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Fanyu Bu®*, Xin Wang®, Bo Gao®

“College of Computer and Information Management, Inner Mongolia Universit ., Finance and Economics, Hohhot,
China.
bCenter of Information and Network Technology, Inner Mongolia Agricul. ‘ral Uni ersity, Hohhot, China.

Abstract

The double-projection deep computation model (DPD""M, , ~ov' d to be effective for big data fea-
ture learning. However, DPDCM cannot capture the un/~rlying correlations over the different
modalities enough since it projects the input data ir.. - iy two subspaces. To tackle this problem,
this paper presents a multi-projection deep computation .~odel (MPDCM) to generalize DPDCM
for smart data in Internet of Things. Specially, . v _2." maps the input data into multiple non-
linear subspaces to learn the interacted features of . /T big data by substituting each hidden layer
with a multi-projection layer. Furthermore, a "=« ing algorithm based on back-propagation and
gradient descent is designed to train the naramcers of the presented model. Finally, extensive
experiments are conducted on two represen.. ‘ive uatasets, i.e, Animal-20 and NUS-WIDE-14, to
verify the presented model by comparing with UPDCM. Results show that the presented model
achieves higher classification accurac, tna. DPDCM, proving the potential of the presented model
to drill smart data for Internet of Tt ngs.

Keywords: Big data, Internet of (hirgs, >.nart data, Deep Computation Model,
Back-propagation

1. Introduction to find the valuable information, i.e., smart da-
ta, from IoT big data for smart market analysis
in industrial manufacture. A unique proper-
ty of IoT big data is its high variety, i.e., data
comes from various sources such as cameras
and sensors, with different formats like text,
image and audio [4]. Typically, each heteroge-
neous data object has more than one modali-
ties, implying that heterogeneous data is typi-
cally multi-modal [5]. For instance, a piece of
video usually contains two modalities, i.e., im-
age and audio, or three modalities, i.e., image,

_ audio and text.
*Corresy nding author: bufanyu @imufe.edu.cn.

Recently, Internet c. T!ings (IoT) have
achieved great progress '.v integrating ad-
vanced sensing devi es sich a, sensors and R-
FIDs into commui. ~af’on r ;tworks [1]. Spe-
cially, big data ~~oces.’" g techniques such
as data compr ssion, ‘eep learning, correla-
tion analysis ain ! clust.ring are playing a re-
markable r ¢ in Internet of Things [2], [3].
For examj le, dee) learning, an recently ad-
vanced artiti. *~1 +_celligence technique is used
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Each modality of the multi-modal objec-
t shows the distinct information from one an-
ther, however, each modality has the close re-
lation with others. The multi-modal property
of heterogeneous data imposes a huge chal-
lenge on deep learning models for drilling s-
mart data in IoT applications [6].

The first successfully trained deep learn-
ing model is the deep belief network which
is constructed by several restricted boltzman-
n machines [7]. Over the last decade, some
other deep learning models like stacked auto-
encoders and recursive neural networks have
also been trained successfully [8]. Generally
speaking, deep learning has more than one hid-
den layers and each hidden layer represents a
layer of learned features of the input data. So,
deep learning can learn multi-level features
for the input data. Furthermore, deep learn-
ing enjoys its success in various application.
like speech recognition and machine transla-
tion with a two-stage training policy, i.e., p. -
training and fine-tanning [9], [10]. However,
the traditional deep learning models ... ~aly
suitable for single-modal data featv ¢ learni g
[11]. In other words, it is difficult “or ti.. tre -
tional deep learning models to .ear’ features
for heterogeneous or multi-moc~’ dat. To
tackle this issue, some multi modal . ep neu-
ral networks such as multt mou ! deep boltz-
mann machines and mu’. model aeep learn-
ing were presented [12°, [17 . Representative
multi-modal deep nerral 1. “works first learn a
joint representation or t'.e muiti-modal object
by concatenating u. f.atur s of each modal-
ity learned by = _pecia, .eep learning mod-
el. Furthermc e, they learn the features on
the learned join. “epre- entation. Although the
multi-mod- « deep neural networks have made
some prog ess for 1eterogeneous data feature
learning, the, -~. also hard to capture the in-
herent ~ors ...’ons over different modalities
by the m. ms of linearly linking the learned

features of each modality ". .’

To address this probl m, - deep computa-
tion model was prese~ted .. mine smart da-
ta in IoT applications. A deep computation
model can be view.d a - generalization of a
deep learning mou." fr / big data feature learn-
ing. Specially, » *.ep cu.putation generalizes
a stacked autc -encode * from the vector space
to the high-orc v ten' or space. In the deep
computati- n medel, each multi-modal data ob-
ject is pr.<e.ed )y a tensor while the ten-
sor dist.. *~e is " .lized to define the objective
function for « Wturing the inherent features of
multi-.. ndal iata. More recently, a double-
projex “on deep computation model (DPDCM)
. p--ovated to further generalize the deep
con.tation model for big data feature learn-
.., hv substituting each hidden layer with a
1 uble-projection layer [11]. DPDCM can
e12ctively reveal the underlying correlations
over different modalities by mapping the input
data into two nonlinear subspaces. However,
only two nonlinear subspaces are not enough
for the deep computation model to capture the
interacted features over different modalities.

Motivated by the neuroscience observation
that the interacted inherent features of multi-
modal data are generally hidden among dif-
ferent subspaces [15], the paper presents a
multi-projection deep computation model (M-
PDCM) for smart data in IoT systems. Spe-
cially, MPDCM aims to generalize the double-
projection deep computation model by the
means of substituting each double-projection
layer with a multi-projection layer. In detail,
MPDCM first maps each multi-modal objec-
t into several different subspaces to reveal the
features hidden in the different subspaces, and
then learns the interacted inherent features to
capture the underlying correlations by map-
ping the subspaces into the output via a weight
tensor. To train the parameters of MPDCM,
an equivalent alternative form of MPDCM is




devised and accordingly an updating approach
for the parameters based on back-propagation
and gradient descent is implemented. Final-
ly, MPDCM is verified on two representative
datasets, namely Animal-20 and NUS-WIDE-
14, by comparing with DPDCM regarding the
classification accuracy in the experiments. Re-
sults imply that MPDCM can achieve higher
classification accuracy than DPDCM, proving
its potential for big data feature learning.

In summary, the contributions are three-
fold:

e A multi-projection deep computation
model is presented to generalize DPD-
CM for heterogeneous data feature learn-
ing by substituting each hidden layer
of the deep computation model with a
multi-projection layer. Specially, MPD-
CM is constructed by stacking severa.
multi-projection tensor auto-encoders to
learn hierarchical features for heterog -
neous data.

e A multi-projection tensor av o-encoc 'r
(MPTAE) is devised to rev=al .~ f a-
tures hidden in the differen’ sub paces by
mapping each layer to sev v .1 di’.erent
nonlinear subspaces. Furthermc e, MP-
TAE learns the inter cteu ‘nherent fea-
tures to capture the _~derlying correla-
tions by mapping .ne s ibspaces into the
output via a weicht e <or.

e To train the p.-ar eter, of each layer in
MPDCM, >~ equ. 'ent alternative for-
m of MPTAE is « ised and accordingly
an updatin, apprr ach for the parameter-
s base” on back-propagation and gradient
desce 1t is imp 'emented in this paper.

The . =»mu <. of this paper is organized as
follows. . ction 2 provides preliminaries and

Section 3 describes the de .."~ of the present-
ed model. The learning (gor chm for training
the presented model is illus.. ~ted in Section 4
and the results are renorte. ‘n Section 5. Sec-
tion 6 reviews the - :lat # work and Section 7
concludes the pap. -

2. Preliminar es

2.1. Deep " ~mpu.....on Model

The de p cr.ap 'tation model is effective to
abstract muidi-lev .l features for big data, es-
pecially to. heterogeneous data, typically by
stacl.’ng a co ple of tensor auto-encoders, as

pre.nteu . Figure 1 [14]. A tensor can be
viewed ..~ a multidimensional array in math-
. atics.  For example, R11*2%1s denotes a

three-u_der tensor in which ;(i = 1,2, 3) de-
nr es the dimensionality of the i-th order.

In the tensor auto-encoder with the param-
“ters 6, each original multi-modal object X is
formatted as a tensor X € RI>I2XxIn and it
is mapped into the M -order hidden space via
an encoding function fy:

11 Iy

J1 ]M: E :

’Ll ’LN

L)
1)
where « —]M—i—ZM Yy — 1)1_[3 1 s
Afterwards, the hidden data H is recon-
structed to the N-order output layer Y via the
decoding function gy:

Oﬂl AN Z1 “IN

M

Z1 lN: E

JiiM

,3J1 JM Jl 1M+bl1 ’LN)

2)

where 3 = ZN+Zt 1 iy — 1)1_[& i1 s
The objective function is defined based on
the tensor distance regarding the object X as:

J(0; X) = %(Y - X)'GY -X), 3




where G denotes the coeff _.. 1t matrix.

Moreover, the glo'al objective
function regarding the  training  set
X = {XWO Xx®@ 015 defined

as:

Jrap(B) =3 52 (5170 = XG0 - x0))
N %T\:%/(l\’ + WeR)

deep ¢« mputation model could pre-trained in
. ayer-wise manner from bottom to top first,
follo. ~d by a fine-tuning step by a global

“)

|\\O””’"’ Y g A coup. Uf ter sor auto-encoders could be
— Ij stacked w2 duep computation model as pre-

- = sented in Figi re 1 to abstract multi-level fea-

l - & g tur~s to. «m gt data. The parameters of the

]

. //
i
yd ~

g - .. _rder back-propagation from top to bot-
| tmpwr x . m after imposing the supervised labels. To
(a) Tensor auto-encoder en.ance the training efficiency, several im-

proved deep computation models have been

Output ¥ devised by utilizing the tensor decomposition

schemes like canonical polyadic decomposi-
tion and tensor-train to compress the param-
Ej eters significantly [14], [16].
@@ 2.2. Double-Projection Deep Computation
7 Model (DPDCM)
DPDCM attempts to learn the interacted in-
Input X } herent features for multi-modal objects. As

the basic module, the double-projection tensor
auto-encoder (DPTAE) maps each input object
into two subspaces by substituting the hidden
layer with a double-projection layer, as pre-
sented in Figure 2 [11].

From Figure 2(a), DPTAE maps the input
X into two different subspaces, i.e., hy €
RPxP2xxPs and hy € R1XQ2XxQ1 yia f,:

hy W(l) b(l)
H=<h2>=f0<[W;(1) bél) :
(%)

(b) Deep computation 1 .del

Figure 1: Architecture o’ the dee, ~mputation model.

X +
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(a) Double-projection tensor
auto-encoder

ww

f

N\

,

(b) An alternative form ot
DPTAE

Figure 2: Architecture o douhle-pro ection tensor auto-
encoder.

Furthermore, DPTAE r .. »structs the hid-
den representations to th . ouf ut via gy:
Ar )

P1PSHq1 4T i1 IN

Py--Pg 7y
Yiyiy = 99( Z 5

p1-ps N /'QT
'hlpl“'ﬁﬂs ’ h2q1 w T U‘{)‘-) i )
(6)
To use back-, ropag .tion to train the param-
eters, an 2’ .cinative torm of DPTAE was pro-
vided via ‘he .ens r Kronecker product ®, as
present. ' in FF~ e 2(b):

u = hy ® hy, @)

where « ~an be viewed as the interactive fea-
w.=s of hy and ho.

Givea two tensors, i.e., A € RNxDx—xIy
ard B3 € RW2xxIN - their Kroneck-
¢ product will produce C = A ®
R ¢ RIOVxDJ2x-xINJN with each entry
Corgroingn = @ir,inbji,.jn Where iy, j, =
Jk + (i, — 1)Jx. Eq. (8) shows an example of
the Kronecker product of two matrices.

[ a1, ags bii bia |
® —
_ ag1 Q92 621 b22

ai1bin  anbiz aigbin aigbio

®)

ai1bar  aibye  aizbar  asibas
asibii  agibia  agbin  agabis
ag1bar  ag1bae  agabor  agabas

Based on Eq. (7), Eq. (6) can be rewritten
as:

Py-PsQ1--Qr @)

9e( Wpy-psqr-qr,in-in
P1PsqLqT

2
“Upy-psqr--qr + bz(’l-)--iN)'

yi1~~iN ==

©)

To simplify the training for the parameters,

DPTAE defines the objective function regard-
ing X as:




Joprap(0; X) = 3(Y — XNy - X)

1 I In )
1 1IN

(10)
Moreover, the global objective
function regarding the training set
X = {XO X®@ X1 s defined
as:

Toprar(®) = [ 32 (4 = X)(v = X))+

Ii-In Pr--Pg

N1
—~

(i) )
L 1(i1-+in,p1--p3)
i1y p1eps
LIy QiQr
+ 2 > (w
t1tN q1qT

P1--Ps Q1--Qr I Iy
+

(1) )2

2(i1-+iN,q1°9T)

) 2
wpl"'PSle"'fIT,il"'iN)) )
(11
A couple of DPTAEs are stacked *~ a

double-projection deep computation moac’
described in Figure 3 [11].

P1PS qiqr 1IN

3. Multi-Projection Deep Cou. utatir n
Model MPDCM)

To learn the interactive inhe > it fr atures
for multi-modal objects, M PDCM _eneral-
izes DPDCM by substituti' g ea. ™ hidden lay-
er of DPDCM with a - . 'ti-projection lay-
er. As the basic mo .ule »f MPDCM, the
multi-projection tensor au ~-encoder is illus-
trated first, followe . by the MPDCM model.
Specially, this pape. “2'.es tt ¢ triple-projection
model for exam: . to ac cribe the model ar-
chitecture and 1e learr. ng algorithm.

Figure 4 show the » chitecture of the multi-
projection ‘ cnsor ~uto-encoder.

Regardi. g the tr ple-projection tensor auto-
encoder pres. “ . in Fig. 4(a), the input X
is firsti,” m .. d into three different nonlin-
ear subsp ces, ie, hy € ROV XOr h, €

(a) Double-projection tensor
auto-encoder (DPDCM)

h =Y ’

I e ]
g i
\\\ ////
/

N A—
i ] ®

(b) An alternative form of D-
PDCM

Figure 3: Architecture of double-projection deep com-
putation model.
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(a) Triple-projection tensor
auto-encoder (TPTAE)
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@
(]

) (=7 (=]
\ | \
Cw ) e ) (]

=y L
~_
Input X

(b) An alternative form of
TPTAE

Figure 4: Architecture . mv'ti-projection tensor auto-
encoder.

RPUCPs and hy € R *@7, in the hid-
den layer via the encod ag function f(x) =
1/(1+e™):

I \ / | WiV o
H=| h |=1, wit X+ e
1 1
(12)
where Vll\ c ]%11><---><IN><Ol><»--><OR7
WQ(I) c RIvx-xInxPix-xPg and
W3(1) - DT XexInx@QuxexQr o represent

the weigh ten ors projecting X into three sub-
spaces, “espr _tively and three corresponding
biases . e b}l) € ROV xOr, bél) € RPvxPs
. u3 € ROvXQ1 regpectively.

Fu. hermore, TPTAE reconstructs the hid-
ac . l:atures [ into the output Y via an
2+ S+ T + N)-order weight W ¢
R\‘1><~~~><OR><P1><~~~><P5><Q1><~~><QT><11><~~><1N and

an N-order bias b2 ¢ RI1xxIn.

01:--Og P1--Ps Q1--Qr

Yiriy = [ D0

01°:05 P1--PS 14T

©)
h “h -h +u2 .
1(o1-or) " '*2(p1--ps) " '3(q1qr) i1in
(13)
To train the parameters represented by 6,
TPTAE defines the objective function regard-
ing the training set as:

Jrpran(®) = [2 3 (2 = X)"(Y = X))+

) ;

1(i1-iN,p1-DS)

LIy O1--OR

o[>~
—~

i1iN O1-OR
Ii-In Pr--Ps (1) 2
+ E Z <w2(i1---iN7P1'“PS))
11"tN P1°PS
LiIn Q1Qr
irin queeqr
Pi-Ps Q1--Qp 1-In @ 9
+ X X X (w ))-

L P1PS,q1-qT 11N )
P1PS queeqr Q1N

(14)

(1) )2

3(i1-+iN,q1-9T)

01°"ORP1**PSqL-*qTi1 "IN



Figure 4(b) gives an equivalent form of TP-
TAE via the tensor Kronecker product &:

U=h1®h2®h3, (15)

where u can be viewed as interactive represen-
tation of three nonlinear subspaces. Therefore,
Eq. (11) can be rewritten as:

O1-ORPPsQuQr
= f( > w

Yir-in 01 ORP1PSqL"
01-0RP1'PSqL AT

(2
Uoy--opp1-psqi-—qr T bhmiN)'

(16)

With Eq. (16), back-propagation can be u-
tilized to train the parameters, described in the
following section.

Figure 5 presents the architecture of a triple-
projection deep computation model which is
stacked by a couple of TPTAEs for big dat
multi-level feature learning.

Assume that i° = X, h'(0 < i < 1) ud
h! =Y denote the input data, the i-th hid-
den layer and the output, respectively, ~r=sent-
ed in Fig. 5(a). TPDCM first maps the iny 1t
data X to the first hidden layer h' w™ich F s
three different subspaces, hi, b, and hs, vi-
a the encoding function, and tl.*n r.aps zvery
subspace h,; (j = 1,2,3) to t' e secu. 7 nidden
layer h? which also has t' re. different sub-
spaces, h?, h3 and h3. TPDCM ._peats this
link from bottom to top anti A!~! which rep-
resents the learned last 1. = features of X. Fi-
nally, the three subsr aces, iy ', hs™* and b,
are mapped to the outut ¥ for the tasks of
classification and recoy “it'on. Fig. 5(b) gives
an alternative fr rm of “"°PDCM in which the in-
teractive inhere 't repre ,entation of each layer
can be obta’ ..d via we tensor Kronecker prod-
uct. For e> ample, \ e i-layer interactive repre-
sentation u; ~f X .an be obtained via:

u; = h' @ hb @ hj. (17)

“qryi1iN

(a) Triple-projection deep
computation model (TPD-

(b) An alternative form of T-
PDCM

Figure 5: Architecture of multi-projection deep compu-
tation model.




4. Learning Algorithm

In this work, a updating approach based
on gradient descent is implemented to
learn the parameters of TPTAE. Let
AW and Ab denote the derivatives of
Jrprap(0; X) regarding the parameters 6 =
({5, 5 W0 o0, w0 e, 0y
for X. The average derivatives AW
and Ab of the global objective function
Jrprap(f) regarding all the training objects

(XM x@ X (™)} can be obtained via:
— 1 &
AW = — 3 AW +AW. (18)

i=1

1 m
:%gj (19)

Depending on gradient descent, the param:
eters 6 can be updated via:

W W —nAW. (20)

b < b—nAb. (" 1)

Therefore, the key for updati .g tF 2 pa- ame-
ters is to compute the partial Jderiv. “ivi s AW
and Ab of the objective f. ~tion regarding
each training object. In this p.»er, back-
propagation is extended o ti > tensor space for
computing AW and A. Tr this end, the vari-
ables zf), 252), zéz) and 2" are introduced
to describe the forv ard- jrop .gation of TPTAE
as:

Iid
(2) _ - 1) (1)
Zl(ol..,oR) y L ‘/I/O\l LORM1- ’LNXil""LN+b21 AN
i1-in
(22)
2
oo = (o) (23)

IiIy
1)
2(p1 ps) Z W psit oAy LN—I—b“ AN
111N
(24)
(2)
hag .ps) = F(Zz(pl,,_ps))y (25)
Il"ﬂ\l
(2) _ (1)
Z3(Q1 ) T Wq1--~qTi1--~iNX11 1N+bzl AN
7 AN
(26)
2
h3(gr..ar) = f(zé(gl,_,qT)% (27)
01:-Og Pi--Ps Q1--Qr
3 _ (2)
Zil”'iN - Z wol"'ORP1"'Psqr-'tITir"iN
01:::08 P1°-'PS qi--qrT
Pi(or-or) - Pa(pr-ps) - Pi3(q1--ar) J’_bzl N 28)
3
Yirin = F(20050)- (29)

The following four steps describe the com-
putation of the partial derivatives AW and Ab.

Step 1. Compute “error term” ¢ via E-
q.30).
0(3) _ 9Jrprap(9:X)
iy azz(? lN
2
d (3) [ Z Z(yh AN ‘ril“'iN) }
Q- ’LN 71

- f( 11 zN)(yll"-lN xh-"ZN)

= Yiy - ZN(l yir--iN)(yil“-iN - xil'“iN)'
(30)

Step 2. Compute “error term” o) via:




(2

Ul(olmoR) -
Ipe

_ 9Jrprar(0;X)
(2) -
s 821(01'“012) -
o (3
N 9Jrprap®:X) Py
(3) (2)
azil"-iw #1(01-++0R)
Q1-Qr Pi--Ps
@) S p® o
N 01'"ORP1''PSq1 4T "IN
q1qT P1-PS
-h -h h
3(gyogr) "M )"

1— hy

(AR
Ii-In
(o
i1 tN
01‘“0R)))7
(31

p1Ds 01"'0R)(

(2) _
2(p1--ps)
I In
iy
Iy
(o
N

dJrprap(0:X) |

(3)
6Z771“‘¢N *2(p1-pg)
) Q1--Qr O1--Og @)
i1in

Woyoppr-psar-—arir-in
qiqr  01+°0g

h2(p1~-ps)h1(01-~013) (- h2(p1~--ps)))’

'hB(ql...qT) '

(32
0(2) _ OJrprap(0:X) _
3(q1--q7) 8z§2)
3(q1--a1)
Iy-1 (3)
N aJTPTAE(6§X) . azil-«-iN o
) ) =
iy %y 923(a1 -ar)
. ; 11 UN 01 YJRP1 PSq1-4qTt1 "IN
11°IN p1pT 01°:08

‘hs(‘h“"ZT) ' h2(p1~-ps)h1(01-~-0 ,)(1 h’g(nqu)))'
(33)
Step 3. Compute ‘962;&1)) (L=1,. via:

az(a) .
i1y

2]

WS o paia i WS ot gy
1°"ORP1PSd1 "q7 «1°% 01'"ORP1"'PS41 ATl "N
01::05 Pi--Ps Qi -
( « u(2) o

— C. "ORP1'PSqLqT1 "IN

0105 P1--PS q1-qT @
hl(ol'“OR) ’ h2\ Meeps) LL3(q1~-qT) + bil--»iN)
= h1(01'~~f o hQ(pl‘”PS) ’ h?’(QI“‘QT)?

(34)

— Xy (35)

DY)

wl(i1~-~iN01~~~OR)

10

(2)
822(171"'175) ' A
o (1) T oR11ANDY
dwg(il...in]...7 )

(36)

- X (37)

o iy
i A )

Step 4. Comrr*e A,77 and Ab according to
the chain rule:

(1) )
AWl(il' incooR) 01(01"'OR) ’ Xil'“iwv (38)
o _ @
L\WQ(“ Caeps) . P2pips)  Xipins (39)
) ()
Awg(il'"mm“-qﬂ = O1(qar) Xi1~~-iN7 (40)
(1) )
Abi (o1 0p) = Ti(or-op): (41)
1) _©®
Ab2(101-";vs) = Og(pyps)’ 42)
1) )
Ab3(¢11-"qT) = O3(q1-qr)° (43)
(2) B
A(g)}ol"'ORpl'“pSQ1'~~<1Ti1~~iN -
Tirin ” hl(ol“'OR) ' hz(m"-ps) ' h3(¢11'"qT)’
(44)
AV =0l (45)

In summary, the updating approach for
training TPTAE is described in Algorithm 1.
From Algorithm 1, the computational
cost of the updating approach is domi-
nated by forward-propagation and back-

propagation. Let I = max{ly,...,In},
U = mazx{R,S, T}, and V =
mam{Ol,...,OR,Pl,...,PS,Ql...,QT}.

During each iteration, the forward-

propagation has a computational cost of




Algorithm 1: Learning Algorithm for
Training TPTAE.

B W N =

wm

10

11
12
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14
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16
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20

21
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23

24

25

26

27

28

Input: { X} n, X, threshold
Output: 6 =

(0,10, W0, 00 W0 v
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O(INV3Y”)  while the :ack-propagation
has the same compuf tiord cost as the
forward-propagation. So, u.> overall compu-
tational cost of Algorithn, * is approximately
&)A‘EINVSU) with . de-~ting the number of
iterations. Note «. ~t V and U are typically
very small cons at pu. tive integers. Once
the architectw : of Tt TAE is fixed, the com-
putational cosu of th- updating approach is
polynomis. regarding / and V. Moreover,
Algorithn ? 1s asily extended to update
the pa.. mete of multi-projection tensor
auto-encode: for obtaining a multi-projection
deep ¢. mput- .ion model.

. nxperiments

™ this work, the presented model (MPD-
M) is verified on two highly heterogeneous
d. ‘asets, Animal-20 and NUS-WIDE-14, by
cumparing with DPDCM in the experiments.

5.1. Results on Animal-20

Animal-20 is a subset of Animal [11]. Spe-
cially, it has 20 groups and totally 12 000 ob-
jects. In this work, 9000 objects are randomly
chose as the training set and the rest are used
as the testing set. In the experiments, each ob-
jectin Animal-20 is formatted as a 3-order ten-
sor R64x64x20 5o the input of each model is a
R64><64><20 tensor.

First, the MPTAE is compared with DPTAE
regarding classification accuracy on Animal-
20. Each model is performed for 5 times to
verify the robustness, each with random ini-
tialization. The results are listed in Table 1.

According to the results listed in Table 1, the
classification accuracy is gradually improved
when the number of the subspaces increases.
For instance, when the number of subspaces
increases from 2 to 3, the average classification
accuracy is improved from 42.8% to 46.2%.
Such results clearly imply that increasing the




Table 1: Classification results of various tensor auto-
encoders on Animal-20.

Model 1 2 3 4 5

DPTAE 042 041 049 045 0.37
TPTAE 045 049 0.51 045 041
QPTAE 0.51 0.50 055 047 048
FPTAE 0.51 0.51 0.55 046 048

number of subspaces can improve the learn-
ing performance of the tensor auto-encoder
for heterogeneous data. Furthermore, when
the number of subspaces is more than 4, the
classification accuracy keeps unchangeable on
Animal-20. Specially, QPTAE produces al-
most the same classification results as FPTAE.

Next, MPDCM is compared with DPDCM
on Animal-20. Table 2 shows the classification
results.

Table 2: Classification results of various tensor ~*ton-
encoders on Animal-20.

Model 1 2 3 4 5

DPDCM 0.66 0.64 0.67 0.65 0.7
TPDCM 0.69 0.71 0.67 0.,2 0.6
QPDCM 0.73 0.72 0.69 J.75 wu..1
FPDCM 0.74 0.72 071 0.5 771

Table indicates three imy orta..” observation-
s. First, with the grow .~ number of sub-
spaces, the classificatir a ac .uracy of various
deep computation mndels ‘ncreases. For in-
stance, QPDCM ac aiev .s significantly high-
er classification ac vacy .han TPDCM on
Animal-20, imp’ _J by u. fact that they yield
the average cla sificatic 1 accuracy of 72% and
69.4%, respectiyv "lv. S’ cond, the deep compu-
tation mod  perferms significantly better than
the corres, onding tensor auto-encoder when
they have the . -~ .¢ number of subspaces. Spe-
cially, Qto- .7 and QPTAE produce the aver-
age class,” cation results of 72% and 50.2%,
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respectively. Finally, as ‘... number of sub-
spaces increases to 4, the multi-projection
deep computation mor'=ls p. ~duce almost the
same classification accura. . Such observa-
tions prove the e’.ect "~mess of the multi-
projection deep c¢. ™r atation model for het-
erogenous data * “ture .. “rning.

Table 3 and lable 4 show the average train-
ing time of eac, mode ..

Table 3: Avei.ge trai’ .ng time (Minutes) of various ten-
sor auto-en._ers un Animal-20.

NPTAE TPTAE QPTAE FPTAE

T35, 1648 1529 1581

T7le 4: Average training time (Minutes) of various
L ‘ep computation models on Animal-20.

DPDCM TPDCM QPDCM FPDCM
152.26 148.54 167.85 166.93

Table 3 shows that various tensor auto-
encoders take almost the same time to train the
parameters while different multi-projection
deep computation models spend almost the
same time in training the parameters despite
the different numbers of subspaces. This is be-
cause various deep computation models have
the same number of hidden units and they all
use the extended back-propagation to train pa-
rameters, resulting in almost the same compu-
tational cost.

5.2. Results on NUS-WIDE-14

NUS-WIDE-14 is a subset of NUS-WIDE
and it has 20 000 objects, fallen into 14 group-
s [11]. Specially, 15 000 objects are chosen
to train the parameters and the rest are utilized
to test the performance regarding the classifi-
cation accuracy. In this work, each object in




NUS-WIDE-14 is formatted as a 3-order ten-
sor R192x192x24 g4 the input of various mod-
els is a R192x192x24 tepnsor. Table 5 and Table 6

show the classification results of various mod-
els on NUS-WIDE-14.

Table 5: Classification results of various tensor auto-
encoders on NUS-WIDE-14.

Model 1 2 3 4 5

DPTAE 0.66 0.62 0.61 0.65 0.58
TPTAE 0.69 0.65 0.66 0.65 0.62
QPTAE 0.71 0.74 0.69 0.71 0.73
FPTAE 0.72 0.75 0.69 0.71 0.72

Table 6: Classification results of various deep computa-
tion models on NUS-WIDE-14.

Model 1 2 3 4 5

DPDCM 0.79 0.76 0.81 0.79 0.73
TPDCM 0.81 0.79 083 0.79 07¢
QPDCM 0.82 0.84 0.86 0.81 0.7Y
FPDCM 0.83 0.84 0.86

0.80 0.81

From Table 5 and Table 6, cacn v d-
projection deep computation 1 odel achieves
significantly higher accurac, thar the
corresponding multi-projec’ on tens.¢ auto-
encoders with the same nv abe. ~f subspaces.
For example, QPDCM ~«d QPTAE pro-
duce the average c’assif cation accuracy
of 82.4% and 71.6%, .. wectively. Such
results argue that ‘ae - wlti-projection deep
computation mode. i mr e effective than
the multi-projr_..on . asor auto-encoder
for heterogen :ous a ta feature learning.
Moreover, the . "PDC.V models outperform
DPDCM 7. term= of classification accuracy
on NUS-V'IDE-1¢. For example, FPDCM
produces the -.erage accuracy of 82.8%
while L ¥Uu D yields the average accuracy of
77.6%. St h experimental results demonstrate
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the effectiveness of the pr... 1ted generalized
multi-projection deep cc aput ttion models.

The average trainine time ~f each model is
shown in Table 7 and Tabi. <.

Table 7: Average trainn._ t".ne (Minutes) of various ten-
sor auto-encoders ~_ “{US-v. "DE-14.

DPTAE (PTAE QPTAE FPTAE
37.28 s 51.06 45.59

3.

Table 8: Avera e training time (Minutes) of various
dE:D Cu. “utitir 1 models on NUS-WIDE-14.

DbL“M TPDCM QPDCM FPDCM
259.46  287.32  261.53 271.48

Although the multi-projection deep compu-
ta.’on models have more subspaces than DPD-
(M in each hidden layer, the MPDCM mod-
els are not significantly more time-consuming
than DPDCM for training the parameters since
they have almost the same computational cost
due to the same number of the hidden units.

6. Related Work

In the past few years, a couple of multi-
model deep neural networks have been inves-
tigated to learn multi-level features for big da-
ta, especially for heterogeneous data. The fist
multi-model deep neural network was investi-
gated by Ngiam et al. to learn features over
two different modalities, i.e., audio and video
[12].

Two sparse boltzmann machines are first-
ly constructed to learn features for audio and
video separately, and then the learned features
are linked linearly as the shared representation
of two modalities. Furthermore, a belief neu-
ral network is constructed to learn features on
the shared representation.




Another typical multi-modal deep neural
network is the multimodal learning model with
deep boltzmann machines for text-image bi-
modal learning [13]. Specially, an image-
specific deep belief network and a text-specific
deep belief network are constructed to learn
features for image and text separately. Further-
more, the shared representation is obtained by
means of linking the learned features to model
the joint distribution over the image modality
and the text modality.

More recently, a multi-model convolution-
al neural network model was investigated to
learn the answer to the visual question [17]. In
this model, two separate convolutional neural
networks are built to encoder the image con-
tent and to produe the question representation,
respectively. Moreover, another convolutional
neural network is built to yield the shared rep-
resentation by linking the image features anc
the question features. Furthermore, the shared
representation is input to the softmax laye. o
generate the answer.

In addition, a stochastic long sk ... “erm
memory is presented to perform the ancerta -
ty backward propagation. Other represe ~tat’ve
multi-modal deep neural networ .s ir :lude the
multi-modal residual learning |, "' und “ae hi-
erarchical multi-modal long  aort ter.. memo-
ry [19] and so on [20].

7. Conclusion

In this study, a r alti- yrojection deep com-
putation model is . v stig: ced for Industrial
heterogeneous b'_ data .. sture learning. One
key property ¢ -~ the in 'estigated model is to
project each inp. * obir _t into multiple nonlin-
ear subspa .es to ~apture the underlying fea-
tures hidd\ n in the different spaces. Further-
more, the in.. = _uave inherent features of the
heterog nev .. bject can be learned by using
the Kronc «er product to fuse the features in
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the different subspaces. F .. riments are car-
ried out to compare the ault’ -projection deep
computation models w*th the different number
of subspaces. The results c. arly imply that the
quadruple-projectic .. m ~"=l and the fivefold-
projection model | ~tf ,rm significantly better
than the double | -ojec.. 1 model on Animal-
20 and NUS-Y /IDE-1.", proving the effective-
ness of the iny ~stigat.d model to generalize
the double proje~tion deep computation mod-
el. Actua.'v e d)uble-projection deep com-
putatiown. mode' ~..n be seen as a specific exam-
ple of the in. »stigated model. Therefore, the
presen.~1 me .el is potential for industrial big
data .. ~ture learning.

Ml ough two representative heterogeneous
data. ~ts, namely Animal-20 and NUS-WIDE-
. " have preliminarily proved the effectiveness
~ the presented model for heterogenous da-
ta learning in the experiments, they are not
large enough. In the future work, the present-
ed model will be further verified on industrial
larger heterogeneous datasets. Moreover, the
classification results are slightly fluctuant be-
cause of the effect of initial parameters. There-
fore, the advanced initialization methods will
be investigated to improve the performance of
the presented model in the future work.
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A multi-projection deep computation model is presented to generalize DPDCM for smart data in Internet of Things.
A learning algorithm based on back-propagation and gradient descent is designed to train the parameters of the
presented model

The extensive experiments are conducted to evaluate the performance of the proposed schem' by comparing with
DPDCM.
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