within the connected

domain and the asynchronous forwarding between the connected domains. In general, the performance



of SAIR algorithm achieves the desired effect under the single copy mode with limited network

resources.

6. Conclusion

We propose an intelligent distributed routing algorithm based on social similarity by stu.iying the
influence of social activities of node carriers on the encounter pattern between .ode'. This algorithm
can use social context information in the network to predict the mobile behavio. ~f network nodes
through the BP neural network. The routing decision process takes full accort 0. *he time and space
attributes of mobile nodes. When the receiving node and the sending noc : are .. “-2 same connected
domain at the same time, the message forwarding adopts synchronous +wode, otherwise adopts
asynchronous mode. Finally, through the simulation experiment, we .ompar and analyze the routing
algorithm with the existing famous algorithm. Our algorithm can in ~rove * e ability of network to
adapt to topology change. It has the characteristics of distributior adar*e and intelligent optimization.

Next, we will study the incentives of selfish nodes and routing sec .cy ba ed on this algorithm.

Acknowledgments

This research was supported by the MOE (Ministry ot ~“tucauon of China) Project of Humanities
and Social Sciences (17YJCZH203), the Science Res .._.. I uuu of Hubei provincial education office
(D20182702), the National Natural Science Foundation ¢. China (No0.61502154, 61370092), Hubei
Provincial Department of Education Outstandii. > » ouwl Scientific Innovation Team Support
Foundation (T201410).

References

[1] Vastardis N, Yang K, Leng S. § ,cian, aware multi-phase opportunistic routing for distributed
mobile social networks[J]. Wire! 'ss perso al communications, 2014, 79(2): 1343-1368.

[2] Jing Chen, Kun He, Ruiyin‘, Du, /a’ g Xiang. Dominating Set and Network Coding-based
Routing in Wireless Mesh “Jetw orks. [EEE Transactions on Parallel and Distributed Systems.
2015,26(2):423-433

[3] Araniti G, Orsino A, 'iilitano ~, et al. Context-aware Information Diffusion for Alerting
Messages in 5G Mot ¢ “~cial Networks[J]. IEEE Internet of Things Journal, 2017, 4(2):
427-436.

[4] Wu D, Zhang F, W ag t , et al. Security-oriented opportunistic data forwarding in mobile social
networks[J]. Future e eration Computer Systems, 2018, 87: 803-815.

[5] TaoJ, Wu H, SF. S, et a. Contacts-aware opportunistic forwarding in mobile social networks: A
community pr .spe dvel Z]//Wireless Communications and Networking Conference (WCNC),
2018 IEEE. IEEL, ’01f. 1-6.

[6] LuZ, Wep «, Zhang W, et al. Towards information diffusion in mobile social networks[J]. IEEE
Transactic s on M¢ Hile Computing, 2016, 15(5): 1292-1304.

[7] Jing Chen, (“iher s Wang, Ziming Zhao, Kai Chen, Ruiying Du, Gail-Joon Ahn. Uncovering the
Face - 1 Android Ransomware: Characterization and Real-time Detection. IEEE Transactions on
Infori vation Fi rensic & Security. 2018, 13(5): 1286- 1300

[8] Rahim. ¥ .ag X, Xia F, et al. Vehicular social networks: A survey[J]. Pervasive and Mobile
C w2018, 43: 96-113.

[9] Ahi-: M, Li Y, Wagas M, et al. A Survey on Socially-Aware Device-to-Device
Comn. "nications[J]. IEEE Communications Surveys & Tutorials, 2018.

[10] Hu X, Chu T H S, Leung V C M, et al. A survey on mobile social networks: Applications,
platforms, system architectures, and future research directions[J]. [EEE Communications Surveys
& Tutorials, 2015, 17(3): 1557-1581.

[11] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc networks[R]. Technical



Report CS-200006, Duke University, 2000.

[12] Wu Y, Chou P A, Kung S Y. Minimum-energy multicast in mobile ad hoc networks using network
coding[J]. IEEE Transactions on communications, 2005, 53(11): 1906-1918.

[13] Hui P, Crowcroft J. How small labels create big improvements[C]//Pervasive “omputing and
Communications Workshops, 2007. PerCom Workshops' 07. Fifth Annual IF "% International
Conference on. IEEE, 2007: 65-70.

[14] Hui P, Crowcroft J, Yoneki E. Bubble rap: Social-based forwarding in delay: .oi “ant networks[J].
Mobile Computing, IEEE Transactions on, 2011, 10(11): 1576-1589.

[15] Xiao M, Wu J, Huang L. Community-aware opportunistic routing in mnbile . ~<ial networks[J].
Computers, IEEE Transactions on, 2014, 63(7): 1682-1695.

[16] Abdelkader T, Naik K, Nayak A, et al. SGBR: A routing protocol or \'elay tolerant networks
using social grouping[J]. Parallel and Distributed Systems, IEEE T nsa cons on, 2013, 24(12):
2472-2481.

[17] Daly E M, Haahr M. Social network analysis for routing i dis~onnected delay-tolerant
manets[C]//Proceedings of the 8th ACM international symposit n on M bile ad hoc networking
and computing. ACM, 2007: 32-40.

[18] Anshul Verma, K.K.Pattanaik,et al. Routing in Opportunist ¢ Ne‘ .. rks[M]. New York: Springer,
2013: 69-97.

[19] Pujol J M, Toledo A L, Rodriguez P. Fair routing in delay . 'erai.. ..etworks[C]//INFOCOM 2009,
IEEE. IEEE, 2009: 837-845.

[20] Mitibaa A, May M, Ammar M, et al. Peoplerank, con.. ‘ning ocial and contact information for
opportunistc forwarding[C]//World of Wireless, Mob.. - ana Multimedia Networks (WoWMoM),
IEEE International Symposium, San Francisco CA 2012 - 5,

[21] Li Z, Wang C, Yang S, et al. Lass: Local-activity «.°1 social-similarity based data forwarding in
mobile social networks[J]. IEEE Transaction® ~~ Parancl and Distributed Systems, 2015, 26(1):
174-184.

[22] Boldrini C, Conti M, Jacopini J, et al. Hi’ ~n: a . ‘story based routing protocol for opportunistic
networks[C]//World of Wireless, Mobile ana M. *imedia Networks, 2007. WoWMoM 2007. IEEE
International Symposium on a. IEEE, 2°07- 1-,°.

[23] Moreira W, Mendes P, Sargento S. Opp. *unistic routing based on daily routines[C]//World of
wireless, mobile and multimedia networks (WoWMoM), 2012 IEEE international symposium on
a. IEEE, 2012: 1-6.

[24] Singh K, Verma A K. Experim atal ana /sis of AODV, DSDV and OLSR routing protocol for
flying adhoc networks (FANETs), ~1/F iectrical, Computer and Communication Technologies
(ICECCT), 2015 IEEE Interr stior al Conference on. IEEE, 2015: 1-4.

[25] Keranen A. Opportunistic n. “ve .k er vironment simulator[J]. Special Assignment report, Helsinki
University of Technology Depai.. ~ at of Communications and Networking, 2008.

[26] Musolesi M, Mascolo "_. Mesigning mobility models based on social network theory[J]. ACM
SIGMOBILE Mobile Computu. ; and Communications Review, 2007, 11(3): 59-70.




This research was supported by the MOE (Ministry of Education of China) Project of
Humanities and Social Sciences (17YJCZH203), the Science Research Fund of Hubei
provincial education office (D20182702), the National Natural Science Frundation of
China (No0.61502154, 61370092), Hubei Provincial Department ¢ Education
Outstanding Youth Scientific Innovation Team Support Foundation (T201410,.



Fang Xu received the M.S. and Ph.D. degrees from Wuhan University, Wuhan, China, in 2009 and
2016, respectively. He is an Associate Professor in the School of Computer and Information Science,
Hubei Engineering University, Hubei, China. His research interests include social computing, wireless
mobile networks, and context aware computing. He is a member of the IEEE Com juter

Qiong Xu was born in 1991. She received the B.S. degree in computer science and tec. nology from
Hubei University of China, in 2013, and she is currently pursuing the M.S. deo ee in computer

technology with Hubei University of China. She is involved in research on rou:* «g algorithms for
mobile social networks

Zenggang Xiong received the M.S degree in computer application fro: * H.pei Jniversity in 2005 and
the Ph.D. degree in computer application from University of Science ~nd 1 .~hnology Beijng in 2009
respectively. He is a professor in computer science at Hubei Engine 2ring L niversity. His research
interest includes cloud computing and big data.

Nan Xiao was born in 1995. She received the B.S. degree in co.»" dter science and technology from
Hubei Engineeing University of China, in 2018, and she is cu.venuy pursuing the M.S. degree in

computer technology with Hubei University of China. She .~ invol' ed in research on incentives for

selfish nodes in Mobile social network.

Yong Xie received Ph.D. degree incomputer science from */uhan University, Wuhan, China, in 2016.
He is currentlya Associate Professor with the Depar.me:r-. . & Computer Technology andApplication,
Qinghai University. His current research interests inclu « nextgeneration Internet, network protocol and
protocol security.

Min Deng received the M.S. degrees from Wuha.. University, Wuhan, China, in 2010. She is a lecturer
in the School of Computer and Information Science, Hubei Engineering University, Xiaogan, China.
Her research interests include wireless m ,bile 1.>tworks, and context aware computing.

Huibing Hao obtained his PhD degr e ir Mechanical Engineering from Southeast University in 2015.
His research interests include reli.~il’.y evaluation and maintenance decision. He is currently an
assistant professor at the Departm nt ot 1.*".thematics at Hubei Engineering University, Xiaogan, China.
His research interests include '1g ata, reliability prediction, quality management, fault diagnosis.



Fang Xu

Qiong Xu

Zenggang Xiong

Nan Xiao

Yong Xie



Huibing Hao



Highlights

*Social Similarity is used to predict the
probability of encounter.

* A hybrid message forwarding is adopted
combining synchronous forwarding and
asynchronous forwarding.

*An Intelligent Distributed Routing is proposed
to improve message delivery ratio.



