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Abstract:

The embracing of the Internet of Things (IoT) anc Cloud Computing technologies gives
excellent opportunities to develop smart healthcee sc~i-¢s that have great prediction
capabilities. This paper proposes a Hybrid Real-time Rei..~te Monitoring (HRRM) framework,
which remote-monitors patients continuously. Th. smart tramework predicts the real health
statuses of the patients in real time by using context awa. ~ness. The proposed HRRM framework
innovates a Patient’s Local Module (PLM) th.* uv .. convergence between loT sensors and
clouds. The HRMM transfers some of the compu “dons to the edge of the network in (PLM)
such as converting the low-level data to » “iglor level of abstraction to speed-up the
computations in the cloud portion of the HRMM. The convergence of IoT enables the HRMM to
use the enormous cloud power in storing, . *2ceso.ag, analyzing big data, building classification
models for the category of patients’ health _:atus. The local portion of the HRMM uses
classification models that have been t~ ... ~d in the cloud to predict the health status of the patient
locally in the event of internet ir .errupti n or cloud disconnection to save his life in the
disconnection periods. Furthermore, .. ‘< p7 per proposes a cloud classification technique that is
capable of dealing with big imb .lanr 2d aataset by minimizing errors especially in the minority
class that represents the critical ~itv stior 5. Finally, a hybrid algorithm of Naive Bayes (NB) and
Whale Optimization Algoritt.n (W 4, has been proposed to select the minimal set of features
that achieve the highest acr u.. ~v. The (NB-WOA) works as a safe-failure module that decides
when to stop the monitoring usi.; HRMM in the case of the failure of influential sensors.
Experiments have prov d t at the HRMM is capable of predicting the health status of the
patients suffering fron. bl od pressure disorders accurately. Also, it proved that NB-WOA
accelerates the classi’.cation , ocess and saves storage space.

Keywords: Smart Healthca. - In” :rnet of Things convergence (IoT); Naive Bayes (NB); Whale Optimization
Algorithm (WOA)- Big da*a; nabalanced dataset.




1. Introduction

Machine learning has many contributions in the medical field such as Remote Patient’s
Monitoring (RPM) systems that deliver care to the patient suffering from ¢ wronic disease
especially elderly patients at his home [1]. RPM is defined as using technc . ~v to monitor
patients remotely (e.g., at his house) to improve patient’s quality of life. It wracks "= patient
continuously without obstruction to the freedom of his movement t- 1 event possible
complications, and all these services should be provided at reasonable cost 2]. .mplantable and
wearable biomedical sensors have received much attention over the last t 7o de. ~des because of
the need to collect sensor data that contains physiological signals, patient’s a. “vity during vital
signs’ measurement, etc. in real time while practicing his daily rou* ne ”' IoT exploited the
progress in ubiquitous sensing which is qualified by Wireless Se.sor Network (WSN)
technologies to enable actuators and sensors to interact seamlessly ~~+h the ~mbient environment
and to share the collected information among different platforms IoT h. s made a huge leap by
enabling various technologies such as near field communica ‘on (M FC), Radio-frequency
identification (RFID) and embedded sensor to transform t'. internct into a fully integrated
platform [4,5]. There are many factors that can affect vital 'igr. v.lues of the patient such as
patient’s activities (current/last), ambient conditions (‘emperat-.e, humidity, noise, etc.),
patient’s habits (sleeping, smoking, alcoholic beverages, to.? etc.) and many other factors.
Context awareness defines the capability of a system to ather ir ‘ormation from the surrounding
environment at any time to comprehend it and adap. its v " .vior accordingly. Context-aware
RPM model uses this technique to comprehend the curre..“ health situation of the patient and
provide a personalized health care service accoraw. ~ly [6]. For example, context-aware RPM
refers to an emergency case when the patient’s heart ra.> (HR) increases above normal during
sleep while refers to a normal case if the increas * in ..« occurs during exercise. This technique
can be implemented by aggregating all sensor data .  the high-level form in one context state for
each period. Machine learning is used to unde. sw.~d wae health status of the patient and interpret
the fluctuations in the patient’s vital siens to »rovide the proper assistive service [7]. The
continuous monitoring of patients using Rr. * mouels is a source of big data generation because
the monitoring period may be extended for years with a fast sampling rate may be in
milliseconds resulting in the generati ... « “a huge amount of sensor data. Big data is one of the
famous terminologies in the current fecade 11at is used to describe the dataset that fulfills at least
one of the characteristics of 4 V’s mu.'=l “ volume- Velocity -Variety - Veracity) according to
IBM’s formal definition [8]. Thr cefc e, the architecture that contains IoT and cloud components
provides scalable data repositor. < .nd - zsilient computation processes on the cloud side for the
collected health data by IoT on the *,cal side [9]. Traditional RPMs depend on a standalone
application working on a b .nu. =ld device or local server and always customized for a specific
case depending on generi~ rules |.0]. These systems cannot manage big data and cannot be
trusted to monitor patier s s1 ffering from other diseases. Some researchers tried to address these
shortcomings by develo, ‘» ; context-aware models to predict the health status of the patient at
real-time [11,12]. F.rthermo 2, the recent researches proposed cloud-based frameworks for
knowledge extract’ m f om Lig data using clouds for storing and processing patient’s context
states to predict the pa.’=n’ s health status at the real time. The weak point of these models that
they put the pa‘.ent at visk when the connection with the cloud is lost or internet is interrupted
[13,14]. Also, t. ese mo .els ignored the problem of imbalanced datasets that is always present in
this type of d~*a. .. -~ _rimary motivations for this work are:
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e The need for developing context-aware RPM, which uses generic and personalized medical
rules to build a customized medical assistant that, comprehends the real health status of the
patient to minimize false alarms.

e The urgent need for developing an intelligent hybrid classification model th- ¢ works locally
to save the patient’s life in the case of cloud system failure or internet interr ptic.

e The need to address the shortcomings of the previous models in dealir , -vith imbalanced
datasets that result in generating false warnings especially in the emers 2nci 5 that represent
the minority class.

e The need to develop an algorithm that identifies the minimum number « © attrioutes required
to ensure the continuity of the model's work with highest efficiency anc soeeu.

The rest of this paper is organized as follows: The second section rep eser .s re.ated work, which

contains Remote Patient Monitor (RPM) models, NB and WOA: Tu. nroposed architecture

(HRRM) is presented in details in the third Section. The fourtl secticn introduces three case

studies for monitoring patients suffering from blood pressure « sorders in real-time, also, the

sampling methods that will be used to deal with imbalance” daw. ~*.. The Proposed Hybrid

Knowledge Discovery Classification Model (HKDM) is pres :nte-” .. the fifth section. The sixth

section illustrates the proposed NB-WOA. The evaluation ot ._.c pro ,osed classifiers and results

are outlined in the seventh Section. Our conclusions and . “turc work are drawn in the final
section.

2. Related work

2.1. The l1oT-Cloud Convergence in Smart healthca. ~

It is expected that many smart medical se.~ice, ..ill evolve because of the tremendous
development in IoT, cloud, and edge computing du nains and the integration among them. This
integration helps in developing new medical ~s.'~tive scenarios and new generations of smart
medical services and applications. Recentlv this “opic has increased interest in both industry and
academia aiming to design and implemen. advanced smart healthcare systems. Most of the
currently proposed architectures consist of a sei of layers for storing, processing, and analyzing
medical data.

Abawajy and Hassan [15] pro,~<ed a sustainable Cloud-Based Pervasive Patient Health
Monitoring (PPHM) architectur .. The . 'HM architecture contains three layers as follows:
Collection Station, Observatic © St.tior, and Data Centre. This architecture has been tested
through a case study for re .-time ~ onitoring for a patient suffering from congestive heart
failure. Chen et al. [16]  rop <ed an Edge-Cognitive-Computing-based (ECC-based) smart-
healthcare system for n~ ~itoring the physical health of users using cognitive computing.
Catarinucci et al. [17] * ropr sed an IoT aware smart hospital system that collects and monitors
patients’ parameters 1°sing ."e ultra-low-power hybrid sensing network in real time. Manogaran
et al. [18] proposed 4 ne v architecture to implement the IoT to process scalable sensor data (big
data) for healthcare a, ‘lice 1ons. In addition, they provide security services using the integration
of fog computir g with cloud computing. A healthcare service delivery architecture based on fog
computing has ‘een pr posed by Andriopoulou et al. [19]. It proposes module between Cloud

and IoT de . 2s 1w ovnable new types of computing and services. The proposed architecture
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consists of three main layers, which are: (i) fog servers for storing, processing, and analyzing
data, (ii) fog nodes for data aggregation, and (iii) cloud-based module for data storage. Rahmani
[20] proposed a Smart e-Health Gateway using the strategic position at the edge ef the network.
The concept of Fog Computing in Healthcare IoT systems is exploited by ~rming a Geo-
distributed intermediary layer of intelligence between sensor nodes and Cloud. In aJition, an
IoT-based Early Warning Score (EWS) health monitoring is implemented *, ac Iress a medical
case study. Dimosthenis et al. [21] Proposed an integrated Edge-Fog-Ci ¢ architecture for
Healthcare Internet of Things (EFCHIoT) Infrastructure. The EFCHIoT ai. hitecu.re consists of
three layers to store medical data, acquire process, and to provide real-t".nc decision-making. The
three layers are as follows: the first is the Edge layer that inclu ‘es “,ortavle and wearable
computational devices, the second is the Fog layer which is rec»ons..'e for gathering and
processing data from the Edge nodes, and the third is a cloud inf astruct. "¢ which is responsible
for data storage and analysis of the data uploaded from the comb1 ~tion .f Fog and Edge levels.
Experimental results have proved that EFCHIoT architer ure ~-ovides real-time decision-
making, fast queries’ processing, and less power consumpt. - . Ou' proposed architecture has
benefited from these ideas by innovating a hybrid architectu. > tha. does the main processing of
vital signs in the local portion of the architecture. Mo =over, it uses the power of the cloud to
store, processes the big imbalanced datasets, and train ~lass..” ~ .1on models from a huge number
of contexts. Additionally, it transfers the classification .-odel to the cloud portion of the
architecture to predict the health status of the patient .~ the case of internet interruption or cloud
disconnection.

2.2. Remote Patient Monitoring (RPM)

RPM has enabled physicians to monitor and obs. vve patients remotely using digital technologies
that collect health data, ambient condition. acuv.ties, etc. in any location, such as a patient’s
home, and to transmit the collected informa.'on electronically to healthcare providers for
assessment and taking appropriate ac*' ...~ [22,23]. The integration of non-invasive technologies
into healthcare management strateg’ s by g hering all possible information from the patient and
his ambient environment helps te imy ove e quality of decision-making [24-26]. RPM is an
interdisciplinary field exploiting advanceinent in many areas such as activity monitoring [27],
continuous care [28], personal.. ~d care (29], cloud-based healthcare architectures to achieve a
breakthrough in this area [13 (4,30,. Farlier trials for developing context-aware RPM has some
drawbacks, for instance, "a " cannot manage big data because they are based on local
architecture, each RPM is designeu for a specific disease, and they support a limited number of
context awareness ser ice: [31,32]. Many researchers struggled to solve the previous
shortcomings by develo, ‘n¢ Context-aware cloud-based models that can extract knowledge from
massive data gener.ted ti.m patients’ continuous monitoring [33,34]. The most recent
researches proposer fle ible architectures that facilitates adding or removing contexts easily, and
they are suitable for 1. mitr.ing any patient suffering from any chronic disease [13,14,35]. These
architectures w! olly d=pend on clouds in their operation, and this raises many inquiries about
what will happ. n to the monitored patient when the internet connection is interrupted, or failure
occurred in the '~ system. Furthermore, the problem of imbalanced datasets has been
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overlooked, most studies have only focused on accuracy to prove the efficiency of the model, but
we believe that this is misleading. The classifier succeeded in predicting patterns that belong to
the majority class and failed in the minorities which are more critical in these datasets because
they represent the emergency case of the patient [13,14].

2.3. Naive Bayes

Naive Bayes (NB) is the most popular classifier in the family of probabili-.ic ¢ assifiers. Naive
Bayes classifier uses the probabilistic theory to get the correct classificatio.. 136,37]. NB has
proven its effectiveness in many learning scenarios such as medical dia,o0sis [38,39], text
classification [40], sentiment analysis [41], image processing [42,4” | «1d wcb mining [44].
Classification using Bayesian network considers the dependency betv ~en .ttrivates for obtaining
the correct result [45]. NB is a particular case of the Bayesian algoritht.. ~ssuming that features
are independent of each other [46]. This assumption makes trainir ; phas: simpler and faster with
nearly similar results. NB is working as follows [46]:

Let the training set T has some tuples; each one is represe~*sd ., .n n-dimensional vector
X={x1, Xa,..., Xn} and each vector describes n attributes A;, A,. ., . .. Each Sample belongs to
one class of m classes: Cy, C,,..., Cm.

1. For a given a sample X, the classifier will predict thar ™~ beiongs to the highest posterior

probability of class by recalling Bayes theorem as skown in e uation 1

P(C;| X) = (P (X|C) P(C)))/P(X) Posterior - (Likcunood X Prior)/Evidence (1)

X is classified to class C;(class with highest pos” ...c. piovability), when P (C; |X) > P (C; [X),
where 1 <1, j <m. In equation 1, the denominator (. "idence P (X)) is the same for all classes,
so only the numerator (P (X|C;) P (Cj)) is .. '~ted to find the biggest value. The prior
probability of class (C;) can be calculated as in > aation 2:

P(C) = Jils )

, where (S;) is the number of trainin, -.."n! 5 of class (C;) and (S) is the total number of
training samples. If the prior probability ..*m (P (C;j)) is unknown, the equal probability is
assumed for all classes, then P (C)) =P (C,) = ... = P (Cy), therefore, the target of equation 1
is transformed into maximizatior for the term (P (X | C;)) only.

2. The workload for calculating 1. ~lihoor (P(X | Cj)) will be very high especially in multi-
dimensional datasets. A sirple (na. ¢) assumption solves this problem by stating that
individual attribute values 2 e ir tepe ident of each other under certain conditions and can be
calculated as shown in eqr atio.. 3.

SXNC) = [Tz PO | G 3)

3. From given dataset T . x;]| Ci), P (x2 | Ci),..., P (xn| C), can be calculated from the training
set. Where X, refers to k' attribute (Ay) of sample X.

4. From equation 1, the . 'merator (P(X | C;) P(C;)) will be calculated for each class, so that
sample X will be pre‘lictea as C; member, if and only if, P(X | C;) P(C;) is the maximum.

2.4. Whale Optimizau. Algorithm (WOA)

WOA is a nc ure-ins) ired meta-heuristic algorithm, which is used to solve optimization
problems by min. ~kir  the motion of the whale when hunting the prey.
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2.4.1. Whale in nature

Whales are giant predators, which considered as the biggest mammals in the world reaching a
length of 30 meters and weight around 180 tons. There are eight primary specir s of this giant
creature such humpback, finback, blue, killer, Minke, sperm, Sei, and southern r’ ~ht. Whales are
brilliant animals, and they are emotionally at the same time because they ha.e sha.~d cells in
their brains similar to those called spindle cells in human. These cells .. vesponsible for
emotions judgment, social behaviors as in humans and this is the cause of rhe - vhale smartness
[47]. Hence, a whale can socialize more than other animals and live in ~roup.- they can learn,
think, judge, communicate and become emotional better than other animals. . “'mpback whale is
one of the biggest baleen whales, and his favorite preys are krill and <.na1 fish nerds [48,49]. It
has a unique hunting technique called bubble-net feeding method. Th 7 hr at the victim, which is
close to the surface by creating bubbles along a '9'-shaped path. A~coru ~g to the most recent
studies, Humpback whales adopt two maneuvers techniques ¢ ssociat. 1 with bubbles called
‘upward-spirals’ and ‘double loops.' In the first maneuver, the “umpb: :k whales dive in the
water around 12 meters down, then start to make a wave of b-.Lbles .. a spiral shape encircling
the prey. Finally, the whale swims fast toward the surface 1> hir .« v e prey as shown in Fig 1.
The second maneuver includes three different stages: coral loup, 10’ tail, and capture loop [48].
More details about the whales' behaviors can be found in [48-"71.

Humpback Whale
(FPredatord

Fig 1. Bubble-net feo 1ug © ™ sior of humpback whales

2.4.2. The Mathematical Mimicking model

The unique actions of a humpback v hale in searching for the prey, encircling the prey and spiral
bubble-net feeding maneuver, are maw.~mat cally modeled as follows:

Encircling prey

Since the target from the mov smen. ~f .ne Humpback whales is how to recognize the location of
prey to encompass it. WO/, ‘ssumes that the position of the whales are W; Vi =1, 2,..., M,
where M is the number of whales ~hich is initialised randomly in the search space to search for
the position of the opt'mu 1 solution which is unknown. The best location (resolution) is
considered as the posi. ~n ,f the target prey or close to the optimum position. After the best
search agent is definr d, the *her search agents will hence try to update their positions towards
the best solution or ,osi* on #s in equations 4 and 5

D=|C W) - W@
)



W+1)=Ww+(t)—AD
(5)

Where A and C are coelcient vectors, which are calculated as in Equations 6 a".d 7 for (t) that
represents the current iteration, W is the position vector, W* vector represents t' ¢ .. <ition vector

of the best solution until now. W* The vector should be updated in each ite~~*ion if here is a
better solution.

A=2d.7—-d (6)
C=2% (7)

Where d is linearly decreased from 2 to 0 throughout iterations in ea, ! itation and exploration
phases and 7 is a random vector in [0, 1]. For two-dimensional .curch s, ace as in Fig 2, the
position of the candidate W; that is located at (X, Y) can be upda ed accc ding to the position of

the best candidate (X*,Y*). The values of Aand C vectors con. ! *.e new position of W;.
Accordingly, any position in the search space can be reached oy v~ 'ating the current position in
the neighbourhood of the current best candidate to simulate ‘. mef 10d of encircling the prey.
This 2-d concept can be extended to n-dimensional sc.~h ¢, _.ce. The bubble-net feeding
behaviour has two phases called exploitation and exploration phe “es [50,51].

Exploitation phase

In this phase, whales adopt two mechanisms to chase - prey, which can be explained in
mathematics as follows:

A. Shrinking encircling mechanism

Decreasing the value of @ in Equation (6) v ‘!l co. ‘rol the shrinking mechanism, and then the
positions of whales are updated according to “q. ~tions (4, 5, 6 and 7). Fig 2 shows how the
current solution (whale) W;, iteratively cr ~verge. towards the best solution W* (the location of
the prey), Fig 2 represents the solution in two dimensional space

B. Spiral updating position

The following steps accomplish the -imulati. n for this behavior:
a) The distance between the curre it pos o', (solution) W; and the best solution W* is calculated.
b) The helix-shaped movemen’ of .he humpback whales is mimicked by creating a spiral
equation as follows:
W t+1)= D.eb.cos(2nl) + W*(©)
®)
DA GERGY ©

Equation 9 represents the a.. “ance between the i™ whale (W;) and (W*) the best solution obtained
so far, [ is a randomr aur oer in the interval [-1, 1] and b is a constant that defines the logarithmic
spiral’s shape [43].

According to th  previo., equations, the humpback whales move towards the prey with two
different kinds f move 1ents simultaneously:



(1) According to equation (4, 5, 6 and 7), the humpback whales move around the victim within
a shrinking circle.

(2) According to equation (8 and 9), the humpback whales move towards the prey in a spiral-
shaped path.

In WOA algorithm, the whale is switching between these two kinds of move ae.. - with equal

probability as shown in equation 10 [50].

W(t+1)={l_/],/ (t)— AD B if p<0.5

D’.eb.cos(2nl) + W*(t) ifp>05
(10)

Where p is a random number in the interval [0,1]

Exploration phase (search for pray)

The humpback whale searches for the prey randomly in the «“nlor-don phase adopting a
different technique by updating his position according to a ra gom!*’ chosen candidate instead of
the best candidate like in the exploitation phase. Mathematic. - if |, | > 1, the candidate whale
moves far away from the reference whale performing a glo. ~1 sc..ch as in equations 11 and 12
[43].

= | C. Wrana = W| (11)

(t+1) =V q—4a.D (12)

Wiyqna 18 @ random position for the randomly _*~<en whale from the current population of
whales.

In WOA, the positions of the search agents ai nda. 'd at each iteration according to the value of
|4
and if |ﬁ | < 1, the position will be update. ~ccuiving to the best solution. So, the parameter (a)
is used to switch smoothly between exploration and exploitation phases. Also, the parameter p
controls the switching between the .o '“nds of whale’s movement “spiral or circular motion
[50].

, if |14T | > 1 the position will be updated ranamu, according to randomly chosen search agent




Wi (X, Y)

(X*- AX, Y)

(X*-AX, Y*)

Spiral u
position

=V

b
L
S

(X, Y*- AY)

O
(X*-AX, Y*- AY) (X, Y*- AY)

Fig 2. Bubble-net attacking method (exploitation phase) and searching 1u: prey - techanism (exploration phase)
implemented in WOA




3. Hybrid Real-time Remote Monitoring (HRRM) Architecture

The proposed (HRRM) facilitates delivering health care to the patient’s home. It enables smart
hospitals to monitor patients outside of conventional hospital settings and thu increases the
number of patients covered by care service and reduce the cost. The smart hosr. ! is a hospital
that improves patient care procedures and creates new capabilities by adopting new tc. "nologies
such as cloud computing, cloud storage, Internet of things (IoT), etc. The p’ upc zed architecture
is designed over big data model to extract knowledge from gathering ¢ ma sive amount of
medical data, behavioral information and ambient data generated from the ~onti. ~ous monitoring
of a significant number of patients in real-time. As depicted in Fig 3. HRKk. * consists of four

layers as follows:
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3.1. Layer 1: Patient’s House Module (PHM)

HRRM manages a large number of PHMs for patients monitored by the smart hospital. Each
PHM is responsible for gathering sensor data that includes medical data (physiol- gical signals),
behavioral patterns (smoking, drinking alcoholics, taking medications, etc.” ambient data
(humidity, temperature, noise, etc.), contextual information (location, activity, etc.,. The right
setup of the RPM system guarantees building reliable supervision s,>. m taking into
consideration the patient’s illness type and his social condition. Each «ne's type requires
selecting suitable actuators, ubiquitous devices, and IoT sensors along with soi1. are programs to
obtain the necessary sensor data to extract knowledge about the health sta.. ~ ot the patient in
real-time. Each PHM has a unique identifier in the model to identifs the »atient in the hybrid
architecture. Layer 1 is composed of the following components:

3.1.1 Biomedical 10T Platform

Biomedical sensors are vital instruments in the modern medicine . ~ed te collect sensor data that
has information on human body and pathology. The conti.uous development of biomedical
sensors provided the market with precise, sensitive, and fas re yons : sensors with competitive
price capable of collecting patient’s vital signs in real tin.~ Elertr aic medical (eMedical) kits
integrate different types of sensors into one package or ada -~ew sensors for building a new
medical device as in MySignals eHealth and medical Io™ olatfo m [52]. It facilitates measuring
more than 20 biometric parameters such as (position, « “vge. . the blood, glucose level, blood
pressure, pulse, etc.). Furthermore, it supports manv conn. “tivity options such as (GPRS, 3G,
Bluetooth, Wi-Fi, ZigBee, IEEE 802.15.4, etc.).

3.1.2 Ambient Intelligence devices (Aml)

It refers to electronic environments created u. ..~ se. ~ors that are sensitive and responsive to the
presence of the patient and providing impor. mv ~mbient sensor data needed for the study.
Ambient sensors are easily embedded - TPM through different communication media to
recognize the patient and his situational cu.*ext. Furthermore, they can be tailored to the
patient’s needs and exploit its adaptive and anticipative capabilities. The goal of using ambient
sensors in the proposed module is ‘b ada “martness, context awareness to the model. Also, it
helps in understanding the effect € amb ent conditions on patient’s physiological signals.
Ambient sensors that can be uced inci. ing, but not limited to, room temperature sensors,
humidity sensor, and smoke det ctor.

3.1.3 Data Forwarder (DF)

It forwards the collected low-leve. sensor data from ambient devices and high-level sensor data
from the eMedical platfc.m . ver different communication media. DF forwards Low-level sensor
data to High-Level Coi.~xt Provider (HLCP) in Patient Local Module (PLM) converting it to a
higher level of abstriction —hile it forwards high-level data directly to High-Level Context
Aggregator (HLCA'.

3.2. Layer 2: P7.nt’s Lcal Module (PLM)

PLM is a cen val loc' | module responsible for receiving, processing and aggregating the
generated se=~or [ ‘. in PHM into one context state. Also, it has a smart unit validating
11



communication with the cloud part of the hybrid model. Furthermore, it acts as a backup module
for monitoring the patient by classifying his health status in the case of internet disconnection or
when a problem occurres in the cloud system. PLM contains the following components:

3.2.1. High-Level Context Provider (HLCP)

This unit converts raw sensor data to a higher level of abstraction by adoptir . “any techniques
such as feature selection, fusion algorithms, and classification algorithms the « the converted
sensor data is forwarded to High-Level context Aggregator (HLCA).

3.2.2. High-Level Context Aggregator (HLCA)

This unit is responsible for the aggregation of the output of differc. * } LCPs and sensor data
generated from biomedical IoT development platform in one cor*-=t sta.> Each context state
contains sensor data such as vital signs, ambient data, associated ¢ :tivity, “ehavioral information,
etc. at specific time slot in the form of high-level values. The mini. < for 2 ,sembled context states
will reveal many mysteries about the fluctuations in patie’.. s vitar signs. For example, the
increase in HR above the normal range during jogging is in err ctec as a normal case, but it is
worth investigating if it occurs while the patient is relaxed "S1.

3.2.3.Connectivity Validator (CV)

This unit examines the connectivity between the loca. moaute and the cloud modules in the
proposed hybrid architecture to select the suitable =~d~  ccordingly. Internet connection is
regularly tested with different measures such as netw.  latency, download speed, upload speed,
etc. to switch smoothly between the modes of *“~ modei. If CV verifies that the connection is
valid and stable an online mode would be selected te classify patient’s health status on the cloud
side of the architecture while if CV detects ~ny tu'lure in the communication system; offline
mode will be chosen to do the same operatio. o.. the local part using a backup classification
model.

3.2.4.Local Database (LDB)

This unit stores the collected cont.xt sta.>s reaching to PLM in the offline mode. Also, it
contains a backup classification modc~! for classifying patient’s health status locally in offline
mode when there is a problem i-. the clo.d system. Furthermore, it offers storage space for an
updated copy of patient’s a<isti/e <.rvices, medication time, prescriptions, precautions,
prohibitions, radiological inv .stiga ‘or,, medical reports, etc. which are available also for the
cloud part of the hybrid arcl .. ~~ture.

3.2.5.Personal Medical “..'stive Service (PMAS)

PMAS is a tailored ser, ~¢ for every patient according to his illness type and social status. A
medical committee -ompos.? of a family member, social researcher, physician-in-charge,
caregiver and adm’ dstr .tive staff puts suitable assistive services for every patient. Assume that
classes, which identi.,” ve.ient’s health status, are as follows (Normal, Warning, Alert, and
Emergency). In .Norm#! cases, the system should work without generating any alerts. In warning
cases, a warni'g mes: age will be sent to caregiver and physician-in-duty. In alert cases,
caregivers ard pi._~i~lan-in-charge will be called to follow the case in addition to one of his
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relatives, neighbors or friends. In emergency cases, physician-in-charge and ambulance will be
appealed directly to transfer the patient to the hospital. All these notifications can be displayed
on monitor or patient’s smartphone. Also, a video call can be held between doctor-in-charge and
the patient to give him instructions in alert and emergency cases.

3.3. Layer 3: Patient’s Cloud Module (PCM)

This module acts as a personal information repository for every patient me dtor d by HRRM. It
is used to classify patient’s health status in online mode. PCM consists of the 1. ‘owing clouds:

3.3.1. Patient’s Personal Storage Cloud (PPSC)

PPSC is a personal cloud storage area; every patient who is monitorr { by che .mart hospital has
his own PPSC. This repository retains context states aggregated durn.,_ system’s operation in
offline mode until uploaded to the Central Knowledge Discover,’s Clrud (CKDC). Also, this
cloud keeps patient’s profile (e.g., name, age, gender, weight, hei; ht, illne ;s history, etc.) and the
thresholds of patient’s physiological signals, which are taken fron. ™ dical Monitoring Cloud
(MMC). Furthermore, it keeps medical tests, radiologic' ( in~ ..‘igations, medical reports,
prescriptions, medicine name, its dose, time, patient’s beh. .ors ".ke smoking and drinking
alcoholic beverages, etc. Finally, it retains the last updated v. “<iow uf assistive services approved
by the medical committee.

3.3.2. Medical Monitoring Cloud (MMC)

This cloud contains all entities helping in the moni.. "ing operation of the patient both inside and
outside the smart hospitals. This cloud has a connecu." to all persons or services’ provider
assigned to provide help to the patient when his “ea: . . deteriorating. Medical experts transfer
their medical knowledge to MEC in the form of ge¢. :ric medical rules while physician-in-charge
is responsible for putting personal medica, ..'@ss and move them to PPSC. Furthermore,
physician-in-duty monitors the patient remotely ana responses to alarms generated in alert and
emergency cases by taking immediate actio. ~ to save his life.

3.3.3.Medical Encyclopaedia Cloud " "=C)

This medical encyclopedia retains 1l med :al information according to recent researches for
every illness type, physiological ignais *h .c must be monitored and their ranges and associated
symptoms in the form of generir me .ical rules. The generic medical rules are used with personal
rules in building a personalized '~ :sifi- ation model for every patient which will minimize false
alarms. MEC is updated w th any .ew discovered generic rule from knowledge discovery
process as will explained ir lay.. 4.

3.4. Layer 4: Hybrid K aow edge Discovery Module (HKDM)

HKDM is a hybrid modu.. that contains components on both local and cloud sides used for
knowledge extractic a ar J the classification of patient’s health status accordingly. The hybrid
architecture aims to ~v ploit merits of both local and cloud architectures and avoid their flaws.
The cloud part .{ the .nodule facilitates working with big data regarding storage and
computations, - n the ¢ ‘her hand, the local part of the module will solve the weakness of the



cloud-based models in case of internet interruption or a failure in the cloud system under any
circumstances. This module consists of the following components:

3.4.1. Central Knowledge Discovery Cloud (CKDC)

CKDC is one of the core components of the proposed framework, whic'« inc. des many
distributed clouds with large storage capacities to accommodate all context st- .. - generated from
patient’s continuous monitoring. Spark is used to distribute a vast number o' cor exts, maybe for
millions of patients’ across different clusters then applying different machine .« rning techniques
in parallel to speed up the knowledge discovery process. As shown in k. 3, tne knowledge
discovery process is done vertically across the four layers by converf'ug -aw aata into the first
layer into high-level data by HLCP, and then aggregate them w’ h c .ntexwual and medical
information by HLCA into unified contexts states in the second laye.. Generic and personal
medical rules are used in the third layer to build a dynamic mod .1 cust mized according to the
patient’s health status. In the fourth layer, machine-learning tec. niques ire used to extract the
knowledge about the patient’s health status using a massive nu=her .” _untexts.

3.4.2. Online Classification Model (OCM)

The learning phase in the proposed classification technique co..~ists of five consecutive stages to
build an accurate classifier working in online-mode «. 1 capal le of dealing with imbalanced
datasets. The best-learned model among all clusters wi.* be s.*~ _ted by voting to predict patient’s
health status in online mode; this technique aims to maxu.. ~e the accuracy of the classification
and minimize the elapsed time. (Will be presented 1. “etail in section 5).

3.4.3. Offline Personal Classification Model (C?Cr o,

OPCM is a backup copy of OCM that work: ~n the local side (offline mode) when the internet
connection interrupted, or failure happens in ."e .'oud system. According to the result of the
classification, one of PMAS services, whi '. ~v= s.vred in LDB, will be called to take appropriate
action.

3.4.4. Synchronizer and Scheduler ’snic (SSU)

This unit is responsible for informatic ~ excl ange between HKDM, PLM and PCM to ensure that
each module has the last vr.sion o. information required for its proper work. The
synchronization of offline cont xt ¢ .ates stored in LDB with PPSC is performed according to a
predefined schedule. Moreo er, ..~ i-.stant synchronization of the new version of OCM with
OPCM to be used in offline .'~ssification on the local side is performed. Furthermore, it ensures
that PLM has the last version of . *AS.

4. A Case Study on “ar.ents with Blood Pressure disorders

An imbalanced date et js a wataset that the number of tuples belonging to the majority class

outnumbers those ' elo’ ging to minority classes [53,54]. For example, it is normal in datasets

that the patient’s healu. -tz _us is classified to one of these classes: (Normal, Warning, Alert, and

Emergency) acr ording ‘o patient’s context state to be imbalanced. The majority class is a Normal

class, while Ei-ergenc and Alert classes are the minority classes. As, most classifiers are

accuracy-drir"1 tu.. .1€y concentrate on maximizing the overall accuracy and minimizing the
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overall errors assuming that the distribution of classes is normal and the cost of errors obtained
from different classes is same so, they will be biased towards majority classes rather than
minority ones [55]. Handling imbalanced class distribution can be classified as following:
sampling methods [56,57], cost-sensitive [58,59] and kernel-based methods [60].

A case study is implemented to evaluate the performance of HRRM and .. orove its

efficiency in classifying patient’s health status and its ability to deal with i" .u. 'anced datasets.
This case study has the following objectives:

a.

Verifying that HRRM correctly comprehends the health situation of the ~atien. -1sing context-
awareness to achieve more accurate results than traditional systems t' * ado,. " generic rules in
classification.

. Verifying that HRRM succeeded in addressing the problem of the 1.. - lanced datasets and its

dramatic exacerbation with big data.

Validating that the proposed classification technique (HKI/M) su ceeded in building a
coherent learning model for big data generated from HRRM us e a Listributed cloud model
to speed up classifications and giving instant, accurate resv’cs.

. Validating that the proposed bio-inspired algorithm (NE W JA) succeeded in selecting the

minimum sets of features required for the operation of .“e me--, with the highest efficiency
and fastest performance.

. Electing the best classification technique and the be.* samp ing methods that give the best

results and suitable to operate with HRRM.

4.1. Case Study Description

As illustrated in Table 1, this study has be=n conau.ted on three elderly patients suffering

from Blood Pressure (BP) disorders and their deta'ls 7 e as follows:

Table 1.t "t ~ts”1 .cords

ad14”  ad466 | A40208

‘ Femaic Male Female

L 71 y ars 66 years 78 years

r 27-Aug- 1/41 11-Mar-1944 11-Feb-1937
[

Normal + Transient

Monitoring start gate ’

. T" iy | Month | Year | Day | Month | Year | Day Month Year
Monitoring dura
| v v v v v v v v v

Iliness category

Hypertension Hypotension
‘ Y P Elevation in BP

31-Aug-2012 22-Jun-2010 15-Mar-2015




The HRMM has monitored the patients for varying periods as listed in Table 1 to
evaluate its performance in predicting the health status of these patients.

The measuring of physiological signals four or five times daily is not eno’ .gh to diagnose
serious medical illness, especially in medically unstable cases. Thus, tk. | ~tients were
continuously monitored by taking measurements every 15 minutes.

The vital signs vary with the ambient conditions such as humid’.y, rvise, and room
temperature. Also, the behaviors of the patient such as smoking, drinkirg aic *holic beverages,
taking medications, physical activity, and stress are the major factors of .~ fluctuation in his
vital signs. Additionally, many additional factors can explain the v uric‘ions in the patient’s
physiological signals including age, the degree of the illness, disea «’s ".istory and the family
profile [61,62].

The HRMM has exploited this data to build a context-aw ire clas. ification model, which
is smart enough to distinguish between the different situatiins ar{ their effect on the
physiological signals of the patient. Also, this framework .s canable of comprehending the
nuances between the different patients. The consideration £ t* sse Hoints in the design of the
HRMM leads to building a smart, coherent, accurate, a: 1 fast f*.mework. Accordingly, this
technique will minimize the false alarms that are usually genc. ted from such AALs especially
those systems that depend on general medical rules in its “neratic 1 (traditional AALSs).

The learning phase has been performed in the \"'KDM) utilizing large historical data
from many patients with the same category of illne . Ti... oM uses the data stored in the KDC
to train a classification model for every illness’s caw. rory. The OCM detects the emergency
cases in real time and informs the medical assist. -« ..~ to take the appropriate action.

Datasets will be distributed among differ>nt H. toop clusters, and the learning phase will be
performed in parallel using ensemble vote’s c.s. “ication technique to manage the massive data
and speed up the classification procese to ive results in real time. WEKA (Waikato
Environment for Knowledge Analysis) w..' be used to simulate the proposed classification
technique OCM using Spark and evaluate it with different classifiers and sampling methods
[63,64].

4.2. The clinical dataset

The clinical data of the eldr /1y r atierts suffering from blood pressure disorders that are used
in these case studies have beer ta.. 2 frr m PhysioNet MIMIC-II [65].

4.2.1.PhysioBank

The PhysioBank cor* ‘ns four terabytes of digitized vital signs and time series containing
over 90,000 recordings orga iized in more than 80 clinical datasets, and classified according to
the types of signals inclu.' d [66]. The clinical databases include continuous measurements for
some vital signs alc.ag vith, iaboratory test results, procedures, medications, caregiver notes,
images and imagin, rer orts. and mortality (both in and out of hospital).

4.2.2.The MIM" _ 11 daw.pnase

The MIMI “-II dat base is the extension to the first attempt of building a database called
MIMIC that ~~nta... .aulti-parameter recordings of ICU patients in the period between 1992 and
16



1999. The MIMIC II Clinical Database was released in 2011 including over 32,000 subjects for
more than 40,000 patients who have been admitted to cardiovascular, medical, surgical, surgical
recovery units, and coronary care units at the same hospital [67].

As illustrated in Table 1, three patients have been selected to represe’ ¢ the different
categories of BP disorders. Moreover, they are used to test the classification o oac’~ (OCM and
OPCM) of the proposed HRMM. Additionally, the OCM uses the data of ~ large number of
patients including these patients to train the classifiers in the learning phase.

4.3. Synthetic Data Generation

As far as we know, there are no real datasets that similar to the data th>* ~ill ve <ollected by the
proposed model. The targeted dataset contains physiological signs, 2,soc’ . ' activity, ambient
conditions, and behavioral information for patients with blooa [ ssure disorders. The
continuous monitoring will extend to a year by taking a sample - vory 15 .ainutes as shown in
Table 2. Therefore, datasets will be synthetically generated basec on rea natients’ physiological
signals taken from Physionet MIMIC-II database for three patients “~» mi- iic data generated from

biomedical IoT platform in HRRM [68].

Table 2. A sample of the final ~ataset

Timestamp HR | SBP | DBP | MBP | RR | SPO, | Temp. | Act. | L. Act. | Med. | Sym. Class
23-03-16 0:00 78 159 91 106 19 100 0 1] 1 1 3 Warning
23-03-162:45 | 102 | 144 61 111 10 | 100 v | 2 2 0 17 Alert
23-03-16 3:00 60 146 81 96 18 100 O 2 0 0 Normal
23-03-164:15 | 86 146 63 103 17 | 100 | ° 2 2 0 0 Normal
24-03-16 0:00 | 62 181 91 104 | 23 ] 10T 1 ‘ 1 1 0 1 | Emergency

The synthetic dataset takes into consideratior “e fo. »wing criteria:

a. The correlation between activities and phys oi ~ical signals according to Table 3 that shows
the percentage of increase in HR acce “ino t¢ different events (e.g., HR is average when the
patient is watching TV, but it will be higi.. = when he is on the treadmill) [69].

b. The plausibility of activity time (e.g., eating at 3 p.m. and sleeping at 1 a.m.).

c. The effect of ambient conditions .ad 1."ing medications on physiological signals.

d. The relationship between patier. ‘< healtl status and symptoms.

The generation of synthetic datasr .s is p. *f rmed using MATLAB for hypertensive, hypotensive,

and normotensive patients in a year with the same distribution as in real Physionet MIMIC-II

datasets. This technique is reliav, n tF 2 generation of synthetic datasets that are similar to real
datasets, which are verifier in prev.ous studies of biomedical data analysis [14,70]. Some
abnormal physiological sicaals “ve added without modifying the remaining attributes of these
context states to represer* mergency and alert cases. The possible symptoms for each category

(Hypertensive patients, {ypr censive patients, and Normotensive patients with transient elevation

in blood pressure) are prc. 1ted in Table 4. Table 5 shows all Types and ranges for all attributes

in the generated dat- sets that ure used in the experiment [71]. Table 6 illustrates the situational
classification mode ns d to distinguish the class according to personalized medical rules. Table

7 shows a set ~f ass.*i,e services that will be executed according to the result of the

classification.



Table 3. The percentage of HR increase according to each activity type [69]

Activity The percentage of HR increase.
Laying 0-10%

Sitting 5-15%

Standing 10-25%

Walking 15-45%

Running/Cycling 35-100%

Stairs 15-80%

Table 4. Symptoms according to patient’s category in the experimen.

Type Symptoms " alue on. )
Hypertensive | A headache & Anxiety — Fatigue- a severe "t ¢ binary

headache & Anxiety - Pounding in your chest ' (valuc. " to 63)
neck, or ears - Vision problems and confusior -
Chest pain and difficulty in breathing

Hypotensive Lack of concentration — Fatigue - Blurred vision - 6-' .t binary
Dizziness - Rapid shallow breath - Fainting | (value: 0 to 63)

Normotensive | Uncomfortable- Anxiety — a headache — T atigu- - ‘ 6-bit binary

a severe headache - Dizziness value: 0 to 63)

Table 5. Types and ranges for attributes used in the ¢. veriment [71]

- —_—
Name Attributes Type Range
| value
Vital Signs Heart Rate (HR) Numeric [30-200]
Systolic Blood Pressure (o."P) Numeric [50-230]
Diastolic Blood Pre<enre (DB, Numeric [30-140]
Respiratory Rate (k) Numeric [5-30]
Oxygen Saturation (Sx 7)) Numeric [40-100]
Activity Current Activ, . "ast A *ivity Resting 1
Sleeping 2
Walking 3
Eating 4
Exercising 5
Household 6
Ambient conditions Roc . tem, rature Normal 0
Hot 1
- Cold 2
Medication _Takenor.. . Boolean Oorl
Symptoms L Sy ptorrs Boolean [0-63]
Tablr _ Situational Classification according medical model
Class - Classification
Normal HR, “ 3P, I 3P, RR, and SPO, all values are in expected Range concerning current activity
and sy. » ms=0
Warning A y of Hn, SBP, DBP, RR and SPO, increase above the normal range to the warning
ange ¢ medications not taken or symptoms > 0
Alert ‘ny Lf HP SBP, DBP, RR and SPO, increase above the warning range to the alert range
or . "=t .an two vital signs in warning range and ( medications not taken or symptoms >
0)
Emerger 5y | Any f HR, SBP, DBP, RR and SPO, increase above the alert range to the emergency

rang' or more than two vital signs in alert range and ( medications not taken or symptoms >

_
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Table 7. Examples for assistive services

Case Action |

Class = Normal Do nothing

Class = Warning Warning on patient’s mobile or monitor in his home or SV » )

Class = Alert SMS or phone call to the \ physician-in-charge to revi .. e
case |

Class = Emergency Call ambulance directly or after confirmation from p.., ~ic’ n-
in-charge

Medication = 0 Alert the patient or the care giver

4.4. The exploration of the generated datasets

The generated datasets for three patients in a one-year and *ie dis’-ibution of classes are
illustrated in Table 8, as well as Fig 4. It is clear that when g °neral r «edical rules had been
applied to classify the generated contexts to normal and abnor~-I ci..__s, it failed in classifying
most of them, and that, of course, will make the system g¢ aera’ > many false alarms. HRRM
uses context awareness to comprehend the real situation of p.tient’s health taking into
consideration ambient conditions, behavioral information an.' associated activity to give results
that are more accurate. It is clear that the generated dataset are severely imbalanced and
(Emergency) class is the minority class while (Norme! & . ’arr’ag) classes are majority classes.
Therefore, different sampling methods will be applied to .. »se datasets to address the problem of
imbalanced datasets in addition to classification tec. .yucs using WEKA and Spark [64,72].

Table 8. Comparison between classifications with HR} ™ “ ~ainst wraditional AALs for three patients in a year

Patient No. of contexts Tradit ~nal Ar " HRMM
Normal | A carmud | Normal | Warning | Alert | Emergency
P1 (Hypertensive) 35232 > | 5230 9307 | 23347 | 2404 174
P2 (Hypotensive) 35232 3 I 50229 19455 14003 1627 147
P3 (Normotensive) 35232 1 | 25231 12517 21421 1186 108

Hypertensive (p1) i Normotensive (p3)

Fig 4. The distri 'ution of classes for three patients’ datasets over one year using the HRMM

19



4.5. The implementation of the case study using Weka and Spark

Table 9 shows hardware specifications of PC used in all experiments, operating system,
programming software, and its plugins. The Distributed Weka Base package 21d Distributed
Weka Spark package must be installed after installing the last version of WE’ A as shown in

Table 8 [73].

Table 9. Hardware and software specifications

Name Detailed Settings Name Detailed Settings
Hardware Software
CPU Intel ® Core ™[5 3317U | Operating System Windows 10 6/ bit
Frequency 1.7 GHz Software MATLAB R? ‘16b ( .1) 64 bit
RAM 6 GB WEKA 3.8.1
Plugins:
Distribu’ .dWekaB. ‘e version (1.0.17)
Distribuv 1WekaSpi k version (1.0.9)
Hard Drive 1 TB SM',TE verion (1.0.3)

5. The Proposed Hybrid Knowledge Discovery {."ade’ ’ {KDM)

The proposed Hybrid Knowledge Discovery Model (H” DM) cc asists of two classifiers, one of
them called Online Classification Model (OCM) that v. ~tks « ~ e cloud side (online mode). The
other one called Offline Personal Classification Model (Or M) which is a backup copy of OCM
that works on the local side (offline mode). The .. ~rning phase of the proposed classification
process is composed of five stages as depicted in Fig 5.

Usi
oy *-Prou sing

Classification Classification
Leamning phase | Evalustion phase
Ensemble Ensemble
Vote Classifier Vote Classifier

Without
data Pre-Processing

Fig 5. T -~ oroposea technique for learning and evaluating CCM
5.1. Online Classificatic~. “1odel (OCM):

Stage 1: Dataset Prepai . * on (Splitting data)

As WEKA and Spa « w'il be used to implement phases of the proposed classification technique
that will be used to '~ sify patients’ imbalanced contexts, it is important at this stage to prepare
datasets to work currecti, with them. While ‘.arff’ is the default dataset’s file extension but to
use it with Spas < it sho. 1d split into two files using ‘arff header Spark job,' the first one contains
the header secti.~ of *.e dataset with extension ‘.names.” and the second one contains dataset
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itself with extension *.CSV’ (Comma Separated Value). The level of parallelism that will be
applied to the dataset is configured in this job by indicating the number of data chunks that will
run in parallel on Hadoop Distributed File System (HDFS) or YARN cluster. Also, the same job
can be simulated using cores of PC’s processor by setting ‘master host = local {* 0 of cores}.' In
this experiment, datasets will be sliced into four partitions and will be process :a . ~ing the five
cores of the Processor in parallel [63].

Stage 2: Randomly Shuffle dataset

In this stage, “Randomly Shuffle Data Spark Job” is used to specify the nu.. her of data chunks
and the number of instances in each chunk. Furthermore, data chunks 7 .e s atificd to ensure that
each class has almost the same distribution of class values as the orig nal .ataset, which helps in
getting the best result, especially when using ensemble-voting classific,  If the minority class
has samples, less than the number data chunks, these samples wi'. be cc~ied to each data chunk
to make sure that each class is represented in every data chunk at . ast by ne sample.

Stage 3: Data Pre-Processing

It is clear that our datasets are suffering from severe imba’~nce as i'" astrated in Table 8, as well
as in Fig 4. In this stage, well-known sampling methods such . ~ Class Balancer (CB), Synthetic
Minority over Sampling (SMOTE), Random under Sam,, 'ing (R1 S) and Random over Sampling
(ROS) are used to process imbalanced datasets. Expec. men.. .vill be conducted using six well-
known classifiers from different classification families ove, *he three patients’ datasets with and
without these sampling methods.

Stage 4: Learning phase

In this stage, each adopted classifier will be ~ed t. build four models, a model for every data
chunk on a different cluster and this process .71 “e repeated four more times, using the four
sampling methods. The map part of “W !~ Cicssifier Spark job™ is configured to train the
following classifiers: Naive Bayes (NB), Dec. ion tree C 4.5 (J48), Random Forest (RF), Ripper
(JRip), Support Vector Machine (SVM). Nearest Neighbour (IBK) on each data chunk. Then, the
reduce job will select the best-genere ed m. 1el by a voted ensemble classifier.

Stage 5: Evaluation Phase

In this stage, the evaluation is : erfr .mer for every classifier using ten folds cross-validation by
configuring “Weka Classifie. Ev.'ueaon Spark Job” to do that. This evaluation module
is aggregatable so the overs.. classification process will be performed through two passes; the
first pass makes the classifier tran. ~g’s task is to learn an aggregated classifier over the data and
the second pass for evalv .o .

5.2. Offline Persona’ Clas. *fication Model (OPCM)

After the evaluatior prc .ess ‘s completed for all classifiers, the best classification model (OCM)
along with the best sa. *nli’ g method will be copied and transferred to the local part of HKDM.
This model is ¢ .illed CPCM; it will be used for classifying the incoming contexts into the local
side (offline mc 1e).
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6. The proposed NB-WOA algorithm for improving HRRM

The failure of any Sensor may affect model’s work continuity and its performance. When a
sensor stops working, the aggregated context state by HLCA will be incomplete so the dataset
will have missing values and thus affects the classification accuracy. This y ., =t proposes a
version of Naive Bayes classifier called NB-WOA, which is used for features’ selc. “‘on. This
version adopts a bio-inspired algorithm called Whale Optimization Al ,on "m (WOA) to
optimize its performance as shown in Fig 6. This algorithm struggles to fi. 1 tb . minimal set of
features achieving the best accuracy. The NB-WOA is working in th> loca. nortion of the
HRMM to achieve the IoT-Cloud convergence by transferring the selection « © the features that
accelerate classification to the edge of the local portion of the HRM'/. 1+~ NB-WOA has the
following advantages:

o [t simplifies the generated model for better interpretation by the domain experts.

e ]t allows the proposed HRRM model to work in the case of sc ne sens irs’ failure that doesn't
affect the classification accuracy. This classifier works as sveten.’~ =_otection module, which
determines when the system should stop and when shou’d ke . “vorking in the case of any
sensor’s failure.

e [t avoids the curse of dimensionality.

e It reduces overfitting.
The detailed explanation of NB-WOA is as follows:

[
1
' i
Initializa W ** parameters |1 & Exploration | Exploitation | |
N : Phase i Phase |
| H 51 i
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- 223 25 3|1
g 1 i|ET 557 1
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T Traini @ Update the position ! ! 1
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| ‘ness evaluation

Search for
the best solution (W*)

Optimized NB-WOA

Fig 6. Block diagram of the proposed NB-WOA algorithm
22



6.1. Parameters' initialization

In the beginning, the parameters of WOA (A, C, a, p, 1) were initialized. In the proposed model,
the WOA provides the naive Bayes classifier with some whales, each whale repr 'sents a subset
of features from the original dataset in (binary form), “1”” means that the featur is selected and
“0” means not selected. Thus, WOA search to find the best set of features chat a."ieves the
highest accuracy with NB. The whales' positions are initialized randomly.

6.2. Fitness evaluation

The optimization operation needed to apply fitness function to assess every w “ale position is as
given by equation 13.

Fitness (F) = ayg(D) + B (IC — R|/IC|) (13)

Where yz(D) is the classification performance of condition featv ¢ set P with respect to choice
D, R is the length of selected feature subset, C is the aggregate 1 1mber ¢ f features, o and 3 are
two random parameters that depend on each other, a € [0, 1] »~d |, ' 0, these parameters are
related to the significance of the subset length and the clas ific? .. » performance. This fitness
function is used to maximize the classification accuracy; , 4(D) and the proportion of the
unselected features to the aggregate number of features; as 1 “e wim |C — R|/|C] [74].

6.3. Termination criteria

When the termination criteria are satisfied, the operatio.. »nds; otherwise, we proceed with the
next generation operation. In the proposed mode! .. 7/CUA is terminated when a maximum
number of iterations are reached or when the best s.ition (best set of features (BestF) that

achieve the highest accuracy (BestAccuracy)) is .v. ~~ditied for a given number of iterations.
6.4. Updating positions

The positions of whales are then updated as in 1  1..~thematical model of WOA in section 2.3.2.
6.5. Algorithm NB-WOA

Input:

e Initialize the whale's population < by a v ‘nary code; each whale is composed of a string of
feature selection bit.

e |Initialize parameters (A, C, 2, b, ) and )

e |Initialize BestAccuracy

Output:
e BestF according to Be.:Accuracy
Algorithm:
1 while (t < maxim im nu..her of iterations)
2 for each se urch agent
3 Updatea A,C,! «ndp
4 If (1<0.5) /*Shrinking Encircling Mechanism™*/
5 it 'Al<") /*Exploitation Phase*/
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6 The position of the current search agent is updated by Equations (4, 5, 6, 7)
7 else if (JA|>1) /*Exploration Phase*/
8 Select a random search agent (Xrang)

9 The position of the current search agent is updated by Equations 7, 11, 12)
10 end if

11 else if (p > 0.5) /*Spiral M=chanisn.*/
12 Update the position of the current search by the Equation (8 J)

13 end if

14 end for

15 Check if any search agent goes beyond the search space and am~... ' it

16 Remove attributes, which are not selected from the training sa'.iple’ au.:bute to
get the training dataset T/, according to the feature of each wha.. selection bit.

17  Calculate prior probability P (Ci) of each class of training .ata.

18  Calculate likelihood P (x| Ci).

19 Calculate the formula = likelihood * prior probability P (x| &H* ™ (Ci)

20 Select the maximum prior probability P (x| Ci)* P (Ci} as th~ ~redicted class

21 Calculate the fitness function (maximization problen., ~f ec._., search from equation 13.
22 Accuracy = f with corresponding feature selection Bestt.
23 If Accuracy >= BestAccuracy

24 Set BestAccuracy = Accuracy with correspondu. - feature selection BestF
25 endif

26 Update X* if there is a better solution

27 t=t+1

28 end while

29 Return X*

7. Results and Discussion

Experiments are held to test the proposed HRRiv. with different six classifiers and four sampling
methods. The performance of all clr ... ~rs with and without different sampling methods are
evaluated regarding Accuracy, ov' call F-r easure, F-measure for emergency class and time
elapsed in each experiment. The rriori. - in .he selection of the best classifier along with the best
sampling method is in followirg th. order: F-measure (emergency class), overall F-measure,
accuracy and elapsed time. Ra. vi.g e .sures selecting the best combination of classifier and
sampling methods for HRRV that w. -'.s with high efficiency and generate minimal false alarms.
Accuracy and F-Measures 7 e . ~lculated from equations 14, 15, 16 and 17 [73,75]. Where, TP =
True Positives, FP = False Positives, TN = True Negatives and FN = False Negatives

Mecuracy = TP + TN/TP + TN + FP + FN (14)
Recall = TP/(TP + FN) (15)
Precision = TP/(TP + FP) (16)

T Measure = 2 * (Precision . Recall/Precision + Recall) a7
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Table 10 shows the performance of six classifiers with/without sampling methods for a
year using OCM that proposed in section 5.1. The best performance among all versions of the
classifier (with/without sampling) is highlighted, and the winning algorithm in each data set is
highlighted inside a bold square.

Fig 7, 8 and 9 illustrate a comparison between six classifiers regarding ac. “racy for the
data sets P1, P2, P3, respectively. As shown in Table 11, the average rank fo- these ciassifiers
over datasets indicates that J48, RF, and JRip respectively are the best clas ifier ; that can work
with the highest percentage of success in HRRM while the worst are SVM a.. ' "8K. It is evident
that the elapsed time with SVM classifier increases dramatically with big a. ~sets.

Decision tree and rule-based classifiers have the advantage of g... "ating omprehendible
models that can be written in the form of “IF- Then” rules as showr m F.g -7. This advantage
enables the medical team to investigate the generated model to approve = or to update general or
personal medical rules and relearn the classification model again.

Table 10. Comparison between classifiers with/without sampling .echni~es for patients in one year

Classifier P1 (Hypertensive Patient) P2 (Hypotensive Pa:m)_r P3 (Normal Patient)
Acc. | F- F-measure | T. Acc. | F- F-measw.. | T. Acc. | F- F-measure | T.
measure| (Emergency) (Sec) measure| (Emergency)  “ec) Measure. | (Emergency] (Sec)
JRip 999 |1 1 10 999 | 1 1 14 99.9 | 0.99 0.96 18
JRip +CB 99.9 1 1 10 999 | 1 J 99.7 0.99 0.85 10
JRip +RUS 99.9 | 0.99 1 8 999 | 1 1 9 99.1 | 0.99 0.7 9
JRip +ROS 99.9 1 1 17 999 | 1 ) 19 99.9 0.99 0.92 39
JRip +SMOTE | 99.9 1 1 10 999 |1 | : 12 99.9 0.99 0.92 23
NB 92.6 | 093 0.92 7 91.1 | 0.01 | 0.97 6 96.4 0.96 0.74
NB +CB 92.1 | 0.92 0.98 7 90.7 | 0.8 r 4 7 90.8 | 0.92 0.28 7
NB +RUS 92 0.92 0.98 7 90.7 | 0.91 _' 1 7 90.6 | 0.92 0.27 7
NB +ROS 92.1 0.92 0.97 7 90.7 91 1 7 90.7 0.92 0.28
NB +SMOTE | 91.5 | 0.92 0.96 7 918 | 92 _|_ 1 7 95.9 | 0.96 0.68 11
SVM 843 | 0.84 0.79 38 72 1 0.8 0.26 70 91 0.91 0.65 55
SVM +CB 80.5 | 0.82 0.97 34 85 1 0.85 0.6 34 832 | 0.84 0.44 34
SVM +RUS 769 | 0.78 0.98 11 81.5 | v.t 0.62 16 814 | 0.82 0.4 16
SVM +ROS 829 | 0.84 0.98 88 88 0.88 0.79 169 84.6 0.86 0.49 174
SVM +SMOTE| 84.4 | 0.84 0.94 s s ] o086 0.71 68 911 | 091 0.73 51
J48 99.9 1 0.98 | ] d 99.¢ 1 0.99 20 99.9 0.99 0.95 8
148 +CB 99.9 | 1 1 J_s NUEAR 0.99 8 99.8 | 0.99 0.9 8
J48 +RUS 99.8 | 0.99 1 ‘l _| 999 | 1 1 8 99.2 0.99 0.76 8
J48 +ROS 999 (1 1 9 999 | 1 1 10 99.9 0.99 0.93 10
J48 +SMOTE | 999 | 1 0.9 o 9991 1 9 999 |1 0.95 13
RF 99.9 | 0.99 9 16 999 | 1 0.99 18 99.9 0.99 0.90 18
RF +CB 999 |1 1 12 999 |1 1 12 99.7 | 0.99 0.98 12
RF +RUS 99.9 | 0.99 1 9 999 | 1 1 10 99.3 0.99 0.75 11
RF +ROS 999 | 1 1 20 999 | 1 1 21 99.8 | 0.99 0.97 23
RF +SMOTE 99.9 1 | . 15 999 | 1 0.99 21 99.9 0.99 0.94 22
IBK 943 [ 794 1078 48 932 | 093 0.52 44 929 | 0.93 0.72 47
IBK +CB 942 [ 794 To 4 47 | 954 [ 095 0.58 47 913 | o091 0.74 47
IBK +RUS 81.3 | 0.5. ©.85 28 86.2 | 0.86 0.57 27 82.8 | 0.83 0.74 33
IBK +ROS 8, | 09 0.84 93 91.7 | 0.92 0.57 92 89 0.89 0.75 107
IBK +SMOTE | ¢ |5 | 0.95 0.85 a7 929 | 093 0.64 43 92.8 0.93 0.79 50
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Table 11. Classifiers Ranking

Rank Classifier

1 Decision tree (J48)

2 Random Forest (RF)

3 Ripper (JRip)

4 Naive Bayes (NB)

5 Nearest Neighbour (IBK)

6 Support Vector Machine (SVM)

As shown in Table 12, the best sampling techniques are CB and SMTE while the worst
is RUS. These results proved the ability of HRRM in classifying patier .s
precision in real-time and recommend using rule-based classifiers (v g., "Rip, or decision trees
classifiers (J48) along with SMOTE or CB as sampling methods for the 1. “halanced dataset.

Table 12. Sampling methods ranking

Rank Sampling Tech.

1 CB __|
2 SMOTE ;l
3 ROS

4 RUS ]

Classifiers Accuracy (P1 Hypertensive Patient)
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Classifier Model: JRIP rules:

(DBP <= 44) => Class=Emergency (24.0/0.0)
(DBP <= 54) => Class=Alert (36.0/0.0)
(Symptoms >= 1) => Class=Warning (221.0/0.0)
(DBP <= 70) => Class=Warning (24.0/0.0)
(SBP <= 100) => Class=Warning (17.0/0.0)
(SPO2 <= 93) => Class=Warning (12.0/0.0)
(SBP >= 131) => Class=Warning (8.0/0.0)
(RR >=21) => Class=Warning (11.0/0.0)
(Heartrate <= 59) => Class=Warning (9.0/0.0)
(RR <= 11) => Class=Warning (2.0/0.0)
=> Class=Normal (423.0/0.0)
Number of Rules: 11

Fig 10. The sample for one of the generated model using JRi  classifier

As illustrated in Table 13 and Fig 11, the proposed ilgor*»m NB-WOA is tested over
the same datasets of the three patients to select the minimai reatv es that achieve the highest
accuracy. It needed almost half of the features of the origin.' datasets to achieve the same
accuracy or slightly better. Thus, the size of the dat-<et .’ shrink by half, speeding up the
classification process. As listed in Table 14, the r=v* ~*~=  to use these features training and
evaluating classifiers and to compare the performance of same classifiers over the original
datasets that are listed in Table 10. The NB-WC A .an be used as a safe-fail module to detect
when to stop working the model. As listed in . a.'e 13 for the dataset of the hypertensive patient
(P1), the model continues its work if the = ..z~ fi.at registers the room temperature fails. On the
contrary, the NB-WOA will stop the model ana . 2nd alerts to the stakeholders of the model if the
sensors that record the HR and BP fz (. As .'lustrated in Table 14, as well as, Figs 12 and 13, the

NB-WOA speeds up classificatiors and »re: erves accuracy.

Table 13. The selected fea’ res ' y NP WOA from each dataset to achieve the highest accuracy

Datase | No. of tot « featu, - Selected features by NB-WOA
t
P1 11 Five features
- HR, SBP, DBP, RR, and symptoms
P2 . Six features
HR, SBP, DBP, RR, SPO, and symptoms

P3 L Six features

ay A8 HR, SBP, DBP, RR, SPO, and symptoms
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NO. OF FEATURES

P1 (Hypertensive Patient) P2 (Hypotensive Patient) P3 (Normotensive Pk

o
| motowge Patient)
nt)

P1 (HyperteBive Pad

All datasets' features The selected features by
NB-WOA

Fig 11. Comparison between number of features in the original d~tase.. ~nd .ie number of features selected by NB-
WOA to achieve the same « ~uracy

Table 14. Comparison between classifiers’ peric mance using NB-WOA and without

P1 (Hypertensive) ; P3 (Normotensive)

Without
NB-WOA

Without

classifier

Accuracy
Accuracy
Time
Accuracy
Time
Accuracy

10 99.8 | 4 9.9 14 |99.9 9 99.9 18 99.9 9
7 92" | 5 _ 91.1 6 914 4 96.4 8 96.8 5
38 I 28 86.4 70 | 86.4 | 48 91 55 92.1 37
10 "0y 7 99.9 20 1999 13 99.9 8 99.9 6
17 /9.9 8 99.9 18 | 99.9 8 99.9 18 99.9 10
_/18 —| &0 26 93.2 44 | 93.7 27 92.9 47 933 | 24
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Fig 13. Comparison t .tween the fapsed time in classifications using NB-WOA and without

8. Conclusions and F''ture wurk

This Paper pro; nses a Hybrid Real-time Remote Monitoring (HRRM) framework that
monitors the elderly pau.~ts suffering from chronic diseases in real time. The proposed
framework has adrress .d the disadvantages of the local and cloud AAL architecture and
exploited the advan.. ~.s of poth fusing them into a hybrid architecture that has components in
both local and ¢'..d env. onments. The HRRM has transferred the processing of raw data and
the aggregatioo of hi, h-level data into unified context states to the local portion of the
framework insi.~d of clouds as in all cloud-based ALLs. This technique has achieved
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convergence between loT and the cloud portion of the framework through the Patient Local
Module (PLM). The HRMM has been examined through case studies on patients suffering from
different categories of Blood Pressure (BP) disorders. Experimental results have proved that
HRMM is a smart healthcare monitoring framework, which is capable of predict’ 1g the category
of the patient’s health status from the current context states accurately. The pr po.~1 OCM has
succeeded in addressing the problem of big imbalanced datasets by processing Jata chuuks using
different sampling methods on different Hadoop clusters using Spark. The f adir 2s of this study
indicate that the proposed OCM has succeeded in increasing the accuracy o. -~ assifications and
minimizing error rates, especially for the minority class (emergency class, The JCM has used
different sampling methods to preprocess different data chunks acros . ifferc. ¢ clusters using
Spark in parallel to achieve these results. Our research emphasizes * i ir.po. ance of the PLM
not only for the convergence between IoT sensors and clouds but ails. for the preservation of
patients’ lives in the case of internet interruption or cloud wsconncction. Additionally,
experimental results have proved the effectiveness of NB-W )A in electing the minimal
features’ set that are mandatory to the proper work of the HRMM v, **hor_ any deterioration in its
accuracy. The NB-WOA saves the storage space and acce.eratr  the classifications. Also, it
works as a smart safe-failure module that decides to continu. * ¢ op ration of the framework in
the case of non-influential sensor failure. If an influentiai . ~nso: “ils, it stops the operation of
HRMM to avoid getting wrong classifications’ result that pu the patient’s life at risk. The
directions of the future work include the usage of HRM.." in m nitoring different illnesses, the
observation of context domains that may affect patients -ital signs, and the adoption of different
bio-inspired algorithms instead of WOA. Addition~'"":- “-- IRRM framework should be tested
from the networking perspective.

Funding: This research did not receive any specii. ~ r,cant from funding agencies in the public,
commercial, or not-for-profit sectors.
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Highlights

A Hybrid Real-time Remote Monitoring (HRRM) framework for jatien.. suffering from
chronic diseases is proposed.

A Hybrid Knowledge Discovery Module (HKDM) is proposed o c'issny patient’s health
status on dual-mode (online - offline).

The proposed HKDM addresses the problem of imbalanced d: tasets i1 big data.

Naive Bayes — Whale Optimization Algorithm (NB-V'CA) .. proposed to select the
minimum features’ set required to ensure the continuitt of .ue model's work with highest
efficiency and speed.
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