
Accepted Manuscript

A multi-projection deep computation model for smart data in Internet of
Things

Fanyu Bu, Xin Wang, Bo Gao

PII: S0167-739X(18)31939-3
DOI: https://doi.org/10.1016/j.future.2018.09.060
Reference: FUTURE 4495

To appear in: Future Generation Computer Systems

Received date : 13 August 2018
Revised date : 10 September 2018
Accepted date : 26 September 2018

Please cite this article as: F. Bu, et al., A multi-projection deep computation model for smart data in
Internet of Things, Future Generation Computer Systems (2018),
https://doi.org/10.1016/j.future.2018.09.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.09.060


A Multi-Projection Deep Computation Model for Smart Data in
Internet of Things

Fanyu Bua,∗, Xin Wangb, Bo Gaoa

aCollege of Computer and Information Management, Inner Mongolia University of Finance and Economics, Hohhot,
China.

bCenter of Information and Network Technology, Inner Mongolia Agricultural University, Hohhot, China.

Abstract

The double-projection deep computation model (DPDCM) proved to be effective for big data fea-
ture learning. However, DPDCM cannot capture the underlying correlations over the different
modalities enough since it projects the input data into only two subspaces. To tackle this problem,
this paper presents a multi-projection deep computation model (MPDCM) to generalize DPDCM
for smart data in Internet of Things. Specially, MPDCM maps the input data into multiple non-
linear subspaces to learn the interacted features of IoT big data by substituting each hidden layer
with a multi-projection layer. Furthermore, a learning algorithm based on back-propagation and
gradient descent is designed to train the parameters of the presented model. Finally, extensive
experiments are conducted on two representative datasets, i.e, Animal-20 and NUS-WIDE-14, to
verify the presented model by comparing with DPDCM. Results show that the presented model
achieves higher classification accuracy than DPDCM, proving the potential of the presented model
to drill smart data for Internet of Things.

Keywords: Big data, Internet of Things, Smart data, Deep Computation Model,
Back-propagation

1. Introduction

Recently, Internet of Things (IoT) have
achieved great progress by integrating ad-
vanced sensing devices such as sensors and R-
FIDs into communication networks [1]. Spe-
cially, big data processing techniques such
as data compression, deep learning, correla-
tion analysis and clustering are playing a re-
markable role in Internet of Things [2], [3].
For example, deep learning, an recently ad-
vanced artificial intelligence technique is used

∗Corresponding author: bufanyu@imufe.edu.cn.

to find the valuable information, i.e., smart da-
ta, from IoT big data for smart market analysis
in industrial manufacture. A unique proper-
ty of IoT big data is its high variety, i.e., data
comes from various sources such as cameras
and sensors, with different formats like text,
image and audio [4]. Typically, each heteroge-
neous data object has more than one modali-
ties, implying that heterogeneous data is typi-
cally multi-modal [5]. For instance, a piece of
video usually contains two modalities, i.e., im-
age and audio, or three modalities, i.e., image,
audio and text.

Preprint submitted to Future Generation Computer Systems September 10, 2018



Each modality of the multi-modal objec-
t shows the distinct information from one an-
ther, however, each modality has the close re-
lation with others. The multi-modal property
of heterogeneous data imposes a huge chal-
lenge on deep learning models for drilling s-
mart data in IoT applications [6].

The first successfully trained deep learn-
ing model is the deep belief network which
is constructed by several restricted boltzman-
n machines [7]. Over the last decade, some
other deep learning models like stacked auto-
encoders and recursive neural networks have
also been trained successfully [8]. Generally
speaking, deep learning has more than one hid-
den layers and each hidden layer represents a
layer of learned features of the input data. So,
deep learning can learn multi-level features
for the input data. Furthermore, deep learn-
ing enjoys its success in various applications
like speech recognition and machine transla-
tion with a two-stage training policy, i.e., pre-
training and fine-tanning [9], [10]. However,
the traditional deep learning models are only
suitable for single-modal data feature learning
[11]. In other words, it is difficult for the tradi-
tional deep learning models to learn features
for heterogeneous or multi-modal data. To
tackle this issue, some multi-modal deep neu-
ral networks such as multi-modal deep boltz-
mann machines and multi-model deep learn-
ing were presented [12], [13]. Representative
multi-modal deep neural networks first learn a
joint representation for the multi-modal object
by concatenating the features of each modal-
ity learned by a special deep learning mod-
el. Furthermore, they learn the features on
the learned joint representation. Although the
multi-modal deep neural networks have made
some progress for heterogeneous data feature
learning, they are also hard to capture the in-
herent correlations over different modalities
by the means of linearly linking the learned

features of each modality [11].
To address this problem, a deep computa-

tion model was presented to mine smart da-
ta in IoT applications. A deep computation
model can be viewed as a generalization of a
deep learning model for big data feature learn-
ing. Specially, a deep computation generalizes
a stacked auto-encoder from the vector space
to the high-order tensor space. In the deep
computation model, each multi-modal data ob-
ject is presented by a tensor while the ten-
sor distance is utilized to define the objective
function for capturing the inherent features of
multi-modal data. More recently, a double-
projection deep computation model (DPDCM)
was presented to further generalize the deep
computation model for big data feature learn-
ing by substituting each hidden layer with a
double-projection layer [11]. DPDCM can
effectively reveal the underlying correlations
over different modalities by mapping the input
data into two nonlinear subspaces. However,
only two nonlinear subspaces are not enough
for the deep computation model to capture the
interacted features over different modalities.

Motivated by the neuroscience observation
that the interacted inherent features of multi-
modal data are generally hidden among dif-
ferent subspaces [15], the paper presents a
multi-projection deep computation model (M-
PDCM) for smart data in IoT systems. Spe-
cially, MPDCM aims to generalize the double-
projection deep computation model by the
means of substituting each double-projection
layer with a multi-projection layer. In detail,
MPDCM first maps each multi-modal objec-
t into several different subspaces to reveal the
features hidden in the different subspaces, and
then learns the interacted inherent features to
capture the underlying correlations by map-
ping the subspaces into the output via a weight
tensor. To train the parameters of MPDCM,
an equivalent alternative form of MPDCM is

2



devised and accordingly an updating approach
for the parameters based on back-propagation
and gradient descent is implemented. Final-
ly, MPDCM is verified on two representative
datasets, namely Animal-20 and NUS-WIDE-
14, by comparing with DPDCM regarding the
classification accuracy in the experiments. Re-
sults imply that MPDCM can achieve higher
classification accuracy than DPDCM, proving
its potential for big data feature learning.

In summary, the contributions are three-
fold:

• A multi-projection deep computation
model is presented to generalize DPD-
CM for heterogeneous data feature learn-
ing by substituting each hidden layer
of the deep computation model with a
multi-projection layer. Specially, MPD-
CM is constructed by stacking several
multi-projection tensor auto-encoders to
learn hierarchical features for heteroge-
neous data.

• A multi-projection tensor auto-encoder
(MPTAE) is devised to reveal the fea-
tures hidden in the different subspaces by
mapping each layer to several different
nonlinear subspaces. Furthermore, MP-
TAE learns the interacted inherent fea-
tures to capture the underlying correla-
tions by mapping the subspaces into the
output via a weight tensor.

• To train the parameters of each layer in
MPDCM, an equivalent alternative for-
m of MPTAE is devised and accordingly
an updating approach for the parameter-
s based on back-propagation and gradient
descent is implemented in this paper.

The reminder of this paper is organized as
follows. Section 2 provides preliminaries and

Section 3 describes the details of the present-
ed model. The learning algorithm for training
the presented model is illustrated in Section 4
and the results are reported in Section 5. Sec-
tion 6 reviews the related work and Section 7
concludes the paper.

2. Preliminaries

2.1. Deep Computation Model
The deep computation model is effective to

abstract multi-level features for big data, es-
pecially for heterogeneous data, typically by
stacking a couple of tensor auto-encoders, as
presented in Figure 1 [14]. A tensor can be
viewed as a multidimensional array in math-
ematics. For example, RI1×I2×I3 denotes a
three-order tensor in which Ii(i = 1, 2, 3) de-
notes the dimensionality of the i-th order.

In the tensor auto-encoder with the param-
eters θ, each original multi-modal object X is
formatted as a tensor X ∈ RI1×I2×···×IN and it
is mapped into the M -order hidden space via
an encoding function fθ:

Hj1...jM = fθ(

I1···IN∑

i1···iN
W

(1)
αi1···iNXi1···iN + b

(1)
j1···jM ),

(1)
where α = jM +

∑M−1
t=1 (jt − 1)

∏M
s=t+1 Js.

Afterwards, the hidden data H is recon-
structed to the N -order output layer Y via the
decoding function gθ:

Yi1...iN = gθ(

J1···JM∑

j1···jM
W

(2)
βj1···jMHj1···jM + b

(2)
i1...iN

),

(2)
where β = iN +

∑N−1
t=1 (it − 1)

∏N
s=t+1 Js.

The objective function is defined based on
the tensor distance regarding the object X as:

J(θ;X) =
1

2
(Y −X)TG(Y −X), (3)

3



(a) Tensor auto-encoder

(b) Deep computation model

Figure 1: Architecture of the deep computation model.

where G denotes the coefficient matrix.
Moreover, the global objective

function regarding the training set
X = {X(1), X(2), ..., X(m)} is defined
as:

JTAE(θ) =
1
m

m∑
i=1

(1
2
(Y (i) −X(i))

T
G(Y (i) −X(i)))

+ λ
2
(W (1)2 +W (2)2)

(4)
A couple of tensor auto-encoders could be

stacked to a deep computation model as pre-
sented in Figure 1 to abstract multi-level fea-
tures for smart data. The parameters of the
deep computation model could pre-trained in
a layer-wise manner from bottom to top first,
followed by a fine-tuning step by a global
high-order back-propagation from top to bot-
tom after imposing the supervised labels. To
enhance the training efficiency, several im-
proved deep computation models have been
devised by utilizing the tensor decomposition
schemes like canonical polyadic decomposi-
tion and tensor-train to compress the param-
eters significantly [14], [16].

2.2. Double-Projection Deep Computation
Model (DPDCM)

DPDCM attempts to learn the interacted in-
herent features for multi-modal objects. As
the basic module, the double-projection tensor
auto-encoder (DPTAE) maps each input object
into two subspaces by substituting the hidden
layer with a double-projection layer, as pre-
sented in Figure 2 [11].

From Figure 2(a), DPTAE maps the input
X into two different subspaces, i.e., h1 ∈
RP1×P2×···×PS and h2 ∈ RQ1×Q2×···×QT , via fθ:

H =

(
h1

h2

)
= fθ

([
W

(1)
1

W
(1)
2

]
X +

[
b
(1)
1

b
(1)
2

])
.

(5)
4



(a) Double-projection tensor
auto-encoder

(b) An alternative form of
DPTAE

Figure 2: Architecture of double-projection tensor auto-
encoder.

Furthermore, DPTAE reconstructs the hid-
den representations to the output via gθ:

yi1···iN = gθ(
P1···PS∑
p1···pS

Q1···QT∑
q1···qT

w
(2)
p1···pS ,q1···qT ,i1···iN

·h1p1···pS · h2q1···qT + b
(2)
i1···iN ).

(6)
To use back-propagation to train the param-

eters, an alternative form of DPTAE was pro-
vided via the tensor Kronecker product ⊗, as
presented in Figure 2(b):

u = h1 ⊗ h2, (7)

where u can be viewed as the interactive fea-
tures of h1 and h2.

Given two tensors, i.e., A ∈ RI1×I2×···×IN

and B ∈ RJ1×J2×···×JN , their Kroneck-
er product will produce C = A ⊗
B ∈ RI1J1×I2J2×···×INJN with each entry
ci1,j1,...,iN ,jN

= ai1,...,iN bj1,...,jN where ik, jk =
jk + (ik − 1)Jk. Eq. (8) shows an example of
the Kronecker product of two matrices.

[
a11 a12
a21 a22

]
⊕
[
b11 b12
b21 b22

]
=

⎡
⎢⎢⎣

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a21b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎤
⎥⎥⎦ .

(8)

Based on Eq. (7), Eq. (6) can be rewritten
as:

yi1···iN = gθ(
P1···PSQ1···QT∑
p1···pSq1···qT

w
(2)
p1···pSq1···qT ,i1···iN

·up1···pSq1···qT + b
(2)
i1···iN ).

(9)
To simplify the training for the parameters,

DPTAE defines the objective function regard-
ing X as:

5



JDPTAE(θ;X) = 1
2
(Y −X)T (Y −X)

= 1
2

I1∑
i1

· · ·
IN∑
iN

(Yi1···iN −Xi1···iN )
2.

(10)
Moreover, the global objective

function regarding the training set
X = {X(1), X(2), ..., X(m)} is defined
as:

JDPTAE(θ) = [ 1
m

m∑
i=1

(1
2
(Y −X)T (Y −X))]+

λ
2
(
I1···IN∑
i1···iN

P1···PS∑
p1···pS

(w
(1)
1(i1···iN ,p1···pS))

2

+
I1···IN∑
i1···iN

Q1···QT∑
q1···qT

(w
(1)
2(i1···iN ,q1···qT ))

2

+
P1···PS∑
p1···pS

Q1···QT∑
q1···qT

I1···IN∑
i1···iN

(w
(2)
p1···pS ,q1···qT ,i1···iN ))

2
).

(11)
A couple of DPTAEs are stacked to a

double-projection deep computation model,
described in Figure 3 [11].

3. Multi-Projection Deep Computation
Model (MPDCM)

To learn the interactive inherent features
for multi-modal objects, MPDCM general-
izes DPDCM by substituting each hidden lay-
er of DPDCM with a multi-projection lay-
er. As the basic module of MPDCM, the
multi-projection tensor auto-encoder is illus-
trated first, followed by the MPDCM model.
Specially, this paper takes the triple-projection
model for example to describe the model ar-
chitecture and the learning algorithm.

Figure 4 shows the architecture of the multi-
projection tensor auto-encoder.

Regarding the triple-projection tensor auto-
encoder presented in Fig. 4(a), the input X
is firstly mapped into three different nonlin-
ear subspaces, i.e, h1 ∈ RO1×···×OR , h2 ∈

(a) Double-projection tensor
auto-encoder (DPDCM)

(b) An alternative form of D-
PDCM

Figure 3: Architecture of double-projection deep com-
putation model.

6



(a) Triple-projection tensor
auto-encoder (TPTAE)

(b) An alternative form of
TPTAE

Figure 4: Architecture of multi-projection tensor auto-
encoder.

RP1×···×PS and h3 ∈ RQ1×···×QT , in the hid-
den layer via the encoding function f(x) =
1/(1 + e−x):

H =

⎛
⎝

h1

h2

h3

⎞
⎠ = f

⎛
⎜⎝

⎡
⎢⎣

W
(1)
1

W
(1)
2

W
(1)
3

⎤
⎥⎦X +

⎡
⎢⎣

b
(1)
1

b
(1)
2

b
(1)
3

⎤
⎥⎦

⎞
⎟⎠

(12)
where W

(1)
1 ∈ RI1×···×IN×O1×···×OR ,

W
(1)
2 ∈ RI1×···×IN×P1×···×PS and

W
(1)
3 ∈ RI1×···×IN×Q1×···×QT represent

the weigh tensors projecting X into three sub-
spaces, respectively and three corresponding
biases are b

(1)
1 ∈ RO1×···×OR , b(1)2 ∈ RP1×···×PS

and b
(1)
3 ∈ RQ1×···×QT , respectively.

Furthermore, TPTAE reconstructs the hid-
den features H into the output Y via an
(R + S + T + N)-order weight W (2) ∈
RO1×···×OR×P1×···×PS×Q1×···×QT×I1×···×IN and
an N -order bias b(2) ∈ RI1×···×IN :

yi1···iN = f(
O1···OS∑
o1···oS

P1···PS∑
p1···pS

Q1···QT∑
q1···qT

w
(2)
o1···oRp1···pSq1···qT i1···iN

h1(o1···oR) · h2(p1···pS) · h3(q1···qT ) + b
(2)
i1···iN ).

(13)
To train the parameters represented by θ,

TPTAE defines the objective function regard-
ing the training set as:

JTPTAE(θ) = [ 1
m

m∑
i=1

(1
2
(Y −X)T (Y −X))]+

λ
2
(
I1···IN∑
i1···iN

O1···OR∑
o1···oR

(w
(1)
1(i1···iN ,p1···pS))

2

+
I1···IN∑
i1···iN

P1···PS∑
p1···pS

(w
(1)
2(i1···iN ,p1···pS))

2

+
I1···IN∑
i1···iN

Q1···QT∑
q1···qT

(w
(1)
3(i1···iN ,q1···qT ))

2

+
P1···PS∑
p1···pS

Q1···QT∑
q1···qT

I1···IN∑
i1···iN

(w
(2)
p1···pS ,q1···qT ,i1···iN ))

2
).

(14)
7



Figure 4(b) gives an equivalent form of TP-
TAE via the tensor Kronecker product ⊗:

u = h1 ⊗ h2 ⊗ h3, (15)

where u can be viewed as interactive represen-
tation of three nonlinear subspaces. Therefore,
Eq. (11) can be rewritten as:

yi1···iN = f(
O1···ORP1···PSQ1···QT∑
o1···oRp1···pSq1···qT

w
(2)
o1···oRp1···pSq1···qT ,i1···iN

·uo1···oRp1···pSq1···qT + b
(2)
i1···iN ).

(16)
With Eq. (16), back-propagation can be u-

tilized to train the parameters, described in the
following section.

Figure 5 presents the architecture of a triple-
projection deep computation model which is
stacked by a couple of TPTAEs for big data
multi–level feature learning.

Assume that h0 = X , hi(0 < i < l) and
hl = Y denote the input data, the i-th hid-
den layer and the output, respectively, present-
ed in Fig. 5(a). TPDCM first maps the input
data X to the first hidden layer h1 which has
three different subspaces, h1

1, h1
2 and h1

3, vi-
a the encoding function, and then maps every
subspace h1

j(j = 1, 2, 3) to the second hidden
layer h2 which also has three different sub-
spaces, h2

1, h2
2 and h2

3. TPDCM repeats this
link from bottom to top until hl−1 which rep-
resents the learned last level features of X . Fi-
nally, the three subspaces, hl−1

1 , hl−1
2 and hl−1

3 ,
are mapped to the output Y for the tasks of
classification and recognition. Fig. 5(b) gives
an alternative form of TPDCM in which the in-
teractive inherent representation of each layer
can be obtained via the tensor Kronecker prod-
uct. For example, the i-layer interactive repre-
sentation ui of X can be obtained via:

ui = hi
1 ⊗ hi

2 ⊗ hi
3. (17)

(a) Triple-projection deep
computation model (TPD-
CM)

(b) An alternative form of T-
PDCM

Figure 5: Architecture of multi-projection deep compu-
tation model.

8



4. Learning Algorithm

In this work, a updating approach based
on gradient descent is implemented to
learn the parameters of TPTAE. Let
ΔW and Δb denote the derivatives of
JTPTAE(θ;X) regarding the parameters θ =

{W (1)
1 , b

(1)
1 ,W

(1)
2 , b

(1)
2 ,W

(1)
3 , b

(1)
3 ;W (2), b(2)}

for X . The average derivatives ΔW
and Δb of the global objective function
JTPTAE(θ) regarding all the training objects
{X(1), X(2), . . . , X(m)} can be obtained via:

ΔW =
1

m

m∑

i=1

ΔWi + λW. (18)

Δb =
1

m

m∑

i=1

Δbi. (19)

Depending on gradient descent, the param-
eters θ can be updated via:

W ← W − ηΔW. (20)

b ← b− ηΔb. (21)

Therefore, the key for updating the parame-
ters is to compute the partial derivatives ΔW
and Δb of the objective function regarding
each training object. In this paper, back-
propagation is extended to the tensor space for
computing ΔW and Δb. To this end, the vari-
ables z

(2)
1 , z

(2)
2 , z

(2)
3 and z(3) are introduced

to describe the forward-propagation of TPTAE
as:

z
(2)
1(o1...oR) =

I1···IN∑

i1···iN
W

(1)
o1...oRi1···iNXi1···iN+b

(1)
i1···iN ,

(22)

h1(o1...oR) = f(z
(2)
1(o1...oR)), (23)

z
(2)
2(p1...pS)

=

I1···IN∑

i1···iN
W

(1)
p1...pSi1···iNXi1···iN+b

(1)
i1···iN ,

(24)

h2(p1...pS) = f(z
(2)
2(p1...pS)

), (25)

z
(2)
3(q1...qT ) =

I1···IN∑

i1···iN
W

(1)
q1...qT i1···iNXi1···iN+b

(1)
i1···iN ,

(26)

h3(q1...qT ) = f(z
(2)
3(q1...qT )), (27)

z
(3)
i1···iN =

O1···OS∑
o1···oS

P1···PS∑
p1···pS

Q1···QT∑
q1···qT

w
(2)
o1···oRp1···pSq1···qT i1···iN

h1(o1···oR) · h2(p1···pS) · h3(q1···qT ) + b
(2)
i1···iN

,

(28)

yi1···iN = f(z
(3)
i1···iN ). (29)

The following four steps describe the com-
putation of the partial derivatives ΔW and Δb.

Step 1. Compute “error term” σ(3) via E-
q.(30).

σ
(3)
i1···iN = ∂JTPTAE(θ;X)

∂z
(3)
i1···iN

= ∂

∂z
(3)
i1···iN

[1
2

I1∑
i1

· · ·
IN∑
iN

(yi1···iN − xi1···iN )
2]

= f ′(z(3)i1···iN )(yi1···iN − xi1···iN )
= yi1···iN (1− yi1···iN )(yi1···iN − xi1···iN ).

(30)
Step 2. Compute “error term” σ(2) via:

9



σ
(2)
1(o1···oR) =

∂JTPTAE(θ;X)

∂z
(2)
1(o1···oR)

=

I1···IN∑
i1···iN

∂JTPTAE(θ;X)

∂z
(3)
i1···iN

· ∂z
(3)
i1···iN

∂z
(2)
1(o1···oR)

=

I1···IN∑
i1···iN

(σ
(3)
i1···iN

Q1···QT∑
q1···qT

P1···PS∑
p1···pS

w
(2)
o1···oRp1···pSq1···qT i1···iN

·h3(q1···qT )
· h2(p1···pS)h1(o1···oR)

(1− h1(o1···oR)
)),

(31)

σ
(2)
2(p1···pS) =

∂JTPTAE(θ;X)

∂z
(2)
2(p1···pS)

=

I1···IN∑
i1···iN

∂JTPTAE(θ;X)

∂z
(3)
i1···iN

· ∂z
(3)
i1···iN

∂z
(2)
2(p1···pS)

=

I1···IN∑
i1···iN

(σ
(3)
i1···iN

Q1···QT∑
q1···qT

O1···OS∑
o1···oS

w
(2)
o1···oRp1···pSq1···qT i1···iN

·h3(q1···qT )
· h2(p1···pS)h1(o1···oR)

(1− h2(p1···pS))),
(32)

σ
(2)
3(q1···qT ) =

∂JTPTAE(θ;X)

∂z
(2)
3(q1···qT )

=

I1···IN∑
i1···iN

∂JTPTAE(θ;X)

∂z
(3)
i1···iN

· ∂z
(3)
i1···iN

∂z
(2)
3(q1···qT )

=

I1···IN∑
i1···iN

(σ
(3)
i1···iN

P1···PT∑
p1···pT

O1···OS∑
o1···oS

w
(2)
o1···oRp1···pSq1···qT i1···iN

·h3(q1···qT )
· h2(p1···pS)h1(o1···oR)

(1− h3(q1···qT )
)).

(33)
Step 3. Compute ∂z(l+1)

∂W (l) (l = 1, 2) via:

∂z
(3)
i1···iN

∂w
(2)
o1···oRp1···pSq1···qT i1···iN

= ∂

∂w
(2)
o1···oRp1···pSq1···qT i1···iN

(
O1···OS∑
o1···oS

P1···PS∑
p1···pS

Q1···QT∑
q1···qT

w
(2)
o1···oRp1···pSq1···qT i1···iN

h1(o1···oR) · h2(p1···pS) · h3(q1···qT ) + b
(2)
i1···iN )

= h1(o1···oR) · h2(p1···pS) · h3(q1···qT ),
(34)

∂z
(2)
1(o1···oR)

∂w
(1)
1(i1···iNo1···oR)

= Xi1···iN (35)

∂z
(2)
2(p1···pS)

∂w
(1)
2(i1···iNp1···pS)

= Xi1···iN , (36)

∂z
(2)
3(q1···qT )

∂w
(1)
3(i1···iN ,q1···qT )

= Xi1···iN . (37)

Step 4. Compute ΔW and Δb according to
the chain rule:

ΔW
(1)
1(i1···iNo1···oR) = σ

(2)
1(o1···oR) ·Xi1···iN , (38)

ΔW
(1)
2(i1···iNp1···pS) = σ

(2)
2(p1···pS) ·Xi1···iN , (39)

ΔW
(1)
3(i1···iN q1···qT ) = σ

(2)
1(q1···qT ) ·Xi1···iN , (40)

Δb
(1)
1(o1···oR) = σ

(2)
1(o1···oR), (41)

Δb
(1)
2(p1···pS) = σ

(2)
2(p1···pS), (42)

Δb
(1)
3(q1···qT ) = σ

(2)
3(q1···qT ), (43)

Δw
(2)
o1···oRp1···pSq1···qT i1···iN =

σ
(3)
i1···iN · h1(o1···oR)

· h2(p1···pS) · h3(q1···qT )
,

(44)

Δb
(2)
i1···iN = σ

(3)
i1···iN . (45)

In summary, the updating approach for
training TPTAE is described in Algorithm 1.

From Algorithm 1, the computational
cost of the updating approach is domi-
nated by forward-propagation and back-
propagation. Let I = max{I1, . . . , IN},
U = max{R, S, T}, and V =
max{O1, . . . , OR, P1, . . . , PS, Q1 . . . , QT}.
During each iteration, the forward-
propagation has a computational cost of

10



Algorithm 1: Learning Algorithm for
Training TPTAE.
Input: {X(i)}mi=1, η, λ, threshold
Output: θ =

{W (1)
1 , b

(1)
1 ,W

(1)
2 , b

(1)
2 ,W

(1)
3 , b

(1)
3 ;W (2), b(2)}

1 for example = 1, 2, ...,m do
2 for ol = 1, . . . , or(s = 1, . . . , R) do
3 Compute z

(2)
1(o1...oR);

4 Compute h1(o1...oR);

5 for pl = 1, . . . , ps(s = 1, . . . , S) do
6 Compute z

(2)
2(p1...pS)

;
7 Compute h2(p1...pS);

8 for ql = 1, . . . , qt(t = 1, . . . , T ) do
9 Compute z

(2)
3(q1...qT );

10 Compute h3(q1...qT );

11 for ik = 1, . . . , Ik(k = 1, . . . , N) do
12 Compute z

(3)
i1···iN ;

13 Compute Yi1...iN ;

14 if JDPTAE(θ) > threshold then
15 for ik = 1, . . . , Ik(k = 1, . . . , N)

do
16 Compute σ

(3)
i1···iN ;

17 for ol = 1, . . . , or(s = 1, . . . , R)
do

18 Compute σ
(2)
1(o1···oR);

19 for pl = 1, . . . , ps(s = 1, . . . , S)
do

20 Compute σ
(2)
2(p1···pS);

21 for ql = 1, . . . , qt(t = 1, . . . , T )
do

22 Compute σ
(2)
3(q1···qT );

23 for ik = 1, . . . , Ik(k = 1, . . . , N)
do

24 Compute Δb
(2)
i1...iN

;
25 for

ol = 1, . . . , or(s = 1, . . . , R)
do

26 for pl = 1, . . . , ps(s =
1, . . . , S) do

27 for ql = 1, . . . , qt(t =
1, . . . , T ) do

28 Compute
Δw

(2)
o1···oRp1···pSq1···qT i1···iN ;

O(INV 3U) while the back-propagation
has the same computational cost as the
forward-propagation. So, the overall compu-
tational cost of Algorithm 1 is approximately
O(kINV 3U) with k denoting the number of
iterations. Note that N and U are typically
very small constant positive integers. Once
the architecture of TPTAE is fixed, the com-
putational cost of the updating approach is
polynomial regarding I and V . Moreover,
Algorithm 3 is easily extended to update
the parameters of multi-projection tensor
auto-encoder for obtaining a multi-projection
deep computation model.

5. Experiments

In this work, the presented model (MPD-
CM) is verified on two highly heterogeneous
datasets, Animal-20 and NUS-WIDE-14, by
comparing with DPDCM in the experiments.

5.1. Results on Animal-20

Animal-20 is a subset of Animal [11]. Spe-
cially, it has 20 groups and totally 12 000 ob-
jects. In this work, 9000 objects are randomly
chose as the training set and the rest are used
as the testing set. In the experiments, each ob-
ject in Animal-20 is formatted as a 3-order ten-
sor R64×64×20, so the input of each model is a
R64×64×20 tensor.

First, the MPTAE is compared with DPTAE
regarding classification accuracy on Animal-
20. Each model is performed for 5 times to
verify the robustness, each with random ini-
tialization. The results are listed in Table 1.

According to the results listed in Table 1, the
classification accuracy is gradually improved
when the number of the subspaces increases.
For instance, when the number of subspaces
increases from 2 to 3, the average classification
accuracy is improved from 42.8% to 46.2%.
Such results clearly imply that increasing the

11



Table 1: Classification results of various tensor auto-
encoders on Animal-20.

Model 1 2 3 4 5

DPTAE 0.42 0.41 0.49 0.45 0.37
TPTAE 0.45 0.49 0.51 0.45 0.41
QPTAE 0.51 0.50 0.55 0.47 0.48
FPTAE 0.51 0.51 0.55 0.46 0.48

number of subspaces can improve the learn-
ing performance of the tensor auto-encoder
for heterogeneous data. Furthermore, when
the number of subspaces is more than 4, the
classification accuracy keeps unchangeable on
Animal-20. Specially, QPTAE produces al-
most the same classification results as FPTAE.

Next, MPDCM is compared with DPDCM
on Animal-20. Table 2 shows the classification
results.

Table 2: Classification results of various tensor auto-
encoders on Animal-20.

Model 1 2 3 4 5

DPDCM 0.66 0.64 0.67 0.69 0.67
TPDCM 0.69 0.71 0.67 0.72 0.68
QPDCM 0.73 0.72 0.69 0.75 0.71
FPDCM 0.74 0.72 0.71 0.75 0.71

Table indicates three important observation-
s. First, with the growing number of sub-
spaces, the classification accuracy of various
deep computation models increases. For in-
stance, QPDCM achieves significantly high-
er classification accuracy than TPDCM on
Animal-20, implied by the fact that they yield
the average classification accuracy of 72% and
69.4%, respectively. Second, the deep compu-
tation model performs significantly better than
the corresponding tensor auto-encoder when
they have the same number of subspaces. Spe-
cially, QPDCM and QPTAE produce the aver-
age classification results of 72% and 50.2%,

respectively. Finally, as the number of sub-
spaces increases to 4, the multi-projection
deep computation models produce almost the
same classification accuracy. Such observa-
tions prove the effectiveness of the multi-
projection deep computation model for het-
erogenous data feature learning.

Table 3 and Table 4 show the average train-
ing time of each model.

Table 3: Average training time (Minutes) of various ten-
sor auto-encoders on Animal-20.

DPTAE TPTAE QPTAE FPTAE

13.37 16.48 15.29 15.81

Table 4: Average training time (Minutes) of various
deep computation models on Animal-20.

DPDCM TPDCM QPDCM FPDCM

152.26 148.54 167.85 166.93

Table 3 shows that various tensor auto-
encoders take almost the same time to train the
parameters while different multi-projection
deep computation models spend almost the
same time in training the parameters despite
the different numbers of subspaces. This is be-
cause various deep computation models have
the same number of hidden units and they all
use the extended back-propagation to train pa-
rameters, resulting in almost the same compu-
tational cost.

5.2. Results on NUS-WIDE-14

NUS-WIDE-14 is a subset of NUS-WIDE
and it has 20 000 objects, fallen into 14 group-
s [11]. Specially, 15 000 objects are chosen
to train the parameters and the rest are utilized
to test the performance regarding the classifi-
cation accuracy. In this work, each object in

12



NUS-WIDE-14 is formatted as a 3-order ten-
sor R192×192×24, so the input of various mod-
els is a R192×192×24 tensor.Table 5 and Table 6
show the classification results of various mod-
els on NUS-WIDE-14.

Table 5: Classification results of various tensor auto-
encoders on NUS-WIDE-14.

Model 1 2 3 4 5

DPTAE 0.66 0.62 0.61 0.65 0.58
TPTAE 0.69 0.65 0.66 0.65 0.62
QPTAE 0.71 0.74 0.69 0.71 0.73
FPTAE 0.72 0.75 0.69 0.71 0.72

Table 6: Classification results of various deep computa-
tion models on NUS-WIDE-14.

Model 1 2 3 4 5

DPDCM 0.79 0.76 0.81 0.79 0.73
TPDCM 0.81 0.79 0.83 0.79 0.76
QPDCM 0.82 0.84 0.86 0.81 0.79
FPDCM 0.83 0.84 0.86 0.80 0.81

From Table 5 and Table 6, each multi-
projection deep computation model achieves
significantly higher accuracy than the
corresponding multi-projection tensor auto-
encoders with the same number of subspaces.
For example, QPDCM and QPTAE pro-
duce the average classification accuracy
of 82.4% and 71.6%, respectively. Such
results argue that the multi-projection deep
computation model is more effective than
the multi-projection tensor auto-encoder
for heterogeneous data feature learning.
Moreover, the MPDCM models outperform
DPDCM in terms of classification accuracy
on NUS-WIDE-14. For example, FPDCM
produces the average accuracy of 82.8%
while DPDCM yields the average accuracy of
77.6%. Such experimental results demonstrate

the effectiveness of the presented generalized
multi-projection deep computation models.

The average training time of each model is
shown in Table 7 and Table 8.

Table 7: Average training time (Minutes) of various ten-
sor auto-encoders on NUS-WIDE-14.

DPTAE TPTAE QPTAE FPTAE

37.28 35.42 51.06 45.59

Table 8: Average training time (Minutes) of various
deep computation models on NUS-WIDE-14.

DPDCM TPDCM QPDCM FPDCM

259.46 287.32 261.53 271.48

Although the multi-projection deep compu-
tation models have more subspaces than DPD-
CM in each hidden layer, the MPDCM mod-
els are not significantly more time-consuming
than DPDCM for training the parameters since
they have almost the same computational cost
due to the same number of the hidden units.

6. Related Work

In the past few years, a couple of multi-
model deep neural networks have been inves-
tigated to learn multi-level features for big da-
ta, especially for heterogeneous data. The fist
multi-model deep neural network was investi-
gated by Ngiam et al. to learn features over
two different modalities, i.e., audio and video
[12].

Two sparse boltzmann machines are first-
ly constructed to learn features for audio and
video separately, and then the learned features
are linked linearly as the shared representation
of two modalities. Furthermore, a belief neu-
ral network is constructed to learn features on
the shared representation.

13



Another typical multi-modal deep neural
network is the multimodal learning model with
deep boltzmann machines for text-image bi-
modal learning [13]. Specially, an image-
specific deep belief network and a text-specific
deep belief network are constructed to learn
features for image and text separately. Further-
more, the shared representation is obtained by
means of linking the learned features to model
the joint distribution over the image modality
and the text modality.

More recently, a multi-model convolution-
al neural network model was investigated to
learn the answer to the visual question [17]. In
this model, two separate convolutional neural
networks are built to encoder the image con-
tent and to produe the question representation,
respectively. Moreover, another convolutional
neural network is built to yield the shared rep-
resentation by linking the image features and
the question features. Furthermore, the shared
representation is input to the softmax layer to
generate the answer.

In addition, a stochastic long short term
memory is presented to perform the uncertain-
ty backward propagation. Other representative
multi-modal deep neural networks include the
multi-modal residual learning [18] and the hi-
erarchical multi-modal long short term memo-
ry [19] and so on [20].

7. Conclusion

In this study, a multi-projection deep com-
putation model is investigated for Industrial
heterogeneous big data feature learning. One
key property of the investigated model is to
project each input object into multiple nonlin-
ear subspaces to capture the underlying fea-
tures hidden in the different spaces. Further-
more, the interactive inherent features of the
heterogeneous object can be learned by using
the Kronecker product to fuse the features in

the different subspaces. Experiments are car-
ried out to compare the multi-projection deep
computation models with the different number
of subspaces. The results clearly imply that the
quadruple-projection model and the fivefold-
projection model perform significantly better
than the double-projection model on Animal-
20 and NUS-WIDE-14, proving the effective-
ness of the investigated model to generalize
the double-projection deep computation mod-
el. Actually, the double-projection deep com-
putation model can be seen as a specific exam-
ple of the investigated model. Therefore, the
presented model is potential for industrial big
data feature learning.

Although two representative heterogeneous
datasets, namely Animal-20 and NUS-WIDE-
14, have preliminarily proved the effectiveness
of the presented model for heterogenous da-
ta learning in the experiments, they are not
large enough. In the future work, the present-
ed model will be further verified on industrial
larger heterogeneous datasets. Moreover, the
classification results are slightly fluctuant be-
cause of the effect of initial parameters. There-
fore, the advanced initialization methods will
be investigated to improve the performance of
the presented model in the future work.

8. Acknowledge

This study was supported by four foun-
dations including No. 201605020, No.
61762068, No. 2017MS0610 and No. N-
JZY16145.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M.
Aledhari, M. Ayyash, Internet of Things: A Survey
on Enabling Technologies, Protocols, and Applica-
tions, IEEE Communications Surveys and Tutorials
17(4)(2015) 2347-2376.

14



[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W.
Zhao, A Survey on Internet of Things: Architec-
ture, Enabling Technologies, Security and Privacy,
and Applications, IEEE Internet of Things Journal
4(5)(2017) 1125-1142.

[3] Q. Zhang, L. T. Yang, Z. Chen, P. Li, F. Bu, An
Adaptive Dropout Deep Computation Model for In-
dustrial IoT Big Data Learning with Crowdsourcing
to Cloud Computing, IEEE Transactions on Indus-
trial Informatics 2018, 10.1109/TII.2018.2791424.

[4] M. Z. A. Bhuiyan, G. Wang, J. Wu, J. Cao, Depend-
able Structural Health Monitoring Using Wireless
Sensor Networks, IEEE Transactions on Depend-
able and Secure Systems 14(4)(2017) 363-376.

[5] A. Fahad, N. Alshartri, Z. Tari, A. Alamri, I. Khalil,
A. Y. Zomaya, S. Foufou, A. Bouras, A Survey of
Clustering Algorithms for Big Data: Taxonomy and
Empirical Analysis, IEEE Transactions on Emerg-
ing Topics in Computing 2(3)(2014) 267-279.

[6] Q. Zhang, L. T. Yang, Z. Chen, P. Li, Se-
cure Weighted Possibilistic c-Means Algorithm on
Cloud for Clustering Big Data, Information Sci-
ences, 2018, 10.1016/j.ins.2018.02.013.

[7] G. E. Hinton, R. R. Salakhutdinov, Reducing the di-
mensionality of data with neural networks, Science
313(5786)(2006) 504-507.

[8] Y. LeCun, Y. Bengio, G. Hinton, Deep Learning,
Nature 521(7553)(2015) 436-444.

[9] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, P. Li, An
Efficient Deep Learning Model to Predict Cloud
Workload for Industry Informatics, IEEE Transac-
tions on Industrial Informatics 2018, 10.1109/TI-
I.2018.2808910.

[10] J. Schmidhuber, Deep Learning in Neural Net-
works: An Overview, Neural networks 61(2015)
85-117.

[11] Q. Zhang, L. T. Yang, Z. Chen, P. Li, M. J. Deen,
Privacy-preserving Double-projection Deep Com-
putation Model with Crowdsourcing on Cloud for
Big Data Feature Learning, IEEE Internet of Things
Journal 5(4)(2018) 2896 - 2903.

[12] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.
Y. Ng, Multimodal Deep Learning, in: Proceedings
of the 28th International Conference on Machine
Learning, 2011, 689-696.

[13] N. Srivastava, R. Salakhutdinov, Multimodal
Learning with Deep Boltzmann Machines, in: Ad-
vances in Neural Information Processing Systems,
2012, 2222-2230.

[14] Q. Zhang, L. T. Yang, Z. Chen, P. Li, A
Tensor-train Deep Computation Model for Indus-

try Informatics Big Data Feature Learning, IEEE
Transactions on Industrial Informatics 2018, DOI:
10.1109/TII.2018.2791423.

[15] D. Yu, L. Deng, F. Seide, The Deep Tensor Neu-
ral Network with Applications to Large Vocabulary
Speech Recognition, IEEE Transactions on Au-
dio, Speech, and Language Processing 21(2)(2013)
388-396.

[16] Q. Zhang, L. T. Yang, Z. Chen, P. Li, An Im-
proved Deep Computation Model Based on Canon-
ical Polyadic Decomposition, IEEE Transactions
on Systems, Man, and Cybernetics: Systems 2017,
DOI: 10.1109/TSMC.2017.2701797.

[17] L. Ma, Z. Liu, H. Li, Learning to Answer Ques-
tions from Image Using Convolutional Neural Net-
work, in: Proceedings of Association for the Ad-
vancement of Artificial Intelligence, 2016, 3567-
3573.

[18] J. Kim, S. Lee, D, Kwak, M. Heo, Multimodal
Residual Learning for Visual QA, in: Proceedings
of Neural Information Processing Systems, 2016,
pp. 361-369.

[19] Z. Niu, M. Zhou, L. Wang, X. Gao, G. Hua,
Hierarchical Multimodal LSTM for Dense Visual-
Semantic Embedding, in: Proceedings of IEEE In-
ternational Conference on Computer Vision, 2017,
1899-1907.

[20] L. Ma, Z. Chen, L. Xu, Y. Yan, Multimodal Deep
Learning for Solar Radio Burst Classification, Pat-
tern Recognition 61(2017) 573-582.

15



 

Fany

Univ

Mon

tech

assis

Fina

yu Bu receiv

versity, Hohh

ngolia Univer

nology from

stant professo

ance and Econ

 

ed the Bache

hot, China, in

rsity, Hohhot

m Dalian Univ

or at Depart

nomics, Chin

elor’s degree 

n 2003, and t

t, China, in 2

versity of Te

tment of Bio

na. His researc

in computer

the Master’s 

2009. He got

echnology, D

omedical Info

ch interests in

science from

degree in com

t the Ph.D d

Dalian, China

ormatics in I

nclude Big D

m Inner Mong

mputer applic

egree in com

a, in 2018. H

Inner Mongo

Data and Intern

golia Agricu

ication from I

mputer applic

He is currentl

olia Universi

rnet of Things

ltural 

Inner 

cation 

ly an 

ty of 

s. 



file:///C|/Documents%20and%20Settings/focal03/Desktop/Users/arathy/highlights.txt[08/10/2018 16:32:02]

A multi-projection deep computation model is presented to generalize DPDCM for smart data in Internet of Things. 
A learning algorithm based on back-propagation and gradient descent is designed to train the parameters of the 
presented model
The extensive experiments are conducted to evaluate the performance of the proposed scheme by comparing with 
DPDCM. 


