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Abstract

The Internet of connected vehicles (IoV) is employed to collect real-time traf-

fic conditions for transportation control systems, and the computing tasks are

available to be offloaded from the vehicles to the edge computing devices (ECDs)

for implementation. Despite numerous benefits of IoV and ECDs, the wireless

communication for computation offloading increases the risk of privacy leakage,

which may consequently lead to tracking, identity tampering and virtual vehi-

cle hijacking. Therefore, it remains a challenge to avoid privacy conflicts for

computation offloading to the ECDs in IoV. To address this challenge, an edge

computing-enabled computation offloading method, named ECO, with privacy

preservation for IoV is proposed in this paper. Technically, the privacy con-

flicts of the computing tasks in IoV are analyzed in a formalized way. Then,
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vehicle-to-vehicle (V2V) communication-based routing for a vehicle is designed

to acquire the routing vehicles from the origin vehicle where the computing task

is located at the destination vehicle. NSGA-II (non-dominated sorting genetic

algorithm II) is adopted to realize multi-objective optimization to reduce the

execution time and energy consumption of ECDs and prevent privacy conflicts

of the computing tasks. Finally, experimental evaluations are conducted to

validate the efficiency and effectiveness of ECO.

Keywords: IoV, privacy preservation, edge computing, computation

offloading, energy consumption

2010 MSC: 00-01, 99-00

1. Introduction

1.1. Background

In recent years, the number of vehicles has increased rapidly to expand res-

idents’ travel range, thus stretching transportation systems to their capacity

limits [1]. With the explosive growth of vehicles, traffic congestion and car ac-5

cidents occur frequently in urban areas. To improve traffic conditions in urban

cities, the Internet of connected vehicles (IoV) has emerged as a new paradigm

that emphasizes information interaction among vehicles and humans. In the IoV

environment, vehicles are connected to devices such as intelligent cameras, sen-

sors and actuators. These devices have transmitters and receivers that connect10

the vehicles to the remote infrastructure and other vehicles [2][3]. The real-time

traffic information collected from the vehicles includes vehicle position, vehicle

safety, vehicle driving status and vehicle identification information. IoV services

can increase the dissemination of real-time traffic information and the ability of

the vehicle drivers to track traffic conditions in real time.15

Generally, most vehicles are not equipped with the physical resources for data

processing and data storage, the computing tasks from the running vehicles cur-

rently need to be offloaded to the remote cloud data centers for implementation
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via roadside units (RSUs) based on the vehicle-to-infrastructure (V2I) commu-

nication mode [4]. Despite the on-demand processing ability and nearly endless20

resource supplement of cloud platforms, traditional centralized cloud computing

has the drawback of excessive transmission delays and unstable connections in

the IoV network [5][6]. Mobile edge computing (MEC) has the potential to pro-

vide a suitable solution for these issues. Driven by the MEC technique, cloud

services are pushed to the edge of the radio access network, and the computing25

tasks of the vehicles are offloaded to the edge computing devices (ECDs) that

are in close proximity to the vehicles rather than remote cloud platforms [7]. By

offloading the workloads to the ECDs, the quality of experience of the drivers

in executing their computing tasks could be greatly improved.

However, the offloading process across ECDs in IoV comes with its own30

weaknesses, particularly in terms of security issues. The running vehicles are

required to transmit security information, including driving speeds, current lo-

cations and surrounding traffic conditions, periodically to the transportation

control center via their neighbor RSUs [8][9]. Once the privacy information is

transmitted, the network could realize the whereabouts of the specific vehicle,35

which may bring the risk of privacy leakage [10][11]. The disclosure of private

driving information is a catastrophe, especially in the aspect of intelligent driv-

ing. Although the use of sensors automates and intellectualizes the operations

of vehicles and improves the safety for on-road traveling, it leads to the easy

invasion of vehicles’ systems. Virtual vehicle hijacking is likely to occur when40

the vehicles’ electronic systems are invaded, resulting in unpredictable conse-

quences. The schemers who invade the systems could alter the settings of the

vehicles and give the systems extra instructions within a short time [12][13].

When the drivers are preoccupied with driving, untimely orders could be is-

sued, such as disabling brakes and locking doors and windows, which remains45

a classic example in virtual vehicle hijacking. Besides, based on the security

information online, the malicious drivers may trace the target vehicles and then

carry out their criminal activities [14]. With these observations, as the comput-

ing tasks carry different privacy information of the vehicles, it is necessary to
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avoid privacy leakage during computation offloading among ECDs in IoV.50

On the other hand, although ECDs are practical in IoV, due to the limited

computing power of the ECDs, some of the computing tasks in the coverage of an

ECD must be offloaded to the other ECDs for the resource response, which leads

to a certain amount of extra communication delay by task transmission across

ECDs [15]. Additionally, a large quantity of resources are deployed on the ECDs55

and the cloud data centers to cope with the explosive resource requirements of

computing tasks in IoV. Therefore, from the perspective of ECDs, the energy

consumption should be comprehensively considered. The placement of large

quantities of ECDs consumes high amounts of energy, which is environmentally

unfriendly. This ever-growing energy consumption will contribute to increased60

greenhouse gas emissions, worsening the greenhouse effect. Hence, it is of utmost

significance to formulate relevant strategies, such as switching ECDs with low

vehicle coverage to a sleep state so that non-participation will not influence

global performance [16].

1.2. Motivation65

To improve the response time for performing computing tasks for the ve-

hicles in IoV, the ability of RSUs has been expanded as ECDs to provision

computation and storage power for computing tasks. However, when employing

ECDs to accommodate offloaded computing tasks, the resource limitations of

ECDs should be prioritized. That is, the number of simultaneously running70

tasks on an ECD must be restricted. In this situation, the computing tasks

in the coverage of an ECD may be transferred to another ECD for execution.

For computation offloading across ECDs, the response times of all ECDs should

be improved, and energy consumption by the servers in the ECDs should be

reduced. Furthermore, as the datasets for running the computing tasks have75

privacy conflicts, some computing tasks cannot be offloaded to the same ECD

to prevent privacy leakage.

1.3. Paper Contributions

The main contributions of this paper include the following:
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• Analyze privacy conflicts of the computing tasks offloaded to the ECDs,80

and the computation offloading problem with privacy preservation for IoV

is defined as a standard multi-objective optimization problem.

• Design a V2V communication-based route-obtaining algorithm to acquire

the vehicle route from the origin vehicle where the computing task is

located to the destination vehicle that offloads computing tasks to the85

goal ECD.

• Adopt NSGA-II (non-dominated sorting genetic algorithm II) to realize

multi-objective optimization to shorten the execution time of the com-

puting tasks and reduce the energy consumption of ECDs while guarding

against privacy conflicts of the computing tasks.90

• Conduct extensive experimental evaluations to demonstrate the efficiency

and effectiveness of the proposed method ECO.

The remainder of this paper is organized as follows. Section II describes

the completed mathematical modeling and formulation. Section III develops

a computation offloading method with privacy preservation for IoV in edge95

computing. In Section IV, simulation experiments and a comparison analysis

are presented. Section V summarizes the related work. Finally, conclusions and

future work are outlined in Section VI.

2. System Model and Problem Formulation

In this section, the system model for IoV in cloud-edge computing is designed100

and the computation offloading problem with privacy preservation for IoV is

defined as a standard multi-objective optimization problem. Key terms and

descriptions are presented in Table I.

2.1. Resource Model for IoV in Cloud-Edge Computing

The emerging paradigm of edge computing has the potential to satisfy the re-105

quirements of computation power for the computing tasks from vehicles in IoV.
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Table 1: Key Terms and Descriptions

Terms Descriptions

M The number of ECDs

D The ECD collection, D = {d1, d2, . . . , dM}
R The RSU collection, R = {r1, r2, . . . , rM}
S The server collection, S = {s1, s2, . . . , sM}
N The number of vehicles

V The vehicle collection, V = {v1, v2, . . . vN}
q The capacity of all servers

T The computing task set, T = {t1, t2, . . . , tN}
tn The n-th computing task in T

un The requested number of resource units of tn

G The time consumption for implementing T

BE The baseline power consumption for all servers

RE The energy consumed by the used resource units

UE The energy consumed by the unused resource units

E The total energy consumption for all servers

Fig. 1 shows a communication framework for IoV in cloud-edge computing. As

indicated in Fig. 1, consider a scenario in which there is a bidirectional road and

M edge computing devices (ECDs), denoted as D = {d1, d2, . . . , dM}, along the

road, and N vehicles moving down the road, denoted as V = {v1, v2, . . . vN}.110

Suppose each vehicle has a computing task for offloading to the ECDs; thus,

there are N computing tasks, denoted as T = {t1, t2, . . . , tN}. Each ECD con-

sists of a roadside unit (RSU) and a server. Accordingly, there are M RSUs, de-

noted as R = {r1, r2, . . . , rM}, and M servers, denoted as S = {s1, s2, . . . , sM},
in the bidirectional road. The RSU often has a coverage area, and thus, the road115

is divided into multiple road segments. A vehicle in IoV transmits its data and

applications to the corresponding surrounding ECD that covers the vehicle. The
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Figure 1: A communication framework for IoV in cloud-edge computing.

ECDs then transfer the collected information to the remote cloud data center.

In addition, the transportation control center can reserve or retrieve the data

from the cloud data center.120

2.2. Execution Time Model

When performing a computing task from a vehicle, the offloading time from

the vehicle to the ECD, the execution time and the feedback time for returning

the execution results back to the vehicles should be considered.

The running vehicles cross different ECDs according to their locations along125

the road. We use a flag to judge whether the n-th (n = {1, 2, . . . ., N}) vehicle

vn belongs to the service domain of the m-th ECD at time instant i, which is

measured by

Fm
n (i) =





0, vnis within the coverage of dm,

1, Otherwise.
(1)
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Generally, the computing task is chosen to be offloaded to an edge device.

However, the computing task might be offloaded to an edge computing device130

that does not belong to the coverage of the nearby edge computing device.

As the vehicle moves along the road, especially when it is located between the

boundary of two edge devices, it may cross two or more road segments. Suppose

the vehicle moves from the original segment to the destination segment. The

task should be offloaded to the EDC located in the destination segment, where135

the vehicle will receive the feedback execution results. The computing task

should be transmitted to the vehicle in the destination segment based on V2V

technology.

The transmission time for transiting the computing task tn is calculated by

bn(i) =
M∑

m=1

N∑

n′=1

Fm
n (i) ·Qn′

n (i) · (1− Fm
n′ (i)) · wn

λV2V
· (θn,n′ + 1), (2)

where θn,n′ is the number of routing vehicles that transferred from vn to vn′ ,

λV2V is the data transmission rate based on V2V technology, and Qn′
n (i) is a

binary variable that judges whether tn is transmitted from vn to vn′ and is

calculated by

Qn′
n (i)=





0,

1,

tn is transmitted from vn to vn′ ,

otherwise ..
(3)

The offloading time for the m-th (m = {1, 2, . . . ,M}) computing task tm is

calculated by

cn(i) =
M∑

m=1

Fm
n (i) · wn

λV2I
, (4)

where λV2I is the data transmission rate based on V2I technology. The execution

time is determined by the execution performance of the resource units and the140

task length. In resource management, a common method is to employ resource

units to measure the capacity of the server. Thus, the physical resources of the

servers in the ECDs could be configured as multiple resource units, and then,

the server capacity and the requested resources of the computing tasks could be

weighted by the quantity of resource units. Let q be the capacity of all servers145

and un be the requested number of resource units of tn.
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The execution time of tn is calculated by

kn(i) =
M∑

m=1

Fm
n (i) · ln

un · p
, (5)

where p is the processing power of each resource unit.

The execution results should be fed back to the vehicles, and the feedback

time is calculated by

hn(i) = w′n/λV2I, (6)

where w′n is the data size of the returned results for executing tn.

The total time consumption for implementing tn is calculated by

gn(i) =bn(i) + cn(i) + kn(i) + hn(i). (7)

Then, the total time consumption for implementing all computing tasks is

calculated by

G=
N∑

n=1

gn(i). (8)

2.3. Energy Consumption Model

The energy consumption of the ECDs mainly refers to the energy consump-150

tion of the servers and the energy consumed by the RSUs. As RSUs are in

working mode, and their energy consumption is adjusted dynamically accord-

ing to their working status. Thus, we mainly focus on the energy consumption

of the servers in the ECDs. The main energy consumption of the servers in-

cludes several aspects: the baseline energy consumption of the servers in running155

mode, the energy consumption of the occupied resource units, and the energy

consumption of the unused resource units [17].

The main energy consumption is determined by the service time of the

servers. The service time of sm is calculated by

stm(i) =
N

max
n=1

(Lm
n (i) · kn(i)), (9)

where Lm
n (i) is a binary variable that judges whether tn is performed on sm

Lm
n (i)=





0,

1,

tn is executed on sm,

otherwise ..
(10)
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The baseline energy consumption for all servers in the ECDs is calculated

by

BE =
M∑

m=1

stm(i) · α, (11)

where α is the power rate of the servers in the ECDs.

The energy consumption of the employed resource units is calculated by

RE =

M∑

m=1

N∑

n=1

Lm
n (i) · stm(i) · β, (12)

where β is the power rate of the employed resource units.

The energy consumption of the unemployed resource units is calculated by

UE =
M∑

m=1

(q −
N∑

n=1

Lm
n (i)) · stm(i) · γ, (13)

where γ is the power rate of the unemployed resource units.160

Then, the total energy consumption of all servers is calculated by

E = BE +RE + UE. (14)

2.4. Privacy Model of Computing Tasks

The computing tasks from the vehicles in IoV combine privacy conflicts.

These tasks are from different vehicles and require different datasets to achieve

their goals. The datasets may have different privacy preservation requirements.

The privacy conflict occurs in the scenario that an ECD processes the tasks165

whose needed datasets should not be placed together. Provided that the tasks

with privacy conflicts are transmitted to the same ECD, the privacy of drivers

is invaded to a great extent. Thus, some computing tasks are incapable of

deployment in the same EDC for execution.

A graph ψ = (T,Z) is leveraged to model the privacy conflicts of the com-

puting tasks, where T is the set of computing tasks and Z is the set of conflicting

relations. A pair of conflict relations (tn, tn′) (tn, tn′ ∈ T ) cannot be deployed

on the same ECD to guarantee the privacy information of the vehicles. The

conflict computing tasks for tn can be acquired according to

ctn = {tn′ |(tn, tn′) ∈ Z, n′ = {1, 2, ..., N}}. (15)
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Denote the computation offloading strategy for all computing tasks as X =

{x1, x2, . . . ., xN} (xn ∈ D), where xn represents the destination edge computing

device for hosting tn. Then, according to the obtained conflicting task set for

hosting tn, the deployed location xn also has a conflicting ECD set, which is

obtained by

cdn = {xj |xj ∈ ctn, j = {1, 2, ..., |ctn|}}. (16)

2.5. Problem Formulation170

In this paper, we aim to achieve the goal of minimizing the execution time

presented in (7) and reducing the energy consumption presented in (13) while

meeting the privacy constraints. The formalized problem is given as

maxG, minE. (17)

s. t. xn ∈ D, (18)

N∑

n=1

θn · fn,w ≤ p, (19)

xn /∈ cdn, (20)

3. A Computation Offloading Method with Privacy Preservation for

IoV in Edge Computing

In this section, we propose an algorithm to obtain the offloading route for

the computing tasks based on the V2V transmission first. Then, NSGA-II is

adopted to find the global optimal offloading strategy.175

3.1. Routing Obtaining Based on V2V Transmission

V2V is employed for task transmission crossing of different ECDs by using

the existing vehicular communications, including IEEE 802.11p-based dedicated

short-range communications (DSRC), WiFi, Bluetooth, ZigBee, and fourth gen-

eration (4G) [18] [19][20]. Through V2V communication, the computing task180
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Figure 2: An example of route acquisition.

on the vehicle can be transmitted to another vehicle covered by the destination

ECD and successfully offloaded to the ECD for execution.

As for the given task tn from the vehicle vn, the offloading goal ECD is

xn, and its origin ECD is dn. The origin location of the ECD is denoted as

Orin = {Olatn, Olonn}, and the destination location of the ECD is denoted as

Desn = {Dlatn, Dlonn}. The distance between the origin and the destination

ECDs is calculated by

DisOD =

√
(Olatn−Dlatn)

2
+ (Olonn−Dlonn)

2
. (21)

As mentioned in Section 2, the data transmission rate is denoted as λVI,

and then, the number of vehicles and the vehicle set from the original vehicle

to the destination vehicle are evaluated by Algorithm 1. In Algorithm 1, the185

input is the computing task tn and the destination ECD xn, and the output

is the routing vehicle set, i.e., rs, for computation offloading. The key idea of

this algorithm is to obtain the farthest vehicle of vn that is within the V2V

transmission threshold δ when the obtained vehicle is not within the coverage

of the xn-th ECD. Then, this process will be conducted multiple times until the190

obtained vehicle is within the xn-th ECD.

Fig. 2 shows an example of acquisition in which there are two ECDs, i.e.,

d1 and d2, and five vehicles, i.e., v1, v2, v3, v4 and v5. In this example, assume

that the distance between v1 and v2 is 5, the distance between v1 and v3 is 8,

12



Algorithm 1 Route obtaining

Require: The computing task tn and the destination ECD xn

Ensure: The routing vehicle set for computation offloading rs

flag = 1

i = n

Add vi to rs

while flag == 1 do

if vi is not in the coverage of the xn-th ECD then

j = i + 1

Get the distance g between vi and vj by (21)

f = 1

while f = 1 do

Get the distance dis between vi and vj+1

if vj+1 is not in xn-th ECD && dis > g && dis ≤ δ then

j = j+1

else f = 0

Add vj to rs

i = j

end if

end while

else flag = 0

end if

end while

return rs

13



the distance between v3 and v4 is 4, and the distance between v3 and v5 is 8.195

If the coverage distance for V2V communication is 10, when the task from v1

is transmitted to d2, the task is chosen to be offloaded to v3 first. Aiming at

reducing task transmission time, the distance between the destination vehicle

and v3 should be minimized. Considering that the distance between v3 and v4

is 4 while the distance between v3 and v5 is 8, we choose v4 as the destination200

vehicle. Thus, the routing vehicle set is {v1, v3, v4}.

3.2. Computation Offloading Using NSGA-II

An edge computing-enabled computation offloading method with privacy

preservation is proposed in this section. The computation offloading problem

for IoVs can be defined as a multi-objective optimization problem. NSGA-II205

has a more accurate and faster global search capability and can solve optimiza-

tion problems for multiple objectives. Improved mutation can also make the

algorithm converge faster and identify the optimal offloading strategy. As the

computation offloading problem in this paper is the multi-objective optimization

problem, NSGA-II can find the global optimal solution quickly and accurately210

compared with the traditional genetic algorithm. Thus, NSGA-II is adopted to

solve the multi-objective optimization problem presented in (17).

We encode for the ECDs, and fitness functions are given for the optimization

problem. The fast non-dominated sorting method and the crowded-comparison

are used in the selection operations. Then, the improved mutation of the genetic215

algorithm (GA) is adopted. Finally, the overview of the offloading method is

elaborated.

3.2.1. Encoding

GA is a population-based method that uses solutions to obtain trade-offs

of multi-objective problems. For the computation offloading problems in IoV,220

a gene represents the offloading strategy for a computing task. A group of

genes compose a chromosome, which represents a set of offloading strategies

for computing tasks. The value of the offloading strategy is the location of the
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Figure 3: An encoding example of computation offloading for computing tasks.

ECDs and encoded as 0, 1, 2, . . . , M . Fig. 3 shows an example of computation

offloading for the computing tasks in T with M ECDs. In this example, the225

computing tasks are offloaded to ECDs using the result of the offloading strategy,

and the codes for t1, t2, t3 . . . and tn are 0, 3, M , . . . and 2, respectively.

3.2.2. Fitness Functions and Constraints

The fitness function is a criterion for evaluating the possible solutions in

GA; each individual represents a solution to problems, and all solutions form230

the sets, which are called a population. The fitness functions in this paper

consist of two parts: (8) and (14), which represent the total time cost and the

total energy consumption. The fitness of a solution is the product of trade-offs

between two objectives. Both fitness functions must be minimized to measure

the performance of this method and the load balancing of resources.235

Based on the model we designed in Section II, the objectives are to optimize

the total time and reduce energy consumption while also taking into account

the capacity of each ECD and privacy preservation for computing tasks. The

constraints are given in (18), (19) and (20). NSGA-II provides an effective

mechanism to meet the different constraints.240

3.2.3. Initialization

In the initialization phase, the parameters should be determined in advance,

including the size of the population δpop, the number of iterations Gen, the

15



crossover probability ηc and the mutation probability ηm. For each offloading

strategy, Xj = [x1, x2, . . . , xN ], where Xj represents the j-th chromosome245

in the population θ. Two populations, Cj and Oj , of size δpop are randomly

generated and mixed together to form a population Bj with a population size

of 2δpop.

3.2.4. Selection

The selection operation selects some of the chromosomes for recombination250

to generate the next population, perform crossover and mutation operations and

generate a new population with better fitness.

The population Bj with a population size of 2δpop generates multiple non-

dominated layers (Hi, i = 1, 2, . . .) using the fast non-dominated sorting ap-

proach. At the same time, the crowding distance is computed for all individu-

als in each layer. The selection method in NSGA-II is based on the crowded-

comparison operator. By calculating the crowding distance of each offloading

strategy, the more appropriate individuals can be used to form the elite popu-

lation for the following operations, as calculated by

jd = jGd + jEd = |Gj+1 −Gj−1|+ |Ej+1 − Ej−1|, (22)

where jd represents the crowding distance of the j-th offloading strategy Xj and

jGd and jEd represents the objective functions. Gj+1 represents the value of the

j + 1-th offloading strategy to the objective function G.255

3.2.5. Crossover and Mutation

The crossover operation aims to combine the two parental chromosomes in

the population to obtain better offspring. A crossover point is selected in the

chromosome first, two parental genes on both sides of the point are swapped,

and then, finally, the crossover operation is completed.260

The mutation slightly modifies some of the genes in a chromosome to avoid

early convergence. In contrast to the standard mutation operator, we propose an

improved mutation in our method. According to the direction of the vehicle, we
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Figure 4: An example of improved mutation operation.

give priority to offloading the computing task to the ECD that is near or in front

of its driving direction. Fig. 4 shows the example of an improved mutation in265

which each gene is changed with equal probability, and t2 is mutated from 3 to 7.

Using this strategy, convergence can be achieved effectively with fewer iterations.

After the Crossover and Mutation operation, the generated offloading strategy

still meets the constraints of privacy preservation.

3.2.6. Method Overview270

In this paper, our aim is to achieve the goal of minimizing the execution

time and reducing energy consumption. This computation offloading problem

is defined as a multi-objective problem, and the improved NSGA-II is used to

obtain the optimal computation offloading strategy for IoV. First, the offload-

ing strategies for computing tasks are encoded as the number of vehicles, and275

fitness functions are given for the computation offloading problems. Then, the

fast non-dominated sorting approach in NSGA-II is used to generate multiple

non-dominated layers for individuals and pretreat the population to better dis-

tinguish the merits of individuals. Crowding distance computation is used to

identify individuals with better fitness. Finally, the improved mutation opera-280

tion is proposed to accelerate the convergence of the algorithm.

The overview of our method is shown in Algorithm 2. The inputs of algo-

rithm 2 are vehicles, ECDs and computing tasks. The algorithm starts from the

first iteration (Line 1). Two populations Cj and Oj of size δpop are randomly

generated and form a population Bj with a population size of 2δpop. The popu-285

lation Bj is divided into multiple non-dominated layers by fast non-dominated

sort (Lines 3 and 4). Bj is prepared for the selection operation, and population
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Algorithm 2 Computation Offloading Method

Require: D, V , T , S, θ

Ensure: Optimal offloading strategy θ∗

g = 1

while g ≤ Gen do

Bj = Cj +Oj

H = Fast non− dominated sort (Bj)

Cj = Ø

j = 1

while num (Cj) < δpop do

Obtain routing vehicles by Algorithm 1

Calculate crowding distance (Hi) by (22)

Cj+ = Hi

j = j+1

end while

Oj = Crossover and mutation (Cj)

g = g + 1

end while

return θ∗

Cj is set to empty to store the new generation of the population. In addition, the

selection operation follows two rules: first, the higher level of non-dominated

layers is prioritized; second, the better crowding distance is prioritized when290

individuals are in the same non-dominated level. The excellent individuals are

selected to fill in a new population of size δpop by crowding distance computation

(Lines 7 to 11). Then, the offspring are generated after the crossover and mu-

tation and put into Oj (Line 13). The offspring population Oj are merged with

the parent population Cj and iterated again until the algorithm stops (Lines 2295

to 15). Finally, the optimal offloading strategies are output.
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4. Experimental Evaluation

In this section, a set of comprehensive simulations and experiments are per-

formed to evaluate the performance of the proposed edge computing offloading

method, i.e., ECO. Specifically, the simulation setup is introduced first, in-300

cluding the simulation parameter settings and the statements of comparative

methods. Then, the influence of different vehicle scales on the time and energy

consumption performance of the compared methods and our proposed ECO

method is evaluated.

4.1. Simulation Setup305

In our simulation, there are some vehicles along a unidirectional road. Six

datasets with different scales of vehicles along the road are applied for our

experiments, and the number of vehicles is set to 20, 40, 60, 80, 100 or 120.

The data transmission rate based on V2V technology, i.e., λV2V, and the data

transmission power, i.e., λV2I, in our experiment are set to 1 Gb/s and 600 Mb/s310

according to [4] and [21]. The specified parameter settings in this experiment

are illustrated in Table II.

Table 2: Parameter settings

Parameter description Value

The data transmission rate based on V2V technology λV2V 1 Gb/s

The total number of ECDs M 20

The power rate of the servers in the ECDs α 300 W

The power rate of the employed resource units β 50 W

The power rate of the employed resource units γ 30 W

The data transmission power λV2I 600 Mb/s

The processing power of each resource unit p 2000 MHz

To conduct the comparison analysis, we employ some other basic offloading

methods with privacy preservation in addition to our ECO method. FFD and
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BFD are two well-known resource scheduling method while there are still several315

shortcomings. Therefore, we employ these two methods as comparison methods

to evaluate the performance of the proposed method. The comparative methods

are briefly expounded as follows.

• Benchmark: A computing task is offloaded to the surrounding ECD that

covers the vehicles with the offloading requirements. When the surround-320

ing ECD has no spare space to host extra computing tasks, these tasks are

offloaded to the neighbor ECDs. In addition, if the computing tasks have

privacy conflicts, they are not offloaded to the same ECD. This process is

repeated until all computing tasks are offloaded.

• First Fit Decreasing in Edge computing with Privacy preservation (FFD-325

EP): The computing tasks are sorted in descending order first according

to their requested number of resource units. Then, the sorted computing

tasks are offloaded to the surrounding ECDs. If the remaining resources

of the ECD are insufficient for hosting any other computing tasks, the

new coming computing task is offloaded to another ECD with sufficient330

resources chosen from the ECD set in order.

• Best Fit Decreasing in Edge computing with Privacy preservation (BFD-

EP): The computing tasks and the ECDs are both sorted in descending

order according to the computing task resource request and the space of

the ECDs first. Then, the sorted computing tasks are offloaded to the335

sorted ECDs. If the current computing task requires more resources than

the current ECD owns, the current computing task is offloaded to the next

ECD with sufficient resources. In addition, computing tasks with privacy

conflicts are not offloaded to the same ECD.

The methods are implemented under the simulation tools by CloudSim on a340

PC machine with 2 Intel Core i5-6500U 3.20 GHz processors and 8 GB RAM.

The corresponding evaluation results are depicted in detail in the following

sections.
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4.2. Performance evaluation of ECO

The proposed ECO method aims to achieve trade-offs between optimizing345

the time consumption and reducing energy consumption. Fifty experiments are

conducted in the case of convergence for each vehicle scale, and multiple sets

of results are obtained. To identify a set of relatively better solutions, simple

additive weighting (SAW) and multiple criteria decision making (MCDM) are

used and are measured as follows:350

V
′
(ci) =

1

2
· G

max −G(ci)

Gmax −Gmin
+

1

2
· E

max − E(ci)

Emax − Emin
, (23)

whereG(ci) and E(ci) represent the fitness of the offloading strategy ci regarding

the two objective functions, respectively [22][23]. Gmax and Gmin represent the

maximum and minimum fitness for time consumption. If Gmax = Gmin, let

Gmax−G(ci)
Gmax−Gmin = 1. Analogously, Emax and Emin represent the maximum and

minimum fitness for energy consumption; if Emax = Emin, let Emax−E(ci)
Emax−Emin = 1.355

4.2.1. Comparison of energy consumption

The six sub-figures in Fig. 5 show the comparison of the utility value of the

solutions generated by ECO at different vehicle scales. It is intuitive from Fig. 5

that when the vehicle scale is 20, 40, 60, 80, 100 and 120, the number of solutions

generated by ECO is 3, 3, 4, 3, 4 and 3, respectively. For the solutions generated360

by ECO, we attempt to obtain the most balanced offloading strategy by judging

the utility value given in (23). After statistics and analysis, the solution with the

maximum utility value is treated as the most balanced strategy. For example, in

Fig. 5(a), the final selected strategy is solution 1 because it achieves the highest

utility value.365

4.3. Comparison analysis

In this subsection, the comparisons of Benchmark, FFD-EP and BFD-EP

with the same experimental context are analyzed in detail. The execution time

and the energy consumption are the two main metrics for evaluating the per-

formance of the computation methods. Furthermore, the number of employed370
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Figure 5: Comparison of the utility value of the solutions generated by ECO at

different vehicle scales.

ECDs, the resource utilization and the number of computing tasks needed to

offload across ECDs are presented to show the real resource usage of all ECDs

for hosting the computing tasks. The corresponding results are shown in Figs.

6, 7, 8, 9, 10, 11 and 12.

4.3.1. Comparison of the number of employed ECDs375

The number of ECDs employed by the four offloading methods is illustrated

in Fig. 6. The total number of ECDs in our experiment is set to 20. As

shown in Fig. 6, ECO employs fewer or the same number of ECDs compared

to Benchmark, FFD-EP and BFD-EP. In addition, as the number of vehicles

increases, the number of ECDs used by ECO increases, and when the number380

of vehicles reaches 100, all ECDs should be in running mode to respond to the

deployment requests of the computing tasks.
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Figure 6: Comparison of the number of ECDs employed at different vehicle

scales by Benchmark, FFD-EP, BFD-EP and ECO.

4.3.2. Comparison of resource utilization

After offloading all computing tasks to the ECDs via relevant strategies, the

occupation of the resource units is definitely achieved. Fig. 7 shows the com-385

parison of the resource utilization of the ECDs by using Benchmark, FFD-EP,

BFD-EP and ECO at different vehicle scales. The resource utilization is calcu-

lated according to the number of employed ECDs and the employed resource

units in each ECD. Fewer employed ECDs with more employed resource units

yield a higher resource utilization. It is intuitive from Fig. 7 that our proposed390

method ECO achieves higher resource utilization than the other three offloading

methods. That is, ECO wastes fewer resources than the other methods.

4.3.3. Comparison of the number of offloaded computing tasks across ECDs

In general, the computing task is offloaded to the nearby ECD. However, at

small vehicle scales, the location of the vehicle is randomly distributed in differ-395

ent ECD ranges, and if all computing tasks are offloaded to their surrounding

ECDs, multiple ECDs will be open, leading to excessive energy consumption.

Consequently, in our experiment, the computing task might be offloaded to a

neighbor ECD near the surrounding ECD. Offloading computing tasks across
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Figure 7: Comparison of the resource utilization of Benchmark, FFD-EP, BFD-

EP and ECO at different vehicle scales.

ECDs allows for a computing task to be transferred from the origin vehicle in400

which the computing task is located in a vehicle in which the coverage of the

destination ECD is different from that of the origin ECD. In Fig. 8, we compare

the number of computing tasks offloaded across ECDs by the four different com-

puting offloading methods. It is intuitive from Fig. 8 that as the vehicle scale

increases, our proposed ECO method transmits more computing tasks across405

ECDs to achieve better resource utilization.

4.3.4. Comparison of energy consumption

As outlined in Section II, the energy consumption is composed of the baseline

energy consumption for all servers in the ECDs, the energy consumption of

the employed resource units, and the energy consumption of the unemployed410

resource units. In Fig. 9, we compare these three aspects of energy consumption

at dierent vehicle scales. As shown in Fig. 9(a), as the vehicle scale increases,

all methods increase baseline energy consumption for all servers in the ECDs,

but ECO consumes less energy than the other three methods because it employs

fewer ECDs. Fig. 9(b) shows that as the number of vehicles increases, the energy415

cost of employed resource units increases. These four methods achieve the same
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Figure 8: Comparison of the number of offloaded computing tasks across ECDs

by Benchmark, FFD-EP, BFD-EP and ECO at different vehicle scales.

energy consumption of the employed resource units at the same vehicle scale

because the same number of resource units are employed by Benchmark, FFD-

EP, BFD-EP and ECO in the computing tasks. Fig. 9(c) indicates that ECO

generates less energy due to unemployed resource units compared to Benchmark,420

FFD-EP and BFD-EP by using fewer ECDs.

The comparison of energy consumption in Fig. 10 shows that ECO has better

performance. For example, when the number of vehicles is 100, ECO achieves

a power consumption of less than 2.5 KW.h, whereas Benchmark, FFD-EP and

BFD-EP generate more than 2.5 KW.h.425

4.3.5. Comparison of time consumption

The offloading time is a fundamental metric of time consumption. Fig. 11

shows the comparison of the offloading times of Benchmark, FFD-EP, BFD-

EP and ECO at different vehicle scales. It is intuitive from Fig. 11 that our

proposed method costs less offloading time than the other methods.430

In Fig. 12, we compare the total time consumption of the different offloading

methods. It is intuitive that our proposed method ECO costs less time than

the compared methods. However, the difference is not obvious when the vehicle
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Figure 9: Comparison of different components of energy consumption by Bench-

mark, FFD-EP, BFD-EP and ECO at different vehicle scales.

scale is small, possibly because ECO needs to transmit more offloaded com-

puting tasks across the ECDs than the other three methods, which consumes435

more transmission time. As the scale of the vehicles increases, the influence of

transmission time becomes small.

5. Related Work

Over the past few years, MEC, which has a faster data processing rate and

more stable transmission, has undergone a tremendous revolution as a new440

computing paradigm in the IoV environment [24][25][26]. Moreover, offloading

computationally intensive workloads to ECDs reduces energy consumption and

delays, enhancing the quality of computation.

As a multidisciplinary ecosystem, IoV is connected to scenarios that demand

real-time data processing and feedback. However, traditional cloud platforms445

are not suitable for scenarios requiring real-time processing, low latencies, and

a high-quality computing experience. Due to the delays and unstable connec-

tions associated with remote clouds, MEC is more suitable in the IoV environ-

ment. Compared with traditional cloud computing, MEC provides computing

resources and extra storage closer to vehicles and end users [27][28][29].450

Given the rapid increase in IoV applications, it is of great urgency to design

a MEC architecture that can adequately process large quantities of data for
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Figure 10: Comparison of the energy consumption by Benchmark, FFD-EP,

BFD-EP and ECO at different vehicle scales.

vehicles. In [30], Hu et al. proposed a multi-access edge computing framework

as well as the corresponding communication protocol. To process and distribute

the contents efficiently, the proposal integrated various technologies such as a455

licensed Sub-6 GHz band and millimeter wave communications. Similarly, by

integrating different types of technologies, Liu et al. proposed an SDN (software-

defined network)-enabled network architecture in [31]. The MEC algorithm has

the on-premises feature, which decreases execution time and enhances the qual-

ity of the experience, and could be utilized to perfect the architecture while460

ensuring satisfying scalability and responsiveness. However, although ECDs

can perform the task of processing data with low latency in MEC, the comput-

ing resource deployed in MEC are restricted. Hence, allocating and coordinating

resources between the edge and cloud servers is a necessity. In [32], Sasaki et al.

proposed an infrastructure-based vehicle control system. With the system, re-465

sources and computations are allocated dynamically based on the data collected

by sensors. In [33], Kumar et al. proposed an architecture in which complex

computations are performed by devices located at the edge of the computation

in light of the high mobility of vehicles.

Generally, computation offloading refers to offloading complex workloads to470
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Figure 11: Comparison of the offloading time consumption of Benchmark, FFD-

EP, BFD-EP and ECO at different vehicle scales.

servers with the required resources. As a practical part of MEC, offloading was

originally intended to offload tasks on demand. By offloading heavy tasks to

ECDs, lower latencies and lower energy consumption could be achieved, improv-

ing the quality of the computing experience [34][35][36].

In [37], Mach et al. provided an overview of several principles in terms of475

offloading, including classification, influencing factors and management in prac-

tice. Based on these principles, they sorted efforts to address the challenges of

whether to offload and how to allocate computing resource. In [38], Mao et al.

proposed a low-complexity sub-optimal algorithm to optimize task offloading

scheduling and allocate transmit power legitimately. As advantages of alternat-480

ing minimization, the weighted sum of the delay and energy consumption are

able to reach the minimum. In addition, convex optimization techniques are

utilized for the transmit power allocation under a given offloading scheduling

decision. In addition, in [39], Sardellitti et al. proposed an iterative algorithm

based on convex optimization. They formulated the offloading problem as the485

reduction in energy consumption and latency, and thus, the result of the opti-

mization problem is nonconvex in the multi-users case and can be obtained by
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Figure 12: Comparison of the time consumption of Benchmark, FFD-EP, BFD-

EP and ECO at different vehicle scales.

the algorithm. In [40], for a wireless powered multiuser MEC system, Wang et

al. proposed a unified MEC-WPT design in which computing tasks could be

executed locally by broadcasting wireless power to multiple users. Furthermore,490

a framework was developed to optimize energy consumption and execution time.

In [41], Chen et al. proposed a distributed computation offloading algorithm in

the multi-user computation offloading problem with the aim of achieving a Nash

equilibrium and quantifying efficiency from the aspect of performance metrics.

As the IoV achieves the persuasive milestones over the last couple of decades,495

it is a trend to equip the vehicles with the ability of intelligent driving, giving rise

to the communication between vehicles [42][43]. The communication is useful

in many ways, especially in driving security and privacy protection [44][45][46].

In addition to privacy leaks, virtual vehicle hijacking is more serious. Although

intellectualizing the operations of vehicles, the use of sensors makes it easy to500

invade the vehicles’ electronic systems. If the systems are invaded, the schemers

could inject incorrect orders and transmit false information to the destination

vehicle [47][48]. Consequently, it is of urgency to prepare in advance for virtual

vehicle hijacking, such as establishing a trust judgement method and designing

a dual authentication scheme on different scenarios [48][49].505
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Few studies have examined multi-objective optimization for offloading com-

puting tasks from vehicles across ECDs in an IoV environment. Achieving the

goals of energy conservation and transmission delay reduction while satisfy-

ing privacy protection constraints remain challenging. Therefore, an offloading

method is proposed to address the above challenge in this paper.510

6. Conclusion and Future Work

In recent years, IoV has emerged as a powerful technology for providing real-

time traffic information to drivers and transportation control systems. With the

rapid development of IoV technology, computing tasks become so complex that

it is necessary to offload the tasks to the remote infrastructure. The MEC515

paradigm is one of the most effective paradigms in terms of processing IoV

computing tasks, in which the computing tasks of the vehicles are offloaded to

ECDs in close proximity to the vehicles. To realize multi-objective optimization

to reduce the execution time of the computing tasks and the energy consumption

of the ECDs while satisfying the privacy conflicts of the computing tasks, an edge520

computing-enabled computation offloading method named ECO is proposed in

this paper. First, to acquire the routing vehicles from the origin vehicle in which

the computing task is located to the destination vehicle, V2V communication-

based routing for a vehicle is developed. Then, NSGA-II is utilized to achieve

the multi-objective optimization. Subsequent experimental evaluations verify525

the efficiency and effectiveness of ECO.

In future work, we will attempt to adapt and extend our proposed method

to a real-world scenario of IoV services, and we will specify the different time

requirements of the computing tasks to attempt to identify an offloading strategy

to achieve energy savings of ECDs with definite time constraints as well as530

privacy constraints.
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HIGHLIGHTS 

1. Analyze privacy conflicts of the computing tasks offloaded to the edge computing devices. 

2. Design a vehicle-to-vehicle communication-based route-obtaining algorithm. 

3. Adopt NSGA-II to realize multi-objective optimization while guarding against privacy conflicts. 
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