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Abstract: 

The embracing of the Internet of Things (IoT) and Cloud Computing technologies gives 
excellent opportunities to develop smart healthcare services that have great prediction 
capabilities. This paper proposes a Hybrid Real-time Remote Monitoring (HRRM) framework, 
which remote-monitors patients continuously. This smart framework predicts the real health 
statuses of the patients in real time by using context awareness. The proposed HRRM framework 
innovates a Patient’s Local Module (PLM) that do a convergence between IoT sensors and 
clouds. The HRMM transfers some of the computations to the edge of the network in (PLM) 
such as converting the low-level data to a higher level of abstraction to speed-up the 
computations in the cloud portion of the HRMM. The convergence of IoT enables the HRMM to 
use the enormous cloud power in storing, processing, analyzing big data, building classification 
models for the category of patients’ health status. The local portion of the HRMM uses 
classification models that have been trained in the cloud to predict the health status of the patient 
locally in the event of internet interruption or cloud disconnection to save his life in the 
disconnection periods. Furthermore, this paper proposes a cloud classification technique that is 
capable of dealing with big imbalanced dataset by minimizing errors especially in the minority 
class that represents the critical situations. Finally, a hybrid algorithm of Naïve Bayes (NB) and 
Whale Optimization Algorithm (WOA) has been proposed to select the minimal set of features 
that achieve the highest accuracy. The (NB-WOA) works as a safe-failure module that decides 
when to stop the monitoring using HRMM in the case of the failure of influential sensors. 
Experiments have proved that the HRMM is capable of predicting the health status of the 
patients suffering from blood pressure disorders accurately. Also, it proved that NB-WOA 
accelerates the classification process and saves storage space. 

 
Keywords: Smart Healthcare; Internet of Things convergence (IoT); Naïve Bayes (NB); Whale Optimization 
Algorithm (WOA);  Big data; imbalanced dataset.  
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1. Introduction 

Machine learning has many contributions in the medical field such as Remote Patient’s 
Monitoring (RPM) systems that deliver care to the patient suffering from chronic disease 
especially elderly patients at his home [1]. RPM is defined as using technology to monitor 
patients remotely (e.g., at his house) to improve patient’s quality of life. It tracks the patient 
continuously without obstruction to the freedom of his movement to prevent possible 
complications, and all these services should be provided at reasonable cost [2]. Implantable and 
wearable biomedical sensors have received much attention over the last two decades because of 
the need to collect sensor data that contains physiological signals, patient’s activity during vital 
signs’ measurement, etc. in real time while practicing his daily routine [3]. IoT exploited the 
progress in ubiquitous sensing which is qualified by Wireless Sensor Network (WSN) 
technologies to enable actuators and sensors to interact seamlessly with the ambient environment 
and to share the collected information among different platforms. IoT has made a huge leap by 
enabling various technologies such as near field communication (NFC), Radio-frequency 
identification (RFID) and embedded sensor to transform the internet into a fully integrated 
platform [4,5]. There are many factors that can affect vital signs’ values of the patient such as 
patient’s activities (current/last), ambient conditions (temperature, humidity, noise, etc.), 
patient’s habits (sleeping, smoking, alcoholic beverages, food, etc.) and many other factors. 
Context awareness defines the capability of a system to gather information from the surrounding 
environment at any time to comprehend it and adapt its behavior accordingly. Context-aware 
RPM model uses this technique to comprehend the current health situation of the patient and 
provide a personalized health care service accordingly [6]. For example, context-aware RPM 
refers to an emergency case when the patient’s heart rate (HR) increases above normal during 
sleep while refers to a normal case if the increase in HR occurs during exercise. This technique 
can be implemented by aggregating all sensor data in the high-level form in one context state for 
each period. Machine learning is used to understand the health status of the patient and interpret 
the fluctuations in the patient’s vital signs to provide the proper assistive service [7]. The 
continuous monitoring of patients using RPM models is a source of big data generation because 
the monitoring period may be extended for years with a fast sampling rate may be in 
milliseconds resulting in the generation of a huge amount of sensor data. Big data is one of the 
famous terminologies in the current decade that is used to describe the dataset that fulfills at least 
one of the characteristics of 4 V’s model (Volume- Velocity -Variety - Veracity) according to 
IBM’s formal definition [8]. Therefore, the architecture that contains IoT and cloud components 
provides scalable data repositories and resilient computation processes on the cloud side for the 
collected health data by IoT on the local side [9]. Traditional RPMs depend on a standalone 
application working on a handheld device or local server and always customized for a specific 
case depending on generic rules [10]. These systems cannot manage big data and cannot be 
trusted to monitor patients suffering from other diseases. Some researchers tried to address these 
shortcomings by developing context-aware models to predict the health status of the patient at 
real-time [11,12]. Furthermore, the recent researches proposed cloud-based frameworks for 
knowledge extraction from big data using clouds for storing and processing patient’s context 
states to predict the patient’s health status at the real time. The weak point of these models that 
they put the patient at risk when the connection with the cloud is lost or internet is interrupted 
[13,14]. Also, these models ignored the problem of imbalanced datasets that is always present in 
this type of data. The primary motivations for this work are:  
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 The need for developing context-aware RPM, which uses generic and personalized medical 
rules to build a customized medical assistant that, comprehends the real health status of the 
patient to minimize false alarms. 

 The urgent need for developing an intelligent hybrid classification model that works locally 
to save the patient’s life in the case of cloud system failure or internet interruption.   

 The need to address the shortcomings of the previous models in dealing with imbalanced 
datasets that result in generating false warnings especially in the emergencies that represent 
the minority class. 

 The need to develop an algorithm that identifies the minimum number of attributes required 
to ensure the continuity of the model's work with highest efficiency and speed. 

The rest of this paper is organized as follows: The second section represents related work, which 
contains Remote Patient Monitor (RPM) models, NB and WOA; The proposed architecture 
(HRRM) is presented in details in the third Section. The fourth section introduces three case 
studies for monitoring patients suffering from blood pressure disorders in real-time, also, the 
sampling methods that will be used to deal with imbalanced datasets. The Proposed Hybrid 
Knowledge Discovery Classification Model (HKDM) is presented in the fifth section. The sixth 
section illustrates the proposed NB-WOA. The evaluation of the proposed classifiers and results 
are outlined in the seventh Section. Our conclusions and future work are drawn in the final 
section.  

2. Related work 

2.1. The IoT-Cloud Convergence in Smart healthcare  

It is expected that many smart medical services will evolve because of the tremendous 
development in IoT, cloud, and edge computing domains and the integration among them. This 
integration helps in developing new medical assistive scenarios and new generations of smart 
medical services and applications. Recently, this topic has increased interest in both industry and 
academia aiming to design and implement advanced smart healthcare systems. Most of the 
currently proposed architectures consist of a set of layers for storing, processing, and analyzing 
medical data. 

Abawajy and Hassan [15] proposed a sustainable Cloud-Based Pervasive Patient Health 
Monitoring (PPHM) architecture. The PPHM architecture contains three layers as follows: 
Collection Station, Observation Station, and Data Centre. This architecture has been tested 
through a case study for real-time monitoring for a patient suffering from congestive heart 
failure. Chen et al. [16] proposed an Edge-Cognitive-Computing-based (ECC-based) smart-
healthcare system for monitoring the physical health of users using cognitive computing. 
Catarinucci et al. [17] proposed an IoT aware smart hospital system that collects and monitors 
patients’ parameters using the ultra-low-power hybrid sensing network in real time. Manogaran 
et al. [18] proposed a new architecture to implement the IoT to process scalable sensor data (big 
data) for healthcare applications. In addition, they provide security services using the integration 
of fog computing with cloud computing. A healthcare service delivery architecture based on fog 
computing has been proposed by Andriopoulou et al. [19]. It proposes module between Cloud 
and IoT devices to enable new types of computing and services. The proposed architecture 
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consists of three main layers, which are: (i) fog servers for storing, processing, and analyzing 
data, (ii) fog nodes for data aggregation, and (iii) cloud-based module for data storage. Rahmani 
[20] proposed a Smart e-Health Gateway using the strategic position at the edge of the network. 
The concept of Fog Computing in Healthcare IoT systems is exploited by forming a Geo-
distributed intermediary layer of intelligence between sensor nodes and Cloud. In addition, an 
IoT-based Early Warning Score (EWS) health monitoring is implemented to address a medical 
case study. Dimosthenis et al. [21] Proposed an integrated Edge-Fog-Cloud architecture for 
Healthcare Internet of Things (EFCHIoT) Infrastructure. The EFCHIoT architecture consists of 
three layers to store medical data, acquire process, and to provide real-time decision-making. The 
three layers are as follows: the first is the Edge layer that includes portable and wearable 
computational devices, the second is the Fog layer which is responsible for gathering and 
processing data from the Edge nodes, and the third is a cloud infrastructure which is responsible 
for data storage and analysis of the data uploaded from the combination of Fog and Edge levels. 
Experimental results have proved that EFCHIoT architecture provides real-time decision-
making, fast queries’ processing, and less power consumption. Our proposed architecture has 
benefited from these ideas by innovating a hybrid architecture that does the main processing of 
vital signs in the local portion of the architecture. Moreover, it uses the power of the cloud to 
store, processes the big imbalanced datasets, and train classification models from a huge number 
of contexts. Additionally, it transfers the classification model to the cloud portion of the 
architecture to predict the health status of the patient in the case of internet interruption or cloud 
disconnection. 

2.2. Remote Patient Monitoring (RPM) 

RPM has enabled physicians to monitor and observe patients remotely using digital technologies 
that collect health data, ambient conditions, activities, etc. in any location, such as a patient’s 
home, and to transmit the collected information electronically to healthcare providers for 
assessment and taking appropriate actions [22,23]. The integration of non-invasive technologies 
into healthcare management strategies by gathering all possible information from the patient and 
his ambient environment helps to improve the quality of decision-making [24–26]. RPM is an 
interdisciplinary field exploiting advancement in many areas such as activity monitoring [27], 
continuous care [28], personalized care [29], cloud-based healthcare architectures to achieve a 
breakthrough in this area [13,14,30]. Earlier trials for developing context-aware RPM has some 
drawbacks, for instance, RPM cannot manage big data because they are based on local 
architecture, each RPM is designed for a specific disease, and they support a limited number of 
context awareness services [31,32]. Many researchers struggled to solve the previous 
shortcomings by developing Context-aware cloud-based models that can extract knowledge from 
massive data generated from patients’ continuous monitoring [33,34]. The most recent 
researches proposed flexible architectures that facilitates adding or removing contexts easily, and 
they are suitable for monitoring any patient suffering from any chronic disease [13,14,35]. These 
architectures wholly depend on clouds in their operation, and this raises many inquiries about 
what will happen to the monitored patient when the internet connection is interrupted, or failure 
occurred in the cloud system. Furthermore, the problem of imbalanced datasets has been 
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overlooked, most studies have only focused on accuracy to prove the efficiency of the model, but 
we believe that this is misleading. The classifier succeeded in predicting patterns that belong to 
the majority class and failed in the minorities which are more critical in these datasets because 
they represent the emergency case of the patient [13,14].  

2.3. Naïve Bayes 

Naive Bayes (NB) is the most popular classifier in the family of probabilistic classifiers. Naive 
Bayes classifier uses the probabilistic theory to get the correct classification [36,37]. NB has 
proven its effectiveness in many learning scenarios such as medical diagnosis [38,39], text 
classification [40], sentiment analysis [41], image processing [42,43] and web mining [44]. 
Classification using Bayesian network considers the dependency between attributes for obtaining 
the correct result [45]. NB is a particular case of the Bayesian algorithm assuming that features 
are independent of each other [46]. This assumption makes training phase simpler and faster with 
nearly similar results.  NB is working as follows [46]: 
Let the training set T has some tuples; each one is represented by an n-dimensional vector 
X={x1, x2,…, xn} and each vector describes n attributes A1, A2,..., An. Each Sample belongs to 
one class of m classes: C1, C2,..., Cm.  
1. For a given a sample X, the classifier will predict that X belongs to the highest posterior 

probability of class by recalling Bayes theorem as shown in equation 1  

       Pሺܥ|	Xሻ ൌ ሺP	ሺ	X	|Cሻ	PሺCሻሻ/PሺXሻ      Posterior ൌ ሺLikelihood	 ൈ Priorሻ/Evidence      (1)              

X is classified to class Ci (class with highest posterior probability), when P (Ci |X) > P (Cj |X), 
where 1 ≤ i, j ≤ m. In equation 1, the denominator (evidence P (X)) is the same for all classes, 
so only the numerator (P (X|Ci) P (Ci)) is calculated to find the biggest value. The prior 
probability of class (Ci) can be calculated as in equation 2:  

   P	ሺܥሻ 	ൌ 	ܵ݅/ܵ                                                  (2) 

 , where (Si) is the number of training samples of class (Ci) and (S) is the total number of 
training samples. If the prior probability term (P (Ci)) is unknown, the equal probability is 
assumed for all classes, then P (C1) = P (C2) = … = P (Cm), therefore, the target of equation 1 
is transformed into maximization for the term (P (X | Ci)) only. 

2. The workload for calculating likelihood (P(X | Ci)) will be very high especially in multi-
dimensional datasets. A simple (naïve) assumption solves this problem by stating that 
individual attribute values are independent of each other under certain conditions and can be 
calculated as shown in equation 3. 

             P	ሺX	|	ܥሻ 	ൎ 	∏ ܲሺݔ

ୀଵ  ሻ                                                      (3)ܥ	|

3. From given dataset T, P (x1 | Ci), P (x2 | Ci),…, P (xn | Ci), can be calculated from the training 
set. Where Xk refers to kth attribute (Ak) of sample X. 

4. From equation 1, the numerator (P(X | Ci) P(Ci)) will be calculated for each class, so that 
sample X will be predicted as Ci member, if and only if, P(X | Ci) P(Ci) is the maximum.  

2.4. Whale Optimization Algorithm (WOA) 

WOA is a nature-inspired meta-heuristic algorithm, which is used to solve optimization 
problems by mimicking the motion of the whale when hunting the prey. 
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ሬܹሬሬԦሺݐ  1ሻ ൌ ሬܹሬሬԦ∗ሺݐሻ െ .Ԧܣ                                                              ሬሬԦܦ
(5) 

Where ܣԦ	ܽ݊݀	ܥԦ	 are coe�cient vectors, which are calculated as in Equations 6 and 7 for (t) that 
represents the current iteration, ሬܹሬሬԦ is the position vector, ܹ∗ሬሬሬሬሬሬԦ vector represents the position vector 
of the best solution until now. ܹ∗ሬሬሬሬሬሬԦ The vector should be updated in each iteration if there is a 
better solution. 

Ԧܣ ൌ 2 Ԧܽ. Ԧݎ െ Ԧܽ                                                                                (6) 

Ԧܥ ൌ 2.  Ԧ                                                                         (7)ݎ

Where Ԧܽ   is linearly decreased from 2 to 0 throughout iterations in exploitation and exploration 
phases and ݎԦ is a random vector in [0, 1]. For two-dimensional search space as in Fig 2, the 
position of the candidate Wi that is located at (X, Y) can be updated according to the position of 
the best candidate ሺܺ∗, ܻ∗ሻ. The values of ܣԦ	ܽ݊݀	ܥԦ vectors control the new position of Wi. 
Accordingly, any position in the search space can be reached by updating the current position in 
the neighbourhood of the current best candidate to simulate the method of encircling the prey. 
This 2-d concept can be extended to n-dimensional search space. The bubble-net feeding 
behaviour has two phases called exploitation and exploration phases [50,51].  

Exploitation phase 

In this phase, whales adopt two mechanisms to chase the prey, which can be explained in 
mathematics as follows: 

A. Shrinking encircling mechanism  

Decreasing the value of Ԧܽ in Equation (6) will control the shrinking mechanism, and then the 
positions of whales are updated according to Equations (4, 5, 6 and 7). Fig 2 shows how the 
current solution (whale) Wi, iteratively converges towards the best solution ܹ∗ (the location of 
the prey), Fig 2 represents the solution in two-dimensional space 

B. Spiral updating position 

The following steps accomplish the simulation for this behavior: 
a) The distance between the current position (solution) Wi and the best solution	ܹ∗ is calculated. 
b) The helix-shaped movement of the humpback whales is mimicked by creating a spiral 

equation as follows: 
                     ሬܹሬሬԦሺݐ  1ሻ ൌ ́.	ሬሬԦܦ	 ݁. cosሺ2݈ߨሻ 		 ሬܹሬሬԦ∗ሺݐሻ                                            
(8)		 

́	ሬሬԦܦ                              ൌ ห ሬܹሬሬԦ∗ሺݐሻ െ	 ሬܹሬሬԦሺݐሻ	ห                                (9)		 

Equation 9 represents the distance between the ith whale (Wi) and ( ሬܹሬሬԦ∗) the best solution obtained 
so far, ݈	is a random number in the interval [-1, 1] and b is a constant that defines the logarithmic 
spiral’s shape [43]. 
According to the previous equations, the humpback whales move towards the prey with two 
different kinds of movements simultaneously: 
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(1) According to equation (4, 5, 6 and 7), the humpback whales move around the victim within 
a shrinking circle. 

(2) According to equation (8 and 9), the humpback whales move towards the prey in a spiral-
shaped path. 

In WOA algorithm, the whale is switching between these two kinds of movements with equal 
probability as shown in equation 10 [50].  
 

      ሬܹሬሬԦሺݐ  1ሻ ൌ ቊ
ሬܹሬሬԦ∗ሺݐሻ െ 	݂݅																																	ሬሬԦܦԦܣ ൏ 0.5

́.	ሬሬԦܦ ݁. cosሺ2݈ߨሻ 		 ሬܹሬሬԦ∗ሺݐሻ							݂݅	  0.5	
                               

(10)		 

Where  is a random number in the interval [0,1] 

Exploration phase (search for pray) 

The humpback whale searches for the prey randomly in the exploration phase adopting a 
different technique by updating his position according to a randomly chosen candidate instead of 
the best candidate like in the exploitation phase. Mathematically if 	หܣԦห  1, the candidate whale 
moves far away from the reference whale performing a global search as in equations 11 and 12 
[43]. 

ሬሬԦܦ      ൌ ห	ܥԦ.		 ܹௗሬሬሬሬሬሬሬሬሬሬሬሬԦ െ	 ሬܹሬሬԦห                                                 (11)				 

     ሬܹሬሬԦሺݐ  1ሻ ൌ ܹௗሬሬሬሬሬሬሬሬሬሬሬሬԦ െ .	Ԧܣ  				ሬሬԦ                                        (12)ܦ

ܹௗሬሬሬሬሬሬሬሬሬሬሬሬԦ is a random position for the randomly chosen whale from the current population of 
whales. 
In WOA, the positions of the search agents are updated at each iteration according to the value of 
หܣԦห, if หܣԦห  1 the position will be updated randomly according to randomly chosen search agent 

and if หܣԦห ൏ 1, the position will be updated according to the best solution. So, the parameter (a) 
is used to switch smoothly between exploration and exploitation phases. Also, the parameter  
controls the switching between the two kinds of whale’s movement “spiral or circular motion 
[50]. 
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3.1. Layer 1: Patient’s House Module (PHM) 

HRRM manages a large number of PHMs for patients monitored by the smart hospital. Each 
PHM is responsible for gathering sensor data that includes medical data (physiological signals), 
behavioral patterns (smoking, drinking alcoholics, taking medications, etc.), ambient data 
(humidity, temperature, noise, etc.), contextual information (location, activity, etc.). The right 
setup of the RPM system guarantees building reliable supervision system taking into 
consideration the patient’s illness type and his social condition. Each illness type requires 
selecting suitable actuators, ubiquitous devices, and IoT sensors along with software programs to 
obtain the necessary sensor data to extract knowledge about the health status of the patient in 
real-time. Each PHM has a unique identifier in the model to identify the patient in the hybrid 
architecture. Layer 1 is composed of the following components: 

3.1.1 Biomedical IoT Platform  

Biomedical sensors are vital instruments in the modern medicine used to collect sensor data that 
has information on human body and pathology. The continuous development of biomedical 
sensors provided the market with precise, sensitive, and fast response sensors with competitive 
price capable of collecting patient’s vital signs in real time. Electronic medical (eMedical) kits 
integrate different types of sensors into one package or add new sensors for building a new 
medical device as in MySignals eHealth and medical IoT platform [52]. It facilitates measuring 
more than 20 biometric parameters such as (position, oxygen in the blood, glucose level, blood 
pressure, pulse, etc.). Furthermore, it supports many connectivity options such as (GPRS, 3G, 
Bluetooth, Wi-Fi, ZigBee, IEEE 802.15.4, etc.).  

3.1.2 Ambient Intelligence devices (AmI) 

It refers to electronic environments created using sensors that are sensitive and responsive to the 
presence of the patient and providing important ambient sensor data needed for the study. 
Ambient sensors are easily embedded in RPM through different communication media to 
recognize the patient and his situational context. Furthermore, they can be tailored to the 
patient’s needs and exploit its adaptive and anticipative capabilities. The goal of using ambient 
sensors in the proposed module is to add smartness, context awareness to the model. Also, it 
helps in understanding the effect of ambient conditions on patient’s physiological signals. 
Ambient sensors that can be used including, but not limited to, room temperature sensors, 
humidity sensor, and smoke detector. 

3.1.3 Data Forwarder (DF) 

It forwards the collected low-level sensor data from ambient devices and high-level sensor data 
from the eMedical platform over different communication media. DF forwards Low-level sensor 
data to High-Level Context Provider (HLCP) in Patient Local Module (PLM) converting it to a 
higher level of abstraction while it forwards high-level data directly to High-Level Context 
Aggregator (HLCA).  

3.2. Layer 2: Patient’s Local Module (PLM) 

PLM is a central local module responsible for receiving, processing and aggregating the 
generated sensor data in PHM into one context state. Also, it has a smart unit validating 
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communication with the cloud part of the hybrid model. Furthermore, it acts as a backup module 
for monitoring the patient by classifying his health status in the case of internet disconnection or 
when a problem occurres in the cloud system. PLM contains the following components: 

3.2.1. High-Level Context Provider (HLCP) 

This unit converts raw sensor data to a higher level of abstraction by adopting many techniques 
such as feature selection, fusion algorithms, and classification algorithms; then the converted 
sensor data is forwarded to High-Level context Aggregator (HLCA). 

3.2.2. High-Level Context Aggregator (HLCA) 

This unit is responsible for the aggregation of the output of different HLCPs and sensor data 
generated from biomedical IoT development platform in one context state. Each context state 
contains sensor data such as vital signs, ambient data, associated activity, behavioral information, 
etc. at specific time slot in the form of high-level values. The mining for assembled context states 
will reveal many mysteries about the fluctuations in patient’s vital signs. For example, the 
increase in HR above the normal range during jogging is interpreted as a normal case, but it is 
worth investigating if it occurs while the patient is relaxed [5]. 

3.2.3.Connectivity Validator (CV) 

This unit examines the connectivity between the local module and the cloud modules in the 
proposed hybrid architecture to select the suitable mode accordingly. Internet connection is 
regularly tested with different measures such as network latency, download speed, upload speed, 
etc. to switch smoothly between the modes of the model. If CV verifies that the connection is 
valid and stable an online mode would be selected to classify patient’s health status on the cloud 
side of the architecture while if CV detects any failure in the communication system; offline 
mode will be chosen to do the same operation on the local part using a backup classification 
model. 

3.2.4.Local Database (LDB) 

This unit stores the collected context states reaching to PLM in the offline mode. Also, it 
contains a backup classification model for classifying patient’s health status locally in offline 
mode when there is a problem in the cloud system. Furthermore, it offers storage space for an 
updated copy of patient’s assistive services, medication time, prescriptions, precautions, 
prohibitions, radiological investigations, medical reports, etc. which are available also for the 
cloud part of the hybrid architecture. 

3.2.5.Personal Medical Assistive Service (PMAS)  

PMAS is a tailored service for every patient according to his illness type and social status. A 
medical committee composed of a family member, social researcher, physician-in-charge, 
caregiver and administrative staff puts suitable assistive services for every patient. Assume that 
classes, which identify patient’s health status, are as follows (Normal, Warning, Alert, and 
Emergency). In Normal cases, the system should work without generating any alerts. In warning 
cases, a warning message will be sent to caregiver and physician-in-duty. In alert cases, 
caregivers and physician-in-charge will be called to follow the case in addition to one of his 
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relatives, neighbors or friends. In emergency cases, physician-in-charge and ambulance will be 
appealed directly to transfer the patient to the hospital. All these notifications can be displayed 
on monitor or patient’s smartphone. Also, a video call can be held between doctor-in-charge and 
the patient to give him instructions in alert and emergency cases.   

3.3. Layer 3: Patient’s Cloud Module (PCM) 

This module acts as a personal information repository for every patient monitored by HRRM. It 
is used to classify patient’s health status in online mode. PCM consists of the following clouds: 

3.3.1. Patient’s Personal Storage Cloud (PPSC) 

PPSC is a personal cloud storage area; every patient who is monitored by the smart hospital has 
his own PPSC. This repository retains context states aggregated during system’s operation in 
offline mode until uploaded to the Central Knowledge Discovery’s Cloud (CKDC). Also, this 
cloud keeps patient’s profile (e.g., name, age, gender, weight, height, illness history, etc.) and the 
thresholds of patient’s physiological signals, which are taken from Medical Monitoring Cloud 
(MMC). Furthermore, it keeps medical tests, radiological investigations, medical reports, 
prescriptions, medicine name, its dose, time, patient’s behaviors like smoking and drinking 
alcoholic beverages, etc. Finally, it retains the last updated version of assistive services approved 
by the medical committee. 

3.3.2. Medical Monitoring Cloud (MMC) 

This cloud contains all entities helping in the monitoring operation of the patient both inside and 
outside the smart hospitals. This cloud has a connection to all persons or services’ provider 
assigned to provide help to the patient when his health is deteriorating. Medical experts transfer 
their medical knowledge to MEC in the form of generic medical rules while physician-in-charge 
is responsible for putting personal medical rules and move them to PPSC. Furthermore, 
physician-in-duty monitors the patient remotely and responses to alarms generated in alert and 
emergency cases by taking immediate actions to save his life. 

3.3.3.Medical Encyclopaedia Cloud (MEC) 

This medical encyclopedia retains all medical information according to recent researches for 
every illness type, physiological signals that must be monitored and their ranges and associated 
symptoms in the form of generic medical rules. The generic medical rules are used with personal 
rules in building a personalized classification model for every patient which will minimize false 
alarms. MEC is updated with any new discovered generic rule from knowledge discovery 
process as will explained in layer 4.  

3.4. Layer 4: Hybrid Knowledge Discovery Module (HKDM) 

HKDM is a hybrid module that contains components on both local and cloud sides used for 
knowledge extraction and the classification of patient’s health status accordingly.  The hybrid 
architecture aims to exploit merits of both local and cloud architectures and avoid their flaws. 
The cloud part of the module facilitates working with big data regarding storage and 
computations, on the other hand, the local part of the module will solve the weakness of the 
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cloud-based models in case of internet interruption or a failure in the cloud system under any 
circumstances. This module consists of the following components: 

3.4.1. Central Knowledge Discovery Cloud (CKDC)  

CKDC is one of the core components of the proposed framework, which includes many 
distributed clouds with large storage capacities to accommodate all context states generated from 
patient’s continuous monitoring. Spark is used to distribute a vast number of contexts, maybe for 
millions of patients’ across different clusters then applying different machine learning techniques 
in parallel to speed up the knowledge discovery process. As shown in Fig 3, the knowledge 
discovery process is done vertically across the four layers by converting raw data into the first 
layer into high-level data by HLCP, and then aggregate them with contextual and medical 
information by HLCA into unified contexts states in the second layer. Generic and personal 
medical rules are used in the third layer to build a dynamic model customized according to the 
patient’s health status. In the fourth layer, machine-learning techniques are used to extract the 
knowledge about the patient’s health status using a massive number of contexts.  

3.4.2. Online Classification Model (OCM) 

The learning phase in the proposed classification technique consists of five consecutive stages to 
build an accurate classifier working in online-mode and capable of dealing with imbalanced 
datasets. The best-learned model among all clusters will be selected by voting to predict patient’s 
health status in online mode; this technique aims to maximize the accuracy of the classification 
and minimize the elapsed time. (Will be presented in detail in section 5).  

3.4.3. Offline Personal Classification Model (OPCM) 

OPCM is a backup copy of OCM that works on the local side (offline mode) when the internet 
connection interrupted, or failure happens in the cloud system. According to the result of the 
classification, one of PMAS services, which are stored in LDB, will be called to take appropriate 
action. 

3.4.4. Synchronizer and Scheduler Unit (SSU) 

This unit is responsible for information exchange between HKDM, PLM and PCM to ensure that 
each module has the last version of information required for its proper work. The 
synchronization of offline context states stored in LDB with PPSC is performed according to a 
predefined schedule.  Moreover, the instant synchronization of the new version of OCM with 
OPCM to be used in offline classification on the local side is performed. Furthermore, it ensures 
that PLM has the last version of PMAS. 

4. A Case Study on Patients with Blood Pressure disorders 

An imbalanced dataset is a dataset that the number of tuples belonging to the majority class 
outnumbers those belonging to minority classes [53,54]. For example, it is normal in datasets 
that the patient’s health status is classified to one of these classes: (Normal, Warning, Alert, and 
Emergency) according to patient’s context state to be imbalanced. The majority class is a Normal 
class, while Emergency and Alert classes are the minority classes. As, most classifiers are 
accuracy-driven that they concentrate on maximizing the overall accuracy and minimizing the 
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overall errors assuming that the distribution of classes is normal and the cost of errors obtained 
from different classes is same so, they will be biased towards majority classes rather than 
minority ones [55]. Handling imbalanced class distribution can be classified as following: 
sampling methods [56,57], cost-sensitive [58,59] and kernel-based methods [60].  

A case study is implemented to evaluate the performance of HRRM and to prove its 
efficiency in classifying patient’s health status and its ability to deal with imbalanced datasets. 
This case study has the following objectives: 

a. Verifying that HRRM correctly comprehends the health situation of the patient using context-
awareness to achieve more accurate results than traditional systems that adopt generic rules in 
classification.  

b. Verifying that HRRM succeeded in addressing the problem of the imbalanced datasets and its 
dramatic exacerbation with big data. 

c. Validating that the proposed classification technique (HKDM) succeeded in building a 
coherent learning model for big data generated from HRRM using a distributed cloud model 
to speed up classifications and giving instant, accurate results.  

d. Validating that the proposed bio-inspired algorithm (NB-WOA) succeeded in selecting the 
minimum sets of features required for the operation of the model with the highest efficiency 
and fastest performance.   

e. Electing the best classification technique and the best sampling methods that give the best 
results and suitable to operate with HRRM. 

4.1. Case Study Description 

As illustrated in Table 1, this study has been conducted on three elderly patients suffering 
from Blood Pressure (BP) disorders and their details are as follows: 

Table 1. Patients’ records 

 
Patient 1 Patient 2 Patient 3 

Patient record a41434 a41466 A40208 

Gender Female Male Female 

Age 71 years 66 years 78 years 

Birth date 27-Aug-1941 11-Mar-1944 11-Feb-1937 

Illness category Hypertension Hypotension 
Normal + Transient 

Elevation in BP 

Monitoring start date 31-Aug-2012 22-Jun-2010 15-Mar-2015 

Monitoring duration 
Day Month Year Day Month Year Day Month Year 
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 The HRMM has monitored the patients for varying periods as listed in Table 1 to 
evaluate its performance in predicting the health status of these patients.  

The measuring of physiological signals four or five times daily is not enough to diagnose 
serious medical illness, especially in medically unstable cases. Thus, the patients were 
continuously monitored by taking measurements every 15 minutes.  

The vital signs vary with the ambient conditions such as humidity, noise, and room 
temperature. Also, the behaviors of the patient such as smoking, drinking alcoholic beverages, 
taking medications, physical activity, and stress are the major factors of the fluctuation in his 
vital signs. Additionally, many additional factors can explain the variations in the patient’s 
physiological signals including age, the degree of the illness, disease’s history and the family 
profile [61,62].  

The HRMM has exploited this data to build a context-aware classification model, which 
is smart enough to distinguish between the different situations and their effect on the 
physiological signals of the patient. Also, this framework is capable of comprehending the 
nuances between the different patients. The consideration of these points in the design of the 
HRMM leads to building a smart, coherent, accurate, and fast framework. Accordingly, this 
technique will minimize the false alarms that are usually generated from such AALs especially 
those systems that depend on general medical rules in its operation (traditional AALs).  

The learning phase has been performed in the (HKDM) utilizing large historical data 
from many patients with the same category of illness. The OCM uses the data stored in the KDC 
to train a classification model for every illness’s category. The OCM detects the emergency 
cases in real time and informs the medical assistive team to take the appropriate action.    

Datasets will be distributed among different Hadoop clusters, and the learning phase will be 
performed in parallel using ensemble vote’s classification technique to manage the massive data 
and speed up the classification process to give results in real time. WEKA (Waikato 
Environment for Knowledge Analysis) will be used to simulate the proposed classification 
technique OCM using Spark and evaluate it with different classifiers and sampling methods 
[63,64]. 

4.2.  The clinical dataset 

The clinical data of the elderly patients suffering from blood pressure disorders that are used 
in these case studies have been taken from PhysioNet MIMIC-II  [65]. 

4.2.1. PhysioBank  

The PhysioBank contains four terabytes of digitized vital signs and time series containing 
over 90,000 recordings organized in more than 80 clinical datasets, and classified according to 
the types of signals included [66]. The clinical databases include continuous measurements for 
some vital signs along with, laboratory test results, procedures, medications, caregiver notes, 
images and imaging reports, and mortality (both in and out of hospital). 

4.2.2. The MIMIC II database 

The MIMIC-II database is the extension to the first attempt of building a database called 
MIMIC that contains multi-parameter recordings of ICU patients in the period between 1992 and 
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1999. The MIMIC II Clinical Database was released in 2011 including over 32,000 subjects for 
more than 40,000 patients who have been admitted to cardiovascular, medical, surgical, surgical 
recovery units, and coronary care units at the same hospital [67].  

As illustrated in Table 1, three patients have been selected to represent the different 
categories of BP disorders. Moreover, they are used to test the classification models (OCM and 
OPCM) of the proposed HRMM. Additionally, the OCM uses the data of a large number of 
patients including these patients to train the classifiers in the learning phase.  

4.3. Synthetic Data Generation 

As far as we know, there are no real datasets that similar to the data that will be collected by the 
proposed model. The targeted dataset contains physiological signs, associated activity, ambient 
conditions, and behavioral information for patients with blood pressure disorders. The 
continuous monitoring will extend to a year by taking a sample every 15 minutes as shown in 
Table 2. Therefore, datasets will be synthetically generated based on real patients’ physiological 
signals taken from Physionet MIMIC-II database for three patients to mimic data generated from 
biomedical IoT platform in HRRM [68].  

Table 2. A sample of the final dataset 

Timestamp HR SBP DBP MBP RR SPO2 Temp. Act. L. Act. Med. Sym. Class 

23-03-16 0:00 78 159 91 106 19 100 0 1 1 1 3 Warning 

23-03-16 2:45 102 144 61 111 10 100 0 2 2 0 17 Alert 

23-03-16 3:00 60 146 81 96 18 100 0 2 2 0 0 Normal 

23-03-16 4:15 86 146 63 103 17 100 2 2 2 0 0 Normal 

24-03-16 0:00 62 181 91 104 23 100 1 1 1 0 1 Emergency 

 
The synthetic dataset takes into consideration the following criteria: 
a. The correlation between activities and physiological signals according to Table 3 that shows 

the percentage of increase in HR according to different events (e.g., HR is average when the 
patient is watching TV, but it will be higher when he is on the treadmill) [69]. 

b. The plausibility of activity time (e.g., eating at 3 p.m. and sleeping at 1 a.m.).  
c. The effect of ambient conditions and taking medications on physiological signals.  
d. The relationship between patient’s health status and symptoms.  
The generation of synthetic datasets is performed using MATLAB for hypertensive, hypotensive, 
and normotensive patients in a year with the same distribution as in real Physionet MIMIC-II 
datasets. This technique is reliable in the generation of synthetic datasets that are similar to real 
datasets, which are verified in previous studies of biomedical data analysis [14,70]. Some 
abnormal physiological signals are added without modifying the remaining attributes of these 
context states to represent emergency and alert cases. The possible symptoms for each category 
(Hypertensive patients, Hypotensive patients, and Normotensive patients with transient elevation 
in blood pressure) are presented in Table 4. Table 5 shows all Types and ranges for all attributes 
in the generated datasets that are used in the experiment [71]. Table 6 illustrates the situational 
classification model used to distinguish the class according to personalized medical rules. Table 
7 shows a set of assistive services that will be executed according to the result of the 
classification. 
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Table 3. The percentage of HR increase according to each activity type [69] 

Activity The percentage of HR increase. 

Laying  0-10% 
Sitting    5-15% 
Standing 10-25% 

Walking 15-45%  
Running/Cycling 35-100% 
Stairs 15-80% 

Table 4. Symptoms according to patient’s category in the experiment  

 
 

 

 

 

 

Table 5. Types and ranges for attributes used in the experiment [71] 

  

 

 

 

 

 

 

 

 

 

Table 6. Situational Classification according medical model 

Class Classification 
Normal HR, SBP, DBP, RR, and SPO2 all values are in expected Range concerning current activity 

and symptoms = 0 
Warning Any of HR, SBP, DBP, RR and SPO2  increase above the normal range to the warning 

range or medications not taken or symptoms > 0 
Alert Any of HR, SBP, DBP, RR and SPO2  increase above the warning range to the alert range 

or more than two vital signs in warning range and ( medications not taken or symptoms > 
0) 

Emergency Any of HR, SBP, DBP, RR and SPO2  increase above the alert range to the emergency 
range or more than two vital signs in alert range and ( medications not taken or symptoms > 
0) 

Type Symptoms Value (Binary) 
Hypertensive A headache & Anxiety – Fatigue-   a severe 

headache & Anxiety - Pounding in your chest, 
neck, or ears - Vision problems and confusion - 
Chest pain and difficulty in  breathing 

6-bit binary 
(value: 0 to 63) 

Hypotensive Lack of concentration – Fatigue - Blurred vision – 
Dizziness - Rapid shallow breath - Fainting 

6-bit binary 
(value: 0 to 63) 

Normotensive Uncomfortable- Anxiety – a headache – Fatigue - 
a severe headache - Dizziness 

6-bit binary 
(value: 0 to 63) 

Name Attributes Type Range 
value 

Vital Signs Heart Rate (HR) Numeric [30-200] 

 

Systolic Blood Pressure (SBP) Numeric [50-230] 
Diastolic Blood Pressure (DBP) Numeric [30-140] 
Respiratory Rate (RR) Numeric [5- 30] 
Oxygen Saturation (SPO2) Numeric [40-100] 

Activity Current  Activity/ Last Activity Resting 1 

  

Sleeping 2 
Walking 3 
Eating 4 

Exercising 5 
Household 6 

Ambient conditions Room temperature Normal 0 

  
Hot 1 
Cold 2 

Medication Taken or not Boolean 0 or 1 
Symptoms Symptoms Boolean [0-63] 
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itself with extension ‘.CSV’ (Comma Separated Value). The level of parallelism that will be 
applied to the dataset is configured in this job by indicating the number of data chunks that will 
run in parallel on Hadoop Distributed File System (HDFS) or YARN cluster. Also, the same job 
can be simulated using cores of  PC’s processor by setting ‘master host = local {no of cores}.' In 
this experiment, datasets will be sliced into four partitions and will be processed using the five 
cores of the Processor in parallel [63].   

Stage 2: Randomly Shuffle dataset 

In this stage, “Randomly Shuffle Data Spark Job” is used to specify the number of data chunks 
and the number of instances in each chunk. Furthermore, data chunks are stratified to ensure that 
each class has almost the same distribution of class values as the original dataset, which helps in 
getting the best result, especially when using ensemble-voting classifiers. If the minority class 
has samples, less than the number data chunks, these samples will be copied to each data chunk 
to make sure that each class is represented in every data chunk at least by one sample.  

Stage 3: Data Pre-Processing 

It is clear that our datasets are suffering from severe imbalance as illustrated in Table 8, as well 
as in Fig 4. In this stage, well-known sampling methods such as Class Balancer (CB), Synthetic 
Minority over Sampling (SMOTE), Random under Sampling (RUS) and Random over Sampling 
(ROS) are used to process imbalanced datasets. Experiments will be conducted using six well-
known classifiers from different classification families over the three patients’ datasets with and 
without these sampling methods.   

Stage 4: Learning phase 

In this stage, each adopted classifier will be used to build four models, a model for every data 
chunk on a different cluster and this process will be repeated four more times, using the four 
sampling methods. The map part of “Weka Classifier Spark job” is configured to train the 
following classifiers: Naïve Bayes (NB), Decision tree C 4.5 (J48), Random Forest (RF), Ripper 
(JRip), Support Vector Machine (SVM), Nearest Neighbour (IBK) on each data chunk. Then, the 
reduce job will select the best-generated model by a voted ensemble classifier. 

Stage 5: Evaluation Phase 

In this stage, the evaluation is performed for every classifier using ten folds cross-validation by 
configuring “Weka Classifier Evaluation Spark Job” to do that. This evaluation module 
is aggregatable so the overall classification process will be performed through two passes; the 
first pass makes the classifier training’s task is to learn an aggregated classifier over the data and 
the second pass for evaluation. 

5.2. Offline Personal Classification Model (OPCM) 

After the evaluation process is completed for all classifiers, the best classification model (OCM) 
along with the best sampling method will be copied and transferred to the local part of HKDM. 
This model is called OPCM; it will be used for classifying the incoming contexts into the local 
side (offline mode). 
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6.1. Parameters' initialization  

In the beginning, the parameters of WOA (A, C, a, p, l) were initialized. In the proposed model, 
the WOA provides the naïve Bayes classifier with some whales, each whale represents a subset 
of features from the original dataset in (binary form), “1” means that the feature is selected and 
“0” means not selected. Thus, WOA search to find the best set of features that achieves the 
highest accuracy with NB. The whales' positions are initialized randomly.  

6.2. Fitness evaluation 

The optimization operation needed to apply fitness function to assess every whale position is as 
given by equation 13. 

ሻܨሺ	ݏݏ݁݊ݐ݅ܨ                                      ൌ ሻܦோሺߛߙ  ܥ|ሺ	ߚ െ  ሻ                                         (13)|ܥ|/|ܴ

Where ߛோሺܦሻ is the classification performance of condition feature set R with respect to choice 
D, R is the length of selected feature subset, C is the aggregate number of features, α and β are 
two random parameters that depend on each other, α ∈ [0, 1] and β =1− α, these parameters are 
related to the significance of the subset length and the classification performance. This fitness 
function is used to maximize the classification accuracy; ߛோሺܦሻ and the proportion of the 
unselected features to the aggregate number of features; as in the term	|ܥ െ  .[74] |ܥ|/|ܴ

6.3. Termination criteria 

When the termination criteria are satisfied, the operation ends; otherwise, we proceed with the 
next generation operation. In the proposed model, the WOA is terminated when a maximum 
number of iterations are reached or when the best solution (best set of features (BestF) that 
achieve the highest accuracy (BestAccuracy)) is not modified for a given number of iterations.  

6.4. Updating positions 

The positions of whales are then updated as in the mathematical model of WOA in section 2.3.2. 

6.5. Algorithm NB-WOA 

Input:  

 Initialize the whale's population X by a binary code; each whale is composed of a string of 
feature selection bit. 

 Initialize parameters (A, C, a, b, l and r) 
 Initialize BestAccuracy  

Output: 

 BestF according to BestAccuracy 

Algorithm: 

1     while (t < maximum number of iterations) 
2            for each search agent 

3            Update a, A, C, l, and p 

4                  If (p<0.5)                         /*Shrinking Encircling Mechanism*/ 
5                     if (|A| < 1)                                /*Exploitation Phase*/   
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6                       The position of the current search agent is updated by Equations (4, 5, 6, 7) 
7                     else if (|A| >1)                                                                 /*Exploration Phase*/ 
8                            Select a random search agent (Xrand)     
9                       The position of the current search agent is updated by Equations (6, 11, 12) 
10                    end if  
11               else if (p > 0.5)                                                                  /*Spiral Mechanism*/ 
12                     Update the position of the current search by the Equation (8, 9) 
13             end if 
14         end for 
15        Check if any search agent goes beyond the search space and amend it 
16        Remove attributes, which are not selected from the training samples attribute to   

    get the training dataset ܶ/, according to the feature of each whale selection bit. 
17       Calculate prior probability P (Ci) of each class of training data.  
18       Calculate likelihood P (x| Ci). 
19       Calculate the formula = likelihood * prior probability P (x| Ci)* P (Ci) 
20       Select the maximum prior probability P (x| Ci)* P (Ci) as the predicted class 
 
21       Calculate the fitness function (maximization problem) of each search from equation 13.  
22       Accuracy  = ݂ with corresponding feature selection BestF. 
23       If Accuracy >= BestAccuracy  
24          Set BestAccuracy = Accuracy with corresponding feature selection BestF 
25       endif  
26        Update X* if there is a better solution 
27        t=t+1 
28    end while 
29    Return X* 

7. Results and Discussion 

Experiments are held to test the proposed HRRM with different six classifiers and four sampling 
methods. The performance of all classifiers with and without different sampling methods are 
evaluated regarding Accuracy, overall F-measure, F-measure for emergency class and time 
elapsed in each experiment. The priority in the selection of the best classifier along with the best 
sampling method is in following the order: F-measure (emergency class), overall F-measure, 
accuracy and elapsed time. Ranking ensures selecting the best combination of classifier and 
sampling methods for HRRM that works with high efficiency and generate minimal false alarms. 
Accuracy and F-Measures are calculated from equations 14, 15, 16 and 17 [73,75]. Where, TP = 
True Positives, FP = False Positives, TN = True Negatives and FN = False Negatives 

 
         Accuracy ൌ TP  TN/TP  TN  FP  FN                                     (14) 

 
                Recall ൌ TP/ሺTP  FNሻ                                               (15)  

 
                                                         Precision ൌ TP/ሺTP  FPሻ                                             (16) 

 
      F െ Measure ൌ 2 ∗ ሺPrecision	. Recall/Precision  	Recallሻ                   (17) 
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Table 10 shows the performance of six classifiers with/without sampling methods for a 
year using OCM that proposed in section 5.1. The best performance among all versions of the 
classifier (with/without sampling) is highlighted, and the winning algorithm in each data set is 
highlighted inside a bold square.  

Fig 7, 8 and 9 illustrate a comparison between six classifiers regarding accuracy for the 
data sets P1, P2, P3, respectively. As shown in Table 11, the average rank for these classifiers 
over datasets indicates that J48, RF, and JRip respectively are the best classifiers that can work 
with the highest percentage of success in HRRM while the worst are SVM and IBK. It is evident 
that the elapsed time with SVM classifier increases dramatically with big datasets.  

Decision tree and rule-based classifiers have the advantage of generating comprehendible 
models that can be written in the form of “IF- Then” rules as shown in Fig 10. This advantage 
enables the medical team to investigate the generated model to approve it or to update general or 
personal medical rules and relearn the classification model again.  

 
 

Table 10. Comparison between classifiers with/without sampling techniques for patients in one year 

 

Classifier P1 (Hypertensive Patient) P2 (Hypotensive Patient) P3 (Normal Patient) 
Acc. F- 

measure 
F-measure 
(Emergency)

T. 
(Sec)

Acc. F- 
measure

F-measure 
(Emergency)

T. 
(Sec)

Acc. F- 
Measure. 

F-measure 
(Emergency)

T. 
(Sec)

JRip 99.9 1 1 10 99.9 1 1 14 99.9 0.99 0.96 18 

JRip +CB 99.9 1 1 10 99.9 1 1 10 99.7 0.99 0.85 10 

JRip +RUS 99.9 0.99 1 8 99.9 1 1 9 99.1 0.99 0.7 9 

JRip +ROS 99.9 1 1 17 99.9 1 1 19 99.9 0.99 0.92 39 

JRip +SMOTE 99.9 1 1 10 99.9 1 1 12 99.9 0.99 0.92 23 

NB 92.6 0.93 0.92 7 91.1 0.91 0.97 6 96.4 0.96 0.74 8 
NB +CB 92.1 0.92 0.98 7 90.7 0.91 1 7 90.8 0.92 0.28 7 

NB +RUS 92 0.92 0.98 7 90.7 0.91 1 7 90.6 0.92 0.27 7 

NB +ROS 92.1 0.92 0.97 7 90.7 0.91 1 7 90.7 0.92 0.28 8 

NB +SMOTE 91.5 0.92 0.96 7 91.8 0.92 1 7 95.9 0.96 0.68 11 

SVM 84.3 0.84 0.79 38 86.4 0.86 0.26 70 91 0.91 0.65 55 

SVM +CB 80.5 0.82 0.97 34 85.2 0.85 0.6 34 83.2 0.84 0.44 34 

SVM +RUS 76.9 0.78 0.98 11 81.5 0.81 0.62 16 81.4 0.82 0.4 16 

SVM +ROS 82.9 0.84 0.98 88 88 0.88 0.79 169 84.6 0.86 0.49 174 

SVM +SMOTE 84.4 0.84 0.94 38 86.5 0.86 0.71 68 91.1 0.91 0.73 51 

   J48 99.9 1 0.98 10 99.9 1 0.99 20 99.9 0.99 0.95 8 

J48 +CB 99.9 1 1 8 99.9 1 0.99 8 99.8 0.99 0.9 8 

J48 +RUS 99.8 0.99 1 6 99.9 1 1 8 99.2 0.99 0.76 8 

J48 +ROS 99.9 1 1 9 99.9 1 1 10 99.9 0.99 0.93 10 

J48 +SMOTE 99.9 1 0.99 8 99.9 1 1 9 99.9 1 0.95 13 

RF 99.9 0.99 0.99 16 99.9 1 0.99 18 99.9 0.99 0.90 18 

RF +CB 99.9 1 1 12 99.9 1 1 12 99.7 0.99 0.98 12 

RF +RUS 99.9 0.99 1 9 99.9 1 1 10 99.3 0.99 0.75 11 

RF +ROS 99.9 1 1 20 99.9 1 1 21 99.8 0.99 0.97 23 

RF +SMOTE 99.9 1 1 15 99.9 1 0.99 21 99.9 0.99 0.94 22 

IBK 94.3 0.94 0.78 48 93.2 0.93 0.52 44 92.9 0.93 0.72 47 

IBK +CB 94.2 0.94 0.84 47 95.4 0.95 0.58 47 91.3 0.91 0.74 47 

IBK +RUS 81.3 0.82 0.85 28 86.2 0.86 0.57 27 82.8 0.83 0.74 33 

IBK +ROS 89.6 0.9 0.84 93 91.7 0.92 0.57 92 89 0.89 0.75 107 

IBK +SMOTE 94.5 0.95 0.85 47 92.9 0.93 0.64 43 92.8 0.93 0.79 50 
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Fig 10. The sample for one of the generated model using JRip classifier 

As illustrated in Table 13 and Fig 11, the proposed algorithm NB-WOA is tested over 

the same datasets of the three patients to select the minimal features that achieve the highest 

accuracy. It needed almost half of the features of the original datasets to achieve the same 

accuracy or slightly better. Thus, the size of the dataset will shrink by half, speeding up the 

classification process. As listed in Table 14, the next step is to use these features training and 

evaluating classifiers and to compare the performance of same classifiers over the original 

datasets that are listed in Table 10. The NB-WOA can be used as a safe-fail module to detect 

when to stop working the model. As listed in Table 13 for the dataset of the hypertensive patient 

(P1), the model continues its work if the sensor that registers the room temperature fails. On the 

contrary, the NB-WOA will stop the model and send alerts to the stakeholders of the model if the 

sensors that record the HR and BP fail. As illustrated in Table 14, as well as, Figs 12 and 13, the 

NB-WOA speeds up classifications and preserves accuracy.   

Table 13. The selected features by NB-WOA from each dataset to achieve the highest accuracy 

Datase
t 

No. of total features Selected features by NB-WOA 

P1 
 

11 Five features 
HR, SBP, DBP, RR, and symptoms 

P2 11 Six features 
HR, SBP, DBP, RR, SPO2, and symptoms 

P3 11 Six features 
HR, SBP, DBP, RR, SPO2, and symptoms 

Classifier Model: JRIP rules: 
=========== 

(DBP <= 44) => Class=Emergency (24.0/0.0) 
(DBP <= 54) => Class=Alert (36.0/0.0) 

(Symptoms >= 1) => Class=Warning (221.0/0.0) 
(DBP <= 70) => Class=Warning (24.0/0.0) 
(SBP <= 100) => Class=Warning (17.0/0.0) 
(SPO2 <= 93) => Class=Warning (12.0/0.0) 
(SBP >= 131) => Class=Warning (8.0/0.0) 
(RR >= 21) => Class=Warning (11.0/0.0) 

(Heartrate <= 59) => Class=Warning (9.0/0.0) 
(RR <= 11) => Class=Warning (2.0/0.0) 

=> Class=Normal (423.0/0.0) 
Number of Rules: 11 
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convergence between IoT and the cloud portion of the framework through the Patient Local 
Module (PLM). The HRMM has been examined through case studies on patients suffering from 
different categories of Blood Pressure (BP) disorders. Experimental results have proved that 
HRMM is a smart healthcare monitoring framework, which is capable of predicting the category 
of the patient’s health status from the current context states accurately. The proposed OCM has 
succeeded in addressing the problem of big imbalanced datasets by processing data chunks using 
different sampling methods on different Hadoop clusters using Spark. The findings of this study 
indicate that the proposed OCM has succeeded in increasing the accuracy of classifications and 
minimizing error rates, especially for the minority class (emergency class). The OCM has used 
different sampling methods to preprocess different data chunks across different clusters using 
Spark in parallel to achieve these results. Our research emphasizes the importance of the PLM 
not only for the convergence between IoT sensors and clouds but also for the preservation of 
patients’ lives in the case of internet interruption or cloud disconnection. Additionally, 
experimental results have proved the effectiveness of NB-WOA in selecting the minimal 
features’ set that are mandatory to the proper work of the HRMM without any deterioration in its 
accuracy. The NB-WOA saves the storage space and accelerates the classifications. Also, it 
works as a smart safe-failure module that decides to continue the operation of the framework in 
the case of non-influential sensor failure. If an influential sensor fails, it stops the operation of 
HRMM to avoid getting wrong classifications’ result that put the patient’s life at risk. The 
directions of the future work include the usage of HRMM in monitoring different illnesses, the 
observation of context domains that may affect patients’ vital signs, and the adoption of different 
bio-inspired algorithms instead of WOA. Additionally, the HRRM framework should be tested 
from the networking perspective. 
 
Funding: This research did not receive any specific grant from funding agencies in the public, 
commercial, or not-for-profit sectors. 
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Highlights 

 A Hybrid Real-time Remote Monitoring (HRRM) framework for patients suffering from 
chronic diseases is proposed.  

 A Hybrid Knowledge Discovery Module (HKDM) is proposed to classify patient’s health 
status on dual-mode (online - offline).  

 The proposed HKDM addresses the problem of imbalanced datasets in big data.  

 Naïve Bayes – Whale Optimization Algorithm (NB-WOA) is proposed to select the 
minimum features’ set required to ensure the continuity of the model's work with highest 
efficiency and speed. 

 

 


