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Abstract

The increasing demand of computing resources has boosted the use of cloud
computing providers. This has raised a new dimension in which the con-
nections between resource usage and costs have to be considered from an
organizational perspective. As a part of its EC2 service, Amazon introduced
spot instances (SI) as a cheap public infrastructure, but at the price of not
ensuring reliability of the service. On the Amazon SI model, hired instances
can be abruptely terminated by the service provider when necessary. The
interface for managing SI is based on a bidding strategy that depends on non-
public Amazon pricing strategies, which makes complicated for users to apply
any scheduling or resource provisioning strategy based on such (cheaper) re-
sources. Although it is believed that the use of the EC2 SIs infrastructure
can reduce costs for final users, a deep review of literature concludes that
their characteristics and possibilities have not yet been deeply explored. In
this work we present a framework for the analysis of the EC2 SIs infrastruc-
ture that uses the price history of such resources in order to classify the SI
availability zones and then generate price prediction models adapted to each
class. The proposed models are validated through a formal experimentation
process. As a result, these models are applied to generate resource provi-
sioning plans that get the optimal price when using the SI infrastructure in
a real scenario. Finally, the recent changes that Amazon has introduced in
the SI model and how this work can adapt to these changes is discussed.

Keywords: Cloud computing, Provisioning, Spot Instances, Amazon EC2,
cost constraints
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1. Introduction

The cloud-computing paradigm has changed the traditional way in which
software systems are built by means of the introduction of a new model
in which infrastructures, platforms, applications and services are served on
demand [1]. The consolidation of this new approach in the industry as well
as in research and academic environments has arisen the need to reconsider
the way technological resources are used in organizations, integrating cloud-
computing along with these resources [2, 3, 4, 5].

The cloud-computing approach promotes an on-demand model for the
provisioning of resources such as virtual servers, services or an application
platform, for instance. This model is being widely adopted because of the
features it offers, such as elasticity, flexibility or pay-per-use. At the same
time, Infrastructure-as-a-Service (IaaS) providers have introduced some addi-
tional variables related to price, performance and reliability in the resources
located on the cloud. These providers deploy cloud resource management
systems in data centers distributed worldwide. Some of these providers also
offer a special type of computing resource in order to take advantage of un-
used cycles on their datacenters looking at maximizing their benefits. The
price of these resources can vary over time and can provide with important
savings with respect to the corresponding on-demand alternatives. The most
well known cases of this practice are the Google Cloud Preemptible Virtual
Machine Instances and Amazon EC2 Spot Instances (EC2 SI) [6, 7].

The Google Cloud Preemptible Virtual Machine model is based on the
limited provisioning of instances, which are available at certain instants of
time depending on the data center load. The price of these instances is fixed,
being significantly lower than the on-demand model. Once the user launches
an instance, it can be running during a maximum of 24 hours. The instance
can be terminated at any time by the provider with a previous notification
that allows saving or moving the processes and data carried out. On the other
hand, Amazon Spot instances are offered through an auction mechanism.
The maximum price willing to pay for a SI as well as other constraints are
set. Then, an auction process is carried out and the instance is launched in
case the request is fulfilled. Otherwise, the request is postponed until both
conditions are fulfilled or the user withdraws the bid. The instances will run
until either they are terminated by the user or the provider preempts the
resources because of instance market fluctuations.

While the Amazon EC2 SI model allows setting the maximum cost for
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a particular instance and it does not impose any execution time limit, the
model of Google Cloud Preemptible Virtual Machine has fixed prices and an
execution time limit of 24 hours. In both models, the user must assume the
risk that the execution can be terminated at any time. However, Amazon SI
model is stricter than Google’s one, since the mechanism of expulsions in the
last one depends solely on the policy established by Google and not relies
on the variations of the spot market. In both cases users are responsible for
implementing the necessary checkpointing mechanisms as the way of avoiding
data loss.

Although SIs do not ensure a reliable execution, a good analysis and offer
strategy can drastically reduce the execution costs of systems when com-
pared to on-demand costs (between a 50% and a 90%) [8]. The capacity
and performance of applications could be increased with the same budget, or
even allow the use of new applications or configurations previously discarded
because of economic reasons. The use of SIs perfectly fits on a vast variety
of scientific computing experiments, from genomic sequence analysis to data
distribution, physic simulations or bioinformatics, for instance. From an en-
terprise point of view, there also exist some companies that take advantage of
the use of SIs, such as Yelp, NASA JPL, FINRA, and Autodesk. DNAnexus
is an application case that bases their systems on the use of spot instances to
carry out genomic analysis and clinical studies on a highly scalable environ-
ment [9]. Netflix is also a well-known case of the multimedia industry. They
use SIs in order to improve the broadcast of billion of data of their contents
network [10].

In this work we propose the analysis of Amazon EC2 Spot Instances
mechanisms to provide a history-based pricing model allowing final users to
predict Amazon SI prices for the different availability zones. To this end, we
have built a system that analyzes price variations on all regions and zones
where SIs are offered. As a result, different models for price prediction are
provided for the different zones. These models rely on the historic fluctua-
tions of the SI market. We have used this system to define and execute real
provisioning plans in different regions and moments. Given a deadline and
cost constraints, the system provides the user with a complete overview of
the suitability of using spot instances for the deployment of an experiment.
We have also detected the existence of certain patterns in this variation that
can be used to obtain a significant cost reduction. The main contributions
of this work are the following:
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• The proposed solution considers and analyzes the SI market during a
long-term period, while previous studies only considered short periods
of time.

• All availability zones and regions of Amazon SI are analyzed and clas-
sified, providing the most suitable price prediction model in each case.

• Provisioning plans are generated according to these models, allowing
therefore a best cost execution of processes given a deadline and cost
constraints.

• A user-oriented framework with such features is proposed. This frame-
work allows running all the required processes and stages automatically,
keeping models and data updated.

Recently, Amazon launched a new pricing model that simplifies the pur-
chasing experience when dealing with SI1. Price variations have been now
reduced and are less aggressive, but still allow savings similar to the previous
mechanism. This has an obvious impact in the interruption mechanism as
well, and longer workload runtimes may be possible. With this approach,
Amazon tries to avoid the effort done in analyzing historical prices in order
to adapt the bidding strategy. In this work we will also detail these new
changes and how our proposal fits to them. However, for the sake of clarity
we will keep the description of the previous SI mechanism along this paper,
as this was the foundations of the work done.

The remainder of this paper is structured as follows. The technical back-
ground of Amazon SI is detailed in Section 2. After that, Section 3 presents
related work on the analysis of EC2 Spot instances. The framework devel-
oped for the analysis of the EC2 SI infrastructure is introduced in Section 4.
This framework is used to formally define different price prediction models in
Section 5. The proposed models are then validated by means of the experi-
mentation described in Section 6, and these models are used to carry out the
generation of provisioning plans using EC2 SI in Section 7. The new pricing
model that Amazon launched recently and how our approach adapts to the
changes is then detailed in Section 8. Finally, Section 9 enumerates some
conclusions and future work.

1https://aws.amazon.com/es/blogs/compute/new-amazon-ec2-spot-pricing/
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2. Technical backgroung: The Amazon EC2 Spot Instances service

The SI provisioning model is part of the Amazon EC2 (Elastic Compute
Cloud) service in the Amazon Web Services (AWS) ecosystem [7]. This
service is responsible for providing cloud computing resources through its
data centers located in three main areas: America, Asia Pacific and the last
area composed of Europe, the Middle East and Africa. Each data center
located in one of these areas is called a region, and offers its own service
catalog.

Each region in Amazon EC2 is divided into one or more availability zones.
An availability zone runs on its own separate and physically distinct infras-
tructure and is designed to offer high levels of reliability. Common failure
points, such as power generators or cooling equipment, are not shared be-
tween the availability zones of the same region. In addition, they are located
in different physical locations, so that in the event of any natural disaster
occurring only a zone is affected. Therefore, each availability zone is totally
independent, and the prices of the infrastructure they provide fluctuate in
an independent way with respect to the others. As will be detailed later in
Section 5, this characteristic allows observing curious behaviors related to
costs within the same region.

At the end of 2009 Amazon launched a new type of instances at a lower
cost compared to traditional on-demand instances, with the aim of getting
better performances from its data centers by increasing the activity of their
resources. Amazon offers these types of instances at a relatively lower cost
but reserving the right of preempting the resources when needed by the
service. Currently, Amazon EC2 Spot Instances or Amazon EC2 SI is the
trade name that Amazon uses to name these instances, which are deployed in
machines that are idle [8]. The number of SIs Amazon can offer in any given
data center will depend on the number of on-demand instances it provides
at each instant of time, offering the remaining capacity of the data center
under the SI model. Amazon EC2 SIs are completely integrated onto the
AWS ecosystem, being compliant with all services that currently AWS offers.
Figure 1 depicts a scenario of use of SIs that considers typical AWS elements
and services such as S3 (storage), auto-scaling (computing) or DynamoDB
(databases).

This type of instances allows to increase the activity and productivity of
data centers, as the number of idle machines can be reduced, and therefore
decrease downtime. An auction model is used for the allocation of SIs that
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Figure 1: Abstract view of the process for using Spot Instances.

allows customers to participate by setting the maximum price they are willing
to pay for a particular instance, called bid price. Additionaly, the request will
include other parameters such as the type of instance and the data center in
which it will be deployed, as sketched in Figure 2.

Figure 2: Spot Instance request process.

AWS continuously evaluates the spot market, analysing how many SIs are
available in each spot instance pool, monitoring the bids that have been made
for each pool and provisioning the available SIs to the highest bidders. If the
requested instance is available and the bid exceeds the auction price, called
spot price, the instance will be immediately hired. However, if the spot price
exceeds the price set by the customer, the request will remain waiting for
the imposed conditions to occur. The SIs created will run until either they
are terminated by the user or there is a spot instance termination, which is
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a termination forced by the Amazon EC2 service mainly due to spot market
fluctuations. Once a SI has been marked for termination, a termination
notice is sent. This is a two-minute warning window before it terminates. The
user is responsible for implementing the relevant checkpointing mechanisms
to avoid the loss of important information.

Amazon offers a set of tools allowing users to constantly monitor and
keep track of the price. These tools are intended to assist the end user
in making decisions regarding SIs, selecting the appropriate instance type,
an appropriate bid price allowing the application to run longer, and so on.
Among these tools is the Spot Instance Pricing History [11], depicted in
Figure 3, which relates the evolution of prices of a specific instance type over
time: a graph with the behavior of prices showing their volatility and the
frequency with which peaks occur in the auction. A limitation of this tool
is that it only offers information from the last 90 days. This prevents the
study of cyclic or temporal behaviors that repeat over time in long-term, and
which can also decisively influence the behavior of the auction.

Another tool offered by Amazon is the Spot Bid Advisor [12], which allows
analyzing auction price histories and helping the user to determine a bid price
fitting their requirements. This tool also displays the frequency with which
the bids are exceeded for each type of instance. This information can help
the user to set an appropriate bid strategy because the lower the frequency
with which they exceed the bid in an instance type the more likely it is to
run without interruption.

Finally, the Spot Block Model [13] is a mechanism that allows guarantee-
ing the availability of the instance for a time up to a maximum of 6 hours,
thus increasing the versatility of the SI mechanism. The operation is identi-
cal to the previous one, except that the user has the possibility to establish
the amount of minutes that he wants the instance to be running, and the
maximum price he is willing to pay per computation hour. Amazon evalu-
ates the request, and once the capacity dedicated to SIs allows to guarantee
the availability during the requested duration, Amazon will deploy it. The
instance will end when the established duration is fulfilled, or sooner if the
user decides to terminate it. This model is very interesting for those jobs or
processes that need to run continuously for up to 6 hours.

On November 2017, Amazon announced at the re:Invent event some im-
portant changes in the SI mechanisms that are being gradually incorporated
during year 2018. These changes try to give a synchronous view of the model
and simplifies the way SIs work. The provider tries to avoid spending time on

7



Figure 3: A screenshot of the Spot Instance Pricing History tool.

understanding spot markets, bidding strategies and other advanced details
related to SIs. The way that spot prices change was moving to a model where
prices adjust more gradually, and instance hibernation was also introduced.
We will go over the new features and detail how the approach presented in
this work fits with the new SI model and still allows important savings in
Section 8.

3. Related work

The scientific community has shown a significant interest in the use of SIs
for workloads that are either fault-tolerant or not-time-sensitive. However,
the effective use of this mechanism requires the study and analysis of the
fluctuation of prices over time. Some research has focused on the use of
SIs to reduce computing costs when dealing with complex problems [14, 15].
In [14], authors are especially sensitive to the reliability of SIs, and manage
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checkpointing strategies to avoid data loss when instances are terminated
because of overbidding. The economics of adding additional resources to
dedicated clusters during peak periods was studied in [15]. Authors defined
different provisioning policies based on the use of SIs and compared them to
on-demand instances in terms of cost savings and total breach time of tasks
in the queue.

Time price variation of SIs has been deeply studied in [16, 17], although
authors have not given specific conclusions. [16] considers that prices vary
on real time and there is not a pattern for this variation. On the other
hand, a reverse engineering technique is used in [17] in order to build a price
model based on auto-regression techniques. In [18] regression techniques
are also used to analyze and predict the prices of SIs with a small data set.
Authors propose to obtain the value of regression parameters using a gradient
descent algorithm. The estimated price is computed by analyzing the current
change in price using neural networks as well, and an experimental set up
based on Matlab scripting has been provided. The relation between Cloud
Service Brokers and pricing is analyzed in [19], where authors discuss how
performance variations in virtual machines of the same type and price raises
specific issues for end users, which in the end affects the final price for resource
allocation.

There are some papers that achieve a statistical analysis as well as a
modeling of price variations of SIs. A very interesting approach is presented
in [20, 21], where authors conducted an analysis of SI prices and its variations
limited to four specific regions of Amazon EC2. All different types of SIs in
terms of spot price and the inter-price time (time between price changes) as
well as the time dynamics for spot price in hour-in-day and day-of-week were
studied. Authors proposed the characterization of their behavior through a
statistical model and evaluated it by means of simulation techniques.

A very interesting recent work is [22], in which the authors considered
switching regimes of spot prices for forecasting, and propose a set of Markov
regime-switching autoregressive based forecasting methods. In order to con-
duct the forecast price, a dynamic-autoregressive integrated moving average
model is developed as well. The authors perform a clustering of the spot
prices to determine the number of regimes when building their model. One
of the conclusions obtained through its detailed work is that none of the pro-
posed algorithms can predict the long-term prices for certain classes of prices
where the regime switching pattern is hard to obtain. In all other cases, the
predictions are very promising.
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Other recent research works focus on the analysis of price variation and
the proposal of models based on machine learning approaches. Some works
have been based on the use of regression random forests (RRFs) to pre-
dict the prices of the SIs. In [23], authors use this approach in order to
predict one-week-ahead and one-day-ahead spot prices, later extending it to
longer-term predictions to demonstrate the effectiveness of their method. The
authors also perform an evaluation of non-parametric machine learning al-
gorithms with random forest based predictions, concluding in their case that
prediction accuracy of Random Fo-rests outperform prediction accuracy of
Neural Networks and Support Vector Machines in a period of 120-150 days
forecasts. A very detailed and comprehensive state of art about the use of
machine learning techniques in the SI price prediction scenario can be found
in [23].

On the other hand, the use of recurrent neural networks (RNNs) to pro-
vide better accuracy than standard statistical approaches has been a topic
very studied in the literature. The use of long/short-term memory (LSTM)
recurrent neural networks to predict the prices of SI has given very good
results in [24], allowing margins of error of 5%. The use of LSTM is based on
the fact that the LSTMs are able to identify and remember the latent fea-
tures over an unspecified number of time periods, making them a versatile
tool in time series prediction. In [25] the use of a neural network-based back
propagation algorithm to use the past spot pricing history is proposed. The
authors use this technique to achieve an efficient scheduling in bag-of-tasks
(BoT) problems. The results show that a very good error rate of between
5 and 6% is obtained, and a cost reduction of 38% in the experimentation
carried out.

With respect to the generation of SI provisioning policies, authors propose
in [26] a decision-based model to improve performances, costs and reliability
under the restrictions imposed by a Service Level Agreement (SLA). In [27]
the use of SIs is also proposed to improve a map-reduce execution system,
and a Markov chain model is proposed to predict the lifetime of a running SI.
Authors focus on fail situations and propose provisioning policies for these
cases, which is also the base for the work presented in [15]. Similarly, in [28]
a Constrained Markov Decision Process (CMDP) is formulated in order to
derive an optimal bidding strategy. Based on this model, authors obtain an
optimal randomized bidding strategy through linear programming. Finally,
in [29] Markov spot price evolution is also analyzed. A job is modeled as a
fixed computation request with a deadline constraint in order to formulate
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the problem of designing a dynamic bidding policy minimizing the average
cost of job completion. Finally, the analysis of the bidding system of Amazon
SI and the consequences of instance termination has been the focus of the
research presented in [14, 30, 31, 32].

In this work we aim at the analysis of SI prices considering costs and time
constraints. Most research has focused on the impact of SI termination and
other aspects such as reliability. Other authors have concentrated their ef-
forts to study general price variations in the spot market, considering specific
availability zones and instance types. Our work focuses on the building of a
provisioning plan for the final user with different options fitting his/her re-
quirements and constraints. The proposed framework considers all available
data for every availability zone as well as every instance type and operating
system. In this sense, it can be considered as global. In this work we also pro-
vide with different price prediction models based on a regression technique
and depending on the spot market fluctuations, which we demonstrate to be
different on the availability zones for each instance type. Finally, it should
be remarked that the models proposed here consider a long-term period of
time, whereas existing work have considered short periods of a few weeks or
months.

4. A framework for the analysis of Spot Instances

Let us now briefly describe the developed framework. The architecture of
the system is depicted in Figure 4. There are three main levels: the API level
(top of Figure 4, in blue), which represents the entry point to the system;
the service level (EC2 SI components, in red), which connects the API layer
with the underlying component; and the process level (components located
at bottom of Figure 4, in green and transparent colour), which contains
independent components in charge of downloading, storing or processing the
information related to SIs.

The EC2 SI Launcher module, which is located in the service layer, is
the module that allows deploying SIs on Amazon EC2 transparently. To
do this, this module requires certain information such as the bid price, the
availability zone where the instance has to be deployed, the type of instance
and the operating system or the Amazon Machine Image (AMI) to use. Then,
it uses two modules of the domain layer. On the one hand, the EC2 Data
Storage module, which allows retrieving the information necessary for the
deployment of SIs. On the other hand, the SI Launch Request module,
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Figure 4: Framework architecture.

which is responsible for performing the corresponding bid through the web
services interface offered by the EC2 API [33].

The EC2 SI Data Downloader module is responsible of downloading and
storing price variations of any type of instance in every region and zone of
EC2 using the previous API. This module runs periodically, once a week,
recovering only the new data that has not been stored in the system yet
and saving it by means of the Data Storage module. The EC2 SI Data
Downloader module connects to the SI Data Retrieval module, which tracks
the download as well as possible faults. In case of failure, the download
data is marked as failed and the module communicates to the EC2 SI Data
Downloader module. Then, the Data Retrieval module retries the download
up to a maximum of three times. If the fault persists, the data will be marked
as non-available and will not be used in future simulations or executions.

Once a download finishes, the Data Downloader module will process the
available data and will store it properly. During the process, it adds some
information to the download such as the number of price variations, the num-
ber of retries and the final state of the download for each type of instance.
The full set of data is then stored in the database. The EC2 Data Stor-
age module provides an interface to manage the information stored in this
database.

The stored price variations will be used by the SI Pricer Analysis module
to perform an analysis of the price variations over time considering differ-
ent variables. It also allows a more detailed study of the price variations
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that have taken place in each region and availability zone for any type of
instance, providing statistical information such as average deviation, average
price, maximum and minimum price, etc. Both this module and the SI Data
Storage module will be used by the EC2 SI Analyzer module to compose the
service that allows the functionality of performing statistical analysis of price
variations for a region or zone of availability with any type of instance and
operating system.

The Provisioning Maker module is the module responsible for proposing
a provisioning plan, which consists of a list of time periods for which the
proposed execution is feasible. Given a deadline, an EC2 availability zone or
region, an instance type, the number of required hours for execution and the
maximum price per hour, the module will perform an internal simulation to
generate a list of feasible daily times. A feasible time can be interpreted as
the time for which the simulator estimates that the bid would be successful
(this is, it could be accepted with a price less than or equal to the maximum
price established), and therefore, it would be possible to obtain a SI for the
selected type of instance also satisfying that it will not be preempted during
the specified execution time (so it will finish its execution before the deadline
expires). A first implementation of this component was previously presented
in [34]. This work is going to focus on how the SI Pricer Analysis module
conducts its analysis and price prediction as well as how the Provisioning
Maker module integrates these results in order to generate provisioning plans
based on EC2 SI.

Obviously, the specified maximum price is one of the key values in this
process. The Bidding Calculator module is responsible for determining the
best price at each time instant for a specific region, a type of instance and an
operating system. This module provides a bid price using a model that allows
predicting the future price of the bid based on a series of characteristics and
explanatory variables that characterize the price evolution of the auction for
a specific region. Due to the fact that price evolution of an auction depends
on past prices this model will be generated using the registered history. In
the next section, the model generation will be detailed.

Finally, all the services of the system are offered through the API module,
which is responsible for offering the services through a REST interface. This
allows to connect another systems in order to communicate, integrate and
access the services of the framework. For instance, an advanced user module
has been designed and developed in order to facilitate the interaction of users
with the system [34]. This module exposes a Web application that consumes
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the REST services provided by the API. It facilitates the administration
of the whole framework and allows using the different services such as the
generation of provisioning plans or even launching instances using the SI
mechanism.

5. Modeling EC2 Spot Instances provisioning costs

In this section, the process to obtain a suitable SI pricing model is de-
tailed. This model will be used by the SI Bidding Calculator component
and the SI Pricer Analysis module in order to carry out simulations and to
generate provisioning plans. The aim of the model is to allow predicting the
future spot price over time in order to locate a SI resource at low cost. In
addition, the model will also facilitate getting better provisioning plans than
the simple use of the price of the on-demand instances (EC2 price) or the
current spot price. The system will be able then to select the ones that meets
cost and time requirements for a given set of constraints.

5.1. Methodology

Figure 5 sketches the methodology proposed for the modeling of SI provi-
sioning costs. First, SI prices are retrieved from the EC2 Data Storage dabase
depicted in Section 4. These prices are then processed in order to classify
them and to provide with an homogeneous representation of price variations.
During the preprocessing stage the hourly price and some statistical data are
generated. All the information available is then split considering the operat-
ing system, the instance type, the region and the availability zone. Finally,
the extended information about the pricing histories is stored in a database.

For every type of instance and operating system a statistical analysis
process of availability zones is performed, retrieving the corresponding data
from the database. This analysis is complemented with the analysis of the
evolution of spot prices, which allows the characterization of the availability
zones. This characterization allows the identification of behavioral patterns
and specific characteristics of each zone that could be incorporated to the
final model by their explanatory capacity. As a result, a set of zone behavioral
patterns are generated.

These patterns are then classified using a clustering technique, which
generates a set of zone classes. Each zone has a unique behavior and char-
acteristics, so a different price model has to be defined for each class. This is
an important step in the proposed approach, as providing a different model
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Figure 5: Process followed for the modeling of SI provisioning costs.

for each class differentiates this one from other works. As it will be detailed,
each model is faithfully adapted to the class it represents, and has its own
characteristics that justify the creation of as many models as classes are iden-
tified. Finally, the obtained models are used to generate the SI provisioning
plans, as it will be detailed on next section.

The whole process is fully automated and the approach presented in the
paper is applicable to different types of machines and operating systems. To
this end, the system has been deployed in a cloud environment using EC2 on-
demand instances for the long-term and stable components and SIs for those
modules that execute punctually. This allows us to keep and updated system
available through a graphical interface as well as through its REST-like API,
while maintenance costs are lower than keeping the whole system running
over on-demand instances. There is a huge amount of information to manage
if we consider the whole set of availability regions, zones and instance types
in Amazon EC2, so the Amazon Relational Database Service [35] is used
to store both the downloaded data as well as the pricing information (once
processed). Then, the system runs periodically to update the information
stored as well as to respond to user’s request to perform a price simulation
or to generate a provisioning plan. It is even possible to deploy and run a spot
instance directly using the graphical interface, as it is depicted in Figure 6.

There are several alternatives to implement the different stages depicted
in Figure 5, such as using scripting or workflow-like tools. In this work, they
have been implemented by means of a set of scripts that allow to automate
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Figure 6: Deplyment of a SI using the graphical interface of the system.

the process through the different availability zones and SI types. These
scripts are able to run a specific process or start an external development
environment, such as the R statistical analysis tool, in order to carry out
the clustering process or the construction and validation of the proposed
models, for instance. This allows us to be able to manage different scenarios
depending on user’s input and being able to deal with the full collection of
options available in EC2.

Amazon offers a broad catalog of different types of virtual machines and
operating systems in each region. Specifically, we can differentiate among
the following instance families: general purpose, compute optimized, memory
optimized, storage optimized, accelerated computing (FGPUs) and, finally,
bare metal. Each family then contains different configurations, allowing to
fit the instance type to the requirements of specific problems. Instances
can be configured to run a Linux-based or a Windows operating system, or
even to run a pre-configured Amazon Image (AMI). AMIs contain custom
configurations and allow to deploy specific services or images in a container-
like way.

In this paper, the use of m3.xlarge instances running a Linux operating
system was a requirement for the case use that will be presented in Sec-
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tion 7. Therefore, the study we are presenting concentrates on the m3.xlarge
instances with that operating system in order to provide the reader with a
specific instance type that, in the following, will drive the process depicted
in Figure 5. m3.xlarge instances are under the General Purposes instances
category, and provide a good trade-off among computing, memory and net-
work resources, making it a good choice for many different applications. This
causes that the m3.xlarge instances are present in the vast majority of the
availability zones and, as it will be observed in next section, the spot price
of this type of instance constantly fluctuates.

5.2. Preprocessing stage

Due to the wide magnitude of price variations to be analyzed, it has
been necessary to apply some techniques to reduce the size of the problem.
Multiple spot price variations can be produced during an hour. However, the
only representative price for that hour will be the maximum value reached.
One hour is the minimum unit of time that Amazon uses during auctions.
Therefore, any bid that was below the maximum price registered for that
hour would be either discarded or the instance evicted. This has reduced the
initial dimension of the problem by using the maximum price of each hour. As
an example, having 30, 665, 548 price variations for m3.xlarge machines from
June 2015 to October 2017, only 64, 488 data values have been considered for
each zone. However, applying reductions may require a pruning to be made.
The reason is that Amazon applies a series of sweeps at certain moments of
time, thus generating very high spot price peaks to evict as many instances as
possible. This behavior responds to Amazon’s internal policies and strategies
regarding the use of SIs.

Before storing the price information in the database, the preprocessing
stage also separates the information provided by AWS related to each in-
stance type, operating system, region and availability zone. This will allow
to ease and speed the access to the information stored during the following
stages.

5.3. Characterization of the availability zones

As it was stated previously, characterizing availability zones is a step
required to generate the model. The characterization process aims to identify
behavioral patterns as well as common and specific characteristics of each
zone. To do that, a statistical analysis is conducted for each availability
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zone in every region. This analysis calculates the minimum, average and
maximum prices ($), as well as the standard deviation.

We mentioned before that we are using m3.xlarge/Linux instances to ex-
emplify the proposed approach. According to this, Tables 1, 2 and 3 show the
resulting information from the analysis process for these type of instances.
There is a significant variance between the availability zones. We can distin-
guish three main trends with respect to spot price dispersion, varying from
low spot price dispersion to zones in which dispersion is very high. The rela-
tion among the statistical variables as well as the percentiles (90% and 99%)
allows to establish an initial classification of the availability zones. Table 1
depicts zones with lower price dispersion. Zones with medium dispersion are
shown in Table 2. Finally, the zones with greater price variability with their
corresponding statistical properties are shown in Table 3.

Zone Min Average Max 90% 99% STD
ap-northeast-1c 0.0404 0.0463 4.0500 0.0530 0.0681 0.0546
ap-southeast-1b 0.0422 0.0507 3.9200 0.0512 0.0557 0.1112
ap-southeast-2a 0.0401 0.0482 1.0000 0.0567 0.0916 0.0181
ap-southeast-2b 0.0402 0.0502 3.5000 0.0559 0.0885 0.1100
eu-central-1b 0.0401 0.0451 3.3200 0.0430 0.0530 0.0895
eu-west-1a 0.0401 0.0647 3.0800 0.0442 0.0556 0.2593
eu-west-1c 0.0401 0.0533 3.0800 0.0447 0.0993 0.1621
sa-east-1a 0.0401 0.0465 2.0000 0.0434 0.0503 0.0661
sa-east-1c 0.0401 0.0486 2.9900 0.0523 0.0625 0.0863
us-east-1b 0.0323 0.0433 0.3000 0.0526 0.0921 0.0212
us-west-1a 0.0321 0.0391 1.8750 0.0468 0.0674 0.0197

Table 1: Statistical analysis of the Amazon EC2 availability zones with low spot price
dispersion.

Considering each availability zone individually, the statistics do not reveal
whether the spot prices in a zone are stable over time, since the standard
deviation depends on the average price and this is greatly influenced by the
price peaks. For example, stable areas with few peaks but whose price is
very high will have high deviations, while in less stable areas, those that
have suffered a large number of peaks but of a less significant price will be
lower.
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Zone Min Average Max 90% 99% STD
ap-northeast-1a 0.0403 0.0505 0.6841 0.0568 0.1000 0.0513
ap-southeast-1a 0.0406 0.0528 3.9200 0.0733 0.1031 0.0757
eu-west-1b 0.0401 0.0483 3.0800 0.0469 0.3052 0.0737
sa-east-1b 0.0403 0.0550 1.9900 0.0581 0.2227 0.0908
us-east-1a 0.0334 0.0604 2.8000 0.0822 0.2800 0.1067
us-west-1b 0.0321 0.0462 3.0000 0.0549 0.1369 0.0553
us-west-2b 0.0324 0.0552 2.1000 0.0686 0.2800 0.0974

Table 2: Statistical analysis of the Amazon EC2 availability zones with medium spot price
dispersion.

Zone Min Average Max 90% 99% STD
eu-central-1a 0.0404 0.1655 3.3200 0.1097 3.3200 0.5614
us-east-1c 0.0323 0.0604 2.8000 0.0612 0.4620 0.1734
us-east-1e 0.0322 0.1265 2.8000 0.1052 2.8000 0.4102
us-west-2a 0.0328 0.0644 2.8000 0.0710 0.5000 0.1292
us-west-2c 0.0326 0.0701 2.8000 0.0713 0.5000 0.1939

Table 3: Statistical analysis of the Amazon EC2 availability zones with high spot price
dispersion.

The analysis also reveals that not only the evolution of prices in each re-
gion is different, but there are also important differences between the avail-
ability zones inside the same region. Each zone shows a unique behavior
and the selection of the appropriate area is crucial to obtain higher cost re-
ductions. Let us focus in the region of Virginia (us-east-1). In this region,
the average spot price of zone us-east-1e ($0.1265) is almost three times the
price of the cheapest zone within the same region (us-east-1b, $0.0433). A
significant reduction in costs can be obtained by deploying SIs in the appro-
priate zone within the desired region. Another relevant consideration is the
existence of zones where the price is stable over time, and others whose vari-
ations would discourage their use, as it can cause the number of expulsions
to increase in a considerable way. It can also be deduced that there is not a
clear relationship among zones of the same region.

The previous analysis also allows us to classify the zones according to
their stability during the entire period of time recorded, but does not allow
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observing temporary patterns or the most recent price evolutions. To do this,
an analysis of the way prices evolve is conducted monthly, weekly and daily.
This allows to automatically identify temporary patterns shared between
zones as well as specific behaviors. Let us exemplify this with Figure 7,
which shows the evolution of spot prices over time in the us-west-1a and
us-west-1b zones. As it can be seen, we could intuitively validate the initial
hypothesis about price stability in an area. us-west-1a zone (Figure 7-left)
has a low spot price dispersion, whereas us-west-1b zone (Figure 7-right) has
a medium one. Figure 7 shows a good example of peaks, trends and price
variations for that zone over time.

Figure 7: Time vs price variations and patterns observed for the us-west-1a (left) and
us-west-1b (right) zones in June 2016. X-axis: price ($); X-axis: time (hours).

A more detailed analysis showed us that this behaviour is shared among
other instance types, and is not related to m3.xlarge instances exclusively.
The previous statistical analysis is executed using Python scripts and the
native numeric libraries. However, we have implemented some algorithms
based on existing literature for segmentation and identification of patterns
as well [36, 37]. These algorithms allow to conduct a more refined analysis of
possible patterns in the data series we are considering. These patterns could
help in predicting the spot price in a specific time, as they have a numeric
representation by means of trigonometric functions when dealing with the
model definition in Section 5.5. The existence of patterns in the spot price
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series has been previously identified in the literature [20].
A common temporary pattern that is evident when observing the monthly

evolution of prices in consecutive months is the existence of a cyclical weekly
pattern. Another observed pattern in the monthly evolution is the increase
in prices on the last days of the month. While it is true that the weekly cycle
is maintained in the last weeks of the month, the average price increases in
certain zones. The most reasonable explanation is that different organizations
use spot instances to carry out billing and payroll processes at the end of the
month, which can cause the growth of demands and prices of SIs.

Let us now concentrate on the weekly evolution. This analysis reveals the
existence of a weekly cycle common to the vast majority of the availability
areas as discussed above. The identified pattern shows that prices rise at
the beginning of the week and begin to decline when they reach the equator,
reaching the lowest prices on weekends. The reason for that behavior could
be that the demand is higher in working days, increasing the price. It can
also be seen that the prices in worldwide holidays, such as Christmas or
New Year, are lower than the prices that would correspond looking at the
week day they happen. To corroborate such intuition, a subset of the initial
data was been collected, consisting only of those data that were registered
on Christmas and New Year (as they correspond to the same weekday). An
aggregation function was used to compute the average price of the auctions in
all availability zones for the data selected. Considering the obtained results,
it can be deduced that the two days with the lowest average price registered
correspond to New Year’s Day and Christmas Day.

Finally, the daily evolution of auction prices has been analyzed as well.
However, no clear common pattern has been established. On the one hand,
there are areas whose prices rise at specific times of the day, others whose
daily price remains stable, and some that do not follow any specific pattern
due to the large dispersion of prices. Maybe the reason is that the service is
used worldwide, which do not share day hours.

5.4. Clustering

The results of the analysis phase show that the behavioral differences
between the availability zones make the generation of a common model for
all the zones difficult. Therefore, in this work we propose a partition and
classification of the availability zones in groups that allows modeling each
group of zones individually.
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The number of subsets for each instance type is unknown and can vary
over time. We propose the use of a clustering technique not requiring a prior
knowledge on the established number of clusters. For that, the hierarchical
clustering analysis technique has been used. This technique consists of estab-
lishing a metric or function of dissimilarity between the elements to classify.
The choice of this metric will determine how close they are to each other.
This grouping technique does not require establishing an initial number of
groups, but groups the elements hierarchically generating a dendrogram. In
order to establish the dissimilarity between each one of the zones, statistical
information relative to the average, the percentiles and the standard devia-
tions of the prices collected during the previous phases has been used and
normalized.

The hierarchical clustering technique has been implemented in R. The
resulting script is then executed for each instance type with the data con-
tained in the system each time new data is added to the databases. However,
the interpretation of the resulting hierarchical structure is context-dependent
and from a theoretical point of view it is complex to determine which one is
the best one. While an ad hoc interpretation can be achieved using visual
criteria such as silhouette plots, this cannot be easily automated. Therefore,
we have applied the Hubert’s gamma numerical criteria to determine the
optimal number of clusters for each experimentation [38, 39]. Other well-
known numeric criteria include Dunns validity index, G2/G3 coefficient, or
the corrected Rand index, for instance.

Let us detail the clustering process by means of our running example. The
dendrogram depicted in Figure 8 allows establishing a hierarchical grouping
of the availabity zones for m3.xlarge spot instances. The height determines
the distance between zones, and the height chosen to cut the dendogram
determines the final grouping of zones. As it is shown in Figure 8, we obtained
a height of h = 4. This clearly identifies three types of singular zone classes
that will be detailed in the following.

The experimentation carried out with all the available data allowed us to
observe that no more than three clusters were ever defined. The relationship
between the statistical data for the availability zones (Table 1, 2 and 3 for
the example of the m3.xlarge instances) and the identified clusters allow us
to generalize the existence of three types of zone classes. These classes are
dependent on the type of instance and the operating system we are analyzing,
but common among all the family available in EC2. Let us identify these
classes as stable zones class, semi-stable zones class and unstable zones class :
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Figure 8: Dendogram of the hierarchical clustering of availability zones

• Stable zones are those that have few price variations, that is, those with
sporadic peaks of demand and also whose maximum price is relatively
low. A high percentage of their prices, around 99%, is between a small
price range, showing a high probability for the price to stay in that
range.

• Unstable zones are the ones with a high price variation. These areas
have large spikes in demand that greatly alter the bid values. In addi-
tion, this type of zones neither have a clear common behavioral pattern,
since they stand out due to the high dispersion of the prices. It is pos-
sible that these areas correspond to those that offer a smaller number
of instances under the auction model and, therefore, the demand far
exceeds the offer causing such price variations.

• Finally, the semi-stable zones are those that are framed between the
two previous types. This type of zone has a higher price variation
than the stable zones, and therefore, if the percentiles 90 and 99 are
observed, they are higher. They have a higher price fluctuation interval
in addition to a greater number of peaks. But unlike the unstable zones,
this type of zones do have a pattern of stable behavior that is repeated
over time, since they do not have such dispersion of prices.

As it was previously mentioned, this characterization has been imple-
mented in R as part of the hierarchical clustering scripts, allowing us to run
it across all available instance types and operating system in our approach.
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5.5. Model definition

After the clustering process, a model is built for the zone classes that
have been identified. The model generation starts from an initial complex
model that includes those characteristics or explanatory variables that de-
fine the zones that compose each class. Those variables are the spot prices
for the period stored in the database as well as the patterns identified for
each zone, represented by means of trigonometric functions. This complex
model is then refined applying a step-by-step linear regression technique.
The regression analysis enables the identification of relationships among the
parameters that compose the model. During the process, those parameters
that do not contribute in a significant way to the model representation are
automatically discarded on each iteration.

The step-by-step process finishes when no parameters are discarded. The
parameters of this refined model, called step-by-step model, have been ad-
justed by eliminating those explanatory variables that were not significant
through the step-step regression technique. Then, a final iterative process is
executed over this model in order to reduce the complexity of the model as
well as the linear relationship between the explanatory variables. This pro-
cess performs small variations in the weights of the parameters, minimizing
the margin of deviation of the prices obtained by the resulting model with
respect to the prices available in the system. As a result, we obtain the final
model for each zone class we consider.

Returning to our example, the system has generated a set of models for
our zone classes. As three zone classes were identified for the m3.xlarge
instance type with Linux, three models have been built, one for each class.
The final model proposed for the stable class (stable zone model) is detailed
in equation 1. As it is shown, for a given time t, this model depends on
the spot price of the previous two hours, the spot price of the last day (24
hours ago), two days ago (48 hours), a week ago (168 hours, 7 days) and two,
three and four weeks ago (336 hours, 504 and 672 hours ago, respectively).
This equation also models a pattern that has been identified in the zones
belonging to the stable zones class, which is represented by the sine and
cosine functions.

yt = β0 + β1t+ β2yt−1 + β3yt−2 + β4yt−24 + β5yt−48 + β6yt−168

+ β7yt−336 + β8yt−504 + β9yt−672 + β10sin(
t2π

7 × 24
) + β11cos(

t2π

7 × 24
)

(1)
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The description of the parameters that appear in model equations is de-
tailed in table 4.

Parameter Description
yt Dependent or explanatory variable: spot price in dollars

for the instant of time t
β0, β1, .., βn Weights that measure the influence of explanatory vari-

ables
sin( t2π

24
) Sinusoidal function of daily period (24 hours), which

added to the function cos( t2π
24

) describes the daily trend
of the dependent variable

cos( t2π
24

) Cosine function of daily period (24 hours), which added
to the function sin( t2π

24
) describes the daily trend of the

dependent variable
sin( t2π

7×24
) Weekly sinusoidal function (168 hours), which added to

the function cos( t2π
7×24

) describes the daily trend of the
dependent variable

cos( t2π
7×24

) Weekly cosine function (168 hours), which added to the
function sin( t2π

7×24
) describes the daily trend of the de-

pendent variable
mean(priceweek−1) Average price of the week before the given time instant

Table 4: Parameters used in the modeling of the availability zones

Similarly, the semi-stable zone model and the unstable zone model are
presented in equations 2 and 3, respectively. It can be seen that the semi-
stable model is similar to the stable one, but in this case the dependency relies
only up to a three weeks ago spot price. The patterns found are different,
so the representation differs as well. An interesting observation to be made
in equation 2 is that the spot price depends on the mean spot price of the
previous week, which is represented by the mean(priceweek−1) function. This
function stands for the average price of the week before the given time instant.

In the case of the unstable zone model, depicted in equation 3, it can be
seen that the model cannot rely on data older than a week ago (yt−168). This
is because of the dynamic nature of the unstable zones, where spot prices
may vay too often. However, even in these dynamic zones there is a repeating
behavior, which is included in the model by means of the corresponding
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trigonometric functions. Note that this behaviour may vary over time, so a
data update could add new patterns and dependencies to the equations when
they are generated.

yt = β0 + β1t+ β2yt−1 + β3yt−2 + β4yt−24 + β5yt−48 + β6yt−168

+ β7yt−336 + β8yt−504 + β9sin(
t2π

24
) + β10cos(

t2π

24
)

+ β11sin(
t2π

7 × 24
) + β12cos(

t2π

7 × 24
) + β13mean(priceweek−1)

(2)

yt = β0 + β1t+ β2yt−1 + β3yt−2 + β4yt−24 + β5yt−48 + β6yt−168

+ β7sin(
t2π

7 × 24
) + β8cos(

t2π

7 × 24
)

(3)

The construction of the models is a dynamic and flexible process that it
is initiated by a set of Python scripts, which build a set of R scripts for each
identified zone class depending on the information stored in the database and
the patterns that were identified during the characterization stage. With all
this information, the initial complex model is generated, and then the R
software is run in order to execute the step-by-step technique. When it
finishes, the final model for each identified class has been defined. Then, a
model validation process is carried out in order to ensure the correctness of
the models.

5.6. Model validation

The validation of the models generated in the previos step is achieved
through a cross folding validation technique. Cross validation allows to com-
pare the models and select the one that is more representative. This tech-
nique consists of first establishing a training group adjusted to the model
and leaving a validation group out of it. Then, the mean errors of this group
is calculated with respect to the adjusted model. This validation allows to
check if the average error of the predictions is reasonable, and to compare
different models to select the one whose representation is better. The im-
portance of this validation lies in establishing a validation group that is not
used in the training phase, and that is what allows to compare the prediction
capacity of each of the models.
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The final models are compared with respect to the complex and the step-
by-step models in order to verify that the reduction of the explanatory vari-
ables does not affect their predictive capacity. As it is shown in Figure 9,
the cross validation is done by dividing the data into two sets: the training
set (90%) and the validation set (10%). The data is taken from the pricing
database. and a test dataset is defined as well. This test dataset will be
used in next section in order to test the correctness of the proposed models.
Finally, the models will be used to perform a real spot price prediction over
a experimentation setup.

Pricing
storage

June	2015	– July 2017 Aug-September 2017

Training	&	validation data Test	data

October 2017

Experimentation

AWS

Model evaluation

Figure 9: Detail of the evaluation stage.

The phases of model validation and the evaluation of the results are au-
tomated, using a set of scripts developed in R. For the running example,
the results in Table 5 show that the models obtained previously for the sta-
ble and unstable zones adequately represent the desired behavior. However,
as one could expect, the accuracy of the prediction for semi-stable zones is
notoriously worse. The coefficient of determination, R2, is used to measure
the percentage of variation of the response variable, and then this value is
adjusted to the predictors (adjusted R2). These values are notoriously lower
in the zones classified as semi-stable. This may be due to the fact that this
type of area is the most unpredictable: sometimes the price is stable for
long periods of time while in others changes are very frequent. In addition,
it should be considered that in this types of area there are also high price
spikes that drastically alter the auction model.

27



This	 appendix	 details	 the	 validation	 of	 the	 models	 developed	 through	 a	 cross-validation	
technique.	The	obtained	models	are	compared	with	respect	to	the	initial	model	and	the	step-
by-step	model,	in	order	to	verify	that	the	reduction	of	the	explanatory	variables	does	not	affect	
their	predictive	capacity.	The	cross	validation	has	been	done	by	dividing	the	data	into	two	sets:	
one	 of	 training	 (90%)	 and	 another	 of	 validation	 (10%),	 which	 are	 selected	 randomly.	 This	
validation	has	been	applied	a	 total	of	10	times	dividing	the	data	 in	different	ways	 in	each	of	
them.	

	

R2	
Model	

Complex	 Step-by-step	 Proposed	
Stable	 0.71220815	 0.712204854	 0.71217333	
Semi-stable	 0.37280601	 0.372775607	 0.37254066	
Unstable	 0.68867093	 0.688586516	 0.68832307	
	 	 	 	

Adjusted	R2	
Model	

Complex	 Step-by-step	 Proposed	
Stable	 0.71217787	 0.712188703	 0.71215112	
Semi-stable	 0.37264098	 0.372665592	 0.37239758	
Unstable	 0.68842504	 0.688438988	 0.68819183	
	 	 	 	

Validation	
Model	

Complex	 Step-by-step	 Proposed	
Stable	 0.00239671	 0.002327756	 0.00226816	
Semi-stable	 0.00693645	 0.007451680	 0.00856331	
Unstable	 0.19449860	 0.193326882	 0.19110068	

	

Tabla	1.	Results	of	the	validation	of	the	models	

The	 results	 of	 Table	 1	 show	 that	 the	 models	 developed	 for	 the	 stable	 and	 unstable	 zones	
adequately	 represent	 the	 registered	behavior.	However,	 the	values	of	R2,	 the	percentage	of	
variation	 of	 the	 response	 variable	 and	 adjusted	 R2,	 and	 the	 percentage	 of	 variation	 in	 the	
response	 variable	 adjusted	 to	 the	 predictors	 of	 the	 zones	 classified	 as	 not	 very	 stable	 are	
notoriously	lower.	These	values	are	responsible	for	evaluating	the	explanation	capacity	of	the	
regression	models.	This	may	be	due	to	the	fact	that	this	type	of	area	is	the	most	unpredictable,	
sometimes	 the	 price	 is	 stable	 for	 long	 periods	 of	 time	 and	 in	 others	 it	 changes	with	 a	 high	
frequency.	In	addition,	it	should	be	considered	that	in	these	types	of	areas	there	are	also	high	
price	spikes	that	drastically	alter	the	auction	model.	

The	average	errors	with	the	cross-validation	technique	show	that	the	more	instability	there	is	in	
the	more	complicated	area	is	to	adjust	the	model	and	the	average	error	increases.	If	we	look	at	
the	average	error	of	each	model,	the	reduction	of	the	least	explanatory	variables	does	not	cause	
the	average	error	to	increase	considerably.	Therefore,	the	proposed	model	is	adequate.	

The	values	of	R2	and	adjusted	R2	of	the	model	for	the	not	very	stable	zones	are	very	small.	Given	
the	hypothesis	 that	 this	 is	due	 to	 those	peaks	with	a	very	high	price,	above	 the	price	of	 the	

Table 5: Results of the validation of the models

The average errors with the cross-validation technique show that the more
instability is the more complicated is to adjust the model, while the average
error increases. The reduction of the least explanatory variables does not
produce the average error to increase in a considerable way. Therefore, it
can be concluded that the proposed model is adequate. The values of R2 and
adjusted R2 for the semi-stable zones are very small. Given the hypothesis
that this is due to peaks with a price much higher than the price of the
on-demand instances (Amazon sweeps and peaks were previously introduced
in the preprocessing stage), a pruning technique with respect to the training
data is applied. This tries to remove those data considered as spurious from
the training data, that is, those peaks of prices that exceed the price of
the on-demand instances. The objective is to eliminate those instants of the
auction such that the price exceeds that of the instance on-demand instances,
as on-demand instances are more adequate for those cases. In this case, only
3.6% of the data are considered as spurious. This means that applying the
pruning process does not reduce the generality of the models of each group of
zones. Once the spurious data have been removed the training, construction
and validation phases are executed again. In this case, the final models use
the same explanatory variables but have different weights. The results of
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the validation of the resulting models are shown in Table 6. Comparing
the results from Tables 5 and 6 it can be seen that all the proposed models
improve the corresponding R2 and adjusted R2 values. This means that they
adjust the behavior in a better way. In the case of semi-stable zones the
improvement is noticeable.

instances	on	demand,	we	have	proceeded	 to	 apply	 a	pruning	 technique	with	 respect	 to	 the	
training	data.	This	decision	tries	to	remove	from	the	training	data	those	considered	as	spurious,	
that	is,	those	peaks	of	prices	that	exceed	the	price	of	the	instance	on	demand.	The	objective	is	
to	eliminate	those	instants	of	the	auction	such	that	the	price	exceeds	that	of	the	instance	on	
demand,	and	therefore,	 it	would	be	discouraged	to	use	the	Spot	 Instances	model	 in	 favor	of	
using	the	on-demand	model.	The	prices	considered	as	spurious	represent	approximately	3.6%	
of	the	total	data,	 therefore,	applying	pruning	will	not	reduce	the	generality	of	the	models	of	
each	group	of	zones.	

Once	the	spurious	data	has	been	eliminated,	the	training	and	construction	phase	of	the	models	
and	their	validation	have	been	carried	out	again.	The	models	obtained	use	the	same	explanatory	
variables	but	modify	the	value	of	their	weights.	

R2	
Model	

Complex	 Step-by-step	 Proposed	
Stable	 0.73863411	 0.738630737	 0.73860977	
Semi-stable	 0.70101314	 0.701012867	 0.70079427	
Unstable	 0.70232884	 0.702254026	 0.70213269	
	 	 	 	

Adjusted	R2	
Model	

Complex	 Step-by-step	 Proposed	
Stable	 0.73860601	 0.738606383	 0.73858916	
Semi-stable	 0.70092899	 0.700934327	 0.70072129	
Unstable	 0.70204398	 0.702083137	 0.70198073	
	 	 	 	

Validation	
Model	

Complex	 Step-by-step	 Proposed	
Stable	 0.00190142	 0.001980913	 0.00238365	
Semi-stable	 0.00584118	 0.005659768	 0.00617250	
Unstable	 0.14625798	 0.145183440	 0.14538662	

	

Tabla	2.	Results	of	the	validation	of	models	with	pruning	

Observing	 the	 results	obtained	 in	 Table	2,	 all	 the	models	 improve	 their	 values	of	R2	and	R2	
adjusted	values,	and	therefore	it	means	that	they	adjust	the	behavior	better.	In	the	case	of	not	
very	stable	areas,	the	increase	is	very	noticeable.	

Regarding	the	validation	errors	of	the	model,	they	are	smaller	compared	to	the	previous	models,	
but	this	is	mainly	due	to	the	fact	that	the	error	accumulates	precisely	in	the	price	peaks,	which	
have	been	eliminated	in	the	construction	of	these	models.	Therefore,	the	reduction	of	errors	is	
not	 significant.	 The	 phase	 of	 testing	 and	 evaluation	 of	 the	 models	 carried	 out	 in	 section	 X	
allowed	to	determine	with	data	not	used	during	this	phase	if	the	models	developed	with	the	
pruning	 technique	 behave	 better	 or	 worse	 than	 the	 previous	 ones.	 By	 default,	 the	 metrics	
obtained	seems	to	demonstrate	that	they	are.	

	

Table 6: Results of the validation of models with pruning

6. Evaluation and Experimentation

The evaluation stage depicted in Figure 5 in the previous section allows to
study the alignment between the predicted values for the test dataset and the
real data in such set. In this section, the evaluation phase is described with
respect to the results obtained when using the models to predict the behavior
for the test dataset described in Section 5.6. After that, we conducted an
experimentation process to identify the behaviour of the proposed models
under real circumstances.

Similarly to the previous phases, the evaluation stage is conducted using
the R software with a set of scripts that allow the complete automation of
the process.
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6.1. Model testing

As explained in the previous section, the validation over the models with
and without applying the pruning technique was carried out. Let us now
verify if the use of the pruning process is useful in those zones with high
R2 and adjusted R2 values. The results for the data we are managing for
m3.xlarge instances are shown in Table 7.

represent	a	very	low	percentage	(3.6%)	of	the	total	data,	therefore,	applying	pruning	will	not	
reduce	the	generality	of	the	models	of	each	group	of	zones.	

First,	the	proposed	validation	was	carried	out	using	the	models	obtained	in	the	modeling	phase	
without	 applying	 the	 pruning	 technique.	 This	 validation	will	 allow	 to	 verify	 if	 the	 use	 of	 the	
pruning	 is	 useful	 in	 those	 zones	whose	models	 already	had	high	R2	and	adjusted	R2	 values.	
Results	are	shown	in	Table	1.	As	expected,	the	errors	in	the	test	phase	are	higher	than	in	the	
validation	phase.	

Validation	
Model	 	

Test	
Model	

Complex	 Step-by-step	 Proposed	 	 Complex	 Step-by-step	 Proposed	
Stable	 0,0024	 0,0023	 0,0023	 	 Estable	 0,0022	 0,0022	 0,0022	

Not	very	stable	 0,0069	 0,0075	 0,0086	 	 Not	very	stable	 0,0511	 0,0510	 0,0511	

Unstable	 0,1945	 0,1933	 0,1911	 	 Unstable	 0,2786	 0,2781	 0,2782	
	

Validation	
Model	 	

Test	
Model	

Complex	 Step-by-step	 Proposed	 	 Complex	 Step-by-step	 Proposed	
Stable	 0,0028	 0,0026	 0,0025	 	 Stable	 0,0024	 0,0023	 0,0023	

Semi-stable	 0,0073	 0,0084	 0,0086	 	 Semi-stable	 0,0460	 0,0455	 0,0456	

Unstable	 0,1711	 0,1640	 0,1602	 	 Unstable	 0,2381	 0,2340	 0,2362	
	

	

Validation	
Model	 	

Test	
Model	

Complex	 Step-by-step	 Proposed	 	 Complex	 Step-by-step	 Proposed	
Stable	 0.0028	 0.0026	 0.0025	 	 Stable	 0.0024	 0.0023	 0.0023	

Semi-stable	 0.0073	 0.0084	 0.0086	 	 Semi-stable	 0.0460	 0.0455	 0.0456	

Unstable	 0.1711	 0.1640	 0.1602	 	 Unstable	 0.2381	 0.2340	 0.2362	
	

Tabla	1.	Test	of	the	models	generated	without	pruning	

The	 same	 validation	 was	 carried	 out	 with	 the	 models	 obtained	 after	 pruning.	 The	 results	
depicted	in	Table	2	show	that	the	average	errors	in	the	test	phase	are	practically	identical	in	the	
models	that	were	trained	with	and	without	pruning.	This	means	that	pruning	does	not	help	in	a	
decisive	way	in	the	representation	and	predictive	capacity	of	the	model.		

%	A	continuación	se	ha	realizado	la	misma	validación	con	los	modelos	obtenidos	tras	la	poda.	
Los	resultados	mostrados	en	la	Tabla	2	demuestran	que	los	errores	medios	en	la	fase	de	test	son	
prácticamente	idénticos	en	los	modelos	que	se	entrenaron	con	y	sin	poda.	Esto	significa	que	la	
poda	 no	 ayuda	 de	 forma	 determinante	 en	 la	 representación	 y	 capacidad	 de	 predicción	 del	
modelo.		

Validation	
Model	 	

Test	
Model	

Complex	 Step-by-step	 Proposed	 	 Complex	 Step-by-step	 Proposed	
Stable	 0,0019	 0,0020	 0,0024	 	 Stable	 0,0022	 0,0022	 0,0022	

Not	very	stable	 0,0058	 0,0057	 0,0062	 	 Not	very	stable	 0,0523	 0,0523	 0,0522	

Table 7: Test of the models generated without pruning.

The same validation is carried out after the pruning. The results depicted
in Table 8 show that the average errors in the test phase are lower in the
models that were trained with pruning. This means that pruning helps in
the representation and predictive capacity of the model.

Unstable	 0,1463	 0,1452	 0,1454	 	 Unstable	 0,2829	 0,2830	 0,2835	

	

Validation	
Model	 	

Test	
Model	

Complex	 Step-by-step	 Proposed	 	 Complex	 Step-by-step	 Proposed	
Stable	 0.0018	 0.0019	 0.0022	 	 Stable	 0.0020	 0.0020	 0.0020	

Semi-stable	 0.0041	 0.0038	 0.0045	 	 Semi-stable	 0.0480	 0.0481	 0.0462	

Unstable	 0.1131	 0.1086	 0.1092	 	 Unstable	 0.2331	 0.2340	 0.2356	
	

Tabla	2.	Test	of	the	models	generated	with	pruning	

	

The	distribution	of	the	error	for	each	validation	has	been	obtained.	The	average	error	is	a	biased	
measure,	because	the	price	peaks	badly	detected	by	the	model	are	those	that	contribute	almost	
exclusively	to	the	average	error.	That	is,	a	large	number	of	estimates	has	a	slightly	lower	and	
practically	 disposable	 error,	 and	 the	 average	 error	 is	 accumulated	 by	 a	 small	 number	 of	
estimates	that	correspond	to	misidentified	price	peaks.	The	distribution	of	the	error	is	shown	in	
Table	3.	As	can	be	observed,	in	the	stable	and	not-very-stable	zones	the	error	is	distributed	in	a	
similar	way	independently	of	the	pruning	criterion	in	the	training	of	the	model.	However,	in	the	
most	unstable	areas	the	trained	model	after	pruning	makes	better	estimates,	since	in	80%	of	
the	estimates	 it	makes	an	absolute	error	of	 less	 than	0.07,	while	 the	other	model	makes	an	
absolute	error	of	approximately	0.14	in	80%	of	the	estimates.	It	is	concluded	that	the	correct	
model	is	the	one	on	which	the	pruning	was	applied	previously	to	the	training	because	its	values	
of	R2	and	adjusted	R2	are	more	significant	and	its	error	is	also	better	distributed	among	each	of	
the	predictions.	

%	Se	ha	obtenido	la	distribución	del	error	para	cada	una	de	las	validaciones.	El	error	medio	es	
una	medida	sesgada,	debido	a	que	los	picos	de	precio	mal	detectados	por	el	modelo	son	aquellos	
que	contribuyen	prácticamente	en	exclusiva	al	error	medio.	Es	decir,	un	elevado	número	de	las	
estimaciones	tiene	un	error	ligeramente	inferior	y	prácticamente	desechable,	y	el	error	medio	
es	acumulado	por	un	reducido	número	de	estimaciones	que	se	corresponden	con	los	picos	de	
precio	mal	detectados.	

Table 8: Test of the models generated with pruning.

The distribution of the error for each validation was also obtained. The
average error is a biased measure, because the price peaks badly detected by
the model are those that contribute almost exclusively to the average error.
That is, a large number of predictions have a lower and practically disposable
error, and the average error is accumulated by a small number of estimates
that correspond to misidentified price peaks. The distribution of the error is
shown in Table 9. As it can be observed, in the stable and semi-stable zones
the error is distributed in a similar way independently of the pruning criteria
in the training phase. However, in the unstable areas the trained model after
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pruning makes better predictions, since in 80% of the predictions it has an
absolute error less than 0.07, while the other model makes an absolute error
of approximately 0.14 in 80% of the predictions. Again, it seems that the
best model is the one on which the pruning was applied previously to the
training because its values of R2 and adjusted R2 are more significant and
its error is also better distributed among the predictions.	

Test	error	distribution	
(without	pruning)	

Error	distribution	(proposed	model)	
50%	 75%	 80%	 85%	 90%	 95%	 100%	

Stable	 0.001	 0.002	 0.003	 0.004	 0.007	 0.011	 2.521	
Semi-stable	 0.008	 0.022	 0.031	 0.048	 0.095	 0.162	 2.232	
Unstable	 0.011	 0.131	 0.139	 0.386	 0.542	 1.268	 2.103	
	 	 	 	 	 	 	 	
Test	error	distribution	

(with	pruning)	
Error	distribution	(proposed	model)	

50%	 75%	 80%	 85%	 90%	 95%	 100%	
Stable	 0.001	 0.002	 0.003	 0.004	 0.005	 0.011	 2.521	
Semi-stable	 0.008	 0.028	 0.035	 0.041	 0.098	 0.154	 2.231	
Unstable	 0.008	 0.061	 0.069	 0.168	 0.231	 1.034	 2.103	

	

Tabla	3.	Test	error	distribution	in	the	model	developed	with	and	without	pruning	

%	 La	 distribución	 del	 error	 se	muestra	 en	 la	 tabla	 3.	 Como	 puede	 observarse,	 en	 las	 zonas	
estables	y	poco	estables	el	error	se	distribuye	de	forma	similar	independientemente	del	criterio	
de	poda	en	el	entrenamiento	del	modelo.	Sin	embargo,	en	las	zonas	más	inestables	el	modelo	
entrenado	 tras	 la	 poda	 realiza	mejores	 estimaciones,	 ya	 que	 en	 el	 75%	 de	 las	 estimaciones	
comete	un	error	absoluto	menor	de	0,08,	mientras	que	el	otro	modelo	comete	un	error	absoluto	
de	aproximadamente	0,14	en	el	75%	de	las	estimaciones.	Se	concluye	que	el	modelo	correcto	
es	aquel	sobre	el	cual	se	aplicó	la	poda	previamente	al	entrenamiento	debido	a	que	sus	valores	
de	R2	y	R2	ajustado	son	más	significativos	y	su	error	además	se	distribuye	mejor	entre	cada	una	
de	las	predicciones.		

	

Figura	2.	Price	predictions	in	stable	zones	for	the	testing	month	

We	will	analyze	the	evolution	of	prices	during	the	month	of	test	and	the	predictions	using	the	
model	 developed	 after	 applying	 the	 pruning.	 Figure	 2	 shows	 these	 data	 (prices	 in	 black;	
predictions	 in	 blue)	 for	 the	 validation	 of	 stable	 zones.	 The	 model	 correctly	 reproduces	 the	
evolution	of	prices	that	took	place	between	on	September	2017.	Most	of	the	time	the	prices	are	
within	the	interval	set	in	the	graph,	so	prices	have	little	dispersion.	

%	Vamos	a	analizar	la	evolución	de	precios	durante	el	mes	de	test	y	las	predicciones	utilizando	
el	modelo	desarrollado	tras	aplicar	la	poda.	La	Figura	2	muestra	estos	datos	(los	precios	en	color	

Table 9: Test error distribution in the model developed without and with pruning, respec-
tively.

The model after applying the pruning was then automatically selected as
the best one for spot price prediction. Let us now use the model proposed
by the system to study the evolution of spot prices for m3.xlarge Linux spot
instances between August and September 2017 in the different zone classes.
Figure 10 shows a summary of the spot prices against predictions (prices in
black; predictions in blue) for stable zones. A detailed analysis of the data
obtained allows to confirm that the model correctly reproduces the evolution
of prices. Most of the time the prices are within the interval set in the graph
and prices have little dispersion.

In the case of semi-stable zones, it can be observed how a greater number
of peaks are produced. However, they seem to follow a predictable pattern.
The model for these areas is able to detect these peaks, but does not reach
such prices, since they were omitted from the training when pruning. Fig-
ure 11 shows the results of the test performed (prices in black; predictions in
blue). The model is able to reproduce the evolution of prices.

Finally, in the case of unstable zones, it can be seen that there is a greater
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Figure 10: Price predictions in stable zones for the testing period. X-axis: price ($);
X-axis: time (hours).

Figure 11: Price predictions in semi-stable zones for the testing period. X-axis: price ($);
X-axis: time (hours).

number of peaks that do not follow any type of observable pattern. However,
the model for these areas is capable of detecting when most of these peaks
occur, but as in the previous case, it does not reach such prices. Figure 12
shows the results of the test performed (prices in black; predictions in blue).
As it is shown, the model is able to reproduce the evolution of prices most
of the time.

6.2. Experimentation

Let us now compare the predictions obtained from the models with real
data we have obtained bidding in the EC2 market during October 2017. The
objective of this analysis is to check whether the evolution of the predictions
corresponds to the real evolution. In addition, we will check the percentage of
the time the prices suggested by the model are above the auction price, that
is, those instants of time in which the SI would be granted to the end user.
This is an important factor, because if the prices estimated by the model
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Figure 12: Price predictions in unstable zones for the testing month. X-axis: price ($);
X-axis: time (hours).

are lower than the real prices, regardless of whether they represent well the
behavior of the auction, the estimated prices would not serve to deploy the
instances. Therefore, different correction factors have been evaluated on the
estimated price in order to know which factor allows a high allocation success
rate without increasing the price excessively.

Figures 13, 14 and 15 show the predictions made in the month of October
2017 for stable, semi-stable and unstable availability zones, respectively. The
real evolution of spot prices is shown in black, and the prediction made in
blue. In red, yellow and green, the prediction is shown by applying a correc-
tion factor of 2.5%, 5% and 10%, respectively. Correction factors increase the
predictions in a specified percentaje. As it can be seen in the figures, the best
predictions are made in the stable areas due to the lower price variability.

The final costs exclusively depend on the value of the auction and not
on the spot bid price. Therefore, on the following an evaluation of different
correction factors on the estimated price in each zone class is proposed. The
objective of this evaluation is to know and select for each zone that correction
factor with a trade-off between the probability of allocation of the instance
and the bid price, in such a way that it increases the success ratio at the
expense of increasing the maximum price the user is willing to pay.

6.3. Analysis of the results

The analysis of the prediction of prices with respect to their real evo-
lution allows to deduce that the models fit reasonably well the evolution
curves. Approximately 71% of prediction prices are slightly above the real
auction values, which means the user will succeed in obtaining the instances
requested. These models will also allow to generate provisioning plans for
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Figure 13: Price prediction for the stable zone eu-central-1b during October 2017. X-axis:
price ($); X-axis: time (hours).

Figure 14: Price prediction for the not-very-stable zone us-west-2b during October 2017.
X-axis: price ($); X-axis: time (hours).

executions based on cost and time constraints, checking ranges of hours in
which the maximum cost established is above the estimated price. From
another point of view, it also allows determining an adjusted price that can
guarantee execution during a certain number of hours, as it will be depicted
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Figure 15: Price prediction for the unstable zone us-east-1e during October 2017. X-axis:
price ($); X-axis: time (hours).

in next section when generating provisioning plans.
A correction factor has been added to the model. This factor propor-

tionally increases the estimated price in order to also increase the allocation
success factor and to extend it as much as possible over time. In return,
the total execution costs are also increased, since the instance is obtained
at a higher cost in those moments of time when the auction price increases.
Again, the previous predictions have been made applying these correction
factors to verify the success factor obtained in each type of zone, and to be
able to establish one that is a good trade-off between the total execution cost
and the probability of expulsion.

According to the data shown in Table 10, stable zones can reach a suc-
cessful prediction for all availability zones. Depending on the zone, it is
necessary to apply higher correction factors in order to obtain similar suc-
cess rates. This is because these areas have a high number of peaks in prices.
The greater the unstability of the area is, the greater price increment must
be applied to obtain success rates close to 90%. However, because the av-
erage price of SI is approximately between 15% and 30% of the equivalent
on-demand resources depending on the availability zones, substantial savings
close to 60% could be obtained.
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Analysis	of	results	
	

The	analysis	of	the	prediction	of	prices	with	respect	to	their	real	evolution	allows	us	to	deduce	
that	the	models	adapt	reasonably	well	to	the	evolution	curves.	Approximately	71%	of	the	time	
the	prediction	is	above	the	real	value	of	the	auction.	Therefore,	the	user	will	obtain	the	
instances	requested.	These	models	will	also	allow	to	generate	provisioning	plans	for	
executions	based	on	cost	and	time	restrictions,	checking	ranges	of	hours	in	which	the	
maximum	cost	established	is	above	the	estimated	price.	From	another	point	of	view,	it	also	
allows	determining	an	adjusted	price	that	can	guarantee	execution	during	a	certain	number	of	
hours.	[EXTEND	WITH	GECON?]	

%	El	análisis	de	la	predicción	de	precios	con	respecto	a	su	evolución	real	nos	permite	deducir	
que	los	modelos	se	adaptan	razonablemente	bien	a	las	curvas	de	evolución.	Aproximadamente	
el	71%	del	tiempo	la	predicción	se	encuentra	por	encima	del	valor	real	de	la	subasta.	Por	tanto,	
las	 instancias	 serían	 concedidas	 al	 usuario.	 Estos	 modelos	 permitirán	 generar	 planes	 de	
aprovisionamiento	para	ejecuciones	en	base	a	restricciones	de	costes	y	tiempo,	comprobando	
rangos	de	horas	en	 las	que	el	 coste	máximo	establecido	se	encuentre	por	encima	del	precio	
estimado.	Desde	otro	punto	de	vista,	también	permite	determinar	un	precio	ajustado	que	pueda	
garantizar	la	ejecución	durante	un	determinado	número	de	horas.	[EXTEND	WITH	GECON?]	

A	 correction	 factor	 has	 been	 added	 to	 the	 model.	 This	 factor	 proportionally	 increases	 the	
estimated	price	in	order	to	increase	the	allocation	success	factor	of	the	instance	and	to	prolong	
it	as	much	as	possible	over	time.	In	return,	the	total	cost	of	execution	is	also	increased,	since	the	
instance	is	retained	at	a	somewhat	higher	cost	in	those	moments	of	time	when	the	auction	price	
increases.	Again,	the	previous	predictions	have	been	made	applying	these	correction	factors	to	
verify	that	success	factor	is	obtained	in	each	type	of	zone,	and	to	be	able	to	establish	one	that	
is	a	compromise	between	the	total	cost	of	the	execution	and	the	probability	of	expulsion.	

%	Se	ha	añadido	un	factor	de	corrección	al	modelo	que	aumenta	proporcionalmente	el	precio	
estimado	con	el	objetivo	de	aumentar	el	factor	de	éxito	de	asignación	de	la	instancia	y	poder	
prolongarla	lo	máximo	posible	en	el	tiempo.	A	cambio,	se	aumenta	también	el	coste	total	de	la	
ejecución,	ya	que	la	instancia	se	retiene	a	un	coste	algo	superior	en	aquellos	instantes	de	tiempo	
en	 los	 que	 aumenta	 la	 cotización	 de	 la	 subasta.	 De	 nuevo	 se	 han	 realizado	 las	 predicciones	
anteriores	aplicando	estos	factores	de	corrección	para	comprobar	que	factor	de	éxito	se	obtiene	
en	cada	tipo	de	zona,	y	poder	establecer	uno	que	sea	un	compromiso	entre	el	coste	total	de	la	
ejecución	y	la	probabilidad	de	expulsión.		

	 Correction	factor	(%)	

Av
er
ag

e	
up

-t
im

e	
	 Zone	class	 0.0%	 2.5%	 5.0%	 10.0%	 15.0%	 20.0%	 25.0%	 30.0%	 45.0%	 50.0%	

Stable	 60.0%	 92.1%	 96.6%	 98.4%	 98.9%	 99.0%	 99.1%	 99.2%	 99.2%	 99.3%	
Semi-stable	 62.5%	 71.2%	 77.6%	 85.5%	 89.6%	 91.6%	 92.8%	 93.7%	 94.4%	 94.8%	
Unstable	 70.7%	 75.3%	 78.8%	 83.2%	 85.5%	 86.8%	 88.1%	 89.0%	 89.6%	 90.2%	

All	classes	 63.6%	 80.1%	 85.0%	 89.8%	 92.0%	 93.2%	 94.0%	 94.6%	 95.0%	 95.3%	
	

Tabla	4.	Correction	factors	applied	to	the	different	SI	zones	Table 10: Correction factors applied to the different SI zones.

Figure 16 summarizes the influence of correction factors on availability
zones. In the case of stable zones, applying a correction factor above 10%
of the estimated price does not improve in excess the probability that the
spot bid will succeed. However, with a relatively low correction factor of
3%, the probability of eviction can be reduced by up to 33%. Observing the
semi-stable and unstable zones, the growth curve of the up-time with respect
to the price increase is not so drastic, so correction factors around 15% and
20% respectively would be a good compromise between the price increase
and the reduction of the probability of evictions.
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Figure 16: Increase in availability compared to the correction factor by zone class.

Finally, Figure 17 shows the behaviors described for different AWS SI
availability zones. The zones classified as stable (eu-central-1b, eu-west-1a
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and eu-west-1b) have a similar growth curve, reaching up-time growth rates of
over 35%. The semi-stable zones (us-west-2b, us-west-2c and us-east-1a) have
a growth curve similar to that observed for this type of zones in Figure 16.
However, the unstable zones (eu-central-1a and us-east-1e), despite having
high availability without applying any correction factor, have a very limited
growth curve, around 70%. For this reason, it is not recommended to apply
correction factors greater than 20% since the gains in terms of availability
are minimal.
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Figure 17: Increase in availability compared to the price increase in different SI zones.

These corrections factors have been incorporated to the proposed models
in order to fit better the prediction results. Given the fact that the final price
depends on the real final spot price, the correction factors can be included
on all models for every class in the EC2 pricing schema. This improves the
behavior of the results and still allows to get an excellent tradeoff between
spot instance use and cost savings.
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7. Automatic generation of provisioning plans in Amazon EC2

The prediction models can be applied to the synthesis of provisioning
plans in Amazon EC2. A provisioning plan consists of a list of feasible
time instants at which a specific instance type can be requested. Given a
deadline, an EC2 region or a specific zone, an instance type, the operating
system, the number of execution hours and the maximum price per hour, the
EC2 SI Provisioning Maker component depicted in Figure 4 uses an internal
simulator to generate all feasible hours at which a bid could be placed in the
EC2 SI. A feasible hour means that the simulation process estimates that
the bid will succeed and, therefore, we would be able to create a SI of the
requested type without being preempted.

Given the deadline and cost constraints, the system provides the user
with a complete overview of the suitability of using SIs for the deployment
of an experiment. We have used this system to construct and execute real
provisioning plans in a healthcare-related environment. Conducting immune
response studies requires processing patient samples through different tech-
niques and methods [40]. The study of the immune response, among other
utilities, serves to see the patient’s response to medical treatments. We
present a use case in which we analyzed the immune response to select a
surgical treatment in patients with cancer.

Figure 18 shows the process followed to study the immune response for
patients that meet a given set of inclusion criteria. First, a sample is ex-
tracted from the patient. Samples are anonymized and processed through a
flow cytometer with different parameters, whose output is recorded in several
files. These files are then processed using a specific software with the aim of
obtaining information of interest related to a variety of aspects such as the
type of cells, their activity or the percentage of death cells, for instance. This
information has a very high level of detail. In order to handle it, a process
selecting the relevant data must be previously executed. For that, a pattern
recognition process, based on machine learning techniques, is applied. The
final results are used for the study of the patient’s immune response.

The execution of the previous process is very expensive in computational
terms. The most complex process is the one that performs pattern recogni-
tion using machine learning algorithms. Figure 19 depicts an example of the
process that it is achieved at this stage.

Every week, over 50 samples with multiple parameters must be processed,
for which the Amazon EC2 computing resources are used together with a
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Figure 18: Workflow for the analysis of the immune response.

Figure 19: Automatic selection of data set suitable for immune response analysis.
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storage solution based on Amazon S3 [41]. The computation of the samples
according to the process shown in Figure 18 is done deploying between 15
and 20 m3.xlarge instances running Linux (Ubuntu) in parallel. The analysis
of the software requirements justified the use of this type of instances to run
the processes. Each machine processes several samples through a specific
workflow, taking the sample information from S3 and storing the final results
back there. Processing a sample takes between 11 and 14 hours. Considering
the empirically observed overhead of process configuration and setup, data
storage and retrieving, processing all samples requires an overall execution
time in the range between 565 and 715 hours.

The weekly execution of the previous process using on-demand instances
in the EC2 service represented a cost of between $152 and $225. In Septem-
ber 2017, the application of SI using the approach presented in this paper
was proposed as a feasible alternative. The SI service allows launching the
experiments with the same characteristics of hardware, operating system and
integration environment (EC2 and S3) than the previous schema, facilitating
the migration, and offers the possibility of obtaining lower costs and impor-
tant savings.

The Provisioning Maker component (depicted in Figure 4) was used to
generate resource provisioning plans for the same type of instance orig-
inally used (m3.xlarge machines with the GNU/Linux operating system).
This component’s input was the configuration of the instances required, the
amount of computation hours required, the deadline (the analysis of a sam-
ple cannot be delayed more than two days - 48 hours- since it is received)
and, finally, the costs bound. The provisioning maker component generated
a price prediction per hour for each EC2 availability zones using the models
detailed in Section 5. Figure 20 depicts the whole process.

The correction factors described in Section 6.3 were included in the mod-
els proposed by the system. Expulsions had to be avoided, since neither
recovery nor checkpointing mechanisms were available in the software used
to conduct the use case. The analyst studies the provision plans proposed by
the component and selects the one to be executed. This process is normally
cost-driven, as the analyst chooses the plan that provides one of the higher
success percentages with the lower price. The company has developed an
application that processes the supplied plans, chooses one among them and
places the corresponding bids in the spot market. If the bids are the win-
ers, the requested instances are launched and the process execution starts.
Figure 21 shows a screenshot of the selection of a provisioning plan by the

40



Pricing
storage

Models

Pricing
prediction …

Provisioning
plans

us-east-1

ap-south-1

Provisioning
plan	executionus-east-1

AWS

Figure 20: EC2 SI Provisioning Maker process.

problem analyst using the proposed framework.

Figure 21: Screenshot of the tool for selecting a provisioning plan.

Table 11 details the costs for six weeks since December 2017 until January
2018. In weeks 1, 2 and 5 the processes have been successfully executed
using the generated provisioning plans on semi-stable zones (us-east-1a, us-
west-2c and us-east-1a, respectively), with an overall total cost of $111.40
compared to $507.26 that the execution would have cost using on-demand
instances. This represents a saving of 78% using the SI with respect to the

41



on-demand model. Weeks 3 and 4 have been executed on stable zones (eu-
central-1b and eu-west-1a, respectively), achieving a saving of 80% ($70.52 for
SI with respect to $358.57 for on-demand). Finally, in week 6 the execution
was carried out on an unstable zone (eu-central-1a), with a cost of $41.70
compared to the $216.41 of the on-demand model, which represents a saving
of 80.7%.

Week Exec.
time
(h)

SI cost
($)

SI price
($)

On-
demand
cost ($)

On-
demand
price ($)

Savings
(%)

Week 1 581 35.03 0.0603 154.55 0.2660 77.3
Week 2 623 35.95 0.0577 165.72 0.2660 78.3
Week 3 610 35.99 0.0590 192.15 0.3150 81.3
Week 4 568 34.53 0.0608 166.42 0.2930 79.2
Week 5 703 40.42 0.0575 187.00 0.2660 78.4
Week 6 687 41.70 0.0607 216.41 0.3150 80.7

Table 11: Costs for the execution of the processes during six weeks.

An average saving of 79.3% has been obtained using the provisioning
plans with EC2 SI instead of the on-demand instances, with a total cost of
$223.63 compared to $1,082.24, respectively. Therefore, it seems evident that
the generation and use of the provisioning plans with the proposed models
are very useful and effective in actual practice, allowing a very significant
saving in the total costs of execution and without altering the configuration
or the requirements of the problem to solve.

8. The new Amazon EC2 Spot pricing model

Amazon has recently introduced a series of changes in the spot pricing
model that affect prices, access and suspension of the instance [42, 43]. On
the one hand, Amazon announced that the SI price model was going to move
to one in which prices adjust more gradually. This change is oriented towards
long-term trends. It is expected that it will still be possible to obtain savings
of between 70 and 90% of the price of the on-demand instance [42].

On the other hand, Amazon announced a streamlined access model for
Spot Instances. This model simplifies the use of SI by the user, allowing to
select this type of instances in the same way that an on-deman instance is
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selected. The request can include the maximum price that is willing to pay
per hour per instance, with the default price being the on-demand instance
one. Other limitations can also be included, such as the type of instance and
the availability zone. If the maximum price is higher than the current spot
price for the specified instance and there is available capacity, the request
is attended immediately and a SI is launched until the user finishes it or
EC2 claims it for an on-demand use. The user will pay the spot price that’s
in effect for the current hour for the instances that were launched. This
change tries to facilitate and promote the use of SI, avoiding having to know
the spot markets, the bidding mechanism and the interaction through an
asynchronous API, since the new model gives control immediately over the
instance in case the request can be served.

An important change is the concept of eviction. In the new model, the
interruption of a SI is due to factors based on price (the spot price is higher
than its maximum price), capacity (there are not enough EC2 instances not
used to satisfy the demand of SIs) and restrictions (a restriction may be
included in the SI request as a launch group or a group of availability zones).
Therefore, the fluctuation of the prices in the spot market are not longer
used. Note, however, that the factors that condition the interruption of a SI
are still internal to the provider and cannot be known without a deep and
detailed understanding and analysis of the AWS infrastructure.

Finally, the option to hibernate an instance has been added, although
some requirements detailed below must be fulfilled. Now it is possible (for
those instances that meet the requirements) to save the memory status of
an instance when the instances are interrupted (or reclaimed in the new
terminology, since they are claimed to be used as on-demand instances), and
recover the previous status when capacity is available again. The private IP
addresses and the elastic IP of the instance are also maintained during the
stop-start cycle.

However, the new model still allows for a more detailed control over the
SI mechanism. The maximum price that the user want to spend when the
request is made can be specified, and the jobs and applications that use the
RequestSpotInstances or RequestSpotFleet API services continue to function
correctly. It is also still possible to establish a configuration when requesting
and deploying instances in order to diversify the placement of SI across the
most cost-effective pools. Therefore, existing research can be adapted to the
new model. Although the concepts of spot market and the bidding mecha-
nism disappear, the spot prices are more predictable in the new model. Prices
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are updated less frequently and are determined by supply and demand for
Amazon EC2 spare capacity, not bid prices. It still makes sense, therefore,
to be able to predict the price of SIs to anticipate and be able to provide so-
lutions that use SIs and offer significant savings. Although the complexity of
the analysis of the spot market and its fluctuations is now lower, the changes
in the prices of the instances and their availability continue to respond to
internal criteria of the provider (the capacity of the infrastructure or the
number of instances available are not public). Therefore, adapting existing
approaches to the new pricing model would allow to predict the maximum
price to start up a SI with a specific configuration and the best savings.

We have conducted a preliminar analysis with the data from February to
April 2018 (which corresponds to the new model of SI) in order to evaluate
how the spot prices fluctuate with the new model. We analyzed the available
data in each region with all availability zones, instance types and operating
systems. To characterize the different classes that can be found, the frequency
and the deviation in the price changes (variations) were considered. Table 12
shows the different classes that we can set up combining these two measures.

Class 1 Class 2 Class 3 Class 4
Frequency
of variation

High
( >150 )

High
( >150 )

Low
( <30 )

Low
( <30 )

Deviation
of price

Low
( <10% )

High
( >40% )

Low
( <10% )

High
( >40 %)

Table 12: Region/zone classes using frequency of variation and deviation of price.

With the classification proposed in Table 12 we conducted an analysis
of the data collected for the different regions. The results are shown in
Table 13. Compared with the previous spot market, it is clear that now prices
fluctuate much less, but there are still some differences that are noticeable.
The results depicted in Table 13 allow us to observe that there are three
well differentiated classes. Class 2 only includes two availability zones, so
a more detailed analysis would allow them to be included in one of the
previous classes. Therefore, it is appreciated that, although spot prices vary
less, their prediction is not so obvious in all cases, and a detailed analysis of
each availability zone may be required if precise results are to be obtained.
The differences among the classes may justify the generation of different
prediction models similarly to how it was conducted in this paper.
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Class 1 Class 2 Class 3 Class 4 Total
>Freq
<Dev

>Freq
>Dev

<Freq
<Dev

<Freq
>Dev

Total

ap northeast 1 24 0 32 0 56
ap northeast 2 0 0 24 2 26
ap south 1 4 0 16 0 20
ap southeast 1 22 2 26 4 54
ap southeast 2 14 0 28 0 42
ca central 1 2 0 14 0 16
eu central 1 20 0 20 0 40
eu west 1 56 0 28 0 84
eu west 2 10 0 16 2 28
eu west 3 0 0 10 4 14
sa east 1 6 0 8 2 16
us east 1 222 0 32 0 254
us east 2 66 0 32 0 98
us west 1 56 0 10 0 66
us west 2 102 0 24 0 126
Total 604 2 320 14 940

Table 13: Analysis of price variations in the AWS regions with the new model.

In general terms, the framework proposed in Section 4 fits the new Ama-
zon model, as well as the proposed approach does. The prices of the instances
vary in each region, which continues to allow a detailed analysis that mo-
tivates the realization of a clustering to characterize the different regions.
From this analysis, the process would be similar to the one detailed in this
work. Predictive models would be generated for each of the classes obtained
from the clustering process. These models would be validated and could then
be used to make a prediction of the maximum price the user is willing to pay
for an instance.

From the predictive models, it is possible to generate a provisioning plan
that minimizes the cost of the required infrastructure, combining the maxi-
mum prices according to the predictive models with the different zones of
availability or regions when establishing the configuration of the request
against the Amazon API. The mechanism for generating provisioning plans
that has been described in Section 7 could be adapted.
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Regarding hibernation, it is important to highlight the requirements that
the instance must have [44]. First, for a spot instance request, the type
must be persistent, not one-time. The state of the memory is flushed to
the root EBS volume of the instance, so the root volume must be an EBS
volume, not an instance store volume, and must be large enough to store
the memory (RAM) of the instance during hibernation. In addition, only
the following instances are compatible with the spot hibernation mode: C3,
C4, C5, M4, M5, R3 and R4, with less than 100 GB of memory. Something
similar happens with the operating system, since only the following operating
systems are compatible: Amazon Linux 2, Amazon Linux AMI, Ubuntu with
an Ubuntu kernel set for AWS (linux-aws) after 4.4.0-1041 and Windows
Server 2008 R2 or later.

These requirements limit the level of applicability of the spot hibernation
mechanism. In many cases it will still be necessary to provide a checkpoint-
ing model that allows not to lose the information processed in case a SI is
interrupted. Furthermore, even if the requirements are met and the state of
the memory is stored, the conditions of the initial request must be fulfilled
in order for the instance to be restarted. In the experiment described in Sec-
tion 7, a requirement was that the analysis of a sample can not be delayed
more than two days -48 hours- since it is received. Taking advantage of the
possibility of obtaining better prices in exchange for a possible interruption
in which spot hibernation is used (so the above requirements have to be ful-
filled) requires adding the condition that the instances must resume their
execution again before the deadline expires, which adds complexity to the
problem of the generation of provisioning plans and should be evaluated in
detail.

9. Conclusions

The use of new models for the hiring of computing instances, such as
Amazon EC2 Spot Instances and Google Cloud Preemptible Virtual Ma-
chine, can drastically reduce the cost of system deployment and execution in
cloud infrastructures. However, the inherent low reliability of this class of re-
sources suggests the need for a system that, analyzing the historical evolution
of prices and resource preemption events, could generate provisioning plans
with an adequate trade-off between the cost and the probability of suffering
expulsions so as to be able to satisfy some deadline requirements as well as
cost constraints. In the case of the Amazon SI service, the provisioning sys-
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tem should be able to propose a good bidding strategy in order to participate
in the auction process for the resources, ensuring some quality aspects to be
fit (deadlines and cost bounds).

In this paper, a framework for the analysis of Amazon EC2 Spot Instances
has been presented. This framework allows an automated process of data
collection and processing of the available spot prices. Based on these data,
an analysis is carried out to classify the availability zones, generating a series
of well-differentiated zones classes through a clustering process. For each zone
class, a predictive model of the spot price is generated. The generation of a
predictive model for each zone class instead of a general one allows obtaining
more precise results for each availability zone. Moreover, these models are
updated each time new data is available.

These predictive models have also been used to define provisioning plans.
The paper describes a real experiment that has used zones with quite different
behaviors, and which demonstrates that the proposed method can generate
important cost savings (above 79%) when compared to the use of on-demand
instances for the same tasks.

Currently, the use of alternative analysis techniques such as Markov
chains or Machine learning is being considered in order to improve the accu-
racy of the predictions. Our current and future work is going to concentrate
on the adaption of the presented methodology to the changes and the new
Amazon EC2 Spot pricing model introduced recently. As it was discussed
in Section 8, the new model still allows for a more detailed control over
the SI mechanism. The adaption of the approach presented in this work as
well as the proposed framework will allow us to deal with the generation of
provisioning plans that benefit from the use of SIs over the new model.
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A. Mart́ınez, A history-based model for provisioning EC2 spot instances
with cost constraints, in: J. Á. Bañares, K. Tserpes, J. Altmann (Eds.),
13th International Conference on Economics of Grids, Clouds, Systems,
and Services - GECON 2016, Vol. 10382 of Lecture Notes in Computer
Science, Springer, 2016, pp. 208–222.

[35] Amazon Relational Database Service (RDS),
https://aws.amazon.com/rds/, [Online; accessed in April 2018].

[36] P. Esling, C. Agon, Time-series data mining, ACM Comput. Surv. 45 (1)
(2012) 12:1–12:34.

[37] D. Michael, J. Houchin, Automatic eeg analysis: A segmentation pro-
cedure based on the autocorrelation function, Electroencephalography
and Clinical Neurophysiology 46 (2) (1979) 232 – 235.

[38] M. A. Newell, D. Cook, H. Hofmann, J.-L. Jannink, An algorithm for
deciding the number of clusters and validation using simulated data
with application to exploring crop population structure, The Annals of
Applied Statistics 7 (4) (2013) 1898–1916.

[39] H. Zhao, J. Liang, H. Hu, Clustering Validity Based on the Improved
Hubert Gamma Statistic and the Separation of Clusters, in: First Inter-
national Conference on Innovative Computing, Information and Control
- Volume I (ICICIC’06), Vol. 2, 2006, pp. 539–543.

[40] C. Janeway, P. Travers, Immunobiology: The Immune System in Health
and Disease, Current Biology Limited, 1994.

[41] Amazon S3 — Simple Cloud Storage Service,
https://aws.amazon.com/s3/, [Online; accessed in April 2018].

51



[42] Barr, J., Amazon EC2 Update Streamlined Access to
Spot Capacity, Smooth Price Changes, Instance Hibernation,
https://aws.amazon.com/es/blogs/aws/amazon-ec2-update-

streamlined-access-to-spot-capacity-smooth-price-changes-

instance-hibernation/, [Online; accessed in September 2018].

[43] Amazon AWS re:Invent 2017, https://reinvent.awsevents.com, [On-
line; accessed in September 2018].

[44] Spot Instance Interruptions, https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/spot-interruptions.html, [Online; accessed in
September 2018].

52



	
	
Javier	Fabra	 received	his	Ph.D.	 in	computer	 science	 from	the	University	of	Zaragoza,	
Spain,	 in	 2010.	 He	 holds	 an	Associate	 Professor	position	 in	 the	 Department	 of	
Computer	Science	and	Systems	Engineering	at	the	University	of	Zaragoza,	Spain,	since	
2008.	 His	 main	 research	 areas	 focus	 on	 service-oriented	 computing	 and	 cloud	
architectures,	semantic	and	scientific	computing,	and	interoperability	issues	in	cluster,	
grid	and	cloud	scenarios	by	means	of	the	application	of	high-level	Petri	nets.	
	
Joaquín	 Ezpeleta	 received	 the	M.S.	 degree	 in	Mathematics	 and	 the	 Ph.D.	 degree	 in	
Computer	 Science	 from	 the	 University	 of	 Zaragoza,	 Spain.	 He	 is	 a	 professor	 of	 the	
Dept.	 of	 Computer	 Science	 and	 Systems	 Engineering	 of	 the	 University	 of	 Zaragoza,	
where	 he	 conducts	 lectures	 on	 formal	 methods	 for	 sequential	 and	 concurrent	
programming	as	well	as	service-oriented	architectures.	He	has	worked	as	a	researcher	
at	the	Laboratory	of	Methods	and	Architectures	for	Information	Systems	(MASI),	at	the	
University	 of	 Paris-6,	 and	 the	 Digital	 Enterprise	 Research	 Institute	 (DERI),	 at	 the	
National	University	of	 Ireland	 in	Galway.	His	research	has	focused	on	the	problem	of	
modelling,	 analysis,	 and	 control	 synthesis	 for	 concurrent	 systems	 as	 well	 as	 the	
application	 of	 formal	 techniques	 to	 help	 in	 the	 development	 of	 correct	 distributed	
systems	based	on	Internet	and	cloud	technologies,	as	well	on	the	parallel	processing	of	
data	and	computing	intensive	computing	problems.	He	has	co-authored	more	than	80	
research	 papers	 and	 participated	 in	 numerous	 program	 comities	 of	 international	
conferences,	being	also	a	reviewer	of	prestigious	research	journals.	
	
Pedro	 Álvarez	 received	 the	 Ph.D.	 degree	 in	 computer	 science	 engineering	 from	 the	
University	of	Zaragoza,	Zaragoza,	Spain,	in	2004.	He	works	as	Lecture	Professor	at	this	
University,	since	2000.	His	current	research	interests	focus	on	two	main	aspects.	First,	
on	 integration	 problems	 of	 network-based	 system	 (cloud-based	 and	 service-based	
systems,	mainly)	and	the	use	of	novel	techniques	and	methodologies	for	solving	them.	
And,	secondly,	on	the	application	of	formal	analysis	techniques	to	mine	event	logs	and	
databases	 (in	 the	 domain	 of	 e-commerce,	 e-learning,	 cybersecurity,	 or	 health,	 for	
example).	
	
	
	
	
	
	
	
	
	
	
	
	









Journal	reference:	FGCS	Special	Issue	on	the	Economics	of	Computing	Services	
	
Title:	 Reducing	 the	 Price	 of	 Resource	 Provisioning	 using	 EC2	 Spot	 Instances	 with	
Prediction	Models	
	
Authors:	Javier	Fabra,	Joaquín	Ezpeleta,	Pedro	Álvarez	
	
Highlights	
	

• A	 user-oriented	 framework	 that	 allows	 to	 provide	 history-based	 models	 to	
predict	Amazon	Spot	Instances	(SI)	prices	for	the	different	availability	zones	is	
presented.	

• The	proposed	solution	has	considered	and	analyzed	the	SI	market	during	a	long-
term	period.	

• All	availability	zones	and	regions	of	Amazon	SI	have	been	analyzed	and	classified,	
providing	the	most	suitable	model	for	price	prediction	in	each	case.	

• Provisioning	plans	are	generated	according	to	these	models,	allowing	therefore	
a	best	cost	execution	of	processes	given	a	deadline	and	cost	constraints.	

• The	proposed	solution	has	been	applied	to	conduct	a	real	problem	related	to	
immune	response	studies.	

• The	new	Amazon	EC2	Spot	pricing	model	has	been	detailed	as	well	as	how	the	
presented	approach	adapts	to	the	new	changes.	
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