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a b s t r a c t

Energy consumption represents one of themost relevant issues bynow in operating computing infrastruc-
tures, from traditional High Performance Computing Centers to Cloud Data Centers. Low power System-
on-Chip (SoC) architectures, originally developed in the context of mobile and embedded technologies,
are becoming attractive also for scientific and industrial applications given their increasing computing
performances, coupled with relatively low costs and power demands. In this paper, we investigate the
performance of the most representative SoCs for a computational intensive N-body benchmark, a simple
deep learning based application and a real-life application taken from the field of molecular biology. The
goal is to assess the trade-off among time-to-solution, energy-to-solution and economical aspects for both
scientific and commercial purposes they are able to achieve in comparison to traditional server-grade
architectures adopted in present infrastructures.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays the costs related to the running of applications, and
consequently the provisioning of services, are more and more
dominated by the electricity bill, therefore the adoption of energy-
efficient solutions is crucial [1]. This is particular important for
large Information Technology (IT) infrastructures, such as High
Performance Computing (HPC) facilities or Cloud Data Centers,
which demand energy efficient servers to keep their carbon foot-
print within acceptable limits. In fact, as reported in [2], data
centers in the U.S. consumed in 2014 about 70 billion KWh, repre-
senting 1.8% of total U.S. electricity consumption. The perspective
is to consume approximately 73 billion KWh in 2020. A similar
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issue holds true also in theHPC research field,which is facingmajor
challenges on the path towards exascale computing. An exascale
system can be defined as a supercomputer that can solve scientific
problems 10x faster than the best petaflop systems1 in a power
envelope of 20–30 MW. By simply scaling current technologies to
exascale, a supercomputer would consume 100 MW, i.e. 10x more
than today. Thus, the need for new solutions arises.

Several techniques and best practices have been proposed to
face this issue, e.g. [3]. In particular, on the one hand, high-end
processors are quickly introducing more advanced power-saving
and power-monitoring technologies [4–6]. On the other hand,
a new class of low-power processors, often called Systems-on-
Chip (SoCs), are gaining an increasing interest in many applicative
fields [7,8]. Originally designed for the mobile market, SoCs are
progressively reducing the performance gap with high-end pro-
cessors, with the added value of keeping a competitive edge on
costs, reducing their carbon footprint and preserving the environ-
ment [9].

1 https://www.top500.org.
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The superior performance/consumption ratio of SoCs is driven
by the growing demands for hand-held devices and energy-savvy
boards in mobile and embedded industrial applications. An exam-
ple can be represented by portable sequencing machines, such as
the Oxford Nanopore Minion [10], where power consumption for
on field data analysis represents amajor issue. This devicewill lead
to the direct analysis of genomes of humans, animals or plants
in remote regions of the world, or to analyze the composition of
the microbioma in air-filters, water or soil samples in a simple
and portable way, possibly coupling Edge, Fog and Cloud comput-
ing [11].

Indeed, the primary design goal for embedded processors has
been low power consumption because of their use in battery-
powered devices. By contrast, the current power-hungry tradi-
tional servers were designed for high floating point performance.
Moving away from their primordial mobile and embedded worlds,
SoCs are conceivably becoming an interesting alternative architec-
ture for running scientific, but also commercial-oriented, applica-
tions without sacrificing toomuch the performances and function-
alities of traditional servers [12].

On the contrary, they presently have not received great at-
tention for equipping computing infrastructures. Investigating the
potential and performances of low power SoC architectures for
scientific and non-scientific workloads in traditional HPC environ-
ments as well as in Cloud computing is the aim of the COmputing
on SoC Architectures (COSA) project,2 an ongoing initiative funded
by the Italian Institute for Nuclear Physics (INFN). The COSA project
is exploring limits and benefits of low power SoCs compared to the
current mainstream high-end x86/CUDA server architectures [13].

Within this initiative, the goal of this work is to assess the
achievable trade-off among time-to-solution, energy-to-solution
and economical aspects of SoC-based infrastructures. This paper
represents an extended version of [14], aiming at a more extensive
evaluation of the performance of the heterogeneous SoC architec-
tures that equip the COSA lab. In particular, we exploited most of
the state-of-the-art SoC devices, and thus one of the original and
key findings is a consistent and meaningful comparison among
them.

At first we considered two benchmarks, represented by the
widely used, computational intensive N-body algorithm and the
use of a Deep Learning approach applied to a classification prob-
lem. In particular, Deep Learning is part of the broader family of
machine learning methods and deals with algorithms inspired by
the brain structure that can be used for several tasks, such as for
example the classification of features and images. In this case, the
focuswas on the possibility of running classification approaches on
SoC devices. Considering that we used very popular Deep Learning
libraries for our tests, our results can be applied to a wide range of
applications.

Even if benchmarking is a widespread method to measure and
evaluate the performance of computer platforms, the most accu-
rate answer to application-specific needs should take into account
their actual implementation [15]. By analyzing the system indica-
torswhich aremore stressed by the application under some typical
and known conditions (e.g. input data size, degree of parallelism,
average bandwidth consumption), it should be possible to figure
out the behavior of the system when executing the application in
similar future scenarios.

This is the reason why we also present an evaluation of the
feasibility, performance and cost requirements for a small-medium
enterprise (SME) offering a service based on a real-life applica-
tion taken from the field of molecular biology, namely the Next-
Generation Sequencing (NGS) analysis. We discuss the achiev-
able trade-off figures among acquisition costs, energy costs and

2 http://cosa-project.it.

performance comparing SoCs and standards enterprise-oriented
platforms.

The paper is organized as follows. Section 2 presents the related
works and the COSA lab, i.e. the hardware, energy and economic
specifications of the architectures employed in our tests. The per-
formance achievable with the N-body algorithm are discussed
in Section 3, while the bioinformatic and NGS applications are
analyzed in Sections 4 and 5 respectively. Conclusions and future
developments are outlined in Section 6.

2. Materials and methods

In this Section, after a brief overview of related works, we
describe the platforms used in the tests.

2.1. Related works

The sustainability of IT infrastructures, and Cloud data centers
in particular, is a major research topic. For example since 2010
Greenpeace has been calling to power data centers on renewable
energy and monitors this process every year.3 Power-related as-
pects of Cloud data-centers have been widely analyzed (e.g. [16,
17]) as well as the use of renewable energy [18] and the location of
new data centers.4

In general, virtualization and consolidation of servers are effec-
tive methods to reduce energy usage [19]. Then, modern server
designs have automatic power-off or power-saving capabilities
built in, that can be exploited to save power when they are not
running heavy loads [20]. Instead, the use of low-power SoCs
has not been extensively investigated so far. Considering that the
power consumption of the first petascale system was of about 2.4
MW, the HPC scientific community, started in 2009 the discussion
on how to scale up to 1 Exaflop while staying in a power envelope
of 20–30 MW [21]. So far, several research projects were funded
to tackle the key issue of designing new hardware components,
together with suitable programming environments.

The Mont-Blanc project5 [22] has deployed several generations
of HPC clusters based on ARM processors, developing also the
corresponding eco-system of HPC tools targeted to this architec-
ture [23]. The latest phase 3 system, named Dibona, is going to be
commercialized in 2018.6 Another project along this direction is
the EUROSERVER7 [24] coordinated by CEA, which aims at design-
ing and prototyping technology, architecture, and system software
for the next generation of data center ‘‘Micro-Servers’’, exploiting
64-bit ARM cores. Many research groups are on the same research
line, exploring different hardware low-power platforms or soft-
ware techniques: some are exploring Dynamic Voltage and Fre-
quency Scaling (DVFS) techniques as away tomodulate power con-
sumption of processor and memory, scaling the clock frequency of
one or both sub-systems according to the execution of memory- or
compute-bound application kernels [20]. More recently, also the
Near Threshold Voltage (NTV) computing [25] technique has been
employed formaking the processor towork at even lower voltages.
Other initiatives dealingwith the creation of low-power basedma-
chines are the Spiking Neural Network Architecture (SpiNNaker)
project8 [26], proposed by the Advanced Processor Technologies
Research group at the University of Manchester and the project
ExaNeSt [27].

3 http://www.clickclean.org/international/en/.
4 http://www.vertatique.com/importance-location-green-data-centers.
5 http://www.montblanc-project.eu/.
6 http://montblanc-project.eu/prototypes.
7 http://www.euroserver-project.eu/.
8 http://apt.cs.manchester.ac.uk/projects/SpiNNaker/.
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Table 1
Hardware specifications of the architecture of the COSA lab hosted at INFN-CNAF in
Bologna plus the traditional reference architecture used for comparisons. The Bill Of
Material — BOM corresponds to the money spent to acquire each single platform.
Platform CPU cores GPU cores TDP (W) RAM (GB) BOM (e)

Pentium N3700 4 – 6 16 300
Pentium J4205 4 – 10 16 300
Jetson TK1 4 192 11 8 160
Jetson TX1 4 256 15 8 480
Avoton C2750 8 – 20 16 800
Xeon D1540 8 – 45 16 1100
Atom C3958 16 – 25 32 1050
Dual Xeon E5-2683 32 – 250 256 5000
NVIDIA Tesla K20 – 2496 225 5 600

2.2. Experimental setup

To validate our approach, we experimented different appli-
cations on the heterogeneous testbed summarized in Table 1. It
is composed by two classes of machines: Xeon E5-2683v4 and
NVIDIA Tesla K20 Graphic Card are server-grade platforms hosted
in the server room of the CNAF production data center, while
Pentium N3700, Pentium J4205, Jetson TK1, Jetson TX1, Avoton
C2750, Xeon D1540 and Atom C3958, are mini-ITX boards hosted
in the data center.

Despite the COSA lab is equipped with some ARM-based CPUs,
in the tests we have considered mainly x86-based hardware be-
cause the porting of the software to these platforms was straight-
forward, having all the dependencies already compiled and avail-
able. The evaluation of the effort needed to exploit these architec-
tures from the developers point of view will be investigated as a
future work.

The differences between the platforms are evident looking at
the columns reporting the thermal design power (TDP) andmedian
Bill Of Material (BOM), i.e. the cost for acquiring each platform. Of
course, the Xeon E5 platform is more expensive than the others,
also because it represents an high-end server, i.e. it is one node of
the HPC cluster equipped with multiple sockets, redundant power
supplies, fans, disks, and huge RAM amounts.

This platform is our reference machine. In detail, it is based
on a Dual Xeon E5-2683v4, a 64-bit 16 core x86 CPU introduced
in early 2016. It operates at 2.1 GHz base frequency with a turbo
boost of 3 GHz for a single active core and it has Hyper-Threading
capabilities. It is manufactured on a 14 nm process and is based on
the Broadwell microarchitecture. It supports up to 1.5 TB of ECC
DDR4 RAM and it is equipped with 40 MB L3 cache. It is the only
microprocessors in this work that can be installed in dual socket
configuration.

For what concerns the GPUs, we consider as reference the
K20 GPU accelerator card. Released in 2012, it is equipped with
2496 CUDA cores and it still represents a device with relevant
performance at a low price, because the last generation of TESLA
accelerators cost up to 10,000 e. In both cases, the price is related
to the acquisition of the card itself, that has to be hosted in a server,
e.g. the above one based on the Xeon E5.

The other platforms can be grouped in server-grade low power
SoCs (Avoton C2750, Xeon D1540, Atom C3958) and in mobile-
grade SoCs (Pentium N3700, Pentium J4205, Jetson TK1, Jetson
TX1). In the following paragraphs, we briefly describe their main
features.

Low-power mobile-grade.

• The Pentium N3700 is a very low power (i.e. 6 W TDP) 64-
bit quad-core system on a chip released in early 2015. The
N3700 is manufactured in 14 nm lithography and is based on
the Airmont microarchitecture. It operates at 1.6 GHz with

turbo mode of up to 2.4 GHz. It is equipped with a 2 MB L2
cache but no L3 cache. The N3700 SoC incorporates the HD
Graphics GPU (16 execution units at 400 MHz). It supports
8GB of DDR3 low voltage RAM at 1600 MHz (no ECC).

• The Pentium J4205 is a quad-core 64-bit x86 SoC released in
2016. The processor is based on Goldmont microarchitecture
and is manufactured on a 14 nm process. The CPU operates
at 1.5 GHz (2.6 GHz burst frequency) and has a TDP of 10 W.
The SoC incorporates the Intel’s HD Graphics 505 GPU at 250
MHz (burst frequency of 800 MHz). It supports up to 8GB of
DDR3 RAM (no ECC) and features a 2 MB L2 cache, but no L3.

• The Jetson TK1 board is based on the Tegra K1 NVIDIA SoC.
It is a mobile processor (TDP of about 10 W) that features a
CPU and a GPU based on the architecture similar to a modern
desktop NVIDIA GPU. However, it still uses the low power
draw of a mobile chip. Tegra K1 allows embedded devices
to use the same CUDA code that runs on a desktop or on a
server GPU. The CPU is an NVIDIA ‘‘4-Plus-1’’ 2.32 GHz ARM
quad-core Cortex-A15 (plus an energy saving shadow core).
The GPU is a NVIDIA Kepler GK20aGPUwith 192 SM3.2 CUDA
cores (up to 326 GFLOPS). The board is equipped with 2GB of
RAM (no ECC).

• The Jetson TX1 is a 64 bit evolution of the previous board
and it is based on an embedded system-on-module (SoM)
with quad-core ARM Cortex-A57, 4GB LPDDR4 and with an
integrated 256-core Maxwell GPU.

Low-power server-grade.

• The Avoton C2750 (now rebranded as Atom C2750) was re-
leased at the end of 2013 and provides a low power (20 W
TDP) octa-core, 2.4GHz CPU. Producedwith the 22 nm lithog-
raphy technology, it is based on the Silvermont microarchi-
tecture. As the C3958 (see below), it supports ECC memory,
up to 64GB.

• The Xeon D1540 is a 64-bit octa-core x86-64microserver SoC
released in March 2015. It is based on the same Broadwell
microarchitecture of the Xeon E5, it ismanufactured in 14 nm
process and can support up to 128GB of DDR4 ECC RAM.
The D1540 features a 12 MB L3 cache and operates at 2 GHz
with a turbo frequency of 2.6 GHz. Two 10 Gigabit-Ethernet
connections are embedded into the SoC.

• Atom C3958 is a 64-bit multi core, low power (25WTDP) x86
microserver system released in the third quarter of 2017. It
is manufactured on a 14 nm process and it is based on the
Goldmont microarchitecture. The base CPU clock is 2.0 GHz.
The C3958 features 16MB L2 cache and supports up to 256GB
of dual-channel DDR4-2400 ECC memory, with 10 Gigabit-
Ethernet connections embedded into the SoC.

3. The N-body application

Many physical phenomena involve, or can be simulated with,
particle systems, where each particle interacts with all other parti-
cles according to the laws of physics. Examples include the grav-
itational interaction among the stars in a galaxy, the Coulomb
forces exerted by the atoms in a molecule for molecular dynamics
applications and turbulent fluid flow studies. The challenge of
efficiently carrying out the related calculations is generally known
as the N-body problem, defined as follow: given an ensemble of
N entities in space whose interaction is governed by a potential
function, the N-body problem is to calculate the force on each body
in the ensemble that results from its interaction with all other
bodies.

Mathematically, given N bodies with massmi, initial position xi
and initial velocity vi, the N-body problem can be formulated as

U(xi) =

N−1∑
j=0

F (xi, xj)



14 D. D’Agostino, A. Quarati, A. Clematis et al. / Future Generation Computer Systems 96 (2019) 11–22

where U(xi) is a physical quantity at xi which can be obtained by
summing the pairwise interactions with all the other particles of
the system. In particular, the gravitational force exerted on the
particle xi by particle xj is expressed as

F (xi, xj) = Gmimj
xj − xi

∥xj − xi∥3

where G is the gravitational constant and mi, mj the particles
masses.

The solution of the N-body problem proceeds over timesteps,
each time computing the force on every body and thereby updating
its position and other attributes. The All Pairs approach is the
straightforward solution technique, which evaluates the interac-
tions between all the pairs of the N bodies. It requires O(N2) oper-
ations at each timestep, which makes the algorithm very popular
for demonstrating the speedups achievable with a computational
system.

An in-depth evaluation of the performance achievable on classic
HPC architectures using three implementations of the algorithm,
i.e. a sequential implementation, its parallelization for single-node
multi-core architectures and a parallelization for CUDA architec-
tures has been presented in [28]. Here we adopted the same ap-
proach for evaluating the platforms of Table 1.

Listing 1: Main loop of the sequential algorithm for the solution of
the N-body problem.

for (k=0; k<timesteps ; k++) { / / FIRST loop
swap( oldbodies , newbodies ) ;
for ( i =0; i <N; i ++) { / /SECOND loop

to t_ fo r ce_ i [X] = to t_ fo r ce_ i [Y] = to t_ fo r ce_ i [Z ] = 0 .0 ;
for ( j =0; j <N; j ++) { / / THIRD loop

i f ( j == i ) continue ;
//20 f l oa t ing point operations
r [X] = oldbodies [ j ] . pos [X] oldbodies [ i ] . pos [X] ;

/ / analogous for r [Y] and r [Z ]
dis tSqr = r [X]∗ r [X] + r [Y]∗ r [Y] + r [Z]∗ r [Z ] + EPSILON2 ;
d i s tS ix th = distSqr ∗ distSqr ∗ distSqr ;
invDistCube = 1 .0 / sq r t f ( d i s tS ix th ) ;
s = oldbodies [ j ] . mass ∗ invDistCube ;
to t_ fo r ce_ i [X] += s ∗ r [X] ;

/ / analogous for Y and Z
}
//24 f lops
dv [X] = dt ∗ to t _ fo r ce_ i [X] / oldbodies [ i ] . mass ;
newbodies [ i ] . pos [X] += dt ∗ ( oldbodies [ i ] . vel [X] + dv [X] / 2 ) ;
newbodies [ i ] . vel [X] = oldbodies [ i ] . vel [X] +dt ∗ dv [X] ;
/ / analogous for Y and Z

}
}

In Listing 1 the core of the All Pairs approach is shown. The
main loop corresponds to the given number of timesteps; in the
second loop at first the total force on each particle is computed
as the result of the sum of all the gravitational attraction with all
the other particles, obtained with the third loop, then each particle
position and velocity is updated as result of this force.

In particular the number of floating point operations (FLOP)
for each iteration (i.e. considering the second and third loops) is
(N ∗(N−1)∗20)+(24∗N), and the total amount of flops operation
per execution is timesteps times this value.

3.1. Performance evaluation

We performed several tests considering a variable number of
bodies and timesteps. We present here the best results, achieved
with 100 timesteps and 10,000 bodies, corresponding to about 200
billion operations.

Table 2
Performance, in GFLOPS, of the N-body algorithm implementations.

1 4 8 16 32 64 GPU

N3700 0.53 2.10
J4205 1.29 4.67
Avoton 0.58 2.33 4.64
C3958 1.00 3.99 7.98 15.86
Xeon D 2.46 4.68 9.26 17.42
Xeon E5 2.66 9.42 16.88 32.14 64.36 102.97
TK1 0.83 3.12 157.50
TX1 0.88 3.22 333.39
K20 1112.66

We implemented the parallel version for multi-core using the
Open specifications for Multi-Processing (OpenMP) directives,
while we used CUDA for the parallel version for GPU. We did
not consider the use of multiple nodes for a single parallel run
because of the poor performance of SoC in MPI applications. The
performance using the gcc compiler with optimization flags O3 are
shown in Table 2 and Fig. 1 in billion floating point operations per
second (GFLOPS).

In the sequential case we can see that Xeon E5 and Xeon
D provide the best performance. Results are nearly the same,
as expected, because both are based on the Broadwell micro-
architecture. However the greater amount of L2 and L3 caches in
the Xeon E5 plus the greater number of available cores allow to
get up to 103 GFLOPS, 6 times more than the parallel performance
achievable with the Xeon D.

The actual best performance, however, are provided by the
GPUs, as expected for an algorithm based on a regular problem like
the N-body. All of them provide better performance than the Xeon
E5, even the oldest TK1, and K20 is 11 times faster.

Moving to the other server-grade, low-power SoCs, we can see
that C3958 presents results comparable with the Xeon D. While
C3958 incorporates more processing cores than the Xeon D, the
greater operating frequency plus the newer architecture of the
latter result in better performance. Moreover the Xeon D features
a richer instruction set (e.g. AVX and FMA3) that can be exploited
to further improve the performance. The Intel Atom C3000 series
succeeds the Intel Atom C2000 series, originally named Avoton,
and this is reflected by the poorer performance of the Avoton SoC
that, even if classified on the server-grade SoCs, presents results
comparable with the mobile-grade J4205. It is worth to note, in
fact, that both J4205 and C3958 are based on the Goldmont mi-
croarchitecture, with themain difference represented by the lower
operating frequency and number of cores of the J4205. At last, the
worst performance are provided by N3700. This is due to the fact
that its architecture has been derived by the Silvermont one, thus
it presents nearly the performance of the Avoton, but with 4 cores
only.

For reference, considering the highest performance achievable
by each architecture, we get the result in 95 seconds using N3700,
in 43 sec. using both J4205 and Avoton, in 12 sec. using both C3958
and Xeon D, in less than 2 sec. using the Xeon E5, in about 1 sec.
using the GPU of TK1 and less than 1 sec. using both the GPUs of
TX1 and K20.

3.2. Energetic evaluation

A different scenario arises when we evaluate the power con-
sumption for performing the computation. As stated in [14], the
laboratory power measurement equipment consists of a high pre-
cision DC power supply, a high precision digital multimeter con-
nected to a National Instruments data logging software, and a high
precision AC power meter. To monitor the consumption of the
SoCs, the DC current absorbed is measured by a Voltech PM300
Power Analyzer downstream of the power supply.
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Fig. 1. Figure shows performance in GFLOPS of N-body simulation.

Table 3
Power consumption, in Joule, of the N-body simulation.

1 4 8 16 64 GPU

N3700 3,754.83 1,089.55
J4205 1,434.12 538.80
Avoton 7,517.29 1,987.2 1,090.43
C3958 6,316.13 1,674.84 899.90 515.12
Xeon D 2,834.12 2,017.33 1,054.3 760.89
Xeon E5 21,056.32 16741.27 11365.22 5872.12 659.6
TK1 3,132.23 814.32 15.07
TX1 4,126.42 1,034.56 11.54
K20 43.56

Results are shown in Table 3 and Fig. 2. Also in this case, the
best results are provided by the GPUs, but TX1 requires one fourth
of the energy needed by K20 for providing results in 0.6 s instead
of 0.2.

C3958 provides the best result for the CPUs. In particular it
uses 22% less energy of Xeon E5 for providing the results 6.5
times slower and it costs one fifth. It uses about 33% less energy
in comparison to the Xeon D and in this case it requires just
one second more to compute the result at about the same cost.
Surprisingly, even J4205 presents better results in comparison to
the Xeon D. This is justified by the feature of the Silvermont ar-
chitecture, designed to be less power hungry in comparison to the
Broadwell, but is however a key result to highlight the importance
of considering the trade-off between time-to-solution (43 sec for
J4205 vs. 12 using Xeon D) and energy-to-solution (539 Joule vs.
761 respectively). The Avoton, together with N3700, shows the
worst performance, even if the latter costs about one third of the
former.

It is important to note that the values actually measured do not
always correspond to those declared by the manufacturers.

3.3. Economic evaluation

These results are important to evaluate the different scenarios
arising ifwewould replace the existing equipments of a computing
center with low-power clusters. In particular, we considered the
characteristics of the CNAF data center9 [29], which is equipped
with about 30,000 heterogeneous cores providing a computational
power of about 400 kHS06.

HS0610 is a benchmark for measuring CPU performance in
order to provide a consistent and comparable measure of existing

9 https://www.cnaf.infn.it/en/core-computing.
10 https://w3.hepix.org/benchmarking.html.

Table 4
Summary of performance of a synthetic benchmark (HS06) figures for providing
400,000 HS06.

Number of
platforms

Acquisition cost
Million e

Power (kW) Daily energy
(e)

N3700 14,277 2.27 100.0 268.8
J4205 12,117 3.47 121.3 326.0
Avoton 7,265 1.24 181.3 487.3
C3958 3,333 3.47 155.9 419.1
Xeon D 2,640 2.93 210.6 566.1
Dual Xeon E5 694 3.33 243.9 655.6

computational equipments. It has been developed by the HEPiX
Benchmarking Working Group using the industry standard SPEC
CPU2006 benchmark suite.

Results are shown in Table 4 and Fig. 3. In this analysis we dis-
regard GPUs, that clearly would represent the best choice, because
they effectively support only application based on regular domains.
We disregard also other hardware elements to be considered in
the total cost of ownership of a computing center [30], mainly
switches, cabling, and cooling systems.

We can see that only the solution based on the dual Xeon E5
requires less than 1000 platforms, while the others require from 4
to 20 timesmore elements. However, the cost for acquiring them is
comparable or lower, about halved using Avoton. The cost saving is
evenmore important considering an estimation of the daily energy
cost in the worst case, i.e. when all the cores are busy for the whole
day.

This value assumes an hourly energy price per KW of e0.112,
determined by the average price supplied by Eustat in the second
half of 2017.11 As known, the energy market has strong spa-
tial/temporal scale variations. Just to mention spatial fluctuations,
we remind the 2015 price per KWh in three US states12: ¢7.4
(Washington), ¢15.42 (California) and ¢26.17 (Hawaii), with a US
average price of ¢10.41 . In Europe for the sameperiod, the price per
KWh ranges from ¢7.8 (Bulgaria) to ¢16 (Italy), with EU-28 average
of ¢11.9.

If we estimate the yearly bill, the saving due to the use of low-
power SoC, in comparison to Xeon E5, can be of 33,000 e using
XeonD, of 120,000e using J4205 and up to 141,000e using N3700.

The question now becomes: do these raw numbers correspond
to achievable performance figures? In the next Sections we discuss
the performance of a different benchmark and then those of a real-
life Bioinformatics application.

11 http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy.
12 https://www.eia.gov/electricity/state/.

https://www.cnaf.infn.it/en/core-computing
https://w3.hepix.org/benchmarking.html
http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy
https://www.eia.gov/electricity/state/
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Fig. 2. Figure shows power consumption in Joule of N-body simulation.

Fig. 3. Figure shows how many boards are needed to have a cluster of 400 kHS06 and their consumption.

4. The deep learning application

Deep Learning (DL) is a representation-learning method ex-
ploiting simple blocks that models the knowledge by transforming
the information layer after layer using a hierarchical approach,
from low-level to high-level features, making possible the learning
of more abstract levels of representation [31].

In the last years, DL has attracted a lot of attention by tack-
ling problems in different application domains and achieving re-
sults beyond expectations. For example, it has been applied in
bioinformatics, game playing, imaging processing, object detec-
tion, robotics and drug discovery. One of the main reasons for
the increasing use of DL algorithms is the need to implement
approaches for the analysis of the large amount of heterogeneous
data produced in every field, moving from statistical to model-
based representations.

One of the main application of DL concerns classification prob-
lems, where these models are used to discriminate the data in a
more accurate way compared to other techniques, eliminating all
the variables that are not relevant for the study. In particular, DL
can be used with a supervised or unsupervised approach. In the first
case, the class of each data is known and the algorithm is run to
determine the weights that can separate the classes in the best
way. In the unsupervised learning, instead, the classification is per-
formed observing the data and finding common and uncommon
characteristics to divide the feature space. During the training, an
error function is calculated and the weights aremodified to reduce
the error.

The number of weights to adjust is typical of each network
and is also a proxy of the complexity of the problem. The most
used procedure to evaluate the weights is the back-propagation
of the stochastic gradient descent (SGD). Using this approach,
the input examples are divided into small sets, the outputs and
errors are evaluated for each set, the average gradient is calculated,
and the weights modified accordingly. The procedure is repeated
until the average of the objective function stops decreasing. The
performance is then tested on an independent set, named the test
set, to verify the ability of the trained model to classify unknown
data.

Differences between models are due to the number of layers
used to construct the network, types of layers considered, and
the hyper-parameters used to refine the net. The most commonly
used networks are the Convolutional Neural Network (CNN) and
the Recurrent Neural Network (RNN), applied mainly on images
and speech recognition, respectively. CNNs are composed by a
sequence of convolution and pooling layers [32], while RNNs are
characterized by feedback loops.

One of the main topics discussed up today is the possibility
to run the training of DL models in a parallel fashion, in order to
reduce the time needed to achieve the results. Many works have
been published concerning these aspects: some summarized the
state of the art related tomulti-core and distributed setting testing
the speedup in training a CNNusing a single core CPU andGPU [33],
whereas others highlighted parallelization as one of the main DL
challenges, in order to get the resolution of which many research
areas would benefit [34,35].
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Some works discuss how DL can be applied to social network
analysis and how the evolution of parallel techniques have in-
creased their performance [36], while others propose approaches
tested on specific networks: [37] is about intra-block parallel opti-
mization to leverage data parallelism and blockwise mode-update
filtering to stabilize learning process; [38] describes a large-scale
distributed system of tens of thousands of CPU cores for train-
ing large deep neural networks; [39] proposed K-Brain, which
performs deep learning and deep inference algorithms for image
recognition.

4.1. Test case

Within this context we considered the use of DL applied to the
bioinformatic problem of identifying the correct mRNA target for
a specific miRNA. miRNAs are small non-coding RNA molecules
that play an important role in a wide range of biological processes,
since they interact with specific mRNAs affecting the expression of
the corresponding proteins. AsmiRNAs dysfunction can lead to the
development and progression of different kind of diseases, from
cancer to cardiovascular dysfunction and neurological disorders,
it is a priority to understand the complex methods behind the
interactions between miRNAs and their targets.

However, the interaction mechanisms between miRNAs with
their messenger RNA targets are poorly understood, because the
experimental identification of miRNA-target interactions remains
challenging due to their complexity and to a limited knowledge of
rules governing these processes. This is the reason why many pre-
diction algorithms have been developed to find possible miRNA-
target interactions. Some of themost popular tools currently avail-
able and preferably used (TargetScan, miRanda, RNAhybrid) are
based on different biological properties and can be highly incon-
sistent with each other. This lack of a large consensus in the pre-
dictions boosted the development of methods to reduce the false
positive predictions, by integrating lists of miRNA-target genes
predicted by other algorithms, relying on the hypothesis that pre-
dictions achieved bymore than one tool have higher probability to
be validated in the lab [40].

Many DL-based frameworks and tools have been proposed
to solve this problem, and very interesting results have been
achieved. In particular, deepTarget [41] is one of the most pop-
ular and relies on autoencoders and RNN to learn miRNA:mRNA
interactions. Other examples are miRAW [42], which uses DL to
analyze thematuremiRNA transcriptwithoutmaking assumptions
on which physical characteristics are the best suitable to impute
targets, and DeepMirTar [43] that predicts human miRNA targets
at the site level.

In our test case we designed a five-layer network using the
Keras neural network library13 and the TensorFlow library for
numerical computation using data flow graphs.14 All the layers are
dense (fully-connected) ones: the first is characterized by 80 units
from which the input data are processed, from the second to the
fourth layer the units are 40, while the last layer, from which we
receive the classification, has 2 units. The activation function is relu
(rectified linear unit) for all the layers except the last, for which the
sigmoid is used.

4.2. Performance and economic evaluations

We selected 572 experimentally validated miRNA:mRNA, con-
sidering both positive and negative interactions, to perform a su-
pervised learning on the predictions achieved using TargetScan,
miRanda and RNAhybrid. A total of 5 scores have been collected

13 https://keras.io.
14 https://github.com/tensorflow/tensorflow.

Table 5
Summary of performance and energetic results for the miRNA target identification.
T represents the neural network training part of the application, C the classification.

Execution time Power consumption

T (min) C (s) T (MJ) C (J)

N3700 324 2.1 0.005 0.53
J4205 263 1.6 0.008 0.77
Avoton 271 2.8 0.026 4.44
C3958 219 1.3 0.056 5.56
Xeon D 110 2.2 0.082 27.2
Xeon E5 85 1.9 1.7 618
TK1 2025 12.02 13.7 1351
TX1 890 4.9 8.3 760
K20 98 8.5 1.5 2234

for each miRNA-target, considering the different results provided
by each tool. The DL network was then trained using a 10-cross
validation strategy to find the best weights to correctly separate
the true and false interactions bymapping those scores on the right
label.

The code has been divided into two blocks, the neural network
training and the classification, where the previously trained net-
work is reloaded and used.We used Keras and Tensorflowwith the
default configuration, as they claim to be able to use automatically
all the available CPUs/GPUs. Results are shown in Table 5 and Figs. 4
and 5.

As expected, SoC architectures in general do not represent a
valid solution for the training of a DL network.While the Broadwell
architectures (i.e. Xeon E5 and D) plus the K20 in fact accomplish
this task in less than two hours, the other platforms require much
more time.

In general, we measured a low usage of the computational
capabilities, and this negatively affected in particular the results
achieved using GPUs. According to several developers forum,15
this seems a common issue, as the fact that the installation of the
Keras and TensorFlow libraries is rather complicated on the Jetson
boards,16 while it is much easier on the K20 and actually straight-
forward on the x86 devices. We applied some common strategies
to improve GPU performance, such as changing CUDA version,17
implementing a manual tuning of the batch loading size,18 or us-
ing a different loading procedure,19 but without any considerable
improvement. This aspect will be further investigated.

Despite this issue, the experimental results present a very in-
teresting scenario. The performances of the Xeon D are the best
considering both the execution time and the power consumption.
While the training, in fact, requires about 23% more time that the
Xeon E5, the power consumption is about twenty times lower.
More important, this power consumption figure holds true also for
the classification, but in this case the execution time is nearly the
same.

Moreover, all the x86-based SoCs present the same execution
time for the classification. Some devices, as the C3958, can exploit
very fast storage solution based on SSD, therefore the I/O overheads
are reduced in comparison to the Xeon E5 and, consequently, the
execution time. This holds true also comparing the classification
time of the Jetson TX1 and the K20. The TX1 board is equipped, in
fact, with a 16 GB eMMC flash storage, resulting in very low latency

15 https://github.com/keras-team/keras/issues/249.
16 http://cudamusing.blogspot.com/2015/11/building-tensorflow-for-jetson-
tk1.html.
17 https://github.com/tensorflow/tensorflow/issues/5995.
18 https://stackoverflow.com/questions/42097115/keras-tensorflow-backend-
slower-on-gpu-than-on-cpu-when-training-certain-netwo.
19 https://stackoverflow.com/questions/44563418/low-gpu-usage-by-keras-
tensorflow.

https://keras.io
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras/issues/249
http://cudamusing.blogspot.com/2015/11/building-tensorflow-for-jetson-tk1.html
http://cudamusing.blogspot.com/2015/11/building-tensorflow-for-jetson-tk1.html
https://github.com/tensorflow/tensorflow/issues/5995
https://stackoverflow.com/questions/42097115/keras-tensorflow-backend-slower-on-gpu-than-on-cpu-when-training-certain-netwo
https://stackoverflow.com/questions/42097115/keras-tensorflow-backend-slower-on-gpu-than-on-cpu-when-training-certain-netwo
https://stackoverflow.com/questions/44563418/low-gpu-usage-by-keras-tensorflow
https://stackoverflow.com/questions/44563418/low-gpu-usage-by-keras-tensorflow
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Fig. 4. The execution time for neural network training and classification. The scale is logarithmic.

Fig. 5. The power consumption, in Joule, for neural network training and classification. The scale is logarithmic.

Table 6
Parameters of the applicative scenarios considered for the execution of the NGS application.

Potential
customers

Experiments
per day

Amount of data for
experiment

Note

Research labs 7 1 10–50 GB Usually an experiment corresponds to
many samples to analyze. There are
also breaks periods

Hospitals 15 3 1–10 GB The rate is constant
Farms 10 5 1–10 GB The rate is constant
Food industry 5 10 500 MB–1 GB The rate is constant and quite urgent

to move data in comparison to the SATA disk of the K20. Looking
at the power consumptions, the N3700 is able to classify using 0.5
J in comparison to the 618 J required by the Xeon E5.

Therefore, we can conclude that the Xeon D represents a very
good compromise when an application has to perform both the
training and the classification, while cheaper, less powerful, but
alsomore energy-saving devices are suitable candidateswhen only
the classification is required. In particular, this is an interesting
results for embedding DL applications in devices used on the field,
as for example SoC-bases smart cameras for space monitoring [44]
or IoT applications [45,46] and, more in general, when DL meets
the edge computing20 [47], because they provide greater andmore
general-purpose compute capabilities than the commonly used
FPGAs at a reasonable price.

20 https://towardsdatascience.com/deep-learning-on-the-edge-9181693f466c.

5. The NGS application

The increasing availability of molecular biology data resulting
from improvements in experimental techniques represents an un-
precedented opportunity for Bioinformatics and Computational Bi-
ology, but also a major challenge [48]. Due to the growing number
of experiments involving genomic research, originating from the
spreading of these techniques from research centers to hospitals
and from farms to food industries, the amount and complexity of
biological data is increasing very fast.

In particular, the high demand for low-cost sequencing has
driven the development of high-throughput technologies that par-
allelize the sequencing process, producing thousands or millions
of sequences concurrently [49]. Such huge and heterogeneous
amount of digital information is fundamental for uncovering dis-
ease associated hidden patterns in data [50,51], allowing the cre-
ation of predictivemodels for real-life biomedical applications [52,
53].

The first step to accomplish for each analysis is the alignment of
the reads achieved through sequencing to the reference genome.
This is usually done on a single server using parallel applications

https://towardsdatascience.com/deep-learning-on-the-edge-9181693f466c
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such as Bowtie [54], BWA [55] or STAR [56]. All these tools rely on
the Burrows–Wheeler transform (also called block-sorting com-
pression), which is useful to compress the reference database in
order to make the search very fast.

These programs are very fast, basically CPU-bound, and scale
linearly with the dimension of the input. Although each input
sequence takes a different computational effort to align against
the reference dataset, depending on the number of hits found and
the general similaritywith the reference genome (considering gaps
andmismatches), these algorithms are usually implemented using
smart multi-thread approaches that are able to balance the load
among threads. On the other hand, network-based implementa-
tion of these aligners, generally relying on splitting the database,
despite being tested by different groups, had little success, given
that it is usually better to split the input sequences in chunks and
compute them separately [57].

5.1. Test case

The experimental evaluations have been conducted considering
an NGS application for performing clinical, zoo-technical, research
and industrial analysis. Considering the health-care system, se-
quencing is moving from research, that needs few deep analyses in
a specific amount of time, to hospitals, where patients are analyzed
on a daily basis, although in this case the single experiments have
a lower throughput of data.

On the other hand, zoo-technical analyses may aim at verifying
the pedigree of animals or to prevent diseases, such as mastitis,
while in food industry they may have the goal to certify food
safety [58], both to be compliant with allergenic-free nutritions
and for religious related diet constrains. Typically, these experi-
ments are in large number, but with a lower throughput of reads,
since they aim at the identification of peculiar and well-known
patterns.

In detail, we considered that the input dataset for a clinical and
zoo-technical analysis has a size of about 10 GB, while an in depth
analysis – as those performed for research purposes – requires to
process about 50 GB. Food industry analysis’ datasets are assumed
to be of 1GB size. Table 6 summarizes the four applicative scenarios
considered.

5.2. Performance evaluation

Although each sequence takes a different computational effort
to align against the reference genome, the running times are nor-
mally distributed [59], resulting in an application that has almost
linear scalability. In other words, this means that doubling the
dimension of the dataset results in doubling the time required for
the computation and so on and so forth.

In the tests we have considered only x86-based hardware be-
cause a full-featured GPU version of the software is not avail-
able. Table 7 shows the execution times, in minutes, required
for performing the analysis of a 10 GB dataset. Analogously, an
analysis for a dataset of 1 GB, tenfold smaller than the original
one, has been performed on the considered platforms, achieving
the same scalability figures, as expected. For sake of completeness,
we repeated the analysis considering a dataset of 50 GB, five time
bigger than the original one, achieving the same speed-up trends.

In contrast to the N-body algorithm, the NGS application is
heavily data intensive, both considering RAM and storage. There-
fore, we can see some interesting performance figures in compar-
ison to Table 2. One example is the better scalability of the C3958,
equipped with 16 real cores, in comparison to the use of Hyper-
Threading in the Xeon D. However, the latter still presents better
performance. The same situation holds true for the Xeon E5 in
comparison to both of them, but it is able to provide results three
times faster. Also the Avoton presents better results in comparison
to J4205 thanks to its 8 cores. N3700 remains the slowest processor
but the difference in comparison to J4205 is reduced to only 20%.

Table 7
Execution times, in minutes, for performing a clinical analysis on a 10 GB dataset.
Threads Xeon E5 Xeon D C3958 Avoton J4205 N3700

1 438.4 406.0 673.9 877.0 752.2 897.6
4 121.9 112.0 156.8 223.3 204.4 247.1
8 65.7 59.2 88.1 119.1

16 35.5 47.8 57.0
32 20.6
64 17.2

Table 8
Summary of performance and economic figures of the considered platforms.

Xeon E5 Xeon D C3958 Avoton J4205 N3700

Clinical (min) 17.2 47.8 57.0 119.1 204.4 247.1
Research (min) 86.0 239.1 285.4 595.3 1021.9 1235.5
Industry (min) 1.8 4.8 6.7 5.4 20.2 24.9

Platforms 2 5 6 12 22 24
Acquisition (e) 10,000 5500 6300 9600 6600 7200

Power (W) 702 395 276 300 220 168
Annual energy (e) 689 387 271 295 216 165

5.3. Economic evaluation

We collected all the data used for an economic evaluation in
Table 8. In particular, we considered the scenario where a SME
provides such analysis service on a regional basis. In Lombardia,
where ITB has its own headquarter, it is possible to forecast re-
quests from fifteen hospitals and ten farms, for a total amount
of 95 clinical/zoo-technical analysis per day, while the demand of
research analysis can be evaluated as an average of seven per day
and of fifty daily arrivals for Industry (see Table 6).

At first, we evaluated the number of platforms the SME have
to acquire to assure all the analysis are performed on the due
time. On the basis of the best performance achieved, a single Xeon
E5 platform can accomplish up to 85 clinical/zoo-technical or 17
research analysis every 24 h, therefore there is the need to buy
two platforms. The worst case is represented by the Intel N3700,
where a single platform can process only 6 clinical/zoo-technical
or 1 research analyses per day. The time required for the analysis
of food industries is very limited except for J4205 and again N3700,
that can accomplish respectively only 72 and 48 of these tasks.
It is worth to note that, in every case, each platform behaves
independently for each analysis and it is not considered as part of
a cluster.

We can therefore conclude that the best choice is represented
by the acquisition of 5 platforms equippedwith XeonD processors,
because such infrastructure is the cheapest one and it is able to
provide clinical results in less than one hour.

Finally, in Table 8 we report the power needed by the platforms
along with the yearly cost, as discussed in Section 3.3 . We observe
that notwithstanding consumption noticeably varies amongst the
architectures, due to the different computation times, the energy
cost is rather negligible because of the small number of servers
needed to operate the service. Nevertheless, starting from these
energetic considerations, it is possible to conclude that low-power
architectures still represent a suitable solution for SMEs willing
to provide services like the one discussed because of the trade-off
between performance and costs. As said before, in the considered
scenario the acquisition of 5 Xeon D platforms is the cheapest
solution that allows to support the considered workload, and it is
able to satisfy the expectation of customers in terms of delivering
results on time.

We would like to stress that the analysis presented here has
the purpose to answer the question whether low-power SoC ar-
chitectures are feasible also in a commercial environments where
SMEs offer their services, as stated in the Introduction. In general,
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the dual Xeon E5 system represents, in fact, a platform suitable
for other types of workloads that need HPC-oriented capabili-
ties. Moreover, higher cost servers are typically equipped with
enterprise-level components as opposed to low-end system,which
require service in the long run. However, for the purpose of our
analysis, we have shown that low-power architectures can repre-
sent an equivalent or even better choice in comparison to tradi-
tional enterprise system and, in general, this is an aspect that can
be taken in consideration in brokering cloud services [60,61].

6. Conclusions and future works

This paper presents an analysis of performance and economic
aspects related to the adoption of low-power System-on-Chips
in computational infrastructures. Starting from two benchmarks,
i.e. the widely used N-body algorithm and a deep learning based
application, we discussed the achievable performance of the state-
of-the-art low-power SoC architectures in comparison to the tradi-
tional server-grade CPUs and GPUs equipping present computing
infrastructures. Then wemoved the focus on assessing if the inter-
esting raw energetic and computational figures holds true also in a
real-life applicative scenario. SoC represent, in fact, an interesting
alternative to run a number of scientific and commercial applica-
tions. In the paperwe analyzed a scenariowhere a SME iswilling to
offer a service based on a real life application taken from the field
of molecular biology using a SoC-based infrastructure.

It is to note that comparing high-end commercial/HPC servers
with motherboards based on low-power SoC taken from the mo-
bile and embedded world can be considered unfair, but never-
theless the results presented assess that also for time-consuming
applications, like NGS data analysis, the use of low-power archi-
tectures represents a feasible choice in terms of trade-off among
time-to-solution, energy-to-solution and economical aspects.

Future developments of this work are twofold. From one side
we will evaluate other use cases coming from applicative domains
with different requirements. In particular, we are considering the
use of such low-power architectures in combination with the Edge
computing paradigm for IoT applications and in pharmaceutical
industries for the development of new drugs through in-silico
simulations of proteins–chemicals interactions. Furthermore, we
plan to extend the analysis for the adoption of SoC-based clusters
in computing infrastructures by including a wider range of the
elements in the total cost of ownership, such as network inter-
connections, the cooling and the cost for developing applications
able to exploit such a greater number of low-power computational
nodes. This aspect partially overlaps with the research efforts of
the parallel computing community paving the way for the exas-
cale [62].
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