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Abstract

The Internet of connected vehicles (Iov) is employed to collect real-time traf-
fic conditions for transport .tion ¢ utrol systems, and the computing tasks are
available to be offloaded fron. “he v nicles to the edge computing devices (ECDs)
for implementation. I :spi*: numerous benefits of IoV and ECDs, the wireless
communication for ¢ bmpu. ~ti .n offloading increases the risk of privacy leakage,
which may conser aen.. '~ lead to tracking, identity tampering and virtual vehi-
cle hijacking. " . -efore, it remains a challenge to avoid privacy conflicts for
computation ¢ ™o ding to the ECDs in IoV. To address this challenge, an edge
computing ena’ led computation offloading method, named ECO, with privacy
preservatio. or J.,V is proposed in this paper. Technically, the privacy con-

flicts sf the omputing tasks in IoV are analyzed in a formalized way. Then,
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vehicle-to-vehicle (V2V) communication-based routing for a vehicle is d signed
to acquire the routing vehicles from the origin vehicle where the co.. ~uting task
is located at the destination vehicle. NSGA-II (non-dominate « sc ting genetic
algorithm II) is adopted to realize multi-objective optimizat.. » ¢o reduce the
execution time and energy consumption of ECDs and prr vent privacy conflicts
of the computing tasks. Finally, experimental evaluati. ns are conducted to
validate the efficiency and effectiveness of ECO.

Keywords: ToV, privacy preservation, edge compnting, con putation
offloading, energy consumption

2010 MSC: 00-01, 99-00

1. Introduction

1.1. Background

In recent years, the number of veh.-le. has increased rapidly to expand res-
idents’ travel range, thus stretcu.~o .. sportation systems to their capacity
limits [1]. With the explosive growth o1 vehicles, traffic congestion and car ac-
cidents occur frequently in arban . reas. To improve traffic conditions in urban
cities, the Internet of cornecu. ? veiicles (IoV) has emerged as a new paradigm
that emphasizes inforr atio . intrraction among vehicles and humans. In the IoV
environment, vehicl s are ¢ n .ected to devices such as intelligent cameras, sen-
sors and actuator . 'L. ><e devices have transmitters and receivers that connect
the vehicles to “.e =mote infrastructure and other vehicles [2][3]. The real-time
traffic informa. ~r collected from the vehicles includes vehicle position, vehicle
safety, veb cle ¢ riving status and vehicle identification information. IoV services
can increasc he ¢ ssemination of real-time traffic information and the ability of
the v aicle d *vers to track traffic conditions in real time.

Ge. ~rallv. most vehicles are not equipped with the physical resources for data
1 rocessi. 7 and data storage, the computing tasks from the running vehicles cur-

re. ‘v - 2d to be offloaded to the remote cloud data centers for implementation
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via roadside units (RSUs) based on the vehicle-to-infrastructure (V' *T) ¢ mmu-
nication mode [4]. Despite the on-demand processing ability and n.~rly e.. 1less
resource supplement of cloud platforms, traditional centralized :lou 1 computing
has the drawback of excessive transmission delays and unsta. ~ onnections in
the ToV network [5][6]. Mobile edge computing (MEC) he . the p~tential to pro-
vide a suitable solution for these issues. Driven by the L."EC ter anique, cloud
services are pushed to the edge of the radio access n- ¢wor!" and the computing
tasks of the vehicles are offloaded to the edge compuuwang dr vices (ECDs) that
are in close proximity to the vehicles rather than remouc ~loud platforms [7]. By
offloading the workloads to the ECDs, the gnali, »f e perience of the drivers
in executing their computing tasks could be great., improved.

However, the offloading process across 1."'Ds in IoV comes with its own
weaknesses, particularly in terms of se. w1y, - ues. The running vehicles are
required to transmit security informr *ion, . ~cluding driving speeds, current lo-
cations and surrounding traffic condit.»ns, periodically to the transportation
control center via their neighbor 1.”Us [o/[9]. Once the privacy information is
transmitted, the network could realize the whereabouts of the specific vehicle,
which may bring the risk 1 privac - leakage [10][11]. The disclosure of private
driving information is a _atasu. ™'.e, especially in the aspect of intelligent driv-
ing. Although the uss of s mso’ s automates and intellectualizes the operations
of vehicles and imr roves tun. safety for on-road traveling, it leads to the easy
invasion of vehicics’ sys ~ms. Virtual vehicle hijacking is likely to occur when
the vehicles’ e':ctr nic systems are invaded, resulting in unpredictable conse-
quences. The sc. 'mers who invade the systems could alter the settings of the
vehicles a .d g've the systems extra instructions within a short time [12][13].
When the a.. er are preoccupied with driving, untimely orders could be is-
sued, such as disabling brakes and locking doors and windows, which remains
a classic ~v-.aple in virtual vehicle hijacking. Besides, based on the security
iformat. »n online, the malicious drivers may trace the target vehicles and then
car., = .o their criminal activities [14]. With these observations, as the comput-

in , tasks carry different privacy information of the vehicles, it is necessary to
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avoid privacy leakage during computation offloading among ECDs ~ Io™ .

On the other hand, although ECDs are practical in IoV, due 1. *he 1. .ited
computing power of the ECDs, some of the computing tasks in t ie ¢ yverage of an
ECD must be offloaded to the other ECDs for the resource resp, = ¢, which leads
to a certain amount of extra communication delay by tas < trancmission across
ECDs [15]. Additionally, a large quantity of resources are \'=ployer on the ECDs
and the cloud data centers to cope with the explosiv : ress ~ce requirements of
computing tasks in IoV. Therefore, from the persvecuwve of £CDs, the energy
consumption should be comprehensively considered. The placement of large
quantities of ECDs consumes high amounts of enc. ~v. v aich is environmentally
unfriendly. This ever-growing energy consumption. ~ill contribute to increased
greenhouse gas emissions, worsening the green. ~use effect. Hence, it is of utmost
significance to formulate relevant stratc vies, .. 1 as switching ECDs with low
vehicle coverage to a sleep state sr +hat . on-participation will not influence

global performance [16].

1.2. Motivation

To improve the respons tin. for performing computing tasks for the ve-
hicles in IoV, the ability «“ RSUs has been expanded as ECDs to provision
computation and stora‘,e pc ver for computing tasks. However, when employing
ECDs to accommod~te . doas ed computing tasks, the resource limitations of
ECDs should be - .. ritized. That is, the number of simultaneously running
tasks on an EC'™ must be restricted. In this situation, the computing tasks
in the covera_» of an ECD may be transferred to another ECD for execution.
For compu’ ation on. ading across ECDs, the response times of all ECDs should
be impro. 4. and cnergy consumption by the servers in the ECDs should be
reducr .. Furthermore, as the datasets for running the computing tasks have
privac - confli' ts, some computing tasks cannot be offloaded to the same ECD

tr prevent privacy leakage.

1.0. P per Contributions

'Lue main contributions of this paper include the following:
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e Analyze privacy conflicts of the computing tasks offloaded t¢ the £CDs,
and the computation offloading problem with privacy preserv. “on 1. oV

is defined as a standard multi-objective optimization pre olei

e Design a V2V communication-based route-obtaining aleori,. m to acquire
the vehicle route from the origin vehicle where f1e com, uting task is
located to the destination vehicle that offloads ~om, -** g tasks to the

goal ECD.

e Adopt NSGA-II (non-dominated sorting geneti. algorithm II) to realize
multi-objective optimization to shorten ti.. exec’ tion time of the com-
puting tasks and reduce the energy consum, “on of ECDs while guarding

against privacy conflicts of the compu. ~¢ tasks.

e Conduct extensive experimental ev. lur cions to demonstrate the efficiency

and effectiveness of the propos . meti.nd ECO.

The remainder of this paper ~ u.o - zed as follows. Section II describes
the completed mathematical modeling and formulation. Section III develops
a computation offloading -.iethow with privacy preservation for IoV in edge
computing. In Section JV, s. nula 1on experiments and a comparison analysis
are presented. Section v st .nmerizes the related work. Finally, conclusions and

future work are out’ ned .. Sr:tion VI.

2. System M .u.' and Problem Formulation

In this s ction, "he system model for IoV in cloud-edge computing is designed
and the » »my (tati ,n offloading problem with privacy preservation for IoV is
defined 5 a s. ".dard multi-objective optimization problem. Key terms and

descr »tions a e presented in Table I.

£.1. Res urce Model for IoV in Cloud-Edge Computing

T imerging paradigm of edge computing has the potential to satisfy the re-

q rements of computation power for the computing tasks from vehicles in IoV.
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Table 1: Key Terms and Descriptions

Terms | Descriptions

M The number of ECDs ~
D The ECD collection, D = {dy,da,..., m}

R The RSU collection, R = {ry1,re, ....7n .

S The server collection, S = {s1,82, ... u,

N The number of vehicles

%4 The vehicle collection, V = {vy,v9, .. vy}

q The capacity of all servers

T The computing task set. ™ ' o ..., tn}

tn The n-th computing task in .~

Uy, The requested number »f - essource units of ¢,

G The time consump « ~ for ‘mplementing T'

BE The baseline p~wer cc. sumption for all servers
RE The energy consun. 1 by the used resource units
UE The energ- .. ~sumed by the unused resource units
E The tot.  energy :onsumption for all servers

Fig. 1 shows a com’ munica. ~  framework for IoV in cloud-edge computing. As
indicated in Fig. ", couw. ‘der a scenario in which there is a bidirectional road and
M edge compu’ mg levices (ECDs), denoted as D = {di,ds,...,da}, along the
road, and N v i tes moving down the road, denoted as V = {vy,vq, ...un}.
Suppose e .ch - chicle has a computing task for offloading to the ECDs; thus,
there are v ~wr ating tasks, denoted as T'= {t1,t2, ...,tn}. Each ECD con-
sists « [ a roac “ide unit (RSU) and a server. Accordingly, there are M RSUs, de-
noted e. . R = {ry,ro, ..., rar}, and M servers, denoted as S = {s1, 82, ...,Sm},
i 1 the bi'irectional road. The RSU often has a coverage area, and thus, the road
is J*vide ( into multiple road segments. A vehicle in IoV transmits its data and

ap oucations to the corresponding surrounding ECD that covers the vehicle. The
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Figure 1: A communication framev. »rn “or IoV in cloud-edge computing.

ECDs then transfer the collected informniation to the remote cloud data center.
In addition, the transports .ion cc ‘trol center can reserve or retrieve the data

120 from the cloud data center.

2.2. Execution Time . 2l

When performr ag ~ computing task from a vehicle, the offloading time from
the vehicle to tF . ™CD, the execution time and the feedback time for returning
the execution -esv’ ¢s back to the vehicles should be considered.

125 The rur aing ven. les cross different ECDs according to their locations along
the road. e use . flag to judge whether the n-th (n = {1,2, ....,N}) vehicle
v, be’ungs tr the service domain of the m-th ECD at time instant i, which is

meast. *ed by

) 0, v,is within the coverage of d,,,
F(i) = (1)
1, Otherwise.
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Generally, the computing task is chosen to be offloaded to an dge ievice.
However, the computing task might be offloaded to an edge comp *ing . wvice
that does not belong to the coverage of the nearby edge cr.np. ting device.
As the vehicle moves along the road, especially when it is loc. “= « between the
boundary of two edge devices, it may cross two or more rc .d segrrents. Suppose
the vehicle moves from the original segment to the dest. ation egment. The
task should be offloaded to the EDC located in the ¢ estin-'*on segment, where
the vehicle will receive the feedback execution resuivs. T'e computing task
should be transmitted to the vehicle in the destinatio.. ~egment based on V2V
technology.

The transmission time for transiting the compu.‘ng task ¢, is calculated by

M N
bui) = 0 D0 FIG) QR () = F ) e B + 1), (2)
Sy vav
where 0,, 5,/ is the number of routir vehic.»s that transferred from v, to v,
Avoy is the data transmission rate bar>d ca V2V technology, and Qzl(i) is a
binary variable that judges wheth. - t, 1s transmitted from v, to v, and is

calculated by

n ! . t, is transmitted from v,, to v,

Qn (1)= . (3)
{ 1. o.nerwise ..

The offloading time . the m-th (m ={1,2, ..., M}) computing task ¢, is

calculated by

W,

eali) = 3 () 4)

where Ayor is the  ata transmission rate based on V2I technology. The execution

: )
Avar

time is de erm aed by the execution performance of the resource units and the
task leneth. . rrsource management, a common method is to employ resource
units ;o0 meas re the capacity of the server. Thus, the physical resources of the
servers .+ ECDs could be configured as multiple resource units, and then,
11e serve capacity and the requested resources of the computing tasks could be
wei, "t . by the quantity of resource units. Let g be the capacity of all servers

ar d u, be the requested number of resource units of ¢,.
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The execution time of t,, is calculated by

ki) = 0 Fm(i) - (5)

Up - P
where p is the processing power of each resource unit.
The execution results should be fed back to the vehi ies, ar 1 the feedback
time is calculated by
(i) = w;, / Avar, (6)
where w!, is the data size of the returned results { - exect'.g t,,.

The total time consumption for implementing ¢,, is ¢ Mculated by
9n (1) =by (i) + cn (i) + kn(e, + hn(i). (7)

Then, the total time consumption for im,'~menting all computing tasks is

calculated by
N

G="_gn . (8)
ne 1

2.3. Energy Consumption Model
The energy consumption of the ECDs mainly refers to the energy consump-
tion of the servers and tb : energy consumed by the RSUs. As RSUs are in
working mode, and thei energ - - onsumption is adjusted dynamically accord-
ing to their working ¢ atus Tb .s, we mainly focus on the energy consumption
of the servers in tF: ECDs. [he main energy consumption of the servers in-
cludes several asp :cts: o = baseline energy consumption of the servers in running
mode, the ene gy « »nsumption of the occupied resource units, and the energy

1

consumption o1 .’ e unused resource units [17].
The v ain merey consumption is determined by the service time of the
servers. The . ~vv'ce time of s,, is calculated by

St (i) = max(L2 (1) - kn(0)), (9)

n=1

v nere L (i) is a binary variable that judges whether ¢,, is performed on s,

0, t, is executed on s,,,
Ly (1)= ) " (10)
1, otherwise .
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The baseline energy consumption for all servers in the ECDs i cal alated

by

M
BE =Y stm(i)- o, (11)

where « is the power rate of the servers in the ECDs.
The energy consumption of the employed resource ur ts is ca. 'ulated by

RE =Y Ly(i)-stm(i) B, (12)

m=1n=1
where (8 is the power rate of the employed resource . its.

The energy consumption of the unemployed. “esource units is calculated by

N

M
UE=Y (q- Y LN -et ‘i), (13)

m=1 n=1

where v is the power rate of the unemy’ -~d resoarce units.

Then, the total energy consumption o. ‘.4l servers is calculated by

E=BE+ Rr +UE. (14)

2.4. Privacy Model of Computing Tasn.

The computing tasks fom t.i.> vehicles in IoV combine privacy conflicts.
These tasks are from differc. ~ vehi les and require different datasets to achieve
their goals. The datasr s m v have different privacy preservation requirements.
The privacy conflict occ.. < i the scenario that an ECD processes the tasks
whose needed dat .se. - should not be placed together. Provided that the tasks
with privacy ce ..’ ~ts are transmitted to the same ECD, the privacy of drivers
is invaded to ~ g cat extent. Thus, some computing tasks are incapable of
deploymer in *he seme EDC for execution.

A grap. © = ‘[, 7) is leveraged to model the privacy conflicts of the com-
putin’, tasks, where T is the set of computing tasks and Z is the set of conflicting
relatic »s. A - air of conflict relations (t,,t,/) (tn, ¢, € T) cannot be deployed
¢ 1 the snme ECD to guarantee the privacy information of the vehicles. The

c ~flict c ymputing tasks for ¢, can be acquired according to

ety = {tn|(tn,tn) € Z,m' ={1,2,..., N} }. (15)

10
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Denote the computation offloading strategy for all computing t <ks s X =
{z1,22, ..., N} (2, € D), where x,, represents the destination eay ~omy ting
device for hosting t,,. Then, according to the obtained confli- any task set for
hosting t,,, the deployed location x, also has a conflicting .7 set, which is
obtained by

cdn ={xjlz; € ctn,j ={1,2,..., |ctn

I3 (16)

2.5. Problem Formulation

In this paper, we aim to achieve the goal of minu. ‘7ing the execution time
presented in (7) and reducing the energy consu. ~tion resented in (13) while

meeting the privacy constraints. The formalized , “oblem is given as

max G, min E. (17)

st mpe . (18)
N

L O - fn,w <p (19)
n=1

Ty & cdy, (20)

3. A Computation )ffir ading Method with Privacy Preservation for
IoV in Edge C ,mp. ‘ip ;

In this section, we p. »ose an algorithm to obtain the offloading route for
the computins tas! s based on the V2V transmission first. Then, NSGA-IT is

adopted to “ind v. ~ global optimal offloading strategy.

3.1. Routin, bt ining Based on V2V Transmission

V V is en »loyed for task transmission crossing of different ECDs by using
the exis .~ chicular communications, including IEEE 802.11p-based dedicated
s 10rt-rar e communications (DSRC), WiFi, Bluetooth, ZigBee, and fourth gen-
era. >~ 4G) [18] [19][20]. Through V2V communication, the computing task

11
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Figure 2: An example of route acquis, ion.

on the vehicle can be transmitted to another vehic:. -overed by the destination
ECD and successfully offloaded to the ECD tu. execution.

As for the given task ¢, from the .-~hic ¢ o,, the offloading goal ECD is
Zy, and its origin ECD is d,,. The . -igin 'ncation of the ECD is denoted as
Ori,, = {Olaty,, Olon,}, and the destin. tiou location of the ECD is denoted as
Des,, = {Dlat,,, Dlon,}. The dista. ~e between the origin and the destination
ECDs is calculated by

Disop =y Maty, - Dlatn)2 + (Olonn—Dlonn)2. (21)

As mentioned in ¢

acti n 2 the data transmission rate is denoted as Avri,
and then, the num’ er of ve. cles and the vehicle set from the original vehicle
to the destinatio.. vehi.’~ are evaluated by Algorithm 1. In Algorithm 1, the
input is the cc.npt sing task ¢, and the destination ECD x,,, and the output
is the routing vo' cle set, i.e., rs, for computation offloading. The key idea of
this algor'chm s tn obtain the farthest vehicle of v, that is within the V2V
transmission “reshold § when the obtained vehicle is not within the coverage
of the x,-th 1 ©D. Then, this process will be conducted multiple times until the
obtaine. ~'.cle is within the z,,-th ECD.

Fig. 2 shows an example of acquisition in which there are two ECDs, i.e.,

dy « 7 .2, and five vehicles, i.e., vy, vg, v3, v4 and vs. In this example, assume

th «t vne distance between vy and wvs is 5, the distance between vy and w3 is 8,

12




Algorithm 1 Route obtaining

Require: The computing task ¢,, and the destination E 'D =z,
Ensure: The routing vehicle set for computation offloadir. - <
flag =1
t1=n
Add v; to rs
while flag == 1 do
if v; is not in the coverage of the » *- ™" then
j=1+1
Get the distance g between v, an . v; by (21)
f=1
while f = 1 do
Get the distance dis b."ween v; and vj41
if vj1q isnot .. -th ECD && dis > g && dis < § then
j =i+l
else f =
Ada . “ors
(]
end if
en'. wh le
else dag = "
er 1if
en’ vhile

r . turn r:¢

13
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the distance between vz and vy is 4, and the distance between vs nd 5 is 8.
If the coverage distance for V2V communication is 10, when the . <k tic a1 vy
is transmitted to do, the task is chosen to be offloaded to vz ars.. Aiming at
reducing task transmission time, the distance between the a. *¥.ation vehicle
and vz should be minimized. Considering that the distar ce betrreen vs and vy
is 4 while the distance between vz and vs is 8, we choose "4 as t'.e destination

vehicle. Thus, the routing vehicle set is {v1, vs, v4}.

3.2. Computation Offloading Using NSGA-II

An edge computing-enabled computation o..’~adinc method with privacy
preservation is proposed in this section. The co.. nutation offloading problem
for ToVs can be defined as a multi-objectiv. optimization problem. NSGA-II
has a more accurate and faster global s .0 ~~nability and can solve optimiza-
tion problems for multiple objectives. In. roved mutation can also make the
algorithm converge faster and identify the ~ptimal offloading strategy. As the
computation offloading problem 1. “his L.per is the multi-objective optimization
problem, NSGA-II can find the global optimal solution quickly and accurately
compared with the traditic ial gen. tic algorithm. Thus, NSGA-II is adopted to
solve the multi-objective opti. ‘za won problem presented in (17).

We encode for the ".CD , an‘' fitness functions are given for the optimization
problem. The fast 7 on-doi. ‘v ited sorting method and the crowded-comparison
are used in the se' :ctio. aperations. Then, the improved mutation of the genetic
algorithm (GA™ 1s wdopted. Finally, the overview of the offloading method is

elaborated.

3.2.1. En.~di g

G'. 1s a nopulation-based method that uses solutions to obtain trade-offs
of mu ‘“i-objer .ive problems. For the computation offloading problems in IoV,
2 gene represents the offloading strategy for a computing task. A group of
g mes co 1pose a chromosome, which represents a set of offloading strategies

o -~ ~amputing tasks. The value of the offloading strategy is the location of the

14
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Figure 3: An encoding example of computation offloc 'ing tor computing tasks.

ECDs and encoded as 0, 1, 2, ..., M. Fig. 3 shc s an example of computation
offloading for the computing tasks in T v ~n M KCDs. In this example, the
computing tasks are offloaded to ECDs» e the result of the offloading strategy,

and the codes for t1,ts,t5 ...and ¢, are L, M, ...and 2, respectively.

3.2.2. Fitness Functions and Comstrain. =

The fitness function is a criterio.. for evaluating the possible solutions in
GA; each individual represe .. ~ solution to problems, and all solutions form
the sets, which are callec. = popu ation. The fitness functions in this paper
consist of two parts: (&, and (la,, which represent the total time cost and the
total energy consumoti.. » Thr fitness of a solution is the product of trade-offs
between two objec ~es. Botn fitness functions must be minimized to measure
the performance of this n. thod and the load balancing of resources.

Based on t 1e v ,del we designed in Section II, the objectives are to optimize
the total ti ae anu “educe energy consumption while also taking into account
the capas tv r . ear 1 ECD and privacy preservation for computing tasks. The
constr-...s are _iven in (18), (19) and (20). NSGA-II provides an effective

mech. nism to meet the different constraints.

2.3, I tialization
7~ “'.¢initialization phase, the parameters should be determined in advance,

in fuaing the size of the population dp.p, the number of iterations Gen, the

15
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crossover probability 7. and the mutation probability 7,,. For eac * off bading
strategy, X7 = [r1,%2, ...,2n], where X7 represents the j-th “rom. ome
in the population 6. Two populations, C; and O, of size § ,, « ve randomly
generated and mixed together to form a population B; with . v opulation size

of 20pop.

3.2.4. Selection

The selection operation selects some of the chroi. ~~ Jmes ior recombination
to generate the next population, perform crossover ai..” mutation operations and
generate a new population with better fitness.

The population B; with a population size o. ?4,,, generates multiple non-
dominated layers (H;,i=1,2,...) using . = fast non-dominated sorting ap-
proach. At the same time, the crowdir "~*ance is computed for all individu-
als in each layer. The selection method 1. NSGA-II is based on the crowded-
comparison operator. By calculating “he -rowding distance of each offloading
strategy, the more appropriate i.. "vii.>* can be used to form the elite popu-

lation for the following operations, as culculated by
Ja=gg +.5 =G = G+ |ETT - BT, (22)

where j4 represents th cro /din‘: distance of the j-th offloading strategy X/ and
jg and jf represen’ s the .7 i ctive functions. G7*! represents the value of the

j + 1-th offloadin | str..’ ~gy to the objective function G.

3.2.5. Crossc er ¢ 1d Mutation

The cre ssover o ration aims to combine the two parental chromosomes in
the popuiw “ic 1 to obtain better offspring. A crossover point is selected in the
chromr ssome firs,, two parental genes on both sides of the point are swapped,
and t. »n, fine ly, the crossover operation is completed.

'I'he nutation slightly modifies some of the genes in a chromosome to avoid
e vly con ergence. In contrast to the standard mutation operator, we propose an

~raved mutation in our method. According to the direction of the vehicle, we
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Figure 4: An example of improved mutation jperatic 1.

give priority to offloading the computing task to the 7 /\CD .na is near or in front
of its driving direction. Fig. 4 shows the example ~f an ‘= proved mutation in
which each gene is changed with equal probability, and to 's mutated from 3 to 7.
Using this strategy, convergence can be achieve ' effec.” . cly with fewer iterations.
After the Crossover and Mutation operat -~ " _ __nerated offloading strategy

still meets the constraints of privacy preservatic

3.2.6. Method Overview

In this paper, our aim is to achiev > tn. goal of minimizing the execution
time and reducing energy consumy “on. [(his computation offloading problem
is defined as a multi-objective problem, and the improved NSGA-II is used to
obtain the optimal compu”ation oi 'oading strategy for IoV. First, the offload-
ing strategies for compr .ing te. ' are encoded as the number of vehicles, and
fitness functions are ¢ ven .or t'.e computation offloading problems. Then, the
fast non-dominated sorting = pproach in NSGA-II is used to generate multiple
non-dominated layers 1c individuals and pretreat the population to better dis-
tinguish the v orits of individuals. Crowding distance computation is used to
identify indiviaw. s with better fitness. Finally, the improved mutation opera-
tion is pre pose 1 to accelerate the convergence of the algorithm.

The overyv ~w of our method is shown in Algorithm 2. The inputs of algo-
rithir 2 are v hicles, ECDs and computing tasks. The algorithm starts from the
first ite. *i~ . (Line 1). Two populations C; and O; of size dp0p are randomly
¢ 2neratec and form a population B; with a population size of 26,,,. The popu-
lat.. ~ 7 is divided into multiple non-dominated layers by fast non-dominated

sc t (uines 3 and 4). Bj is prepared for the selection operation, and population
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Algorithm 2 Computation Offloading Method

Require: D, V, T, S, 60
Ensure: Optimal offloading strategy 6*

g=1
while g < Gen do
B; =C;+0;
H = Fast non — dominated sort (Bj;)
C;=0
j=1

while num (C;) < 0pop do
Obtain routing vehicles by Algorithm
Calculate crowding distance (H;) v (22)
Ci+ =H;
j=j+l

end while

0O; = Crossover and mutw.."»on ;)

g=g9+1

end while

return 0*

C is set to empty te store .~e iew generation of the population. In addition, the
selection operatic 1 to."~ws two rules: first, the higher level of non-dominated
layers is priorit zc.'c second, the better crowding distance is prioritized when
individuals arc ‘n .he same non-dominated level. The excellent individuals are
selected tc .ll i a new population of size 6,,, by crowding distance computation
(Lines 7 to * ). 7 aen, the offspring are generated after the crossover and mu-
tatior and p.* into O; (Line 13). The offspring population O; are merged with
the pa. ~nt pr pulation C; and iterated again until the algorithm stops (Lines 2

t» 15). inally, the optimal offloading strategies are output.
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4. Experimental Evaluation

In this section, a set of comprehensive simulations and experimen.. are per-
formed to evaluate the performance of the proposed edge cor puti.g . “oading
method, i.e., ECO. Specifically, the simulation setup is introu. ~ed first, in-
cluding the simulation parameter settings and the stat¢ nents ¢ comparative
methods. Then, the influence of different vehicle scales on . ~ *".ne and energy
consumption performance of the compared methocs a* a4 o r proposed ECO

method is evaluated.

4.1. Simulation Setup

In our simulation, there are some vehicles alon. a unidirectional road. Six
datasets with different scales of vehicles alo. © the road are applied for our
experiments, and the number of vehici s 1s . to 20, 40, 60, 80, 100 or 120.
The data transmission rate based o0 V2V ~chnology, i.e., Ayay, and the data
transmission power, i.e., Ayar, in our ex; eriient are set to 1 Gb/s and 600 Mb/s
according to [4] and [21]. The spec Sed parameter settings in this experiment

are illustrated in Table II.

Lohle 2:  arameter settings

Parameter descrirtio.. Value
The data trans u. ~ion rate based on V2V technology Avay | 1 Gb/s
The total nu~ “er of ECDs M 20

The power rate of the servers in the ECDs « 300 W
The porv er rate " the employed resource units 3 50 W
The pu o rate of the employed resource units = 30 W

Th data trausmission power Ayar 600 Mb/s
TL > proces sing power of each resource unit p 2000 MHz

7~ unduct the comparison analysis, we employ some other basic offloading

m .thods with privacy preservation in addition to our ECO method. FFD and
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BFD are two well-known resource scheduling method while there arc <till ,everal
shortcomings. Therefore, we employ these two methods as compar.. ~n me. h0ds
to evaluate the performance of the proposed method. The com™ ara ive methods

are briefly expounded as follows.

e Benchmark: A computing task is offloaded to the : 1rrouna ng ECD that
covers the vehicles with the offloading requireme- 3. v,.__.1 the surround-
ing ECD has no spare space to host extra comp 1ti> 4 tas s, these tasks are
offloaded to the neighbor ECDs. In addition, .” the computing tasks have
privacy conflicts, they are not offloaded t. the sam : ECD. This process is

repeated until all computing tasks are or. ~dea.

e First Fit Decreasing in Edge computing vith Privacy preservation (FFD-
EP): The computing tasks are so.‘ea . . 'zscending order first according
to their requested number of r ~ource units. Then, the sorted computing
tasks are offloaded to the surrou. din, ECDs. If the remaining resources
of the ECD are insufficient . » hoscing any other computing tasks, the
new coming computing task is offloaded to another ECD with sufficient

resources chosen fror . the ECD set in order.

e Best Fit Decreasi g ir Edge computing with Privacy preservation (BFD-
EP): The comnuu.. - tas.s and the ECDs are both sorted in descending
order accord .. to the computing task resource request and the space of
the ECDs €rst. Then, the sorted computing tasks are offloaded to the
sorted F JDs If the current computing task requires more resources than
the ¢ crent kO owns, the current computing task is offloaded to the next
EC.* w' h s ficient resources. In addition, computing tasks with privacy

« suidicts are not offloaded to the same ECD.

The  ~~*' ods are implemented under the simulation tools by CloudSim on a
I C mact ne with 2 Intel Core i5-6500U 3.20 GHz processors and 8 GB RAM.
The -~ responding evaluation results are depicted in detail in the following

se .tions.
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4.2. Performance evaluation of ECO

The proposed ECO method aims to achieve trade-offs between ~ntin.zing
the time consumption and reducing energy consumption. Fift exy ~ ‘ments are
conducted in the case of convergence for each vehicle scale, a. multiple sets
of results are obtained. To identify a set of relatively b cter sc itions, simple
additive weighting (SAW) and multiple criteria decision . akine (MCDM) are
used and are measured as follows:

/ 1 G™* —G(e;) 1 B - E(e)

4 (CZ) = 5 Gmax _ Gmin + 5 Fmax _ Fmin ’

(23)

where G(¢;) and E(c;) represent the fitness of tu. ~ffloauing strategy c; regarding
the two objective functions, respectively [Z T.o). & 2 and G™" represent the

maximum and minimum fitness for time consu.. ption. If G™*® = G™" let

G Ge, o .
GmTG(r:in) = 1. Analogously, E™** an' J™" represent the maximum and
B B(e) _
Emax __ fmin T -

max

minimum fitness for energy consump. o. - if .0 = E™" et

4.2.1. Comparison of energy consu:. ~tion

L4

The six sub-figures in Fie = show the comparison of the utility value of the
solutions generated by EC' 1 at diffe ent vehicle scales. It is intuitive from Fig. 5
that when the vehicle sc .le is 20, ‘J, 60, 80, 100 and 120, the number of solutions
generated by ECO is i, 2. ., 3, and 3, respectively. For the solutions generated
by ECO, we attem « to obtai. the most balanced offloading strategy by judging
the utility value given in "3). After statistics and analysis, the solution with the
maximum util’.y ve ue is treated as the most balanced strategy. For example, in

Fig. 5(a), t! e fina. ~elected strategy is solution 1 because it achieves the highest

utility va’ 1e.

4.8. Jompar. ~on analysis
Tn 1.~ = .osection, the comparisons of Benchmark, FFD-EP and BFD-EP
v ith the ame experimental context are analyzed in detail. The execution time

L1, -

anu energy consumption are the two main metrics for evaluating the per-

fo mance of the computation methods. Furthermore, the number of employed
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Figure 5: Comparison of the utility =lue of the solutions generated by ECO at

different vehicle scales.

ECDs, the resource util zation. ~v 4 the number of computing tasks needed to
offload across ECDs ¢ e p2sen’ ad to show the real resource usage of all ECDs
for hosting the con puting v. ks. The corresponding results are shown in Figs.

6,7,8,9,10, 11 cnd 1..

4.8.1. Compu. <07 of the number of employed ECDs

The nv abe' of ka’Ds employed by the four offloading methods is illustrated
in Fig. 6. " 'he otal number of ECDs in our experiment is set to 20. As
showr in Fig 6, ECO employs fewer or the same number of ECDs compared
to Bei “hmar' , FFD-EP and BFD-EP. In addition, as the number of vehicles
i".crease. the number of ECDs used by ECO increases, and when the number
o1 ehicl s reaches 100, all ECDs should be in running mode to respond to the

uv | ment requests of the computing tasks.
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Figure 6: Comparison of the number of ECDs mployed at different vehicle
scales by Benchmark, FFD-EP, BFD-EP a.. ' ECO.

4.3.2. Comparison of resource utilization

After offloading all computing task. to “he ECDs via relevant strategies, the
occupation of the resource units . aewn.. cly achieved. Fig. 7 shows the com-
parison of the resource utilization of the ECDs by using Benchmark, FFD-EP,
BFD-EP and ECO at diffe ent ve. ‘cle scales. The resource utilization is calcu-
lated according to the rumb. - of :mployed ECDs and the employed resource
units in each ECD. Fr wer .mplayed ECDs with more employed resource units
yield a higher resou ce utw. = 1on. It is intuitive from Fig. 7 that our proposed
method ECO ach’ :ves © ‘aher resource utilization than the other three offloading

methods. That s, 7CO wastes fewer resources than the other methods.

4.8.8. Com parison . the number of offloaded computing tasks across ECDs

In gen. -2l the computing task is offloaded to the nearby ECD. However, at
small - ehicle sca.es, the location of the vehicle is randomly distributed in differ-
ent E "D ranr 2s, and if all computing tasks are offloaded to their surrounding
F Jbs, multiple ECDs will be open, leading to excessive energy consumption.
C 'nsequr atly, in our experiment, the computing task might be offloaded to a

~ishhor ECD near the surrounding ECD. Offloading computing tasks across
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Figure 7: Comparison of the resource utilization o1 “enchmark, FFD-EP, BFD-

EP and ECO at different vehicle scales.

ECDs allows for a computing task * be t. ‘usferred from the origin vehicle in
which the computing task is located i1 a vchicle in which the coverage of the
destination ECD is different from t.. * ot the origin ECD. In Fig. 8, we compare
the number of computing tasks ofloaded across ECDs by the four different com-
puting offloading methods It is in uitive from Fig. 8 that as the vehicle scale
increases, our proposed fiCO .. ~ nod transmits more computing tasks across

ECDs to achieve bett - re ourc . utilization.

4.8.4. Compariso . o, ~mergy consumption

As outlined "u . ~ction II, the energy consumption is composed of the baseline
energy consun. ti,n for all servers in the ECDs, the energy consumption of
the emplo ed v :source units, and the energy consumption of the unemployed
resource un.  In fig. 9, we compare these three aspects of energy consumption
at die ent ve icle scales. As shown in Fig. 9(a), as the vehicle scale increases,
all me.~ods 7 icrease baseline energy consumption for all servers in the ECDs,
I at ECC consumes less energy than the other three methods because it employs
fe. =r EC Ds. Fig. 9(b) shows that as the number of vehicles increases, the energy

cu . “employed resource units increases. These four methods achieve the same
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Figure 8: Comparison of the number of offloadeda « ~mputing tasks across ECDs

by Benchmark, FFD-EP, BFD-EP and ECC -t different vehicle scales.

energy consumption of the employed resc rce units at the same vehicle scale
because the same number of resource . ni. are employed by Benchmark, FFD-
EP, BFD-EP and ECO in the co.. "uuu., tasks. Fig. 9(c) indicates that ECO
generates less energy due to unemployed resource units compared to Benchmark,
FFD-EP and BFD-EP by - sing fe er ECDs.

The comparison of en~rgy « ns' mption in Fig. 10 shows that ECO has better
performance. For exa aple when the number of vehicles is 100, ECO achieves
a power consumptic 1 of les. *ian 2.5 KW.h, whereas Benchmark, FFD-EP and
BFD-EP generat: mo.. than 2.5 KW.h.

4.3.5. Compc “sor of time consumption

The off bading v..ae is a fundamental metric of time consumption. Fig. 11
shows the -~ apar son of the offloading times of Benchmark, FFD-EP, BFD-
EP ar u ECQ at different vehicle scales. It is intuitive from Fig. 11 that our
propo. »d met .od costs less offloading time than the other methods.

In Fi». 12, we compare the total time consumption of the different offloading
n ~thods It is intuitive that our proposed method ECO costs less time than

'~ ~ampared methods. However, the difference is not obvious when the vehicle
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Figure 9: Comparison of different components of en. “ov c...sumption by Bench-

mark, FFD-EP, BFD-EP and ECO at differen! wehicle s :ales.

scale is small, possibly because ECO nec *, oo viausmit more offloaded com-
puting tasks across the ECDs than the other t.. 2e methods, which consumes
more transmission time. As the scale of ‘v vehicles increases, the influence of

transmission time becomes small.

5. Related Work

Over the past few year , MEC, which has a faster data processing rate and
more stable transmissic 1, has " dergone a tremendous revolution as a new
computing paradigm "1 tb . IoV environment [24][25][26]. Moreover, offloading
computationally int :nsive w kloads to ECDs reduces energy consumption and
delays, enhancing the  ~lity of computation.

As a multic scij ‘inary ecosystem, IoV is connected to scenarios that demand
real-time data . cessing and feedback. However, traditional cloud platforms
are not sv cab! : for scenarios requiring real-time processing, low latencies, and
a high-aualiy, <o aputing experience. Due to the delays and unstable connec-
tions issociav d with remote clouds, MEC is more suitable in the IoV environ-
ment. "~ red with traditional cloud computing, MEC provides computing
13sourcer and extra storage closer to vehicles and end users [27][28][29].

" the rapid increase in IoV applications, it is of great urgency to design

a viro architecture that can adequately process large quantities of data for

26




455

460

465

470

Benchmark
FFD-EP
35 +:BFD-EP
=mECO

Energy consumption (kW.h)
[3S)

20 40 60 80 Tu. 120
Number of vehicles

Figure 10: Comparison of the energy consumptic - by Benchmark, FFD-EP,
BFD-EP and ECO at different vehicle scales.

vehicles. In [30], Hu et al. proposed ~ mw ‘-access edge computing framework
as well as the corresponding communic. “io.. protocol. To process and distribute
the contents efficiently, the propos.' integrated various technologies such as a
licensed Sub-6 GHz band and millimeter wave communications. Similarly, by
integrating different types « ( technc ogies, Liu et al. proposed an SDN (software-
defined network)-enable netw. "k architecture in [31]. The MEC algorithm has
the on-premises featur . w’.ich - ecreases execution time and enhances the qual-
ity of the experien e, and « ald be utilized to perfect the architecture while
ensuring satisfyii.g sca.. hility and responsiveness. However, although ECDs
can perform t} : ta. < of processing data with low latency in MEC, the comput-
ing resource dep. ed in MEC are restricted. Hence, allocating and coordinating
resources etw en the edge and cloud servers is a necessity. In [32], Sasaki et al.
proposed an . frr structure-based vehicle control system. With the system, re-
sourc s and c. mputations are allocated dynamically based on the data collected
by sensc = "a [33], Kumar et al. proposed an architecture in which complex
(¢ mputa ‘ons are performed by devices located at the edge of the computation
in .._"* Uf the high mobility of vehicles.

Generally, computation offloading refers to offloading complex workloads to
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Figure 11: Comparison of the offloading time consn. »tion of Benchmark, FFD-

EP, BFD-EP and ECO at different vehicle sc.’~s.

servers with the required resources. "~ a p. ‘ctical part of MEC, offloading was
originally intended to offload tasks on demand. By offloading heavy tasks to
ECDs, lower latencies and lower enc. ~v consumption could be achieved, improv-
ing the quality of the computino experience [34][35][36].

In [37], Mach et al. povided ¢ 1 overview of several principles in terms of
offloading, including cla‘ sificati ~ influencing factors and management in prac-
tice. Based on these ; "inc ples they sorted efforts to address the challenges of
whether to offload .nd how .» allocate computing resource. In [38], Mao et al.
proposed a low-complea “v sub-optimal algorithm to optimize task offloading
scheduling anc allo ate transmit power legitimately. As advantages of alternat-
ing minimizatio.., the weighted sum of the delay and energy consumption are
able to reich ne minimum. In addition, convex optimization techniques are
utilized for t.. t ansmit power allocation under a given offloading scheduling
decis n. In a ldition, in [39], Sardellitti et al. proposed an iterative algorithm
basod o, -~ .vex optimization. They formulated the offloading problem as the
13ductior in energy consumption and latency, and thus, the result of the opti-

miz. "~ .« problem is nonconvex in the multi-users case and can be obtained by
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Figure 12: Comparison of the time consumption o. Renchmark, FFD-EP, BFD-
EP and ECO at different vehicle scales.

the algorithm. In [40], for a wireless nowe. 'd multiuser MEC system, Wang et
al. proposed a unified MEC-WPT de.igu 'n which computing tasks could be
executed locally by broadcasting w: -eless power to multiple users. Furthermore,
a framework was developed to optimize energy consumption and execution time.
In [41], Chen et al. propos d a dis. ‘ibuted computation offloading algorithm in
the multi-user computat’ on on. ac .ng problem with the aim of achieving a Nash
equilibrium and quan’ fyir ; effi iency from the aspect of performance metrics.

As the IoV achie ses the | - suasive milestones over the last couple of decades,
it is a trend to equ (p the ehicles with the ability of intelligent driving, giving rise
to the commur icar on between vehicles [42][43]. The communication is useful
in many ways, ¢ - ecially in driving security and privacy protection [44][45][46].
In additio . to " rivacy leaks, virtual vehicle hijacking is more serious. Although
intellectuali. ~o t 1e operations of vehicles, the use of sensors makes it easy to
invad : the ve. icles’ electronic systems. If the systems are invaded, the schemers
could 1. ‘ect “acorrect orders and transmit false information to the destination
+ zhicle |- 7][48]. Consequently, it is of urgency to prepare in advance for virtual
ve..'~le ' jjacking, such as establishing a trust judgement method and designing

a .ua: authentication scheme on different scenarios [48][49].
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Few studies have examined multi-objective optimization for offl adir ; com-
puting tasks from vehicles across ECDs in an IoV environment. ~ hievi. the
goals of energy conservation and transmission delay reducti n v hile satisfy-
ing privacy protection constraints remain challenging. Therei. - an offloading

method is proposed to address the above challenge in thi paper

6. Conclusion and Future Work

In recent years, IoV has emerged as a powerful 1. hnoi._y for providing real-
time traffic information to drivers and transpor ~tion cor ;rol systems. With the
rapid development of IoV technology, computi.  tasks become so complex that
it is necessary to offload the tasks to th .cwuwowe infrastructure. The MEC
paradigm is one of the most effective naradigi.; in terms of processing IoV
computing tasks, in which the computing t .sks of the vehicles are offloaded to
ECDs in close proximity to the vehici s. "o 1 :alize multi-objective optimization
to reduce the execution time of tt . ~mnu“ing tasks and the energy consumption
of the ECDs while satisfying the privac, -onflicts of the computing tasks, an edge
computing-enabled computs ion  floading method named ECO is proposed in
this paper. First, to acquirce “he rotv .ing vehicles from the origin vehicle in which
the computing task is "ocat .d to the destination vehicle, V2V communication-
based routing for a —eh.. > is .eveloped. Then, NSGA-II is utilized to achieve
the multi-objectiv. _~timization. Subsequent experimental evaluations verify
the efficiency ar ' ~ffectiveness of ECO.

In future - -ork we will attempt to adapt and extend our proposed method
to a real-w.rld scew. rio of IoV services, and we will specify the different time
requireme. *s Jf th. computing tasks to attempt to identify an offloading strategy
to acl .cve energy savings of ECDs with definite time constraints as well as

privac © const’ aints.
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HIGHLIGHTS
1. Analyze privacy conflicts of the computing tasks offloaded to the edge computing devices.

2. Design a vehicle-to-vehicle communication-based route-obtaining algorithm.
3. Adopt NSGA-II to realize multi-objective optimization while guarding against privacy cnnflicts.
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