
Accepted Manuscript

A hybrid relay node selection scheme for message dissemination in
VANETs

Osama Rehman, Mohamed Ould-Khaoua

PII: S0167-739X(18)32041-7
DOI: https://doi.org/10.1016/j.future.2018.10.042
Reference: FUTURE 4547

To appear in: Future Generation Computer Systems

Received date : 25 August 2018
Revised date : 20 October 2018
Accepted date : 22 October 2018

Please cite this article as: O. Rehman, M. Ould-Khaoua, A hybrid relay node selection scheme for
message dissemination in VANETs, Future Generation Computer Systems (2018),
https://doi.org/10.1016/j.future.2018.10.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.10.042


* Corresponding author 

osamahussain.bukc@bahria.edu.pk              1 

A Hybrid Relay Node Selection Scheme for Message 
Dissemination in VANETs 

 
Osama Rehman1*, Mohamed Ould-Khaoua2 

1 Department of Software Engineering, Bahria University, Pakistan 
2 Department of Informatics, University of Blida, Algeria 

 
Abstract 
Over the past few years, there has been growing research interests on vehicular ad hoc networks (VANETs) due 
to their ease of deployment and the potential support for wide range of applications that can greatly enhance our 
everyday driving experience. Multi-hop messaging is expected to be the primary mode of communication 
among vehicles in numerous VANET-based applications including road safety, traffic management and 
infotainment services. Proper selection of the next-hop relay nodes is an essential part in the design of multi-hop 
message dissemination schemes in VANETs, which highly governs the reception of the broadcasted messages, 
especially when evaluated over large coverage distances and high node density networks. Existing message 
dissemination schemes adopt only a single relay nodes selection criterion for choosing nodes in the group of 
next-hop relays. However, potential of the selected relay nodes can be restricted due to exploiting only a single 
selection criterion, hence limiting the performance outcomes. This research proposes a new class of hybrid relay 
nodes selection scheme that attempts to exploit the best features of existing message dissemination protocols, in 
terms of message reachability, communication delay and bandwidth utilization, while avoiding their 
shortcomings. The new hybrid scheme takes into account the spatial distribution of the next-hop relay nodes 
with reference to the current sending node. To the best of our knowledge, the present study is the first in 
literature to propose such a hybrid scheme that attempts to improve performance of VANETs over varying node 
densities, traffic load conditions and mobility speed scenarios. Over the most stringent communication scenario 
considered in this work, our performance analysis indicates that the new hybrid scheme improves reachability 
by up to 10% compared to the most competitive conventional versions. This improvement is obtained while 
having a marginal performance fall in terms of the end-to-end communication delays and messages saved 
rebroadcast ratios. 

Keywords: Hybrid, relay, VANETs. 

1. Introduction 
Enabling direct wireless communication among vehicles is a core component of the envisioned Intelligent 
Transportation Systems (ITS) [1-3]. The directly connected vehicles are commonly referred to as Vehicular Ad 
Hoc NETworks (VANETs) [4-6]. The endorsement of information and communication technologies in vehicles 
can enhance drivers' awareness of immediate and far distant traffic situations. Consequently, VANETs can lead 
towards more intelligent decisions to deal with the dynamic road-related events [1, 3]. VANETs can support a 
wide spectrum of applications including road safety services, traffic flow and congestion management [7, 8]. On 
top of that, it is envisaged that VANETs will become the de-facto enabling technology for communication 
among vehicles on the road [9].  

Multi-hop messaging is expected to be the primary mode of communication in VANETs that can be utilized for 
diversified set of applications [1, 10]. In particular, a timely and successful reception of messages can be used 
for the reduction of high speed road accidents by providing early warning messages to nearby and far distant 
vehicles, hence increasing the reaction time to the advertised situations [11]. VANETs can facilitate small to 
large propagation areas for the broadcasted messages through multi-hop mode of communication, with coverage 
distances spanning from few hundred meters to several kilometers [12]. Proper selection of relay nodes is an 
essential part in the design of multi-hop message dissemination schemes, which highly governs the reception of 
the broadcasted messages, especially when propagated over large coverage distances and high node density 
networks [13-15]. A poor selection of the relay nodes can lead to the loss of messages, hence significantly 
limiting the reception of messages. The success and failure in relay nodes selection becomes even more critical 
when the broadcasted messages are critical-in-nature, such as accident advertising alert messages. 

High reachability and low end-to-end delay are among the key requirements of any message dissemination 
scheme in VANETs [16, 17]. Furthermore, messaging schemes should ensure efficient utilization of the channel 
bandwidth, a resource that is often scarce. Several schemes have been proposed to achieve the above described 
goals, in which furthest distance (FD) based schemes are the most commonly adopted for obtaining low end-to-
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mobility speed, travelling direction, positioning coordinates and relative distance [16]. On the other hand, the 
information within the application messages are utilized to further rebroadcast the received messages to 
upstream nodes, such as the dissemination of event-driven alert messages for advertising nearby road accidents.  

The multi-hop message dissemination in VANETs is generally categorized as being either localized or 
distributed [33], based on their independency and dependency on the neighboring nodes information, 
respectively. The localized routing approach does not gather neighboring nodes information, where a node 
solely takes a routing decision based on the local information it holds or those which have been received with 
the message to rebroadcast [34]. Localized mechanisms have low overheads due to the absence of information 
exchange among neighboring nodes. However, this comes with the cost of being unaware of surrounding nodes 
situation that can act as a major setback for many VANETs based applications, especially for safety related 
messaging schemes. In contrast, a distributed routing requires frequent updates on the neighboring nodes, 
usually gathered through periodic HELLO packets [16, 17]. In a distributed routing approach, a node can be 
aware of various information about the surroundings at the cost of increased overheads in the exchanged control 
packets. However, several techniques have been proposed for suppressing the overhead causes by the periodic 
exchange of HELLO packets in distributed routing, such as using probabilistic broadcasts [34]. 

Selection process of the relay nodes is usually classified as being either receiver-oriented or sender-oriented 
[33]. In the receiver-oriented relay nodes selection, all nodes receiving the broadcast message contend for 
becoming the next-hop relay [17]. As a result, the relay is implicitly decided on the fly by the message receiving 
nodes. However, the receiver-oriented relay nodes selection leads towards redundant rebroadcasts of the 
message resulting in poor utilization of the available bandwidth. In the sender-oriented relay nodes selection, the 
source node takes the responsibility of explicitly selecting a group of nodes from which the nodes contend for 
becoming the next-hop relay [16, 19, 25, 35]. The motive behind employing a sender-oriented relay nodes 
selection is two-folds. The first is to explicitly regulate, at the sender side, the number of nodes that contend for 
forwarding the received messages. The second is to explicitly regulate the waiting time each node has to wait 
before accessing the channel for message rebroadcast. With assistance of this regulated rebroadcasting 
mechanism, a reduction in message rebroadcast redundancy is obtained, leading towards efficient utilization of 
the channel’s bandwidth.  

Opting towards a sender-oriented relay selection requires defining the relay cardinality at the sender side, where 
the maximum number of IDs that can be accommodated in this list of next-hop relays can be defined as the relay 
nodes cardinality ܥ. Improper cardinality can lead to inefficient performance, where a small cardinality can 
result in loss of the disseminated message if all nominated nodes fail to rebroadcast while a large cardinality can 
increase the rebroadcast redundancy if the relaying node fails to notify the other contending relays [16, 25]. 
Most research on multi-hop messages dissemination in VANETs has mainly emphasized on the reduction of 
end-to-end delays over a platoon of vehicles [12, 16, 17, 19, 36]. Reduction of end-to-end delay is usually 
addressed by choosing relay nodes falling furthest in distance from the source, also defined in literature as 
greedy or progress distance based message dissemination scheme [16, 17, 36]. 

A message broadcasting scheme termed as privileged inter-vehicular communication architecture (PIVCA) was 
proposed in [17], and further utilized in [36] for the reduction of end-to-end delays. PIVCA proposes to estimate 
the forward and backward transmission ranges to the single-hop neighboring nodes with assistance of the 
information exchanged within the periodic HELLO packets. At the time of messages dissemination, a receiver-
oriented relay selection mechanism is adopted where PIVCA utilizes the estimated transmission range for 
optimizing the relay nodes' waiting time before rebroadcasting the received messages. In [16], an asymmetric 
transmission ranges among single-hop neighboring nodes is considered, where intermediate nodes are used to 
convey HELLO packets between any pair of nodes of which one of the nodes is not able to hear the other 
directly. In the same work, a furthest-spanning relay selection scheme is introduced which is a variant of FD 
scheme. The furthest-spanning scheme selects the set of nodes which have the largest sum of distances from 
source and their transmission ranges. Relay nodes having larger furthest-spanning distance would have smaller 
rebroadcast waiting times, and hence higher chances of becoming relays. 

A broadcasting protocol has been introduced in [19], referred to as the multiple candidate relays opportunistic 
broadcast (MCROB) protocol. The MCROB protocol, aims to reduce communication delay by adaptively 
assigning dynamic waiting time to the relays candidates before forwarding the received messages. An expected 
transmission speed (ETS) metric is proposed to evaluate the performance of broadcast transmission speed. 
Simulated performance evaluation shows that MCROB protocol increases the average transmission speed by 
approximately 40%. In addition, a retransmission mechanism is adopted to enhance messages reception 
reliability. Density-aware emergency message extension protocol (DEEP) was proposed in [12] for the 
dissemination of emergency messages in VANETs. In this work, alert messages dissemination over large 
coverage area was discussed, where the targeted area was divided into three segments and provided with 
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different alert messages reception priorities. The protocol was designed with the aim that nodes in the nearest 
and the furthest segments should receive the alert messages reliably, whereas nodes in the middle segment 
should forward the alert messages as quickly as possible. Reliability is addressed by adaptively configuring the 
number of alert messages retransmission according to the surrounding nodes density over a given block size. 
The fast forwarding mechanism was achieved by providing smaller waiting time to nodes residing in segments 
that are further away from the source. The proposed solutions in [12, 16, 17, 19] utilizes the FD technique when 
selecting the next-hop relay nodes. With the limitations in the FD based schemes, described in Section 1, the 
methods in [12, 16, 17, 19] can result in heavy losses of the transmitted messages, especially over high node 
density VANET. 

A link metric, termed as expected progress distance (EPD), has been introduced in [20] to assess the 
transmission link quality between nodes in a VANET. The EPD measures the packets transmission failure rate 
for both forward and reverse links. The forward link's error rate is reported by the neighboring nodes, whereas 
the reverse link's error rate is a measured quantity at the receiver. However, loss of the occasional packets that 
report the forward link's error rate could lead towards faulty estimations of link qualities, hence faulty selections 
of relay nodes. The computation of EPD metric is dependent on both forward and reverse link qualities, where 
poor reverse links' performance may overshadow the good performance of forward links, resulting in neglecting 
those potential forward links. In addition, piggybacking of the forwarding link quality while broadcasting the 
periodic HELLO packets is an additional overhead to bear. A path diversity mechanism has been proposed in 
[35] which selects two nodes at each message rebroadcast, one as a relay and the other as an auxiliary broadcast 
node. The relay node performs multiple functions by rebroadcasting the received messages, selecting the next 
relay and selecting an auxiliary node. The auxiliary node augments the relay nodes' broadcasts by only 
rebroadcasting the message without performing any relay nodes selection. High reachability of messages is 
possible while employing the path diversity mechanism in [35] but at the expense of additional channel 
bandwidth utilization due to the usage of two separate broadcast paths. 

A selective forwarding scheme for multi-hop alert messages dissemination in VANETs was proposed in [25], 
which efficiently utilizes the bandwidth by assigning a limited set of nodes as the contending relays. In this 
scheme, a sender-oriented relay nodes selection is adopted while assigning nodes having larger distance and 
lower velocity difference with the source a higher priority for becoming the next-hop relays. The sender-
oriented relay selection concept proposed in [25] is adopted for the hybrid scheme proposed in this work, which 
plays a major role in improving the efficiency of bandwidth utilization, measured in-terms of saved 
rebroadcasts. A clustering and probabilistic broadcasting (CPB) is proposed in [27] to provide stable and 
reliable communication among nodes. Vehicles are group in form of clusters and data among vehicles is 
exchange through a cluster head, whereas cluster members use probabilistic forwarding to forward their data to 
the cluster head. The authors select cluster heads based on node’s channel condition calculated by the adopted 
Nakagami channel model. However, the Nakagami channel model is term as not being an accurate model that 
could represent the channel conditions among the vehicles. Furthermore, the adopted probabilistic selection of 
forwarding nodes inevitably results into rebroadcast redundancies, hence degrading performance in-terms of 
bandwidth utilization which the authors have not evaluated in their work. 

An Energy Efficient Routing Protocol for Vehicular Ad Hoc Networks, named as GreeAODV has been 
proposed in [37]. In communication between any two nodes in VANETs, GreeAODV aims to reactively select 
the most efficient routing path, in-terms of energy consumption, by estimating the total power consumed 
between source and destination. Several distributed models have been devised to handle services management in 
vehicular networks, among them is a concept of Vehicular Trusted Third Party (VTTP) that is proposed in [38] 
which allows drivers to exploit the benefits of different services. Simulation results indicate significant 
reductions in services latency, which in-turn could greatly benefit in different VANETs-based applications, 
especially in safety services. Our previously proposed BDSC scheme introduced a forward link quality based 
relay nodes selection scheme which has shown improvements in-terms of messages reachability when compared 
to similar existing solutions, especially over highly dense networks [21-23]. The scheme also managed to 
maintain low end-to-end delays comparable to those obtained by the FD schemes. Different variants of the 
BDSC scheme have been suggested where it has been observed that one variant tends to outperform the other 
ones over certain network conditions while fails to do so over other conditions. 

In addition to the above discussed different techniques adopted for devising message dissemination schemes in 
VANETs, deep learning models have shown strong potential in optimizing the relay nodes selection process 
[39]. Deep learning has drawn substantial attention due to its noticeable progress in several areas such as image 
classification and video game playing [40, 41]. In-fact, several deep learning frameworks have been developed 
in VANETs in relation to multi-hop messages dissemination [42]. These deep learning frameworks aim to learn 
the dynamics of the network followed by making decisions aiming towards network performance optimization 
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along with improving road safety services such as the prediction of rear-end collision detection [42]. Further, the 
incorporation of random walk models have shown potential to optimize relay nodes selection in VANETs. 
Several graph-based algorithms have been proposed based on random walk technique in order to optimize the 
movement between one node to another over a graph [43, 44]. A novel subMarkov random walk (subRW) 
framework was proposed in [43] to unify four different random walk based algorithms. The current node walks 
out to other nodes along the edges connected with it while using a certain probability, where the random walker 
is transformed to a random walker with Markov transition probability. 

Table 1 provides a summary of the above-discussed related works, which highlights the different forwarding 
mechanisms used by the investigated protocols/schemes. It also shows the protocols/schemes as either adopting 
a sender-oriented or a receiver-oriented next-hop relay nodes selection mechanism, where most of them 
consider the sender-oriented due to its capability in providing controlled rebroadcasts, hence facilitating an 
efficient utilization of the available spectrum. 

 

Table 1: Comparative study for the main features exhibited by the investigated VANETs protocols/schemes. 

Protocol / Scheme 
Traffic 

awareness 
Forwarding mechanism V2V/ V2I

Simulation 
Scenario 

Application 
Sender/Receiver 
oriented relaying 

PIVCA [17, 36]  Yes Furthest distance V2V Highway 
Infotainment and 
safety services 

Receiver-oriented 

Oracle [16] Yes Furthest transmission range V2V Highway Safety services Sender-oriented 

MCROB [19] Yes Expected transmission speed V2V Highway Safety services Sender-oriented 

Selective 
forwarding [25] 

Yes Distance and relative velocity V2V Highway Safety services Sender-oriented 

Path diversity [35] Yes 
Can be incorporated with 
different forwarding 
mechanisms 

V2V 
Highway 

and Urban 

Infotainment and 
safety services 

Sender-oriented 

DEEP [12] Yes 
Combination of multiple 
algorithms w.r.t. distance 
from source 

V2V & 
V2I 

Highway Safety services Receiver-oriented 

EPD [20] Yes 
Distance and forward / reverse 
links quality 

V2V Highway Infotainment Sender-oriented 

GreeAODV [37] Yes Energy efficiency V2V Urban Safety services Sender-oriented 

CPB [27] Yes 
Clustering and probabilistic 
broadcasting 

V2V Highway 
Infotainment and 
safety services 

Receiver-oriented 

BDSC [21-23] Yes 
Distance and forward link 
quality 

V2V Highway 
Infotainment and 
safety services 

Sender-oriented 

3. Base Components of Hybrid Scheme  
This section provides a brief description of the BDSC scheme and its variants [21-23], which represents a major 
building block in the devised hybrid scheme. The BDSC scheme has been designed with a particular focus on 
safety-related applications and for the case of multi-lane and strip-shaped roads structures as one of the major 
potential application of VANETs [1]. The BDSC scheme is composed of three operation layers, namely the 
“HELLO packets exchange”, "Link Quality Estimation" and the "Link Selection" layers, where the following 
subsections provide descriptions of the three stated layers. In addition, the last subsection is devoted to discuss 
the details of sender-oriented relay nodes selection mechanism that is adopted for the proposed hybrid scheme.  

Before going into the details of the above described points, the forward/reverse links concept is clarified at this 
stage for further usage in the manuscript. In a given pair of nodes, each node has two communication links with 
the other, more specifically the forward and reverse links [24]. While considering the example of a pair of nodes 
A and B, the communication link from A to B is considered as the forward link of A, while the communication 
link from B to A is the reverse link for node A. In the remaining parts of this paper, the terms “vehicle” and 
“node” will be used interchangeably as seen best fit within the context. In addition, the terms “packet” or 
“HELLO packet” will be referred to the periodically generated beacons, while “message” will be used when 
referring to application specific data that are generated for multi-hop propagation; such as an alert message. 
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3.1 HELLO Packets Exchange Layer 
Initiated by each node in the VANETs, single-hop neighboring nodes information are exchanged with the 
assistance of periodic broadcasts of HELLO packets. The exchange of information is limited to single-hop 
nodes, which is considered as sufficient for a given node to get acquainted with the surrounding nodes condition 
[16, 17]. The information embedded inside each HELLO packet contains the source node’s ID, positioning 
coordinates and an updated list of directly connected vehicles, referred to as the active communication nodes list 
(ACNL). A given source node’s ID can be represented by the MAC address of the IEEE-802.11-based 
transceiver, and the positioning coordinates can be taken with assistance of satellite system based receivers, such 
as receivers for the Global Positioning System (GPS) or Global Navigation Satellite System (GNSS) [45]. On 
the other hand, the ACNL is built locally at each node as a result of using the nodes IDs extracted from the 
received HELLO packets. At each node, the ACNL is reset after the broadcast of each HELLO packet, while 
being updated between every two consecutive HELLO packets broadcast. 

3.2 Link Quality Estimation Layer 
In conventional vehicular communication scenarios, the broadcasting source cannot be aware of the number of 
HELLO packets that were successfully received at the other nodes, unless acknowledged by the receiving nodes. 
However, explicitly acknowledging the reception of the broadcast packets can easily lead to the well-known 
broadcast storm problem. In order to resolve this problem, the BDSC scheme introduces an implicit 
acknowledgement mechanism for the successfully received HELLO packets over the forward links. The 
proposed mechanism runs locally in each node at the “Link Quality Estimation” layer by which quantitative 
representations of the forward link qualities are obtained. 
 
Implicit acknowledgement for the successfully received HELLO packets is achieved by taking assistance of the 
ACNLs (discussed in Section 3.1) that are incorporated inside the HELLO packets. For each HELLO packet 
reception, the receiving node scans the ACNL for its own ID. In case the node finds its ID within the ACNL, the 
node realizes that its last sent HELLO packet was heard by the current sender, which in-turn is an implicit 
acknowledgment. As a result, the corresponding implicit acknowledgement count (IAC) for that link is 
increased by one. In contrast, the HELLO packet is discarded and IAC is not incremented if the implicit 
acknowledgement condition is not satisfied. The expected number of HELLO packets within the time duration 
஻ܶ஽ௌ஼ is defined by ஻ܶ஽ௌ஼ ௛ܶ⁄ , where ௛ܶ is the time interval between consecutive broadcasts of HELLO packets. 

The forward link quality (ܳܮ) between a pair of nodes is expressed by ܳܮ ൌ ሺ/ܥܣܫ ஻ܶ஽ௌ஼ ௛ܶ⁄ ሻ, where higher 
values of ܳܮ indicate better quality of the communication link. Estimation of the forward link quality is a 
periodic process that takes place after every time period ஻ܶ஽ௌ஼. Within the time period ஻ܶ஽ௌ஼, acceptance or 
rejection of the received HELLO packets for the process of link quality estimation is carried based on the above 
described algorithm. In this work, a system configuration of ஻ܶ஽ௌ஼ ൌ 5 sec is considered, which is also similar 
to those adopted in other relevant research works [20]. 
 
A message flow sequence depiction of the implicit acknowledgement process between a given pair of nodes A 
and B is presented by Figure 3. While focusing on node A, the first increment in the IAC occurs due to the 
successful reception of the HELLO packet at node B (transmitted by node A), and then immediately followed by 
the successful reception of the HELLO packet at node A (transmitted by node B). Similar patter can be followed 
for the third HELLO packet transmitted from node A. In contrast, loss of the second HELLO packet transmitted 
from node A leads towards the absence of an increment in IAC at node A. 
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the end product. As a naming convention, the “Iterative Link Search” with ݄ܶ ൌ 1.0 and the “Distance to Link 
Quality” criteria will be referred hereafter as BDSC (݄ܶ ൌ 1.0) and BDSC (ܳܮ ൈ ݀), respectively. 

4. The Hybrid Scheme 
The concept of hybrid relay nodes selection is introduced in which different message dissemination schemes are 
exploited to devise a new class of schemes. While adopting the sender-oriented mechanism, the hybrid scheme 
attempts to combine the best features of existing messaging schemes while suppressing their shortcomings. 
Structure of the sender-oriented mechanism incorporated within the proposed hybrid scheme is as follows. The 
list of IDs representing the contending next-hop relay nodes are constructed at the sender side and referred to as 
“relay priority list” [21-23], where each entry in the list is represented as a “slot”. In order to obtain a 
rebroadcast priority among the ܥ contending relays, the entries inside the “relay priority list” are assigned with 
prioritization indexes, referred to as the “relay priority index”, ݅. A given relay with highest rebroadcast priority 
is assigned with the lowest index value, and vice versa is correct. At the time of message dissemination, the 
constructed “relay priority list” is incorporated inside the message, then transmitted to the neighboring nodes. At 
the receiver side, those nodes that receive the broadcast messages but do not find their IDs inside the “relay 
priority list” do not contend for becoming a next forwarder. If ID of a receiving node is within the received list, 
the receiver sets its rebroadcast waiting time, referred to as “relay waiting time”, proportional to the “relay 
priority index” of the node’s ID. The “relay waiting time” is the product of “relay priority index”, ݅, with a pre-
defined waiting slot duration of ߙ msec, and is given by ݐ௜ ൌ ݅ ൈ ݅ where ,ߙ ൌ 0,… , ܥ െ 1. Once one of the 
explicitly selected relays rebroadcasts the message, all other contending nodes will stop their waiting process 
once hearing that rebroadcast. By setting up an appropriate waiting time difference between the contending 
relays, a rebroadcasting priority is inherently achieved, leading towards the reduction of redundant rebroadcasts 
and hence high efficiency in bandwidth utilization [21-23]. 

4.1 Design Principles of Hybrid Scheme 
This section explores several attributes of the conventional FD and BDSC schemes, as the building blocks for 
the hybrid scheme. This step is considered to utilize these attributes as design principles for the proposed hybrid 
scheme. Even though this research exploits FD and BDSC schemes only, the suggested principles can be used as 
guidelines while considering any other set of message dissemination schemes. This section also presents and 
discusses the behavior patterns of the attributes under investigation, which are taken as the basis for devising the 
ordered-combinations in the hybrid scheme. These performance patterns were previously observed for the 
investigated schemes when evaluated over different simulation environments [21, 22]. Since similar 
performance patterns were obtained for the schemes under investigation, hence we can infer that the obtained 
patterns can be generally endorsed to the investigated schemes without being significantly influenced by the 
adopted simulation setup. Details of the investigated attributes along with behavior patterns are given in the 
following subsections. 

4.1.1 Link Quality 
The link qualities between a given source and the potential relay nodes assists in predicting the probability for a 
transmitted message to successfully reach the relays. In this research, the estimated forward link quality is 
considered as the quantitative representation for the probability of message reception [22], in which higher link 
quality indicates greater probability of reception and vice versa is correct. The link quality is mainly affected by 
the distance between the source and the receiver, surrounding nodes density and adverse propagation channel 
effects. More precisely, larger distance, denser network and higher channel fading intensity results in higher loss 
of the exchanged HELLO packets, and hence lower link qualities are obtained. 

The FD and BDSC schemes are studied for their link quality patterns. Though FD does not adopt any link 
quality estimation concept, the link quality estimated for the FD scheme is based on that obtained through the 
algorithm used for the BDSC scheme. Details on the link qualities obtained for FD and BDSC schemes can be 
found in our previous works [21-23], while this section would present their main findings. In FD, it is of interest 
to know that as the node density increases, nodes selected as relays exhibit the lowest link quality ratios when 
compared to those obtained by BDSC (݄ܶ ൌ 1.0) and BDSC (ܳܮ ൈ ݀) schemes. The BDSC (݄ܶ ൌ 1.0) exhibits 
the highest link quality, while the BDSC (ܳܮ ൈ ݀) is known to exhibit better link qualities to those obtained by 
FD but lower than those obtained by BDSC (݄ܶ ൌ 1.0). Though it can be generally stated that higher link 
quality implies an improvement in message reachability, but the same cannot be said for BDSC (݄ܶ ൌ 1.0) 
which has been known to exhibit poor reachability and high end-to-end delays as the node density increases due 
to the large hop counts required for reaching a targeted destination [22]. 
 
4.1.2 Spatial Distribution of Relay Nodes 



10 
 

In this research, the spatial distribution is defined as an estimated separation distance between the current source 
and the set of next-hop potential relays nodes. This estimated distance is calculated as the average distance 
between the source node and the selected ܥ relay nodes. The average distance is calculated according to each 
relay node’s contribution in forwarding the received messages among the set of ܥ relay nodes, and is given by 
݀̅ ൌ ሺ∑ ௜݀௜ݓ

஼
௜ୀଵ ሻ, where ݓ௜ is the relaying contribution of node ݅, in percentage, and ݀௜ is the actual distance in 

meters of node ݅ from the source.  

The main findings obtained previously for the investigated FD and BDSC scheme are as described next [21-23]. 
The FD scheme selects those nodes as relays that fall farthest in distance from the source, which reduces the 
required hop counts to reach a targeted destination and hence the overall end-to-end delay [16, 22]. In contrast, 
the BDSC (݄ܶ ൌ 1.0) selects those nodes that fall nearest in distance from the source, which in-turn results in 
large hop counts to reach a desired node, hence increasing the end-to-end delay. Finally, the BDSC (ܳܮ ൈ ݀) 
scheme attempts to adaptively strike a balance between distance and link quality rather than considering only a 
single factor. In BDSC (ܳܮ ൈ ݀), the nodes selected as relays fall far in distance from the source when the 
surrounding node density is low, while tending to become closer to the sender as the node density increases [21, 
23]. The working phenomenon of the BDSC (ܳܮ ൈ ݀) scheme results in low hop count requirements and low 
end-to-end delays at low node density VANETs, while having a small and smooth increments in hop counts, 
hence in end-to-end delay, as the node density increases [21, 23]. 

In FD scheme, the distance of the selected relay nodes from the sender exhibits a rise as the node density 
increases. This occurs since more nodes are present within a specific broadcast area as the node density 
increases, which in-turn increases the probability of finding relays farther in distance as compared to that in 
lower node density VANETs. The BDSC (ܳܮ ൈ ݀) and BDSC (݄ܶ ൌ 1.0) schemes tends to select relays closer 
in distance from the source as the node density increases, since nodes fulfilling the conditions of these two 
schemes tend to become closer to the source with increase in node densities. 

4.1.3 Performance of Messaging Schemes 
Performance of the investigated message dissemination schemes is measured in terms of messages reachability, 
end-to-end delay and saved rebroadcast over both low and high node density VANETs [21-23]. It is of 
importance to comprehend these three performance behaviors of the examined message dissemination schemes 
to be able to device an effective hybrid scheme. The performance study of different message dissemination 
schemes assists in deciding upon which messaging scheme is best fit to be used for a given slot in the “relay 
priority list” of the sender-oriented relay nodes selection. 

The FD scheme is known to exhibit low end-to-end delay along with having high saved rebroadcast [16, 17, 22] 
but at the cost of poor reachability performance over high node density VANETs [22]. However, it is realized 
that over high node density VANETs, the end-to-end delay tends to increase noticeably in the FD scheme as the 
relative speed difference among the nodes increases [22]. On the other hand, BDSC (݄ܶ ൌ 1.0) exhibits the 
highest link qualities, but poor reachability performance is exhibited as the node density increases. This is due to 
the length of the communication path a source node has to traverse to reach the destination, where the success 
and failure probabilities of a message’s propagation at each hop would affect the following ones. In contrast to 
the situations over high node density VANETs, higher reachability is noticed by BDSC (݄ܶ ൌ 1.0) at low node 
densities when compared with FD and BDSC (ܳܮ ൈ ݀) [22]. Furthermore, high end-to-end delay is exhibited by 
BDSC (݄ܶ ൌ 1.0) along with low saved rebroadcasts, which become more prominent as the node density 
increases. Finally, the BDSC (ܳܮ ൈ ݀) scheme exhibits the best reachability performance, especially over high 
node densities, while showing competitive end-to-end delay and saved rebroadcast to those obtained by FD. 

4.1.4 Relay Nodes Contribution 
The relaying contribution of each relay node, among the group of ܥ contending nodes, is suggested to be studied 
in our previous works [21-23]. The relaying contribution provides an insight on the involvement of each relay in 
rebroadcasting the received messages while employing a given scheme. This would assist in determining the 
usage frequency of a given message dissemination scheme within the devised hybrid scheme. Computation of 
relaying contribution for each relay node is performed by counting the number of cases where a given relay has 
indeed relayed the message. For an end-to-end communication scenarios that occurs over ܪ hop counts, the 
relaying contribution is computed by ܴ௜ ൌ ௜ܪ where ,ܪ/௜ܪ ൌ 0,…  ௜ is the number of times a givenܪ and ܪ,
message was relayed by a relay node having the “relay priority index” ݅.  

For the investigated FD and BDSC schemes, it is deduced that those relay nodes having the “relay priority 
index” ݅ ൌ 0 exhibit the highest contribution in relaying the received messages, when compared with all other 
contending ܥ relays [22]. Furthermore, more than 80% of relaying is performed by relays with “relay priority 
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 For the proposed Hybrid (݀ݔܳܮ), the first and second relay nodes within the slots of “relay priority list” are 
selected by the BDSC (݀ݔܳܮ) conventional scheme as depicted by Lines 22 – 28. 

 For both proposed Hybrid (FD) or Hybrid (݀ݔܳܮ) schemes, the last ten nodes within the “relay priority list” 
and are selected while exploiting the BDSC (݄ܶ ൌ 1.0) scheme, as depicted by Lines 33 – 50. 

 The IDs of ܥ ൌ 12 selected relay nodes are provided along with their priority indexes ݅ ൌ  The list .11	݋ݐ	0
is incorporated into the broadcast message to be sent further upstream, as represented by Lines 51 – 54. 



 

AAlgorithm 1: AA pseudo codde representattion of the Hyybrid (FD) annd Hybrid (ࡸ
 

schem (ࢊ࢞ࡽࡸ
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5. Simulation Environment 
Throughout this research, the following assumptions are considered which have been widely adopted in similar 
studies [12, 16-18, 35, 36]. A single-way, multi-lane and strip-shaped road segment is considered where all 
vehicles move in the same direction. Nodes travelling in the same direction results in links with longer 
connectivity duration as compared to nodes travelling at opposite directions over a two-way road segment. 
Having a higher link life implies a higher contention between the neighboring nodes due to their periodically 
exchanged HELLO packets. The single-way road scenario assists in evaluating the proposed hybrid scheme over 
high contention channel. Furthermore, all vehicles are assumed to be equipped with the necessary hardware 
devices required for the operation of the hybrid scheme, namely a wireless transceivers adhering to the IEEE 
802.11p standard [16, 17], a positioning device such as GPS or GNSS based receivers and a data processing 
unit. The Network Simulator 2.35 (ns-2) is used as the simulation platform, where the main modifications 
performed in the IEEE 802.11 standard is the usage of carrier frequency of 5.9 GHz and a control channel 
bandwidth of 10 MHz, to adhere with the recommended IEEE 802.11p standard for vehicular communications. 
It is also assumed that node ID’s are represented by a single alphabetical letter within the simulation 
environment, while any addressing scheme can be adopted in real-life scenarios. 

The adopted relay node cardinality is ܥ ൌ 12 [47]. The proposed hybrid scheme is designed to work in 
compatibility with the control channel of the IEEE 802.11p-based transceivers of the DSRC technology. The 
transceivers are configured for 300 meters transmission range, as recommended in the IEEE 802.11p standard. 
Furthermore, The evaluations are performed over the Two-Ray Ground reflection channel model as the most 
commonly adopted wireless propagation channel model in VANETs [12, 16-18]. A simulation time of 130 
seconds is assigned for each simulation run in which performance of the hybrid scheme is evaluated, where the 
results are averaged over 40 simulation runs.  

The mobility models are identified in literature as influencing factors on performance of message dissemination 
schemes in VANETs, especially on the link life among neighboring nodes and network partitioning [48]. 
Therefore, two mobility speed ranges are considered to evaluate performance of the proposed hybrid scheme 
that represent widely adopted speed scenarios in literature for VANETs [12, 16, 17, 49]. The speed scenarios 
adopted range from 95-105 km/h and 80-140 km/h. The former represents a small relative speed difference of 
10 km/h among the nodes, resulting in a platoon of vehicles with nodes distributed in close proximity to each 
other. The later represents a higher relative speed difference among the nodes that results in nodes being 
positioned much farther from each other when compared to the 95-105 km/h scenario. In both speed scenarios, 
each node is randomly assigned with a mobility speed within the considered speed range which remains 
constant throughout the simulation time period. Performance evaluation over different mobility speeds can 
reveal different performance trends for any investigated schemes, in which the proposed hybrid scheme should 
be of no exception. In-fact, limiting performance evaluation over a single speed scenario can imposes a 
limitation on understanding the performance behavior of the hybrid scheme. 

A platoon of varying network densities ranging from 50 to 600 nodes are considered, while adopting an 
increment of 50 nodes per simulation scenario. Coverage area of the platoon varies as a function of the total 
node densities and the employed speed scenario. Initially, vehicles are uniformly distributed over an 
approximately 4 km highway segment. The highway road is a three lanes strip shaped road segment with each 
lane of 3.7 meters in width and all vehicles are of 4m in length. Based on the above defined parameters, the 
node density per kilometer representation is given as approximately 12 nodes/km for a 50 nodes network, and 
approximately 150 nodes/km for the case of 600 nodes network. The 4 km road segment containing the platoon 
of vehicles is part of a 20 km highway road over which the vehicles move throughout the 130 seconds of 
simulation time. At each simulation run, the platoon of vehicles is placed at the beginning of the 20 km road. 
Based on the two adopted speed scenarios, the maximum distance that any given vehicle would cover in the 
considered simulation time is approximately 5 km. As a result, all moving vehicles would stay within the 
maximum defined limit for the 20km highway road. 

Two types of broadcasts are considered which are represented by HELLO packets broadcast and the multi-hop 
application messages broadcasts. In order to analyze the impact of varying network traffic load on the proposed 
hybrid schemes, two different HELLO packets broadcast frequencies are adopted, namely 10 packets/second and 
2 packets/second. Since all nodes are initially distributed uniformly over a 4 km road segment, the first 60 
seconds are given for the nodes to get distributed over the adopted topography. At the start of the next 60 
seconds, the first (source node) and the last (destination node) nodes in the platoon are dynamically identified by 
the simulator. This is followed by the multi-hop application messages by broadcasted periodically with a 
frequency of 10 messages/second, that are initially generated by the source node. Broadcast of the application 
messages start after the passage of 60 seconds of simulation and continues for the next 60 seconds. The last 10 
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seconds of simulation is given for the messages within the platoon to complete its propagation process for 
reaching the desired destination, i.e. the last node in the platoon. Furthermore, a size of 512 and 256 bytes are 
chosen for the broadcasted HELLO packets and application messages, respectively. A summary of the main 
parameters used in our simulation experiments are presented in Tables 2 while Table 3 lists the system 
parameters adopted for the IEEE 802.11p standard. 

 

Table 2: System parameters. 

Parameter Value 

Total node density 
50 – 600 nodes  

(increment of 50 nodes) 
HELLO packet size 512 Bytes 

Application message size 256 Bytes 

HELLO packet frequency 
10 packets/sec 
2 packets/sec 

Application message frequency 10 messages/sec 
Antenna type Omni-directional 

Transmission range 300 m 
Simulation runs 40 runs 

Simulation time 

130 seconds  
(warm-up 60 sec; messages 

dissemination 60 sec; flushing messages 
in queue 10 sec) 

 

Table 3: IEEE 802.11p parameters. 

Parameter Value 
Frequency 5.9 GHz 

Channel bandwidth 10 MHz 
Data rate 6 Mbps 

Slot time (σ) 16 µsecs 
SIFS time 32 µsecs 

Preamble length 32 µsecs 
PLCP header length 8 µsecs 

ܥ ௠ܹ௜௡ 32 slots 
ܥ ௠ܹ௔௫ 1024 slots 

6. Attributes Analysis of Hybrid Scheme 
Before discussing the performance results, this section presents and analyzes the attributes exhibited by the 
hybrid scheme, along with comparing them to those obtained by the building blocks, i.e. FD and BDSC 
schemes. The attributed discussed in this section are those adopted as the design principles for devising the 
hybrid scheme, as discussed previously in Section 4.1. These attributes are analyzed according to the simulation 
environment adopted and discussed in Section 5. In this work, the attributes study has been limited to traffic 
load condition of 10 HELLO packets/sec, which is a more stringent communication environment as compared 
the 2 HELLO packets/sec scenario. These analyses would assist in comprehending the performance results 
obtained by the hybrid scheme, as presented in the next section. 
 
The link quality attributes of the two variants with in the hybrid scheme, i.e. Hybrid (FD) and Hybrid ሺܳܮ ൈ ݀ሻ 
is presented by Figure 6 (a) and (b) for the two considered 95-105km/h and 80-140 km/h speed profiles, 
respectively. The figure also presents those attributes for the conventional FD, BDSC (ܳܮ ൈ ݀) and BDSC 
(݄ܶ ൌ 1.0) schemes that have already been mentioned in Section 4.1.1. In Figure 6, the Hybrid (FD) scheme 
exhibits a higher link quality when compared against the conventional FD scheme over high node density 
networks. This is due to the relaying contribution of those nodes that are selected based on BDSC (ܳܮ ൈ ݀) and 
BDSC ( ݄ܶ ൌ 1.0), as depicted by the ordered-combination of Hybrid (FD) scheme in Figure 4. On the other 
hand, a marginal rise in link quality is exhibited by the Hybrid ሺܳܮ ൈ ݀ሻ scheme when compared against the 
conventional BDSC (ܳܮ ൈ ݀) scheme, which occurs due to the relaying contribution by nodes selected based on 
BDSC (݄ܶ ൌ 1.0), as depicted by the ordered-combination of Hybrid ሺܳܮ ൈ ݀ሻ scheme in Figure 5. 
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Highlights 

 A new class of hybrid relay nodes selection scheme is proposed for VANETs. 

 The hybrid scheme attempts to exploit the best features of existing schemes. 

 Hybrid scheme improves reachability especially over a highly dense VANETs. 

 Reachability is improved without scanting end-to-end delays or saved rebroadcasts. 


