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Abstract 

Cloud computing refers to providing computing services and resources over the 

Internet. The cloud provider is an organization or company which offers the services to 

the consumer at different levels of features and characteristics. However, as the growth 

of cloud services as well as cloud service providers are increasing rapidly, it is 

becoming a challenge for consumers to choose the best service provider based on their 

requirements.  In this paper, we propose a method to help the consumer to answer this 

question. A hybrid multi criteria decision method (MCDM) is developed to evaluate 

and rank cloud service providers from Smart data. Furthermore, this method considers 

the interdependencies and relations between the performance measurements. The 

hybrid method consists of two components: (i) clustering the providers using k-means 

algorithm to consolidate cloud service providers with similar features and (ii) applying 

MCDM methods using DEMATEL-ANP to rank clusters and make a final decision. 

The proposed method also considers the existing workloads of the organization as well 

as assigns different importance and weights for a set of criteria by clustering the cloud 

service providers using k-means algorithm. A simulation on the MATLAB was 

performed to evaluate the proposed method, and the results indicate how the proposed 

hybrid approach can provide an accurate and efficient way to select the best providers.   

Keywords— Cloud service selection, Smart data, Multi criteria decision method, 

DEMATEL, K-means, Analytical network process 

1. Introduction  

Cloud computing is emerging technology in computing resources allocation over the 

Internet. This model of computing provides important benefits to the organizations by 

relieving them of low-level tasks related to setting up IT infrastructure as well as 

allowing organizations to begin small resources and increase these resources on 

demand, thus enabling more time for innovation and the creation of business value. 



This technology is a model for providing a pool of on demand resources like software 

as a service SaaS, infrastructure as a service IaaS, and platform as a service PaaS [1]. 

Nowadays, migrating the applications, data, and/or infrastructure to a cloud is a 

confirmed challenging process. Certain obstacles prevent cloud computing from 

offering its full features. Those obstacles are related to the fact that current applications, 

data, and/or infrastructure have specific needs and configurations that must be realized 

by the cloud provider [1, 2]. From an organization’s perspective, each system has its 

own configuration performance and factors that affect workload parameters. 

Furthermore, each cloud service provider offers its services with various features such 

as performance, cost, and security. Therefore, it is challenging for organizations to 

choose the most appropriate cloud service provider in the presence of these multiple 

features.  

By examining related research, we found that many studies that have proposed methods 

for vendor selection. One of these methods is MCDM, which is used for structuring and 

making a decision for problems containing multiple criteria. Majority of the reviewed 

studies have not considered the interdependencies and relations between criteria and 

parameters. While some research has been identified guidelines and instructions for the 

readers to evaluate and rank cloud service providers, the organization's systems and 

workloads are not considered. When MCDM has been applied in studies, researchers 

assume that the importance and weight of each criterion is equal. Therefore, it is 

essential to consider these limitations and provide the hybrid method, KD-ANP, which 

aims to supplement MCDM within a context of addressing interdependencies and 

relations between the criteria. Moreover, our proposed KD-ANP method is 

distinguished from other published approaches since it considers an organization’s 

existing workload and, by clustering the cloud service providers using k-means 

algorithm, assigns various degrees of importance and weight for a set of criteria. In 

summary our contributions are as follows: 

 

• In this paper, we have proposed a cloud service selection using hybrid MCDM to 

select the best provider.  

• We benefit from our earlier work that was proposed in [1] to build a comprehensive 

method by employing the performance prediction model to obtain the required 

performance for the organization considering the existing workloads. 



 

The rest of the paper is organized as follows: Section 2 describes the related works. 

Section 3 presents the problem formulation and proposed hybrid MCDM approach. 

Section 4 describes the experimental results and finally Section 5 concludes the 

paper.  

 

2. Related work 

The issue of cloud service provider selection is comparatively old. The best selection 

of provider is one of the main goal for enhancing the efficiency of the organizations, 

which effects on the growing, competitiveness and performance of the organization. 

Recently, some researched have been conducted to address and proposed the solutions 

for this issue. In this section we will explore the most relevant studies to our own.  

 

In [3] they proposed a decision making method for MCDM based on integrating 

analytical network process ANP and DEMATEL to select best cloud service provider 

in uncertain conditions. They used these techniques to handle the issue of assigning 

weights to indexes for obtaining the interdependencies between the criteria. They also 

used service measurement index SMI to measure and evaluate the services. In [4] the 

authors proposed a cloud service selection framework using ANP to determine the best 

service provider for IaaS. The proposed study was applied for ICT resources. They also 

defined some criteria and sub-criteria and evaluate the alternatives based on that. In [5] 

they proposed a framework to measure and evaluate the quality of service in cloud. 

They used SMI measurements along with analytical hierarchal process (AHP) to rank 

and evaluate the cloud service providers according to their SLA.  

 

In [6] the researchers proposed a framework for choosing the suitable cloud service 

provider using service metrics such as SMI measurements. They used Ranked Voting 

Method to evaluate and rank the cloud providers. In [7] they explored the several 

MCDA methods and they provided a comprehensive analysis of these methods for 

general researchers. They also presented a taxonomy from their surveyed literature. In 

[8] the authors reviewed the cloud service selection methods using multi criteria 

decision analysis (MCDA). They gathered an information about the selection and 



adoption of Cloud services using MCDM methods for cloud service types (IaaS, PaaS 

and SaaS).   

 

In [9] they proposed a framework for cloud service selection on the fuzzy environment 

using (AHP) and fuzzy technique for order preference by similarity to ideal solution 

(fuzzy -TOPSIS). The authors defined performance metrics to compare and evaluate 

the performance of cloud service providers. The Authors also proposed in [10] a 

framework for selecting the best cloud service provider by applying (AHP) and 

(TOPSIS) and the study was proven by conducting a case study. In [11] the researchers 

proposed a framework using MCDM methods to rank the cloud service providers based 

on their infrastructure parameters. They combined various methods such as AHP, 

fuzzy-AHP, TOPSIS, and fuzzy-TOPSIS. The parameters prioritized based on three 

criteria: performance, cost and security. 

 

In [12] they explored the application of (MCDM) methods for cloud computing and big 

data. Moreover, they proposed a MCDM framework by combining the interpretive 

structure modeling (ISM) and fuzzy-ANP based method to handle the interrelationship 

among evaluation criteria and to handle data uncertainties. In [13] the authors proposed 

a hybrid MCDM framework for cloud service selection based on the Balanced 

Scorecard (BSC), fuzzy-Delphi method and fuzzy-AHP. They applied this model on 

selecting an infrastructure service in cloud computing. The BSC technique is used to 

form the hierarchy that contains four perspectives: financial, customer, internal 

processes, and learning and growth. Fuzzy-Delphi method is used to determine the 

important decision making factors within each perspective. A Fuzzy-AHP method is 

also used to compares the criteria and the factors and determine the importance of them 

to choose the best cloud service from the cloud service providers. In [14] they proposed 

a hybrid method for MCDM by using AHP and reference Ranking Organization 

METHod for Enrichment Evaluations (PROMETHEE). AHP method is applied to form 

the hierarchy of the service ranking issue and to find the weights of the selected criteria, 

as well as PROMETHEE method is used for the final decision. 

 

In [15] the researcher proposed a fuzzy hybrid MCDM method. Fuzzy-ANP is used to 

calculate the pairwise comparison matrices. Fuzzy-TOPSIS is applied to calculate the 

weights of the criteria. Fuzzy-ELECTRE methods is also used to rank the alternatives. 



The researchers used SMI measurements to evaluate the alternatives. In [16] they 

proposed a model using MCDM methods to select the cloud service provider. They 

applied fuzzy AHP to evaluate and rank cloud service providers. They also proved their 

work by applying IaaS provider selection case study. In [17] they proposed a MCDM 

method framework to for ranking the cloud providers and selecting the best one. They 

applied Interval Valued Intuitionistic Fuzzy (IVIF) set with Multi-Objective 

Optimization on the basis of Ratio Analysis (MULTIMOORA) approach to optimize 

complex systems with conflicting criteria and focuses on the selection and ranking of 

distinct alternatives among a set of other choices. 

 

Although many various supplements of MCDM have been implemented in related work 

so far, most of the reviewed researches did not consider the interdependencies and 

relations between the criteria and parameters. While some have been identified a 

guidelines and instructions to the readers when they need to evaluate and rank cloud 

service providers.  Therefore, in our proposed method we aim to supplement MCDM 

within the context of its ability handle the interdependencies and relations among the 

criteria by applying DEMATEL and ANP methods. Moreover, our proposed method 

also has its competence that distinguishes it from other published approaches while we 

assigning different importance and weights for a set of criteria by clustering the cloud 

service providers using k-means algorithm.  

3. Problem Formulation  

Since cloud service providers offer services with different features and characteristics, 

their services can greatly vary based on performance and cost. Because some features 

and characteristics are interdependent, ANP is a helpful solution since it engages with 

element interdependency. 

To apply ANP, we assess the importance and weight of criteria since ANP assumes an 

equal weight for all involved. In our case, however, we need to provide different 

importance weight for each criterion. It may not make sense to give equal weight to 

performance and cost; for example, if the provider offers services of low performance 

and high cost, the weight of the performance will be less than the weight of the cost. 

Meanwhile, if another provider offers services of high performance and low cost, the 



weight of the cost will be less than the weight of the performance. Furthermore, the 

importance and weight can vary from sector to sector and person to person.  

Additionally, if we assume there is a large number of service providers and a large 

number of criteria and sub-criteria, the calculating and forming the super-matrix will 

be complicated and time consuming. To resolve this issue, we perform a clustering and 

then apply the ANP with same weight to each cluster. Thus, we obtain the highest 

quality representative from each cluster and, finally, select from those representatives.  

To carry out this process, we use an efficient clustering algorithm. We utilize the k-

means clustering algorithm as a simple and efficient tool to monitor the progression of 

a provider's performance. Meanwhile, to address and confirm interdependency and 

relations between criteria, we use the DEMATEL method [18, 19, 20]. We provide a 

detailed description of the k-means algorithm and DEMATEL method in Sections 3.1 

and 3.2. Figure 1 below shows the structure of proposed methods.  
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Figure 1: Structure of hybrid multiple-criteria decision-making method 

 

Our proposed method, KD-ANP, is designed as follows:  

1. Apply k-means algorithm to cloud service providers. The output is k clusters. In 

each cluster, all providers have similar features.  

2. For each cluster, we apply DEMATEL and ANP in order to obtain one 

representative from each. The output is k representatives.  



3. We apply standard ANP on the defined criteria, with respect to k alternatives. 

The output is the most appropriate alternative. Below, Figure 2 presents the 

structure of KD-ANP.  
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Figure 2: Workflow of KD-ANP  

 

3.1 Analytical Network Process (ANP) 

As a comprehensive MCDM approach, ANP can successfully manage multiple 

interactions between quantitative and qualitative criteria [3]. By capturing 

dependencies between decision attributes, ANP allows a more systematic analysis 

[2][21]. Thus, ANP has been used to make complex decisions related to energy policy 

planning, product design, and equipment replacement [22]. ANP contains clusters, 

known as components, nodes, or criteria, and elements, known as sub-criteria factors, 

that populate the clusters [4]. Figure 3 depicts the network structure.  



 

Figure 3: Network structure [99] 

 

3.2 Measurement Attributes   

In this section, we define a set of attributes to assess cloud service providers. In fact, 

we use the same measurements proposed in our earlier work [1]. Those measurements, 

including memory utilization, CPU utilization, response time in milliseconds, and cost, 

are explained as follows:  

Memory utilization: The measure of how well available memory space is used 

CPU utilization: The measure of how well available computer resources are used 

Response time: The average amount of time a system or function needs to respond to 

a service request  

Cost: The cost of each service in the cloud, taking into account cloud configurations 

and workload  

3.3 ANP Phases 

Seven phases constitute ANP. They are listed as follows [4, 23]: 

Phase 1: Model development and problem formulation 

Breaks down the decision problem into components and organizes it into a hierarchy of 

goal, main criteria, sub-criteria, elements, and alternatives. 

Phase 2: Pairwise comparison of determinants 



The decision-maker evaluates each component’s importance. In this phase, a series of 

pairwise comparisons are made, wherein a ratio of Saaty scale [24] from 1 to 9 is used 

to compare any two elements. The denotations follow: equal importance (1), weak or 

slight (2), moderate importance (3), moderate plus (4), strong importance (5), strong 

plus (6), very strong or demonstrated importance (7), very, very strong (8), and extreme 

importance (9).  

Phase 3: Pairwise comparison of dimensions 

Obtain the relative importance of each dimension for a determinant through a pairwise 

comparison matrix.  

Phase 4: Calculating the relative local weights  

Accumulates the relative local component weights and summarizes them into global 

weights, which explain the significance of alternatives by using the eigenvector 

derivation procedure.  

Phase 5: Additional clusters of elements are formed 

Continues to make supplementary clusters of components and perform dependency 

examinations among components within a cluster, or inner-interdependencies. 

Additionally, carries out dependency examinations between components of one cluster 

and those of other clusters, or outer-interdependencies. 

Phase 6: Networks of clusters are pooled into block matrices 

Pools networks into block matrices to form a super matrix. Then, computes weights and 

obtains the weighted stochastic super matrix. Finally, the decision-maker determines 

strategic criteria and selects the most appropriate alternative with a top ranked priority. 

Figure 4 describes the model of this problem using MCDM.  
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Figure 4: Detailed workflow of the proposed method 

3.4  K-means Algorithm  

The k-means algorithm is a popular and effective clustering technique which clusters 

observations into a specific number of disjoint clusters. This method is used in many 

practical applications. It works by specifying an initial number of k clusters and initial 

centroids [25, 26, 27] and then following the steps below:  

Step 1: Select the number of k clusters, and for each point, place it in the cluster whose 

current centroid it is nearest.  

Step 2: After all points are assigned, update the centroid locations of the k clusters.  

Step 3: Reassign all points to their closest centroid.  



Step 4: Repeat steps 2 and 3 until points do not move between clusters and centroids 

stabilize.  

The equation (1) below describes the steps  
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1 1

|| ||i

k k
j

j

j i
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where 2|| ||j

i jx c  is a chosen distance measure between a data point (
j

ix ) and the 

cluster center ( jc ), is an indicator of the distance of the n data points from their 

respective cluster centers [28]. 

To calculate the distance d from (a to b) or (b to a) is given by the equation (2) below 

[27]:  

   

      (2) 

     

3.5  DEMATEL method  

Proposed by the BMI Institute in Switzerland, the DEMATEL method was applied to 

construct interrelationships and feedback that occur in the criteria and sub-criteria and 

to find the central criteria for represent factor effectiveness. The DEMATEL method 

can be used to find solutions for complicated and intertwined problems by building an 

impact relation map (IRM) of the criteria [19, 20, 29]. 

Many fields have successfully applied DEMATEL for projects such as marketing 

strategy, research and development, electronic learning evaluation, global manager 

competency development, group decision-making, and airline safety [30, 31]. The 

following steps further detail the nuances of DEMATEL: 

Step 1: Calculate the initial average matrix using scores 

In this step, a group of experts are asked to indicate their perception of the direct 

influence that each element/factor i exerts on each factor/element j, as presented by aij. 

1 1 2
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The experts are then asked to use the scale from 0 to 4, where no influence is 0, low 

influence is 1, medium influence 2, high influence is 3, and very high influence is 4, 

respectively. Each expert generates a direct matrix, and an average matrix A is then 

obtained through the mean of the same factors/elements in the various direct matrices 

of the experts (see matrix 3 below) [29][30].  
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Step 2: Calculate the initial influence matrix 

The normalizing matrix A is calculated to obtain the initial direct influence matrix in 

this step. Equations 4 and 5 are used to obtain the matrix X [29, 30]. 

 

X s A      (4) 
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Step 3: Create the full direct / indirect influence matrix 

In this step, the powers X reveal a continuous decrease of indirect effects. Equations 6, 

7, and 8 are create the full direct and indirect influence matrix T, 
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Where ir  presents the row sum of the i-the row of matrix T and offers the sum of direct 

and indirect effects of factor/element i on the other factors/elements. Similarly, jc  



presents the column sum of the j-th column of matrix T and provides the sum of direct 

and indirect effects that factor/element j has received from the other factors/ criteria 

[29, 30]. 

 

Step 4: Set the threshold value (  ) and generate the impact relation map (IRM) 

This step develops the threshold (  ) to filter the miner effect on the matrix T that was 

created in step 3. Regarding the matrix T, each factor tij of matrix T gives information 

about how factor i affects factor j. The threshold is defined using a scale from 1 to 9, 

where 1 means equal importance and 9 means extreme inequality in importance, in 

order to reduce complexity. Equation 9 provides the result of matrix T [29, 30]. 
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   (9) 

 

4. Experiments and Results 

4.1  Dataset Collection 

We collected a large workload dataset, containing 28147 instances from 13 cloud 

nodes, from the Saudi Ministry of Finance [1, 32]. The set was recorded in continuous 

time slots from March 1, 2016, to February 20, 2017. The different periods of data 

collection provide more diversity, enabling a fair classifier test and more accurate work. 

In the model, nodes 1 and 5 are HP RP 4440, nodes 24 and 6 are HP RP 7420, and 

nodes 713 are HP DL 380 G5. The number of instances collected for specific nodes 

may differ if they were out of service during the data recording period. Therefore, we 

gathered 2427 instances from node 1, 2426 instances from nodes 2–5, 2232 instances 

from nodes 6 and 8–13, and 392 instances from node 7. Below, Table 1 provides a 

description of the dataset. 

 

 

 



Table 1: Dataset description 

Number of Requested Services 28147 

Number of Service Attributes 9 

Number of Criteria 4 

Number of Cloud Service Providers  13 

Types of Cloud Service Providers Model  
Nodes 1 and 5 are HP RP 4440. Nodes 2–4 and 6 

are HP RP 7420. Nodes 7–13 are HP DL 380 G5 

 

The description of criteria used in this dataset and their associated symbols are listed in 

Table 2.  

Table 2. The four criteria used, with associated symbols 

Criteria Description Symbol 

CPU Utilization The CPU utilization of the cloud service. C1 

Memory Utilization The memory utilization of the cloud service. C2 

Response Time The response time to execute the cloud service. C3 

Cost  

The cost of cloud service, depending on resources requested in the 

service attributes and estimated by the standard of cloud services 

report [33]. 

C4 

4.2 Tool Description 

The experiment was conducted using MATLAB R2015a on a laptop with Intel Core i7-

3632QM processors at 2.20 GHz, using 12 GB of RAM memory on a 64-bit Windows 

10 operating system. 

4.3 Experiment Results 

In this section, we present the results of the proposed methodology for selecting the 

most appropriate service provider based on the four criteria used in the study. Below, 

we present the main steps of the research methodology together with the results. 

4.3.1 Pairwise Comparison of Criteria Interdependencies 

In this step, cloud computing experts follow the five steps of the DEMATEL method, 

as explained in the research methodology. First, experts are asked to provide an 

evaluation grade, ranging from 0 to 4, to represent the degree of effects between the 

selected criteria. The evaluation grade is 0 represents no influence, 1 represents low 



influence, 2 for medium influence, 3 for high influence, and 4 for very high influence. 

The evaluation matrix is called the initial direct-relation matrix, R. Table 3 provides the 

initial direct-relation matrix for the four criteria used in our dataset. 

 

Table 3. Initial direct-relation matrix (R) of the four criteria 

 CPU 

Utilization 

Memory 

Utilization 

Response 

Time 
Cost 

CPU Utilization  0 2 3 3 

Memory Utilization 2 0 3 3 

Response Time 3 3 0 2 

Cost 3 3 3 0 

 

In step two, the normalized initial direct-relation matrix is computed using equations 

(4– 8). Table 4 indicates the normalized initial direct-relation matrix, N. 

 

Table 4. Normalized initial direct-relation matrix (N) of the four criteria 

 CPU 

Utilization 

Memory 

Utilization 

Response 

Time 
Cost 

CPU Utilization  0 0.222 0.333 0.333 

Memory Utilization 0.222 0 0.333 0.333 

Response Time 0.333 0.333 0 0.222 

Cost 0.333 0.333 0.333 0 

 

Next, the indirect effects in the matrix N are reduced by a continuous reduction along 

the powers to lead to a steady-state of the matrix inverse. The total relation matrix, T is 

computed using equation (9) and is provided in Table 5. 

 

Table 5. Total relation matrix (T) of the four criteria 

 CPU 

Utilization 

Memory 

Utilization 

Response 

Time 
Cost 

CPU Utilization  0.210293 0.225902 0.25058 0.229698 

Memory Utilization 0.225902 0.210293 0.25058 0.229698 

Response Time 0.229698 0.229698 0.227378 0.222738 

Cost 0.25058 0.25058 0.271462 0.227378 

 

In the fourth step, we obtain the network relations map (NRM) matrix based on a 

threshold value (p), set to be 0.226 by consultation with the experts. This threshold 

value is the most appropriate value to represent the strong relationship of trying a value 

under or above this value. A value under 0.226 reflects a weak relationship between 

these criteria; thus, values below this value are set to zero. Table 6 presents the NRM 

matrix and Figure 5 displays the impact-diagraph map of the four criteria. In the 



pairwise comparison criteria step, the NRM matrix is used to cancel out the four criteria 

weights from the unweighted super matrix. 

 

Table 6. NRM of the four criteria 

 CPU 

Utilization 

Memory 

Utilization 

Response 

Time 
Cost 

CPU Utilization  0 0 0.25058 0.229698 

Memory Utilization 0 0 0.25058 0.229698 

Response Time 0.229698 0.229698 0 0 

Cost 0.25058 0.25058 0.271462 0 

 

 

 

 

 

 

 

 

 

Figure 5. The impact-diagraph map of the four criteria 

 

Lastly, utilizing the NRM for criteria, we compute the sum of indices in each row (D) 

to represent the degree of effect given by that criterion on other criteria in the NRM 

matrix. We also compute the sum of each column (R) to represent the degree of effect 

received by that criterion on other criteria in the NRM matrix. Using D and R, we 

calculate (D+R), which known as the prominence and represents the relative degree of 

importance for each criterion. If a specific criterion has a higher (D + R) value, then 

that criterion has more interaction with other criteria in the total relation matrix of the 

criteria. Moreover, we calculate (D-R), which allocates criteria in cause and effect 

groups. Thus, if the value of (D-R) is positive, then that specific criterion is a net causer. 

If the (D-R) value is negative, then that specific criterion is a net receiver. Table 7 

indicates the values of (D+R) and (D-R). Using these values, a DEMATEL scatter 

graph is provided in Figure 6. 
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Table 7. The causal diagram for the four criteria 

 D R D+R D-R 

CPU utilization  0.916473 0.916473 1.832947 0 

Memory utilization 0.916473 0.916473 1.832947 0 

Response time 0.909513 1 1.909513 -0.09049 

Cost  1 0.909513 1.909513 0.090487 

 
Figure 6. Scatter graph of DEMATEL for the used criteria 

 

Based on the values of D in Table 7, cost has the most effect, CPU and memory 

utilization have the same effect, and response time has the least effect. Based on the 

values of R in the same table, response time reveals the greatest effect received by other 

criteria and cost reveals the least. Figure 6 evidences cost as the user criteria and 

response time as the receiver criteria. 

4.3.2 K-means Algorithm for Cloud Provider Clustering  

After discerning the interdependencies between cloud service provider criteria using 

the expert evaluated initial direct-relation matrix (M), we cluster providers based on the 

cloud service criteria collected in our dataset. We assume each provider’s criteria values 

to be in a Gaussian distribution. The main clustering step objective is to join cloud 

providers with similar selected service criteria in order to reduce the number of 

evaluation matrices for candidate cloud provider selection, especially when there are 

many service providers. In this step, we only require a small number of evaluation 

matrices to correspond to the number of clusters. To cluster the cloud providers in the 
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collected dataset, we use the k-means algorithm since it is a simple clustering method 

that yields meaningful results. The k-means clustering algorithm is implemented for a 

number of clusters, where K equals 5. First, the algorithm arbitrarily chooses the initial 

K cluster centers of the cloud providers. Second, it reassigns each cloud provider to the 

cluster wherein the cloud provider is most similar, based on the main cloud provider 

criteria value mean, and updates the cluster mean. The reassignment and update end 

when the cluster mean no longer changes. Euclidean distance is used as a measure for 

reassigning cloud providers to each cluster. Figure 7 visualizes the results of the k-

means clustering method for dataset cloud providers. Moreover, using the four criteria, 

Table 8 offers the service provider clustering method results.  

 

Table 8. Service providers (SP) in each cluster based on clustering method 

Cluster 1 SP1 SP2 SP3 SP4 SP5 SP7 - 

Cluster 2 SP1 SP8 SP9 SP10 SP11 SP13 - 

Cluster 3 SP1 SP2 SP3 SP6 SP8 SP12 - 

Cluster 4 SP1 SP2 SP3 SP5 SP6 SP12 - 

Cluster 5 SP1 SP2 SP3 SP4 SP5 SP6 SP7 

 

 

Figure 7. Service providers clustered using k-means algorithm 

4.3.3 Pairwise Comparison of the Criteria Based on the Goal 

After we define the selected criteria interdependencies and cluster cloud service 

providers, we utilize the ANP method to compute the criteria weight of each cluster, 



including the cloud service providers. Initially, the cloud provider experts evaluate the 

matrices of all criteria corresponding to the K=5 clusters for pair-wise comparisons. 

The assessment value for each criterion is scaled from 1 to 9, thus representing criteria 

importance in a hierarchical manner. An assessment of 1 denotes equal importance, 

while an assessment of 9 indicates extreme importance of one criteria over another. 

When the weights of the pairwise comparisons are computed, the consistency ratio (CR) 

values are also computed to validate if the weights’ suitability for entering the super 

matrix. Table 9 presents the pairwise comparison of the four criteria corresponding to 

each cluster goal. Additionally, the weights of service providers, with regard to the 

criteria of and between each cluster, are expressed as an unweighted super matrix. 

Tables 10, 13, 16, 19, and 22 present the values associated with the unweighted super 

matrix, M of all service providers in each cluster.  

The unweighted super matrix of candidate service providers from all clusters is 

provided in Table 3.25. Because these unweighted super matrices include interactions 

between service providers and clusters, there are inner dependences among criteria. 

Thus, each cluster is weighted to a relative importance corresponding to the component 

in that row. The weights of “goal,” ‘‘criteria,” and ‘‘alternatives” for the “goal” and 

‘‘criteria” columns are multiplied by 0.50. Tables 11, 14, 17, 20, and 23 offer the 

weighted super matrix, MW for service providers in each cluster. Table 26 demonstrates 

the weighted super matrix of candidate service providers selected from all clusters. To 

capture the interactions and obtain a steady-state of outcomes, the weighted super 

matrices are raised to limiting powers to produce the limit super matrix, ML. The limit 

super matrices are presented in Tables 12, 15, 18, 21, 24, and 27. The candidate service 

providers selected from cluster 1, cluster 2, cluster 3, cluster 4, and cluster 5 are SP4, 

SP8, SP12, SP5, and SP4, respectively. Furthermore, from Table 27 we noted the best 

cluster is cluster 1, which means that the selected service provider based on candidate 

service providers is (SP4). 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With respect to Selecting service provider (SSP) goal 

 C1 C2 C3 C4 W1 

C1 1 4 0.2 0.333 0.154051 

C2 0.25 1 0.25 0.2 0.062363 

C3 5 4 1 0.17 0.265077 

C4 3 5 6 1 0.518509 

CR= 0.029321634 (desirable value to be less than 0.100) 

 

 

With respect to CPU utilization (C1) 

 C1 C2 C3 C4 W2 

C1 1 6 0.14 0.17 0.143726 

C2 0.17 1 0.25 0.2 0.059549 

C3 7 4 1 0.17 0.247427 

C4 6 5 6 1 0.549297 

CR= 0.045291648 (desirable value to be less than 0.100) 

 
With respect to Memory utilization (C2) 

 C1 C2 C3 C4 W3 

C1 1 1 0.1667 0.2 0.084666 

C2 1 1 0.5 0.2 0.09937 

C3 6 2 1 0.25 0.252936 

C4 5 5 4 1 0.563027 

CR= 0.00964 (desirable value to be less than 0.100) 

 

With respect to Response time (C3) 

 C1 C2 C3 C4 W4 

C1 1 0.5 0.2 0.2 0.073012 

C2 2 1 0.5 0.2 0.120106 

C3 5 2 1 0.25 0.236716 

C4 5 5 4 1 0.570166 

CR= 0.00645 (desirable value to be less than 0.100) 

 
With respect to Cost (C4) 

 C1 C2 C3 C4 W5 

C1 1 0.333 0.143 0.143 0.051498 

C2 3 1 0.333 0.2 0.113713 

C3 7 3 1 0.2 0.248591 

C4 7 5 5 1 0.586198 

CR= 0.01084 (desirable value to be less than 0.100) 

 

Table 10. The unweighted super matrix, M for Cluster 1 

 
 Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C4  SP1 SP2 SP3 SP4 SP5 SP7 

Goal SP 1.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.154  0.000 0.000 0.073 0.051  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.062  0.000 0.000 0.120 0.114  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.265  0.247 0.253 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.519  0.549 0.563 0.570 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.100 0.180 0.171 0.108  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.253 0.223 0.169 0.115  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.160 0.188 0.154 0.168  0.000 0.000 1.000 0.000 0.000 0.000 

SP4 0.000  0.222 0.153 0.193 0.201  0.000 0.000 0.000 1.000 0.000 0.000 

SP5 0.000  0.116 0.118 0.160 0.174  0.000 0.000 0.000 0.000 1.000 0.000 

SP7 0.000  0.149 0.136 0.154 0.233  0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 11. The weighted super matrix, MW for Cluster 1 
  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C4  SP1 SP2 SP3 SP4 SP5 SP7 

Goal SP 0.500  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.077  0.000 0.000 0.037 0.026  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.031  0.000 0.000 0.060 0.057  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.133  0.124 0.126 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.259  0.275 0.282 0.285 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.050 0.090 0.085 0.054  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.126 0.111 0.084 0.058  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.080 0.094 0.077 0.084  0.000 0.000 1.000 0.000 0.000 0.000 

SP4 0.000  0.111 0.077 0.097 0.101  0.000 0.000 0.000 1.000 0.000 0.000 

SP5 0.000  0.058 0.059 0.080 0.087  0.000 0.000 0.000 0.000 1.000 0.000 

SP7 0.000  0.075 0.068 0.077 0.117  0.000 0.000 0.000 0.000 0.000 1.000 
 

1Table 9. Pairwise comparison of the main criteria with respect to 

the overall goal 
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Table 12. The limit super matrix, ML for Cluster 1 

 
 Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C4  SP1 SP2 SP3 SP4 SP5 SP7 

Goal SP 0.100  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.008  0.000 0.000 0.004 0.003  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.003  0.000 0.000 0.006 0.006  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.015  0.014 0.014 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.035  0.038 0.039 0.040 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.005 0.010 0.009 0.006  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.014 0.013 0.009 0.006  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.009 0.010 0.008 0.009  0.000 0.000 1.000 0.000 0.000 0.000 

SP4 0.000  0.013 0.008 0.011 0.011  0.000 0.000 0.000 1.000 0.000 0.000 

SP5 0.000  0.006 0.006 0.009 0.010  0.000 0.000 0.000 0.000 1.000 0.000 

SP7 0.000  0.008 0.007 0.008 0.013  0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 13. The unweighted super matrix, M for Cluster 2 
  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C4  SP1 SP8 SP9 SP10 SP11 SP13 

Goal SP 1.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.154  0.000 0.000 0.073 0.051  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.062  0.000 0.000 0.120 0.114  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.265  0.247 0.253 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.519  0.549 0.563 0.570 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.133 0.169 0.093 0.163  1.000 0.000 0.000 0.000 0.000 0.000 

SP8 0.000  0.169 0.262 0.274 0.190  0.000 1.000 0.000 0.000 0.000 0.000 

SP9 0.000  0.154 0.159 0.160 0.177  0.000 0.000 1.000 0.000 0.000 0.000 

SP10 0.000  0.169 0.196 0.183 0.188  0.000 0.000 0.000 1.000 0.000 0.000 

SP11 0.000  0.154 0.082 0.161 0.117  0.000 0.000 0.000 0.000 1.000 0.000 

SP13 0.000  0.221 0.133 0.130 0.165  0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 14. The weighted super matrix, MW for Cluster 2 
  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C4  SP1 SP8 SP9 SP10 SP11 SP13 

Goal SP 0.500  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.077  0.000 0.000 0.037 0.026  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.031  0.000 0.000 0.060 0.057  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.133  0.124 0.126 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.259  0.275 0.282 0.285 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.067 0.084 0.046 0.081  1.000 0.000 0.000 0.000 0.000 0.000 

SP8 0.000  0.084 0.131 0.137 0.095  0.000 1.000 0.000 0.000 0.000 0.000 

SP9 0.000  0.077 0.080 0.080 0.089  0.000 0.000 1.000 0.000 0.000 0.000 

SP10 0.000  0.084 0.098 0.092 0.094  0.000 0.000 0.000 1.000 0.000 0.000 

SP11 0.000  0.077 0.041 0.080 0.059  0.000 0.000 0.000 0.000 1.000 0.000 

SP13 0.000  0.110 0.067 0.065 0.082  0.000 0.000 0.000 0.000 0.000 1.000 
 



  

Table 15. The limit super matrix, ML for Cluster 2  

 
 Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C4  SP1 SP8 SP9 SP10 SP11 SP13 

Goal SP 0.100  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 

C1 0.008  0.000 0.000 0.004 0.003  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.003  0.000 0.000 0.006 0.006  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.015  0.014 0.014 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.035  0.038 0.039 0.040 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 

SP1 0.000  0.007 0.009 0.005 0.009  1.000 0.000 0.000 0.000 0.000 0.000 

SP8 0.000  0.009 0.015 0.016 0.011  0.000 1.000 0.000 0.000 0.000 0.000 

SP9 0.000  0.008 0.009 0.009 0.010  0.000 0.000 1.000 0.000 0.000 0.000 

SP10 0.000  0.009 0.011 0.010 0.010  0.000 0.000 0.000 1.000 0.000 0.000 

SP11 0.000  0.008 0.004 0.009 0.006  0.000 0.000 0.000 0.000 1.000 0.000 

SP13 0.000  0.012 0.007 0.007 0.009  0.000 0.000 0.000 0.000 0.000 1.000 

 

Table 16. The unweighted super matrix, M for Cluster 3 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP6 SP8 SP12 

Goal SP 1.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.154  0.000 0.000 0.073 0.051  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.062  0.000 0.000 0.120 0.114  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.265  0.247 0.253 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.519  0.549 0.563 0.570 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.120 0.223 0.186 0.101  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.170 0.133 0.219 0.179  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.142 0.168 0.159 0.163  0.000 0.000 1.000 0.000 0.000 0.000 

SP6 0.000  0.208 0.156 0.155 0.180  0.000 0.000 0.000 1.000 0.000 0.000 

SP8 0.000  0.167 0.160 0.174 0.154  0.000 0.000 0.000 0.000 1.000 0.000 

SP12 0.000  0.193 0.160 0.107 0.224  0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 17. The weighted super matrix, MW for Cluster 3 

 
 Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP6 SP8 SP12 

Goal SP 0.500  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.077  0.000 0.000 0.037 0.026  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.031  0.000 0.000 0.060 0.057  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.133  0.124 0.126 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.259  0.275 0.282 0.285 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.060 0.112 0.093 0.050  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.085 0.066 0.110 0.089  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.071 0.084 0.080 0.081  0.000 0.000 1.000 0.000 0.000 0.000 

SP6 0.000  0.104 0.078 0.077 0.090  0.000 0.000 0.000 1.000 0.000 0.000 

SP8 0.000  0.084 0.080 0.087 0.077  0.000 0.000 0.000 0.000 1.000 0.000 

SP12 0.000  0.096 0.080 0.053 0.112  0.000 0.000 0.000 0.000 0.000 1.000 
 



 

 

 

 

 

 

 

 

 

 

  

Table 18. The limit super matrix, ML for Cluster 3 

 
 Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP6 SP8 SP12 

Goal SP 0.100  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.008  0.000 0.000 0.004 0.003  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.003  0.000 0.000 0.006 0.006  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.015  0.014 0.014 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.035  0.038 0.039 0.040 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.006 0.013 0.010 0.005  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.009 0.007 0.012 0.010  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.008 0.009 0.009 0.009  0.000 0.000 1.000 0.000 0.000 0.000 

SP6 0.000  0.012 0.008 0.008 0.010  0.000 0.000 0.000 1.000 0.000 0.000 

SP8 0.000  0.009 0.009 0.010 0.008  0.000 0.000 0.000 0.000 1.000 0.000 

SP12 0.000  0.011 0.009 0.006 0.013  0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 19. The unweighted super matrix, M for Cluster 4 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP5 SP6 SP12 

Goal SP 1.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.154  0.000 0.000 0.073 0.051  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.062  0.000 0.000 0.120 0.114  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.265  0.247 0.253 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.519  0.549 0.563 0.570 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.114 0.184 0.213 0.171  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.215 0.162 0.090 0.186  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.174 0.191 0.155 0.112  0.000 0.000 1.000 0.000 0.000 0.000 

SP5 0.000  0.158 0.158 0.199 0.209  0.000 0.000 0.000 1.000 0.000 0.000 

SP6 0.000  0.145 0.182 0.177 0.205  0.000 0.000 0.000 0.000 1.000 0.000 

SP12 0.000  0.193 0.123 0.166 0.118  0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 20. The weighted super matrix, MW for Cluster 4 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP5 SP6 SP12 

Goal SP 0.500  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.077  0.000 0.000 0.037 0.026  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.031  0.000 0.000 0.060 0.057  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.133  0.124 0.126 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.259  0.275 0.282 0.285 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.057 0.092 0.107 0.085  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.108 0.081 0.045 0.093  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.087 0.096 0.077 0.056  0.000 0.000 1.000 0.000 0.000 0.000 

SP5 0.000  0.079 0.079 0.099 0.104  0.000 0.000 0.000 1.000 0.000 0.000 

SP6 0.000  0.072 0.091 0.088 0.102  0.000 0.000 0.000 0.000 1.000 0.000 

SP12 0.000  0.097 0.062 0.083 0.059  0.000 0.000 0.000 0.000 0.000 1.000 
 



 

 

 

 

 

. 

 

 

 

  

Table 21. The limit super matrix, ML for Cluster 4 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP5 SP6 SP12 

Goal SP 0.100  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.008  0.000 0.000 0.004 0.003  0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.003  0.000 0.000 0.006 0.006  0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.015  0.014 0.014 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.035  0.038 0.039 0.040 0.000  0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 SP1 0.000  0.006 0.010 0.012 0.009  1.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.012 0.009 0.005 0.010  0.000 1.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.010 0.011 0.008 0.006  0.000 0.000 1.000 0.000 0.000 0.000 

SP5 0.000  0.009 0.009 0.011 0.012  0.000 0.000 0.000 1.000 0.000 0.000 

SP6 0.000  0.008 0.010 0.010 0.011  0.000 0.000 0.000 0.000 1.000 0.000 

SP12 0.000  0.011 0.007 0.009 0.006  0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 22. The unweighted super matrix, M for Cluster 5 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP4 SP5 SP6 SP7 

Goal SP 1.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.154  0.000 0.000 0.073 0.051  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.062  0.000 0.000 0.120 0.114  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.265  0.247 0.253 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.519  0.549 0.563 0.570 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 

SP1 0.000  0.136 0.119 0.132 0.148  1.000 0.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.105 0.160 0.168 0.168  0.000 1.000 0.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.162 0.166 0.143 0.158  0.000 0.000 1.000 0.000 0.000 0.000 0.000 

SP4 0.000  0.136 0.198 0.140 0.190  0.000 0.000 0.000 1.000 0.000 0.000 0.000 

SP5 0.000  0.135 0.101 0.104 0.099  0.000 0.000 0.000 0.000 1.000 0.000 0.000 

SP6 0.000  0.134 0.182 0.185 0.104  0.000 0.000 0.000 0.000 0.000 1.000 0.000 

SP7 0.000  0.193 0.074 0.128 0.133  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
 

Table 23. The weighted super matrix, MW for Cluster 5 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP4 SP5 SP6 SP7 

Goal SP 0.500  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.077  0.000 0.000 0.037 0.026  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.031  0.000 0.000 0.060 0.057  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.133  0.124 0.126 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.259  0.275 0.282 0.285 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 

SP1 0.000  0.068 0.059 0.066 0.074  1.000 0.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.052 0.080 0.084 0.084  0.000 1.000 0.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.081 0.083 0.071 0.079  0.000 0.000 1.000 0.000 0.000 0.000 0.000 

SP4 0.000  0.068 0.099 0.070 0.095  0.000 0.000 0.000 1.000 0.000 0.000 0.000 

SP5 0.000  0.068 0.051 0.052 0.050  0.000 0.000 0.000 0.000 1.000 0.000 0.000 

SP6 0.000  0.067 0.091 0.093 0.052  0.000 0.000 0.000 0.000 0.000 1.000 0.000 

SP7 0.000  0.096 0.037 0.064 0.067  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 24. The limit super matrix, ML for Cluster 5 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  SP1 SP2 SP3 SP4 SP5 SP6 SP7 

Goal SP 0.100  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 

C1 0.008  0.000 0.000 0.004 0.003  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C2 0.003  0.000 0.000 0.006 0.006  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C3 0.015  0.014 0.014 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C4 0.035  0.038 0.039 0.040 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 

SP1 0.000  0.007 0.006 0.007 0.008  1.000 0.000 0.000 0.000 0.000 0.000 0.000 

SP2 0.000  0.006 0.009 0.009 0.009  0.000 1.000 0.000 0.000 0.000 0.000 0.000 

SP3 0.000  0.009 0.009 0.008 0.009  0.000 0.000 1.000 0.000 0.000 0.000 0.000 

SP4 0.000  0.007 0.011 0.008 0.010  0.000 0.000 0.000 1.000 0.000 0.000 0.000 

SP5 0.000  0.007 0.005 0.005 0.005  0.000 0.000 0.000 0.000 1.000 0.000 0.000 

SP6 0.000  0.007 0.010 0.010 0.006  0.000 0.000 0.000 0.000 0.000 1.000 0.000 

SP7 0.000  0.011 0.004 0.007 0.007  0.000 0.000 0.000 0.000 0.000 0.000 1.000 

 

Table 25. The unweighted super matrix, M for All Clusters 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  CSPC1 CSPC2 CSPC3 CSPC4 CSPC5 

Goal SP 1.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.154  0.000 0.000 0.073 0.051  0.000 0.000 0.000 0.000 0.000 

C2 0.062  0.000 0.000 0.120 0.114  0.000 0.000 0.000 0.000 0.000 

C3 0.265  0.247 0.253 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

C4 0.519  0.549 0.563 0.570 0.000  0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 

CSPC1 0.000  0.216 0.237 0.244 0.218  1.000 0.000 0.000 0.000 0.000 

CSPC2 0.000  0.172 0.203 0.178 0.194  0.000 1.000 0.000 0.000 0.000 

CSPC3 0.000  0.194 0.214 0.201 0.271  0.000 0.000 1.000 0.000 0.000 

CSPC4 0.000  0.193 0.153 0.220 0.155  0.000 0.000 0.000 1.000 0.000 

CSPC5 0.000  0.225 0.192 0.157 0.162  0.000 0.000 0.000 0.000 1.000 
 

Table 26. The weighted super matrix, MW for All Clusters 

  Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  CSPC1 CSPC2 CSPC3 CSPC4 CSPC5 

Goal SP 0.500  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.077  0.000 0.000 0.037 0.026  0.000 0.000 0.000 0.000 0.000 

C2 0.031  0.000 0.000 0.060 0.057  0.000 0.000 0.000 0.000 0.000 

C3 0.133  0.124 0.126 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

C4 0.259  0.275 0.282 0.285 0.000  0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 

CSPC1 0.000  0.108 0.119 0.122 0.109  1.000 0.000 0.000 0.000 0.000 

CSPC2 0.000  0.086 0.101 0.089 0.097  0.000 1.000 0.000 0.000 0.000 

CSPC3 0.000  0.097 0.107 0.101 0.135  0.000 0.000 1.000 0.000 0.000 

CSPC4 0.000  0.097 0.077 0.110 0.078  0.000 0.000 0.000 1.000 0.000 

CSPC5 0.000  0.112 0.096 0.078 0.081  0.000 0.000 0.000 0.000 1.000 
 



 

 

 

 

 

  

 

 

 

 

4.4  Discussion 

This work introduced the study results of applying the k-means algorithm together with 

the DEMATEL and ANP methods to form a hybrid method, KD-ANP. This hybrid 

method is used for selecting the appropriate cloud service provider to meet customer 

requirements. Indeed, appropriate provider selection is a primary step in enhancing an 

organization’s efficiency and performance. Our study focuses on four criteria related to 

appropriate cloud service provider selection: CPU utilization, memory utilization, 

response time, and cost. The proposed KD-ANP method aims to make multi-criteria 

decisions for considering interdependencies and relations between criteria. In fact, the 

proposed KD-ANP has a competence that distinguishes it from other published 

approaches. After clustering cloud service providers using the k-means algorithm, KD-

ANP considers current organization workloads and assigns them different weights 

based on a set of criteria. Cloud service provider clustering is critical for grouping 

service providers with similar features and reducing the number of evaluation matrices 

used by the DEMATEL and ANP methods. A MATLAB simulation evaluated the 

proposed method using a collected dataset. The evaluation results indicates how 

MCDM provides an accurate and efficient method for appropriate service provider 

selection.  

In the DEMATEL method, cloud experts give an evaluation grade, between 0 and 4, 

representing the degree of affects between the selected criteria. An evaluation grade of 

Table 27. The limit super matrix, ML for All Clusters 

 
 Goal  Criteria  Alternatives 

  SP  C1 C2 C3 C3  CSPC1 CSPC2 CSPC3 CSPC4 CSPC5 

Goal SP 0.100  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

C
ri

te
ri

a
 C1 0.008  0.000 0.000 0.004 0.003  0.000 0.000 0.000 0.000 0.000 

C2 0.003  0.000 0.000 0.006 0.006  0.000 0.000 0.000 0.000 0.000 

C3 0.015  0.014 0.014 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

C4 0.035  0.038 0.039 0.040 0.000  0.000 0.000 0.000 0.000 0.000 

A
lt

er
n

at
iv

es
 

CSPC1 0.000  0.012 0.013 0.014 0.012  1.000 0.000 0.000 0.000 0.000 

CSPC2 0.000  0.009 0.011 0.010 0.011  0.000 1.000 0.000 0.000 0.000 

CSPC3 0.000  0.011 0.012 0.011 0.016  0.000 0.000 1.000 0.000 0.000 

CSPC4 0.000  0.011 0.008 0.012 0.008  0.000 0.000 0.000 1.000 0.000 

CSPC5 0.000  0.013 0.011 0.009 0.009  0.000 0.000 0.000 0.000 1.000 
 



0 denotes “No influence,” 1 equals “Low influence,” 2 for “Medium influence,” 3 

reveals “High influence,” and 4 shows “Very high influence.” The evaluation matrix is 

known as the initial direct-relation matrix. After applying the DEMATEL method, D, 

R, D + R, and D - R values are computed, as listed in Table 7. The interrelations between 

criteria are presented in Figure 5. Based on the values of D, cost has the most effect 

whereas CPU and memory utilization have the same effect. Response time has least 

effect. Based on the values of R, response time has the greatest effect received by other 

criteria, and cost has the least effect received from other criteria. As depicted in Figure 

6, cost is the cause criteria and response time is the effect criteria.  

When the ANP method is used to compute the weights of the pairwise comparisons, 

CR values are also computed and are always less than 0.100. The latter computation 

proves the weight validation for entering the super matrices. Using the super matrices, 

the unweighted super matrix of all candidate service providers in the clusters is also 

computed. Finally, the weighted super matrices are raised to limiting powers for 

producing the limit super matrices. In our study, the cluster number of the k-means 

algorithm is fixed to 5. Therefore, the candidate service providers selected from cluster 

1, cluster 2, cluster 3, cluster 4, and cluster 5 are SP4, SP8, SP12, SP5, and SP4, 

respectively, while the best cluster from Table 27 is cluster 1, the selected service 

provider from candidate service providers is (SP4).  

4.5  Comparisons with Previous Works 

Selection of cloud services is an important task for different IT needs of individuals, 

organizations and companies. A large number of cloud providers offer a diverse set of 

services in clouds environment with different SLAs and QoS. The decision making to 

select the cloud services based on a set of criteria is a challenge for the upper 

management since it needs operational and financial views, determining the 

performance of the organizations in the long-term. Consequently, selecting a service 

provider is a multi-criteria decision problem. These criteria and sub-criteria may be 

correlated or relevant and have some interdependencies. 

There are few methods of multi criteria decision making have been proposed to select 

the cloud services or alternatives, such as the previous works in [3,5,7,9,34]. In this 

section, we compare the proposed method of multi criteria decision making with 



previous works in [3, 34, 35, 36, 37] that used the ANP or ANP and DEMATEL 

methods for selecting cloud services. However, one of the most important differences 

between the proposed method and these works is the number of evaluation matrices of 

the pre-defined criteria used to compare a large number of cloud providers and 

determine relative impacts and strengths of them. Therefore, the comparison will be 

based on the number of matrices required for evaluation versus the number of service 

providers or alternatives and criteria. Figure 7 shows how the proposed method reduces 

the number of evaluation matrices used for pairwise comparison compared to the 

previous works in [3, 34]. 

 

 

Figure 8. Proposed KD-ANP method against some other methods for cloud service 

selection. 

 

The proposed method clusters the service providers according to the similarity of the 

criteria used using K-means algorithm. Thus, the number of evaluation matrices of the 

proposed method is small and increases gradually depending on the number of clusters 

as shown in the Figure 8. While, the number of evaluation matrices of the methods in 

[3, 34] is increased exponentially with increasing the number of service providers or 

alternatives and criteria 
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5. Conclusions  

Our proposed work provides a simple method to select an appropriate cloud service 

provider that meets consumer requirements. In this paper, we proposed a method for 

the consumer to identify workload and predict required performance and configurations 

from historical data. We developed a hybrid MCDM method, KD-ANP, for cloud 

service selection using k-means, DEMATEL and ANP. By implementing the KD-ANP 

method, consumers can select the best provider and consider the interdependencies and 

relations between criteria. Moreover, by clustering providers using the k-means 

algorithm, the consumer can assign different weight and importance to the criteria. We 

evaluated KD-ANP using the performance prediction model data proposed in [1] In 

future, we plan to define more criteria as well as to find out how to automate the expert's 

preferences using machine learning.  
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Highlights 

 

* A hybrid MCDM method is developed for cloud service selection from Smart data 

* A k-means clustering is used to consolidate cloud service providers with similar features 

* Applied MCDM methods using DEMATEL-ANP to rank clusters and make a final decision 
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