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Abstract 8 
Travel demand modeling has evolved from the traditional four-step models to tour-based models which 9 
eventually became the basis of the advanced Activity-Based Models (ABM). The added value of the ABM 10 
over others is its ability to test various policy scenarios by considering the complete activity-travel pattern 11 
of individuals living in the region. However, the majority of the ABM restricts residents’ activities within 12 
the study area which results in distorted travel patterns. The external travel is modeled separately via 13 
external models which are insensitive to policy tests that an ABM is capable of analyzing. Consequently, 14 
to minimize external travel, transport planners tend to define a larger study area. This approach, however, 15 
requires huge resources which significantly deterred the worldwide penetration of ABM. To overcome 16 
these limitations, this study presents a framework to model residents’ travel and activities outside the 17 
study area as part of the complete activity-travel schedule. This is realized by including the Catchment 18 
Area (CA), a region outside the study area, in the destination choice models. Within the destination choice 19 
models, a top-level model is introduced that specifies for each activity its destination inside or outside the 20 
study area. For activities to be performed inside the study area, the detailed land use information is utilized 21 
to determine the exact location. However, for activities in the CA, another series of models are presented 22 
that use land use information obtained from open-source platforms in order to minimize the data collection 23 
efforts. These modifications are implemented in FEATHERS, an ABM operational for Flanders, Belgium 24 
and the methodology is tested on three medium-sized regions within Flanders. The results indicate 25 
improvements in the model outputs by defining medium-sized regions as study areas as compared to 26 
defining a large study area. Furthermore, the Points of Interests (POI) density is also found to be 27 
significant in many cases. Lastly, a comprehensive validation framework is presented to compare the 28 
results of the ABM for the medium-sized regions against the ABM for Flanders. The validation includes 29 
the (dis)aggregate distribution of activities, trips, and tours in time, space and structure (e.g. transport 30 
modes used and types of activities performed) through eleven measures. The results demonstrate similar 31 
distributions between the two ABM (i.e. ABM for medium-sized regions and for Flanders) and thus 32 
confirms the validity of the proposed methodology. This study, therefore, shall lead to the development of 33 
ABM for medium-sized regions. 34 

Keywords: Activity-based Model, External Activity-Travel, External trips, FEATHERS, Activity-based 35 
model validation. 36 

1. Introduction 37 
The notion that the need for activity participation derives its associated travel, led to the formation of the 38 
Activity Based Model (ABM) (Ben-akiva et al., 1996). A typical ABM considers the complete daily 39 
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activity-travel pattern of individuals living in the study area. This includes, for each agent in the synthetic 40 
population, the number of activities to be performed and specific attributes of each activity: type, start 41 
time, duration, and location. Furthermore, these simulated activities are also linked together via a travel 42 
component having its own dimensions: travel time, travel mode. Finally, the tours are formed. Therefore, 43 
the added benefits of an ABM over a four-step model are its unit of analysis from zones to individuals and 44 
the consistency between the submodels that ensures a consistent travel pattern.  45 
In reality, subjected to the attractiveness of the study area and its surrounding region, some of the 46 
activities can be performed outside the study area which results in residents Internal-External (IE) trips. 47 
However, the majority of the ABM does not model IE trips as they allow the destination choice of 48 
activities only within the modeling region, e.g. DAYSIM, ABM within SimMobility (Singapore) and 49 
FEATHERS (Flanders, Belgium, and Seoul, South Korea) (Adnan, Pereira, Miguel, et al., 2016; 50 
Bellemans et al., 2010; Bowman & Bradley, 2006). The ABM output is fed in the route assignment along 51 
with internal-external trips obtained from other models. Such an approach may result in the following 52 
deficiencies: 53 

 Overestimating trips and activities within the region by assigning all residents’ activities within 54 
the study area while completely disregarding the residents’ external activities and trips. 55 

 A double representation of residents’ external trips at the route assignment stage, i.e. 1) from the 56 
ABM where external activity-travel of individuals is considered as internal trips and 2) through 57 
the output from the external trips model. 58 

 Inability to test policy applications on resident’s external travel because these are estimated 59 
outside the scope of the ABM. 60 

These limitations have been well recognized and to overcome them, modelers tend to define a more 61 
extensive study area. Although this practice may reduce overall external travel, it increases the data 62 
collection and model development efforts: collecting household travel survey (HTS) data for a larger 63 
study area, preparing its synthetic population and running the ABM.  64 

Consider a case of East Hampshire District Council (EHDC) - a medium-size district in the South East 65 
Region of England approximately 100km away from London. Expectedly, a lot of individuals commute 66 
from EHDC to London. Therefore, a travel demand model for EHDC should also include East of England 67 
and London Regions (formally government office region) in the study area (as recommended in 68 
Department for Transport 2017, p.13). This expansion of the study area results in unwanted model 69 
complexities such as modeling the travel behavior of Londoners which is indeed not the central objective. 70 
Likewise, expanding the study area may not always be a solution because of for example a boundary 71 
between two countries, resulting in data collection issues. For instance, the present ABM for Singapore 72 
(Siyu, 2015) is subjected to this issue as it assigns the residents’ activities within Singapore, whereas, a lot 73 
of individuals frequently travel to Malaysia. As a result, the resident/s trips are over assigned within 74 
Singapore while completely ignoring their external travel. Detailed practical examples of these limitations 75 
are defined in Baqueri et al. (2018).  76 

Consequently, only a few ABMs are operational at present mainly subjected to huge data collection and 77 
resources. Whereas, in order to develop a travel demand model for a medium-sized region, modelers have 78 
to rely on conventional four-step models. Therefore, it can be safely stated that the ability to model 79 
residents’ external travel within ABM shall pave the way to develop an ABM for a medium-sized region. 80 
In light of these concerns, this study presents a framework to model residents external trips in FEATHERS 81 
- an activity-based travel demand model (Bellemans et al., 2010). The framework includes 1) defining an 82 
external region as Catchment Area (CA) within the ABM and 2) inclusion of CA within destination choice 83 
set. To limit the data collection efforts, the land use information of the CA is solely obtained using the 84 
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open-source information to minimize the data collection cost. The study also describes the application of 85 
the proposed framework in three medium-sized study areas in Flanders, Belgium. Furthermore, a 86 
validation framework for ABM along with its implementation is also presented to compare the results of 87 
the proposed model against the model without a CA.  88 

The rest of the paper is arranged as follows. The next section summarizes the literature on modeling 89 
external travel within ABM and ABM validation. The third section describes the modified FEATHERS 90 
framework. The fourth section describes the case study: the implementation study areas and the model 91 
results for each. The fifth section describes a framework for model validation along with aggregate and 92 
disaggregate validation. The sixth section provides a discussion of results and validation and the last 93 
section presents the conclusion. 94 

2. Literature review 95 
2.1 Activity-Based Model  96 
Since their inception, the activity-based models have achieved significant progress in terms of theory, 97 
implementation, and deployment. Researchers and practitioners, particularly in the USA, Europe, and 98 
Japan develop and implemented ABMs. CARLA (constraint-based), STARCHILD (Recker et al., 1986a; 99 
Recker et al., 1986b), SCHEDULER (Gärling et al., 1994), DAYSIM (Bowman & Ben-Akiva, 1998), 100 
TRANSIMS (Smith et al., 1995), and ALBATROSS (Arentze & Timmermans, 2004) are some early 101 
examples of the ABM (Siyu, 2015, p.14).  102 

ADAPTS (Agent-based Dynamic Activity Planning and Travel Scheduling), TASHA (Travel/Activity 103 
Scheduler for Household Agents) and SimMobility are some advanced prototypes of the ABM. These 104 
ABMs have much more sophisticated model structure to deal with the complex transport system (Auld & 105 
Mohammadian, 2012; Miller & Roorda, 2003; Adnan, Pereira, Miguel, et al., 2016). For instance, unlike 106 
other ABM frameworks, ADAPTS have an activity planning step that incrementally plans and updates 107 
activities for each individual for each time interval. TASHA models, for each individual in a household, 108 
its vehicle allocation, ridesharing and joint activities/trips. SimMobility integrates long-term models such 109 
as vehicle ownership, land use pattern with daily schedule and within day rescheduling such as disruption 110 
strategies. It also includes mode and destination accessibility for each individual through logsums.  111 

With the passage of time, the spectrum of ABM has been constantly expanding to more advanced issues 112 
such as the demand for electric vehicles charging stations (Usman et al., 2017), Disruption Management 113 
Strategies (Adnan, Pereira, Azevedo, et al., 2016), carpooling demand (Hussain et al., 2016) and 114 
integration of autonomous vehicles in ABM (Childress et al., 2015). Recently, ABM has also 115 
demonstrated its multidisciplinary potential such as linking transportation with air quality analysis 116 
(Shabanpour et al., 2016), traffic noise (Kaddoura et al., 2017), energy demand and power-peaks (Weiss et 117 
al., 2017; Knapen et al., 2012), emissions and environmental impacts (Shiftan et al., 2015), and health 118 
assessments (Lefebvre et al., 2013). Therefore, it can be well guessed that the ABM will continue to 119 
maintain their impetus in future as well.  120 

At present, most of the ABM disregard external travel and estimate them unconnectedly through other 121 
external models. The external trip models are analogues to first two steps of the four-step model as they 122 
predict aggregate external trip generation at external stations, i.e., highway intersections at the boundary 123 
of the study area and distribute them in the Traffic Analysis Zones (TAZs) of the study area. The travel 124 
mode for external trips is not explicitly modeled as usually cars are considered as travel mode and the OD 125 
matrix is directly used for route assignment along with the results of the ABM. Such an approach results 126 
in numerous problems as described in the previous section. However, few ABMs do consider the outside 127 
area through the additional zone(s) in the destination choice model. For example, ALBATROSS considers 128 
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the surrounding area as one additional zone (Arentze & Timmermans, 2004). Similarly, ADAPTS – a 129 
state-of-the-art ABM, assigns external destinations to several zones around the Chicago region (Auld & 130 
Mohammadian, 2012). However, the size of these external zones is very large as compared to the zones 131 
within the study area. Due to this, travel times and cost of trips between the study area and the surrounding 132 
region will be inappropriate and, therefore, sub-models within ABM that requires these inputs may not 133 
perform well. To address these stated concerns, this paper presents a comprehensive framework that 134 
includes the residents’ external travel within the ABM framework. 135 

2.2 Activity-Based Model Validation  136 

Model validation is an important aspect. However, there are limited studies that describe validation of 137 
travel demand models (de Jong et al., 2007; Rasouli & Timmermans, 2012). The studies vary according to 138 
the type of the model (rule based, utility based), aggregation level and uncertainty analyzed. Many studies 139 
described ABM validation by focusing on the discrete choice models, (Castiglione et al., 2003; Gibb & 140 
Bowman, 2007; Bekhor et al., 2014) or a rule based approach (Zhuge et al., 2017; Cools et al., 2011; Bao 141 
et al., 2015; Bao et al., 2016; Rasouli, 2016). Majority of the studies focus on the core activity-scheduling 142 
part (Castiglione et al., 2003; Rasouli, 2016; Copperman et al., 2016). Most studies presented aggregate 143 
validation for different model kinds. For example, Bao et al. (2016) focused on two DTs only. Similarly, 144 
Copperman et al. (2016) described rail ridership. Bekhor et al. (2014) compared total vehicles kilometers 145 
travelled (VKT). 146 

There is also a study that only described a generic validation framework for ABMs (Prelipcean et al., 147 
2015). Drchal et al. (2016) described a Validation Framework for Activity-based Models (VALFRAM). 148 
The authors compared two basic system properties i.e. activities and trips across time, space and the 149 
structure (i.e. activity count and the travel mode used across activities). The study validated the model 150 
results using real-world activity-travel diary data and found a close relationship between both. Petrik et 151 
al.,(2018) discussed a variety of measures to compare the results of the two different model runs of an 152 
ABM in different settings to analyze model outcome uncertainty. They compare counts of tours, trips and 153 
stops for each activity, mode, location and a combination of them. The validation studies also vary with 154 
respect to the level of aggregation. For instance, Veldhuisen et al. (2000) compared origin-destination 155 
matrices at regional level. Furthermore, few studies also included socioeconomic attributes and described 156 
stratified model validation per population segment. Cools (2011) measured distance traveled across age 157 
and gender groups. Rasouli (2016) measured and presented validation results according to gender at the 158 
level of TAZs and study area. Besides these, Castiglione (2003) also included vehicle ownership in the 159 
validation criteria.   160 

Literature suggests that the variation increases as the level of disaggregation increases. Therefore, it is 161 
important to assess model validation against individual attributes such as age, gender, vehicle ownership 162 
etc. Furthermore, rather than simply comparing the count, the emphasis should be on the distributions of 163 
activities and trips in time and space. Another important aspect for ABM validation is data availability. 164 
Since, an ABM not only needs to be validated for trips but also for activities, therefore, only traffic count 165 
data shall not suffice.  166 

The above discussion emphasizes that it is essential to check the consistency of the model outputs when an 167 
ABM framework is modified before any transport related policies are tested. Additionally, to the best of 168 
our knowledge, there exists no study that integrates residents’ external trips within the ABM and presents 169 
its validation. This study aims to address these gaps. The validation measures proposed in this study can 170 
also be used for validating other extensions in the ABM.  171 
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3. Research Framework 172 
This section describes a framework to model residents’ external travel as part of the complete activity-173 
travel schedule in FEATHERS which is operational for Flanders, Belgium. A detailed functioning of 174 
FEATHERS is described in Bellemans et al. (2010), therefore, this paper only focuses on the components 175 
that are developed or modified to include the resident external travel within the current framework (Figure 176 
1). These modifications include defining a CA, modifying destination choice models and the use of the 177 
open-source land use data in the destination choice models. Within the activity pattern model, first, the 178 
number of work episodes are determined followed by the generation of home-based tours. Then, for each 179 
tour, intermediate activities are determined along with their placement i.e. before or after the tour’s 180 
primary activity. The intermediate activities are categorized as fixed [bring get, other] or flexible 181 
[shopping, services, social, leisure and touring]. Once each of the activity in the schedule is determined 182 
then their duration is modeled. The duration is categorized into three categories: short, medium and long. 183 
These categories have different time ranges as per the activity type. For example, a medium shopping 184 
activity may have lesser duration than a short leisure activity. For location choice, the first decision is the 185 
activity destination inside or outside the study area. Based on this decision, relevant Decision Trees (DTs) 186 
are triggered to estimate accurate location at the subzone level. The last step before the mode choice is the 187 
activity start time hour. At this moment only the hour is determined when the activities will take place, 188 
exact timings are randomly chosen within the 1-hour periods and are only available once all of the 189 
decisions have been made. The last decision is related to the transport mode for each activity. For each 190 
following DT, the schedule decisions simulated earlier are also included in the explanatory variables. The 191 
pseudo code of FEATHERS framework is shown in Figure 2. 192 
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3.2 Defining Catchment Area 197 
The primary region of interest for which an ABM is to be developed is defined as the study area. The 198 
external region adjacent to the study area is defined as the CA. The spatial unit of the CA should be the 199 
same as of the study area to avoid inconsistencies in the models. The spatial units are defined in 200 
FEATHERS at three levels: superzones (municipalities), zones (city) and subzones (TAZs). Depending on 201 
the size, a municipality may contain more than one city and a city may contain more than one TAZs. 202 

In the proposed approach, the first step is to define the study area as per the modeling needs and collect 203 
the HTS data from a sample population within the boundary of the study area. Then, based on the travel 204 
pattern of the individuals in the HTS, a CA is defined. The CA should be demarcated around the study 205 
area in a way such that it includes the farthest location that is used to perform an activity.  206 

This goes without saying that few outliers such as exceptionally long-distance trips should be excluded 207 
before defining the CA. This exemption is observed because of various reasons. First, the number of trips 208 
decreases as the distance from the study area increases which makes the model development cumbersome 209 
with the limited observations. Second, the probability that the individuals performing such trips will return 210 
back to their home within the simulated time period (typically 24 hours) is very less. Therefore these trips 211 
should be modeled as long-distance trips through the framework defined by Baqueri et al. (2018). Third, 212 
in case of an international border in the CA, there are also other issues such as the inaccessibility to TAZs 213 
specifications and dissimilarity in land use data which may generate unwanted model complexities. 214 

For example, consider developing an ABM for Mechelen; a city in Flanders (Dutch speaking part of 215 
Belgium) with Brussels and Antwerp in its vicinity. Based on the OVG - household travel survey data of 216 
Flanders (Janssens et al., 2014), around 30% of the individuals travel outside Mechelen while the majority 217 
of the activities are performed within Flanders. Furthermore, only 1.4% of individuals commute to 218 
Wallonia (French-speaking part of Belgium) from Flanders due to the language barrier (Horckmans, 219 
2017), which is quite low to train and test the model. Therefore, an ABM for Mechelen Flanders in 220 
included in the CA while Wallonia is discarded.  221 

3.3 Destination choice model 222 
The destination choice models in FEATHERS are built using DT with a multi-level decision hierarchy to 223 
specify the location of an activity. The first DT shortlists locations on the basis of predicted Municipality 224 
Order class. The municipality order is defined on the basis of attractiveness of a location and its distance 225 
from individual’s current location. It is currently categorized in four categories, however, it can also be 226 
taken into continuous form when required. The second DT further narrow down locations on the basis of 227 
Distance Band (DB). The DB categorizes locations into classes on the basis of circular distance from the 228 
current location of the individual. Finally a location is randomly chosen from the remaining shortlisted 229 
locations belonging to the specified class of municipality order and the DB.  230 

This methodology is first applied to the primary activity i.e. the main activity of the tour and then applied 231 
to the secondary activities of the tour. However, all decisions related to the primary activity are made first 232 
and then incorporated into the DTs of the secondary activities as the primary activity decisions directly 233 
influence on secondary activities. 234 

 235 

3.3.1 Top level models 236 
It is imaginable that the detailed land-use information, which has been obtained for the study area, may 237 
not be available for the CA. This is largely subjected to the limited resources or even unavailability of the 238 
information such as in case the study area is defined at the country level. Therefore, two top-level models 239 
are introduced in the current framework (shown in the decision box in Figure 1) each for the primary and 240 
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the secondary activities which intent to identify if the activity will take place in the SA or the CA. If the 241 
activity will take place in the SA then the detailed information is used, otherwise, only the variables 242 
formulated from open source platforms are used in estimating sub-models. Land use characteristics such 243 
as type, opening time, area, and employment and transport network attributes such as travel time, transit 244 
availability, price, and frequency can be obtained from open source platforms for developing destination 245 
choice models, mode choice models and time-of-day models. Some examples of the relevant Open source 246 
platforms are OpenStreetMap (OSM) (OpenStreetMap contributors, 2017) and Google API (Google 247 
Developers, 2017)). This is the first decision for assigning locations to activities, therefore, it is referred as 248 
the top-level model. 249 

Some may argue that the inclusion of the top-level models (to define if the activity shall be conducted in 250 
the SA or the CA) in the decision hierarchy process is against the intuition as the SA boundary is simply a 251 
modeling term. While, in reality, an individual may not even be aware of the study area boundary let alone 252 
its inclusion in the decision process. However, this claim may not be true as the boundary of the study area 253 
has a practical significance whether it represents an international, provincial or a state-wide border or even 254 
a city- jurisdiction because individuals do consider these boundaries before choosing a destination.  255 

For example, a Dutch citizen considers crossing the boundary between Netherlands-Belgium and 256 
Netherlands-Germany to commute as an equivalent to traveling 35 and 46 extra minutes respectively 257 
(Pieters et al., 2012). This border-crossing resistance is, however, less for shopping activity because of the 258 
same currency across the border. Similarly, the top-level model may also be relevant in case of inter-259 
regional travel. For example, as mentioned above, on average only 1.4% of individuals commute to 260 
Wallonia from Flanders due to the language barrier (Horckmans, 2017). Likewise, the statewide travel 261 
demand models are widespread in the USA which validates the fact that the inter-state travel is not so 262 
common. Furthermore, this decision-making impression may also be valid for the ABMs that are 263 
developed at the metropolitan-level and the boundary holds a toll cordon e.g. as in Paris during weekdays.  264 

3.3.2 New Decision Trees 265 
The inclusion of a top-level model also affects other subsequent location choice decisions. Therefore, 15 266 
DTs are developed/modified to accommodate for the modified decision-hierarchy process for destination 267 
choice. 268 

Tour’s main Activity is defined as primary activities in FEATHERS. The DT Choose Primary Location in 269 
Study Area or Catchment Area defines if the primary activity will be performed in the CA or not. The 270 
need for this DT is described in section 3.3.1. Depending on the location two more DTs are used to 271 
determine precise activity location, i.e. the TAZ where the activity shall be performed. For activities to be 272 
conducted inside the CA, the first DT is Choose POI Density Catchment Area that identifies the POI 273 
density class in which the activity shall be conducted. The second DT for determining location is Choose 274 
Distance Band Catchment Area that identifies the distance band in which the activity shall take place. The 275 
distance band and POI density here are discretized into five classes which can be modified as required. 276 
For activities that are to be taken place inside the study area, the same DTs are used as in the model 277 
without the CA.  278 

Activities other than the tour’s main activity are defined as secondary activities in FEATHERS. These are 279 
distinguished in the activity-skeleton according to their placement before or after the primary activity. The 280 
activities performed before the primary activity are considered as 1st half while others are considered as 281 
2nd half. The DT Choose Secondary Location In Study Area Or Catchment Area 1st half determines if the 282 
secondary activity that is to be conducted before the primary activity within the same tour will take place 283 
in or outside the study area. This is the top-level model for secondary activities (defined in section 3.2.1). 284 
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For the activities to be taken place inside CA, the DT Choose Secondary Location in Catchment Area 1st 285 
half is activated. An important variable in the DT is the out-of-direction travel distance which indicates 286 
that extent to which an individual deviates from a straight line between home and the primary activity 287 
location (equation 1). Similar DTs are used for determining locations of secondary activities that are to be 288 
performed after the primary activities. 289 

ݐݑܱ െ ݂݋ െ ݁ܿ݊ܽݐݏ݅݀	݊݋݅ݐܿ݁ݎ݅݀ ൌ ሾ݀݅݁ܿ݊ܽݐݏு	௧௢	ௌ௅ ൅	݀݅݁ܿ݊ܽݐݏௌ௅	௧௢	௉௅ െ	 ሾ݀݅݁ܿ݊ܽݐݏு	௧௢	௉௅ሿ  (1) 290 

Where H = home location, SL= secondary location and PL = primary location 291 

The DTs for CA solely rely on individual’s socioeconomic attributes, land use information obtained from 292 
open-source platforms, and already simulated activity-travel decisions from the higher order models but 293 
they do not incorporate any detailed land use and network information as it may not be available for the 294 
CA.  295 

3.4 Relationship between open source and detailed land use information 296 
Since the open-source land use information is incorporated in the DTs, therefore, it is important to verify 297 
its quality. This can be checked by comparing the open source land use information with the detailed land 298 
use information available for the study area. Figure 3 compares the land use information of Flanders, 299 
Belgium obtained from the official data source (Statbel, 2017) with the data obtained from the 300 
OpenStreetMap. The results show a strong association between commercial land use area from the official 301 
data source and the Points of Interest (POI) data from OpenStreetMap (OSM) in each Traffic Analysis 302 
Zone (TAZ). Furthermore, besides commercial land use, few other land use types also have a strong 303 
correlation with the POIs such as buildup and the transport land area (Table 1). This association (between 304 
official and open source land use data) may differ from region to region, but we believe a similar level of 305 
consistency of open source data, so our modeling methodology can be valid.  306 

 307 

 308 

Figure 3: Relationship between open source and official land-use data  309 
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Table 1: Correlation with official land use data and POI obtained from the open source platform 310 

Land use type (km2) Correlation with POIs (number) 
Commercial 0.84 
Buildup land 0.54 
Transport land 0.51 
Public 0.47 
Residential 0.40 
Recreation Open area 0.34 

Highly correlated variables are marked in bold 311 

4.  Case study 312 
This section describes the application of the above proposed FEATHERS framework on three study areas 313 
and the results obtained.  314 

4.1 Implementation study areas 315 
Currently, FEATHERS is operational for Flanders, Belgium and to test and validate the proposed 316 
framework, smaller regions in Flanders are defined as the study areas (Figure 4). These study areas have 317 
the following properties:  318 

 Are medium-sized regions with a population between 0.5 to 1 million and an area around 319 
1,000km2 320 

 Population density varies between 400persons/km2 to 1,000persons/km2. 321 
 Around 25 - 35% of the residents perform external travel (obtained from BELDAM data (Hollaert 322 

et al., 2012)). 323 
 Are a major trip attractor themselves and/or surrounded with a major trip attractor in their vicinity 324 

that influence external travel. 325 

The details and the significance of these regions to test the proposed methodology are further defined.  326 

4.1.1 Antwerp region 327 
Antwerp region is located in the north of Flanders. It is the most populated province in Belgium with a 328 
population of 1.8 million. It is an attractive region with a port that generates a lot of commercial activity. 329 
Approximately 30% of the individuals tend to perform their activities outside the region, therefore, it shall 330 
be useful to check the distribution of activity types, and in particular work activities, in and outside the 331 
region. 332 

4.1.2 Mechelen region 333 
Mechelen is a home city for a lot of individuals who work in Brussels. Besides, Mechelen is equally 334 
distant between Brussels and Antwerp which makes it an interesting case to evaluate the proposed 335 
methodology. In order to define a relevant study area, a 20km radius around Mechelen city is considered 336 
having a population of around 0.5 million. Approximately 34% of the residents perform external travel. 337 

4.1.3 Leuven region 338 
Leuven is located in Southern part of Flanders. It is surrounded by Brussels in its East which is an 339 
attractive region and attracts a lot of external travel. Therefore, it shall be interesting to implement this 340 
framework in Leuven region. The population of Leuven region is approximately 0.5 million and nearly 341 
30% of the residents perform external travel. 342 
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Public Transport % 10.36 9.16 29.68 10.64 7.6 11.84 

Non-Motorized transport % 31.07 24.17 7.59 23.23 29.68 24.06 

Simple tour % 62.35 63.68 60.58 60.60 64.34 20.40 

2-activity tours % 21.73 21.26 22.61 22.49 20.40 9.24 

% of work Activities in CA 33.96 30.61 45.08 44.6 35.85 38.06 

% on individuals travelling to CA 22.6 23.8 28.9 35.8 33.7 30.1 
 357 

Table 3 shows the improvement in the contingency matrix of DTs after the proposed changes; inclusion of 358 
a top-level model and POI density in the DTs. The DTs determine various aspects of the activity-travel 359 
pattern such as activity start time, duration, destination choice, intermediate stop type etc. It can be 360 
observed that these changes and in particular POI density considerably increased the DT’s explanatory 361 
power in many cases. These improvements account even above 60%. An exception, in this case, is for DT 362 
choose Number of Work Episodes where the overall model explanatory power is reduced. However, it 363 
should be noted that the model accuracy is still above 75% in each region, therefore, these are negligible 364 
reductions.  365 

POI density is found significant in new DTs created to specifically model location choice of primary 366 
activity. However, it is found significant in only one DT for secondary activity. The results are further 367 
elaborated in Discussion (section 6).  368 

Table 3: Improvement in Decision Trees in Activity-Based Model for medium-sized study area as compared to the Full-scale 369 
model 370 

Decision Tree / Study area Antwerp Mechelen Leuven 
Choose Number Of Work Episodes -1.49* -1.55* -1.27* 
Choose Home-Based Tour Types Sequence 5.42* 45.70* 26.65* 
Choose HBWI1 Intermediate Stop Activities 37.84 41.33 22.28 
Choose HBWI2 Intermediate Stop Activities -0.04 1.61 27.58 
Choose HBWI12 Intermediate Stop Activities 56.83 22.98 39.33 
Choose HBO Intermediate Stop Types Fixed Flexible Mixed 1.34 2.64* -2.83* 
Choose HBO Intermediate Stop Activities Fixed 2.80 -1.20 2.31 
Choose HBO Intermediate Stop Activities Flexible 1.97 3.05* 0.87* 
Choose HBO Intermediate Stop Activities Mixed 8.31 5.86* 16.16* 
Choose Duration First Work Activity -3.61 -1.86 -1.94 
Choose Duration Second Work Activity 7.31 4.33 13.49 
Choose Duration Fixed Activities 1.99 2.27* 0.12* 
Choose Duration Flexible Activities 14.79* 13.69 19.56 
Choose Primary Location In Study Area Or Catchment Area x x x 
Choose Primary Location In Home Municipality   x 
Choose Primary Location In Home Subzone x x x 
Choose Order Municipality    
Choose Nearest Order Municipality    
Choose Distance Band Superzone    
Choose POI Density Superzone Catchment Area x x  
Choose Start Time Hour of Home Based Tour Primary Episode 2.25 3.69 4.92 
Choose Transport Mode Primary Episode 59.86 57.66 62.11 
+Choose Secondary Location In Study Area Or Catchment Area 
1st half  
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+ Choose Secondary Location Type In Study Area 1st half +    
+ Choose Secondary Location In Study Area 1st half +    
+ Choose Secondary Location In Catchment Area 1st half +    
Choose Start Time Hour of Home Based 1st Half Tour 
Secondary Episode 

5.37 12.43* 3.25* 

Choose Transport Mode Secondary Episode 1st half tour -3.07 3.85 -9.12 
+Choose Secondary Location In Study Area Or Catchment Area 
2nd half + 

x   

+ Choose Secondary Location Type In Study Area 2nd half +    
+ Choose Secondary Location In Study Area 2nd half +    
+ Choose Secondary Location In Catchment Area 2nd half +    
Choose Start Time Hour of Home Based 2nd Half Tour 
Secondary Episode 

0.16 1.92 -5.63 

Choose Transport Mode Secondary Episode 2nd half tour -0.80 3.08 -3.55 
Choose Start Time Hour of Home Based Tour Last Home 
Episode 

3.11 4.78 4.58 

Choose Transport Mode of Home Based Tour Last Home 
Episode 

0.27 2.57 -1.40 

* sign shows DTs in which POI density is found to be significant, + sign indicates new DTs created to 371 
specifically model external travel, x= DTs where POI density is found to be significant, HBW= Home 372 
based Work, HBO=home based other, I1 = secondary activity before the primary activity, I2 = secondary 373 
activity after the primary activity 374 

5 Model Validation 375 
The proposed framework-changes also stresses its accurate validation in order to evaluate its effectiveness 376 
and dependability. For instance, the top-level model may result in too many or too few individuals going 377 
to the CA. Similarly, there is a possibility that the activities in CA may result in larger time spent traveling 378 
or a substantial shift in the transport mode choice. Besides, the activity pattern may be altered that may 379 
substantially affect tours. Therefore, a validation framework for an ABM should validate activities, trips 380 
as well as tours.  381 

Therefore, this section describes the statistical validation of the results obtained. First, a validation 382 
framework is defined followed by the description of the two models used for validation and lastly the 383 
validation metrics produced. 384 

5.1 Validation Framework  385 
The validation framework presented in this study extends the framework proposed in earlier studies 386 
(Drchal et al., 2016; Petrik et al., 2018) in three dimensions: (1) expands the scope of structure to model 387 
distribution of activities between SA and CA (2) includes the tour dimension in the validation besides 388 
activities and trips and (3) disaggregate validation of the proposed measures against socioeconomic 389 
attributes of the population. In total, 11 benchmarks are proposed to comprehensively validate ABM 390 
results (Table 4Table 4). These benchmarks complement the outcome of the DTs associated with the 391 
activity pattern, start time, duration, location choice and mode choice. These benchmarks are further 392 
described according to type. 393 

Activities: Activities are the driving force behind the Activity-based Travel Demand Models (Ben-akiva et 394 
al., 1996). Therefore, it is important to carefully validate various aspects of activities. This paper describes 395 
eleven measures for validating activity distribution across space, time and structure (Table 4). An 396 
important remark here is that there is no concept of CA in the ABM developed for Flanders model, 397 
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therefore, some post-processing is required before validation Activity Distribution in CA and SA. For this, 398 
the locations outside the study area in the medium-sized model are considered as CA in the output of the 399 
full-scale model. This process is repeated for each study area separately.  400 

Trips: Three measures are suggested for comparing trips between a full-scale and a medium-sized ABM. 401 
These include the distribution of trips performed across travel modes and also the time spent traveling. 402 

Tours: Tours are also a vital aspect of ABM as these link together the two major components of ABM i.e. 403 
activity and travel. Therefore, two measures are incorporated to validate the tour-consistency between 404 
predicted and actual data. These measures define the number of tours and their complexity. 405 

5.2 Validation Model Description 406 
The most important step to validate model results, after defining a validation framework, is the availability 407 
of a data source that is not used in the model development. In this study the model output of FEATHERS 408 
for Flanders region without the CA setup have been considered for validation. For validating, the outputs 409 
of the model without the CA are post-processed and the locations are labeled as inside study area or CA as 410 
in the model with the CA.  411 

5.3 Aggregate Validation 412 
Table 5 shows aggregate analysis of the proposed benchmarks in Antwerp, Leuven and Mechelen region. 413 
None of the benchmarks are found to be statistically different between both the models at 10% 414 
significance level in Antwerp while some differences are found in other regions.  415 

Table 4: Validation benchmarks of the Activity-Based Model  416 

S. No Benchmarks Level Assembly Task 

1 
Time spent on each 
activity type 

Activities Time 
Distribution of time spent on each activity 
type.  Only out-of-home activities are 
considered 

2 Activity start time Activities Time 
Distribution of activity start time in 30-minute 
time bins. 

3 
Activity Distribution 
in CA and SA 

Activities Space 
Distribution of share of each activity-type in 
total activities performed in CA 

4 
Types of activities 
performed* 

Activities Structure 
Distribution of n different activities 
performed across m individuals. For ease, 
only out-of-home activities are considered. 

5 
Number of total 
activities 

Activities Structure 
Distribution of total activities performed 
across individuals 

6 
Number of out-of-
home activities 

Activities Structure 
Distribution of number of out-of-home 
activities performed across individuals 

7 
Number of in-home 
activities 

Activities/ 
Tour 

Structure 
The number of times an individual returns 
home within a simulated day.   

8 Tour complexity Tour Structure 
Distribution of share of a activities performed 
by m individuals before returning home 

9 Trips by each mode Trips Structure 
Distribution of percentage of trips by each 
travel mode 

10 
Types of transport 
mode use 

Trips Structure 
Distribution of i transport modes used in trips 
by m individuals  

11 Time spent traveling Trips Time 
Distribution of time spent traveling in 10-
minute bins 
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* FEATHERS distinguishes out-of-home activities in 10 categories: Work, Bring/get, Shopping (daily), 417 
Shopping (non-daily), Services, Social visits, Leisure, Touring and Other. 418 

Table 5: Aggregate validation of proposed benchmarks using Kolmogorov-Smirnov test 419 

 
Antwerp 
Region 

Mechelen 
Region 

Leuven 
Region 

Criteria P-Value P-Value P-Value 
Percentage of trips by each mode 1.00 0.97 1.00 
Types of transport mode use 1.00 1.00 1.00 
Time spent travelling 0.70 1.00 0.40 
Types of activities performed 0.99 0.76 0.98 
Number of in-home activities 0.98 0.98 1.00 
Number of out-of-home activities 1.00 1.00 1.00 
Number of total activities 1.00 1.00 1.00 
% Of time spend on each activity 1.00 1.00 0.98 
Tour complexity 1.00 0.66 1.00 
Activity start time 1.00 0.87 0.79 
Activity Distribution in CA and study area 0.98 0.63 0.63 

 420 

5.4 Disaggregate Validation 421 
This section describes disaggregate analysis of the proposed benchmarks. Five socioeconomic 422 
characteristics (age, work status, driving license, income, and number of cars) are chosen for disaggregate 423 
analysis (Table 6). Amongst these, the first three represent individual characteristics while the latter two 424 
signify household attributes. The disaggregate validation of each of these criteria is further described for 425 
each study area separately. 426 

  Table 6: Classes of socioeconomic variables 427 

Group 1 2 3 4 5 
Age (years) 18-34 35-54 55-64 65-74 74+
Work Status Unemployed Employed - - - 
Driving License No Yes - - - 
Socioeconomic Class [Income (€)] 0-1249 1250-2249 2250-3249 3250+ - 
Number of Cars 0 1 2 or more - - 

 428 

Some differences are found in the benchmarks in each region (Table 7-9). For instance, the distribution of 429 
Activities in CA is found to be significantly different between age group four (65-74 years) and also in 430 
case of Socioeconomic Class (SEC) group one. In total, three distributions are found to be different in 431 
Mechelen and it is observed that these classes have lesser observations than average. Table 9 shows 432 
validation results for Leuven region. Time spent on activities is significantly different for age group five 433 
(75 years or above). Similarly, time spent traveling is also found to be significantly different for 434 
households having no car. This may be due to the fact that unlike most of the other measures, time spent 435 
on activities is arbitrarily grouped using 10-minute intervals. The result changes if another value is used 436 
for defining the significance level.  437 

 438 
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Table 7: Disaggregate results of Kolmogorov-test for Antwerp region 

Criteria / Class Age Work Status License Socioeconomic Class Number of Cars 

Criteria / Class 1 2 3 4 5 1 2 1 2 1 2 3 4 0 1 2 

Activity Start Time 1.00 0.79 0.79 1.00 0.97 0.79 0.97 0.79 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.53 

Share of each transport Mode 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.77 1.00 0.77 1.00 1.00 0.77 0.77 1.00 1.00 

Number of modes used by each 
individual 

1.00 1.00 1.00 1.00 1.00 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

Time spent travelling 0.40 0.99 0.99 0.76 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.76 0.99 0.99 0.76 

Types of activities performed 0.96 1.00 0.27 0.98 1.00 0.98 1.00 0.63 0.66 0.63 0.96 0.27 0.96 0.98 0.96 0.98 

Number of In-home activities 0.93 0.66 0.93 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Number of out-of-home activities 1.00 1.00 0.08* 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.93 

Number of total activities 0.93 0.93 0.93 0.66 0.93 1.00 1.00 0.93 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.93 

Time spent on activities 0.66 0.98 0.98 0.98 0.96 0.98 0.98 0.98 1.00 0.98 1.00 0.98 0.96 0.66 0.66 0.28 

Tour Complexity 0.87 1.00 1.00 0.82 1.00 1.00 1.00 1.00 1.00 0.82 0.82 0.87 1.00 0.87 1.00 1.00 

Distribution of Activities in CA 0.63 1.00 0.63 0.96 0.52 0.63 0.63 0.63 0.63 0.96 0.63 0.63 0.63 0.63 0.96 0.63 

*significantly different at 10% significance level  
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Table 8: Disaggregate results of Kolmogorov-test for Mechelen region  

Criteria / Class Age Work Status License Socioeconomic Class Number of Cars 

Criteria / Class 1 2 3 4 5 1 2 1 2 1 2 3 4 0 1 2 

Activity Start Time 0.97 0.97 0.97 0.30 0.79 0.97 0.79 0.53 1.00 0.53 0.97 0.97 0.79 0.97 0.97 0.97 

Share of each transport Mode 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Number of modes used by each 
individual 

1.00 1.00 1.00 0.70 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Time spent travelling 0.40 0.40 0.40 0.76 1.00 0.40 0.40 0.76 0.99 0.99 0.16 0.76 0.76 0.99 0.76 0.40 

Types of activities performed 0.63 0.98 0.98 0.63 0.96 0.66 0.98 0.96 0.98 0.96 0.96 0.98 0.98 0.96 0.98 0.98 

Number of In-home activities 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Number of out-of-home activities 1.00 0.93 1.00 0.66 0.93 1.00 1.00 1.00 0.93 1.00 1.00 0.93 0.93 0.93 1.00 0.93 

Number of total activities 0.93 0.93 1.00 0.38 0.18 1.00 0.93 0.93 0.93 1.00 1.00 0.93 0.93 0.93 1.00 0.93 

Time spent on activities 0.66 0.66 0.66 0.08* 0.27 0.66 0.28 0.96 0.28 0.27 0.66 0.98 1.00 0.27 0.66 0.28 

Tour Complexity 0.82 1.00 0.82 0.82 0.82 0.82 1.00 0.87 0.87 0.82 1.00 1.00 1.00 0.82 1.00 1.00 

Distribution of Activities in CA 0.63 0.96 0.27 0.02* 0.63 0.66 0.27 0.96 0.96 0.09* 0.27 0.96 0.96 0.98 0.96 0.86 

Table 9: Disaggregate results of Kolmogorov-test for Leuven region 

Criteria / Class Age Work Status License Socioeconomic Class Number of Cars 

Criteria / Class 1 2 3 4 5 1 2 1 2 1 2 3 4 0 1 2 

Activity Start Time 0.49 0.96 0.96 0.77 0.49 0.30 0.79 0.53 0.53 0.07* 0.79 0.79 0.97 0.15 0.79 0.97 

Share of each transport Mode 1.00 1.00 1.00 0.70 1.00 1.00 1.00 1.00 1.00 0.70 1.00 1.00 1.00 0.70 1.00 1.00 

Number of modes used by each 
individual 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Time spent travelling 0.76 0.76 0.16 0.20 0.40 0.16 0.40 0.40 0.40 0.76 0.40 0.40 0.99 
0.05

* 
0.16 0.76 

Types of activities performed 1.00 0.66 0.63 0.27 0.96 1.00 0.98 0.63 0.66 0.27 0.96 0.96 0.96 0.27 1.00 1.00 

Number of In-home activities 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Number of out-of-home activities 0.66 1.00 1.00 0.93 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Number of total activities 0.66 1.00 1.00 0.66 0.66 0.93 0.93 0.38 1.00 1.00 0.93 1.00 0.93 0.66 0.93 1.00 

Time spent on activities 0.66 0.98 0.98 0.63 0.09* 0.28 0.98 0.63 0.98 0.63 0.98 0.66 0.98 0.27 1.00 0.98 

Tour Complexity 0.33 0.87 1.00 0.33 1.00 1.00 1.00 1.00 0.87 0.82 1.00 0.82 0.87 0.82 0.87 1.00 

Distribution of Activities in CA 0.63 0.96 0.96 0.09* 0.09* 0.63 0.63 0.89 0.27 1.00 0.63 0.27 0.63 0.96 0.27 0.63 
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6 Discussion 432 
This paper describes a scheme to model residents external activity and travel by defining only the region 433 
of interest as the study area and its surrounding region as the CA. Defining the CA allows to model 434 
external activity-travel as part of complete schedule rather than modeling them separately through external 435 
travel models. Thus, the presented methodology allows to develop an ABM for a medium-sized region by 436 
addressing the issue of external travel. Furthermore, it also reduces data collection, model development 437 
and computational efforts as the HTS and synthetic population is only required for the study area. 438 
However, defining a medium-sized region as a study area also increases non-resident external trips in the 439 
study area. therefore, proper estimation of non-residents external trips is required in order to correctly 440 
calibrate the ABM. To address this issue, a comprehensive methodology is described to estimate non-441 
residents external trips which only rely on the open-source platforms and the HTS. For details, the readers 442 
may refer to (Baqueri, Adnan & Bellemans, 2018; Baqueri, Adnan, Knapen, et al., 2018). Therefore, 443 
defining a medium-sized study area and properly estimating external trips is a better approach in terms of 444 
data collection and model development efforts for ABMs while estimating external trips through a non-445 
data intensive approach. 446 

The ABM framework proposed in this study has a generic skeleton and can be applied to any other ABM. 447 
An added value of this approach is the ability to test policy scenarios. For instance, What shall be the 448 
effect on residents’ travel pattern of an improved transit service in the CA? or the effect of land use 449 
change in the CA on the distribution of activities within and outside the study area? Or implications of 450 
congestion charging around the boundary of the study area on total vehicle kilometers traveled? 451 

There are some observations that require further explanation. For instance, the variable POI density is not 452 
found significant in the DTs that determine the location of secondary activity, except in one occasion. One 453 
reason behind this may be that the POI density is defined irrespective of the activity type that can be 454 
performed there. However, most open-source platforms allow categorizing POI according to the activity 455 
type such as work, education, shopping, etc. Thus, the POI densities can be calculated discretely for each 456 
activity type. This adaptation shall further enrich the DTs for each type of the secondary activities. 457 
Furthermore, the variation in the land use can also be effectively utilized by developing numerous indexes 458 
from the open-source data. Case in point is the Entropy Index measure which solely relies on the POI 459 
count and describes the land use as mixed or suitable only for a particular activity type (Baqueri, Adnan & 460 
Bellemans, 2018).  461 

Another important aspect here to consider is the quality of the open-source data. For example, the 462 
correlation between the buildup area and POI density in Antwerp, Mechelen, and Leuven is 0.68, 0.67 and 463 
0.85 respectively. This strong association between the two data sources improved the model explanatory 464 
power and especially the top-level model. The results may be different if the two data sources do not 465 
match with each other. Therefore, a successful implementation of the proposed approach heavily depends 466 
on the quality of the open-source data. Furthermore, the POI data represents the land use just as a point 467 
and does not distinguish them on the basis of area, height, and other attributes. Therefore, a multi-story 468 
land use could be considered equivalent to a single shop. For instance, the hospital in Leuven is a super 469 
entity where patients from all over Flanders visit, thus generating a lot of external travel. However, the 470 
lack of data on its area or other characteristics undervalues its prominence. This shall be a possible 471 
explanation behind differences in some validation measures in the Leuven region.  472 

Besides, the availability of a land use (in terms of opening hours) is also relevant for assigning locations, 473 
which many open-source platforms either do not contain at all or allow its restricted usage. However, with 474 
the advancements in the Internet of Things (IoT), further detailed information can be obtained and utilized 475 
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as per the availability and the modeling requirements. Few recent studies have described the potential 476 
usefulness of the open-source and the social media data for modeling travel behavior. For a 477 
comprehensive overview of the challenges and available opportunities in this regard, the readers may refer 478 
to Rashidi et al. (2017). 479 

7 Conclusion and Future Work 480 
This paper presented a framework to develop an ABM for medium-sized regions by allowing for 481 
residents’ external activity-travel. Earlier studies separately modeled residents’ external travel (i.e. outside 482 
the scope of the ABM) which resulted in many drawbacks such as the distortions in travel patterns as 483 
activity-locations are assigned only within the study area. Therefore, for an ABM to be effective in 484 
replicating the actual environment, an expanded study area is required to minimize the external travel.  485 

In the proposed framework, the external locations are included in the destination choice models in the 486 
form of a CA as possible locations to perform an activity. The destination choice models are then 487 
modified with top-level models that determine the destination for each activity in the study area or CA. 488 
For activities to be performed inside the CA, a series of DTs are activated that collectively decide the 489 
destination. These DTs solely rely on individual’s socioeconomic attributes, available activity-travel 490 
decisions, and open-source land use information but they do not require any detailed land use or network 491 
information as that may not be available for the CA. These modifications allow modeling external 492 
activity-travel as part of the daily travel pattern rather than estimating them through separate models 493 
which are not sensitive to policy measures. Furthermore, the proposed approach also provides an added 494 
flexibility to define the study area as per the modeling needs. These changes are implemented in ABM-495 
FEATHERS and tested on three medium-sized regions in Flanders, Belgium. The results confirm clear 496 
advantages of the proposed methodology in terms of the decision hierarchy, model development, run-time 497 
and also data collection efforts if the ABM needs to be developed from scratch. Slight differences in 498 
validation are also found in one region where the POI density is not in a close relationship with the 499 
detailed land use data. This suggests that the availability of adequate land use information holds a central 500 
position in the proposed framework. 501 

Furthermore, a comprehensive validation framework is also suggested to compare the model outputs 502 
obtained by defining complete Flanders as the study area and these medium-sized regions as the study 503 
areas. The validation measures include a comparison between activities, trips, and tours in terms of time, 504 
space and the structure. Furthermore, disaggregate validation is also analyzed using five socioeconomic 505 
characteristics (age, work status, driving license, income, and number of cars). The results confirm a close 506 
resemblance between both the models which suggests that an ABM can be developed for small-scale 507 
regions, once the question of external travel is addressed. This paper, therefore, shall pave the way for 508 
practitioners in developing an ABM for a medium-sized region.  509 

The future work shall focus on further testing the applicability of the proposed approach. For instance, 510 
numerous policy scenarios can be tested in the study area or the CA or a case study of new transport 511 
policies/ services etc. can be studied. This way the added value of the framework can be quantified better 512 
by comparing it against a benchmark such as the full-scale ABM. This shall ultimately, therefore, lead 513 
towards developing ABM for medium-sized regions. 514 
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Highlights: 734 

1. Resident’s external activity-travel is integrated in the activity-based model using 735 
FEATHERS. 736 

2. Destination choice models are enhanced for locations outside study area by selecting a 737 
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3. The framework helps application of activity-based model for medium-sized cities. 739 
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