Future Generation Computer Systems 93 (2019) 130-142

=
FiSICIS!

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs TS

Efficient data request answering in vehicular Ad-hoc networks based N

Check for

on fog nodes and filters™

c,b,*

Yongxuan Lai *°, Hailin Lin ?, Fan Yang “®* Tian Wang ¢

2 School of Software, Xiamen University, Xiamen 360000, China

b Shenzhen Research Institute, Xiamen University, Shenzhen 518000, China

¢ Department of Automation, Xiamen University, Xiamen 360000, China

4 College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China

ARTICLE INFO ABSTRACT
Article history: Vehicles in urban city are equipped with more and more sensing units, and sensed data are contin-
Received 7 July 2018 uously generated in large amount. These sensed data could be filtered and preprocessed before being

Received in revised form 14 September 2018
Accepted 28 September 2018
Available online xxxx

shared or uploaded to the road side units and the cloud for efficiency. In this paper we propose a filter-
based framework called FERA (Filter-based Efficient Request Answering), which combines the concept
of fog computing and vehicular sensing, and adopts the pull/push strategies to adaptively and efficiently

Keywords: gather the requested data in vehicular ad hoc networks. Filters are defined based on the ratio of cost
Push/pull between the push and the pull methods to control the passage or blockage of the data readings. Moreover,
Data gathering filter cubes are defined to manage large number of filters, where efficient algorithms are developed to
Filter cube construct, update and store the filter cubes so that the matched data readings are pushed upward and
\F/?AgN ré‘_)rdes unmatched data readings are blocked effectively. Extended simulated experiments demonstrate the

proposed scheme has a much higher success ratio of request answering than existing schemes, e.g. REED
(Abadiet al., 2005) and GeoVanet (Delotet al., 2011). Up to 94 percent of the requests could be successfully
processed, while at the same time maintaining a relatively low query cost.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Vehicular nodes are equipped with more and more sensing
units, and large amount of sensing data such as GPS locations,
speeds, video clips, and so on are generated [1,2]. These data
are shared or uploaded as inputs for applications that aim at
more intelligent transportations, emergency responses, and re-
duced pollutions and fuel consumptions. So cooperative urban
sensing [3,4] is at the heart of the intelligent and green city traf-
fic management. The key components of the platform will be a
combination of pervasive vehicular ad hoc network and a central
control and analyzing system. This has led to the emergence of a
new kind of system, i.e. the Vehicular Ad-hoc Sensing System [5,6],
where vehicles travel along roads and exchange information with
encountered vehicles or nodes through V2V(vehicle to vehicle)
or V2I (vehicle to infrastructure) communications. Data can be

* This research is supported by the Natural Science Foundation of China (No.
61672441), the Shenzhen Basic Research Program (No. JCY]J20170818141325209),
the National Key Technology Support Program (No. 2015BAH16FF01), the State
Scholarship Fund of China Scholarship Council (No. 201706315020), Educational
Research Projects for Young and Middle-aged Teachers in Fujian (No. JA15365).

* Corresponding author at: Department of Automation, Xiamen
University, Xiamen 360000, China.

E-mail address: yang@xmu.edu.cn (F. Yang).

https://doi.org/10.1016/j.future.2018.09.065
0167-739X/© 2018 Elsevier B.V. All rights reserved.

disseminated and reach a far distance by using moving vehicles
as intermediates, following multi-hop routing protocols. Recently,
IEEE 802 committee defined wireless communication standard
IEEE 802.11p [7] that serves specifically for V2I communication.
The Federal Communications Commission has allocated 75 MHz
of bandwidth, which operates on 5.9 GHz channel for short range
communications.

One key and challenging issue in VANET is the vehicular
data gathering [2,8-10]. First, vehicular nodes are limited to road
topology while moving, and under various road conditions and
high moving speeds the network usually suffers rapid topology
and density changes. The communications are usually fragmented
and intermittent-connected. Second, the vehicular sensed data
is in large amount and characterized as continuous generation.
The sensed data should be filtered and preprocessed before being
shared or uploaded. Data filtering technologies tailored to the
VANET environment are highly needed. Generally speaking, there
are two strategies to gather data: the push-based and the pull-
based models, which are similar to those strategies used in the
field of distributed and mobile databases. In a push-based model,
each vehicle senses the data and proactively to upload data to
a central server through V2V or V2I communications [11,12]. So
when a node receives information from its neighbors, it has to
decide whether that information is relevant or not. The system


https://doi.org/10.1016/j.future.2018.09.065
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.09.065&domain=pdf
mailto:yang@xmu.edu.cn
https://doi.org/10.1016/j.future.2018.09.065

Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142 131

incurs overheads when duplicate messages or irrelevant data are
pushed. In a pull-based model, a query is issued from a node or the
cloud [13,14]. Vehicles are able to understand, route, and process
those queries, and finally route back the query results to the query
requester. The pull-based model provides more flexibility in terms
of the types of queries [ 15], which could in principle be diffused far
away to retrieve remote data. There are three steps in the query
processing: (1) query requester diffuses the request to different
data sources, either directly or by using multi-hop relaying tech-
niques, (2) each node that receives the request computes a partial
result based on its local data, and (3) the nodes deliver the result
to the source node of the query. However, most of existing pull-
based schemes assume no fixed data server available in VANET,
and they only consider the resource of the in-network vehicular
nodes [14,16,15,9]. Inevitably, those approaches incur relatively
large delays, especially in the VANET environments. Delays would
result in failures of query result deliveries because vehicular nodes
would move to other locations during the delay intervals.

This paper proposes an adaptive and efficient data gathering
scheme based on the pull/push request answering model. The main
idea is to devise filters that capture the data pattern to adaptively
push results up along the network layers to reduce the processing
delay of queries/requests. Due to the movement of vehicular nodes,
it is clear that reducing the delay of queries would benefit the
query processing and increase the success ratio of query processing
in VANET. Also, the concept of fog/edge computing and vehic-
ular sensing are adopted for the system design. Fog computing
extends the traditional cloud computing paradigm to the edge of
networks [6,17,18]. Fog nodes are new kinds of nodes that are
capable of carrying out a substantial amount of storage (rather than
storing primarily in cloud data centers), communication (rather
than routing over the internet backbone), control, configuration,
measurement and management. For example, the Intel’s Next Unit
of Computing [19] is a small-form-factor computer, whose moth-
erboard measures 4 x 4 inches and could be integrated to the road
site units deployed at the edge of networks. Fog nodes, also called
edge nodes, are able to gather and maintain metadata about the
network, requests, and vehicles. These gathered metadata are then
used to generate filters that adaptively control the passages of data
and requests, pruning unnecessary data transmissions. The main
contributions of this paper are as follows:

1. We propose a filter-based framework called FERA (Filter-
based Efficient Request Answering) that combines the pull/
push strategies to adaptively and efficiently process the
requests in VANET. Data readings that could pass through
filters are forwarded to higher layers, and those blocked are
stored at the current layer. Requests are forwarded up to
edge nodes and the cloud to extract matched data. If a re-
quest is satisfied, its results are forwarded back to the source
of the request. If arequest is unsatisfied, i.e. no matched data
are found, it is directed and forwarded down to edge nodes
and ordinary nodes to further search the requested data.

2. We design efficient data structures and procedures that
captures the pattern of data and requests to set and update
the filters. Cost ratio is defined to calculate the states of
filters, based on which the review operations are performed
on filters. To update and set filters efficiently, we define
the concept of filter cube and propose efficient algorithms
to construct, update and store a filter cube that is effective
to push matched data readings and block unmatched data
readings.

3. We conduct extensive experiments to demonstrate the ef-
fectiveness of the proposed scheme in vehicular sensing ap-
plications. The proposed scheme achieves a higher success
ratio of request answering than existing schemes, e.g. REED

[20] and GeoVanet [15]. Up to 94 percent of the requests
could be successfully processed, while at the same time
maintaining a relatively low query cost.

Therest of the paper is structured as follows. Section 2 describes
the related work; Section 3 introduces some preliminaries and
defines the filters and the network model; Section 4 presents
the overall procedures and cost analysis of the request answering
framework; Section 5 describes the details of updating filters;
Section 6 presents the procedures of filter cube construction and
update; finally, Section 7 describes the environmental setup and
analyzes the simulation results, and Section 8 concludes the paper.

2. Related work

Vehicles could be viewed as powerful mobile sensors, and
numerous recent research works in vehicular networks have ad-
dressed the problem of data gathering or request answering. The
solutions of queries and request answering could roughly be
categorized into three types: the push-based, the pull-based,
and the pull/push-based. Here we review some related works to
position our work in the research community.

2.1. Push-based model

Push-based model installs constraints within the network and
trigger data transmission when these conditions are met. Lee
et al. [11] proposed the MobEyes system for proactive urban
monitoring. The system exploits the vehicle mobility to oppor-
tunistically diffuse concise summaries of the sensed data, harvests
these summaries, and builds a low-cost distributed index of the
stored data to support various applications. Palazzi et al. [ 12] pro-
posed a delay-bounded vehicular data gathering approach, which
exploits the time interval to harvest data from the region of interest
satisfying specified time constraints, and properly alternates the
data muling and multi-hop forwarding strategies. Muhammad
et al. [21] proposed a proactive data dissemination scheme for
pushing critical content to one-hop neighbors in VANET. It treated
content categorically and allowed pushing of content when neces-
sary.

2.2. Pull-based model

Pull-based model has the data requester or query requester
to request particular data, e.g. the query processing belongs to
this type. Mehul et al. [13] proposed the PeopleNet that relies on
the existence of a fixed network infrastructure to send a query
to an area that may contain relevant information, and extract the
query results. Abadi et al. [20] proposed the REED framework
in wireless sensor networks, which is based on the TinyDB to
store filter conditions in tables, and then distribute those tables
throughout the network to extract the query results. Lee et al. [ 14]
proposed a mobility assisted query dissemination scheme called
FleaNet, where the node that submitted the query periodically
advertises it only to its one-hop neighbors, which will see if they
can provide some answers from information stored on their local
storage. Similar to FleaNet, Zhang et al. [16] proposed a content
sharing scheme called Roadcast, where a vehicular queries other
encountered vehicles on the way. The keyword-based queries are
submitted by the users and the scheme tries to return the most
popular content relevant to the query. The researches use a “delay
tolerant” strategy to handle the pull-alike requests, they cannot
meet the time requirements at streaming environment.

2.3. Push/pull-based model

The push/pull-based model strikes a balance between the two
strategies to achieve better efficiency. It is first introduced in the



132 Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142

Table 1
Comparison of the three models.
Models References Advantages and drawbacks
Push-based [11,12,21] Easy to implement, short delay, not message efficient
Pull-based [20,13,14,16] Message efficient, larger delay
Push/pull-based [15,22,23] Adaptive, tradeoff between push and pull, more complicated

area of wireless sensor network. Adam [24] presented an overview
of sensor network query processing and characterized it in the
context of push versus pull techniques for data extraction. Lai
et al. [22] proposed a partition-based algorithm for the external
join processing in sensor networks. It organizes the sensory data
of the network through an optimized “value-to-storage” map-
ping/filter, through which tuples can choose their joining point
that incurs the least communication cost. Delot et al. [ 15] proposed
the GeoVanet scheme, where data readings are pushed to a DHT-
based fixed geographical locations that allow the user to retrieve
his/her results in a bounded time.

The push-based models are easy to implement, have short
query delay, but they are not message efficient as all the data
readings that satisfied the constraints are pushed to the server.
The pull-based models are message efficient, yet they have larger
delay as requests should be first forwarded to distributed nodes
before collecting the results. The push/pull-based models stride
a tradeoff between the push and pull-based models. They are
adaptive yet more complicated to implement. Table 1 summarizes
the advantages and drawbacks of these models.

Also, there are some other data sharing and delivery schemes
in VANET. Zhang et al. [25] proposed a P2P content sharing scheme
called Roadcast. It relaxes user’s query requirement a little bit so
that each user can have more chances to get the requested content
quickly. And it ensures popular data is more likely to be shared
with other vehicles so that the performance of overall query delay
can be improved. Zhao et al. [26] proposed an approach called
3GDD for 3G-assisted data delivery in a VANET. It constructs a
utility function to explore the tradeoff between delivery ratio and
delivery delay, where the 3G-assisted data delivery is formulated
as an optimization problem in which the objective is to maximize
the overall utility under the 3G budget constraint.

2.4. Fog/edge computing

Recently, there is also a research trend to integrate the cloud
and vehicular networks [27-29]. The concept of VANET cloud,
however, is highly related to “fog/edge computing” [17,18,30],
which extends traditional cloud computing paradigm to the edge.
Fog nodes are able to provide computation, storage, and network-
ing services between the end nodes and traditional clouds. Fog
nodes reduce service latency, and improve QoS, resulting in su-
perior user-experience [31,32]. Within the concept of fog/edge
computing, more and more fog nodes are deployed at the edge
of networks for various applications. The proposed scheme in this
paper is a step further integrating the cloud and VANET, where
resources at the cloud and the RSUs are taken advantage for the
request answering. Data are cooperatively stored and indexed, and
requests are processed and forwarded to specific RSUs based on the
filters.

Most of the above-mentioned push or pull schemes work in
a two tier static networks. Their main focuses are on the rout-
ing and message forwarding mechanisms. And filters are usually
assumed to be static and not adaptive, which downgrade their
performances. The proposed scheme has three layers in VANET,
and adaptively adjusts the states of filters according to the cost
ratio to achieve better performance. The most related work is
the CEB architecture (Cloud, Edge and Beneath) proposed by Yi
et al. [23]. It adopts the concept of optimal push/pull envelope to

Cloud

Fig. 1. Illustration of a VANET network.

dynamically adjust the basic push and pull rates for each sensor.
However, CEB solely adjusts the push/pull based on the setting of
data rates that are assumed prerequisite knowledge, and the nodes
are assumed to be static. On the contrary, in this paper we mainly
focus on the design and setting of filters that capture and reflect
the pattern of the match between requests and data readings in
the dynamic environment, i.e. the VANET.

3. Preliminaries
3.1. Requests and data

We assume a three layered VANET consisting of ordinary nodes,
the edge nodes and the cloud as illustrated in Fig. 1. Each vehi-
cle, v;, monitors the road condition and surrounding environment
through periodical sensing. Edge nodes provide storage and net-
working services between the vehicular nodes and the cloud. Data
readings at ordinary nodes are denoted as data (s, t, d), where s is
the source node, t is the timestamp of the data, d = (dq, ..., dg)
is a K-dimensional data reading. Data requests are submitted by
users to get desired results. Without loss of generality, we assume
requests are only issued from the vehicular nodes, and a request is
denoted asreq(s, t, f, I'), where s is the source node that generates
the request, t is the time when request is issued, f is a filter
describing the requested data, and I is the time interval of the
requested data. Vehicular nodes would push their readings to the
edge nodes, and the edge nodes would further push some of the
readings to the cloud to answer requests quickly and efficiently.
Also, the requests are forwarded to edge nodes and the cloud, and
then forwarded down to the edge nodes or ordinary nodes to find
the matched data.

3.2. Filter

Filters are assumed to be metadata that describe the ranges
of data dimensions. A basic filter is denoted by f(ay, az, ..., ax),
where g; is the range of value or set of elements at the ith dimen-
sion. @; is either a value range when dimension d; is continuous,
or a set of elements when dimension d; is categorical. A reading



Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142 133

—>flow of requests
—> push of data

Fig.2. Flow of requests, data, and results in request answering, where the thickness
of lines indicates the amount of requests or data.

data(s, t, (dq, da, ..., dx))is compatible to filter f(ay, ay, . .., ag) if
the following conditions are satisfied:

d,»ea,-, i=1,2,...,K (1)
denoted as f(data) = true. Data readings are routed to their

compatible filters, and the states of filters determine whether these
readings could pass through or not. A basic filter has two states:
“open” and “close”. If the filter is at “open” state, the data compati-
ble to this filter would pass through the filter, else the data would
be blocked. If f(req.f, data) = true, data(s, t, d) is said to be able to
answerrequestreq(s, t, f, I'),denoted by match(req, data) = true.

3.3. Sliding window

Requests and data arrive sequentially in a streaming envi-
ronment. So we maintain a sliding window to process the data
requests within a time interval I". Window W is denoted by
(t1, ta, ..., tm), where t; is the ith time slot. The set of requests and
data within W are denoted by R and D respectively.

Requests and data readings are matched within W to extract the
requested data, where R x D denotes the set of matched requests,
and D x R denotes the set of matched data:

Rx D = {r|r e R, 3d € Ds.t. match(r, d) = true} (2)
D x R={d|d € D, 3Ar € Rs.t. match(r, d) = true} (3)

4. Filter-based efficient request answering

There are three layers in VANET: the ordinary nodes, the edge
nodes, and the cloud. Filters are installed on ordinary nodes and
the edge nodes to suppress unnecessary push of data readings.

Fig. 2 depicts the request answering procedures based on the
pull/push strategy. Vehicular nodes push their readings to the edge
nodes. Those that could pass through the filters are forwarded to
higher layer, and those that are blocked are stored at the current
layer. Also, requests are forwarded to edge nodes and the cloud
to extract the matched data. If a request is satisfied, i.e. finding its
matched data, it is stopped at the layer and the requested results
are forwarded back to the source node of the request. If a request
does not find its matched data, it is forwarded down to the edge
nodes and ordinary nodes to further query the requested data. The
thickness of lines in Fig. 2 indicates the amount of requests or data.

In this section we present the overall description and cost anal-
ysis of the request answering framework, and in the next sections
we will discuss the update mechanisms of filters and filter cubes.

Algorithm 1: Messages handling in the procedure of data
push.

1 for all d generated at node s do
2 store d at s;

3 f = map(d); updateX(d, f);
4 if f .state == “open” then
5 | forward d to Edge;

for all d received at Edge e do
store d ate;

f = map(d); updateX(d, f);
if f .state == “open” then
10 | forward d to Cloud;

11 for all d received at Cloud do
12 L store d at Cloud;

Algorithm 2: Messages handling in the procedure of data pull.

1 for all (r, x) at Node s do
2 f = map(r); updateY(r, f);
3 if d € s.D matches r then
4 L route (r, d) to source of r;
else if x==UP then
| forward (r, x) to Edge;

(2B ]

7 f(;r all {r, x) received at Edge e do
8 f = map(r); updateY(r, f);
9 if d € e.D matches r then

10 L route (r, d) to source of r;

1 else if x==UP then

12 L forward msg(r, x) to Cloud,;
13 else if x==DOWN then

14 L broadcast msg(r, x) to nodes;

15 for all (r, x) received at Cloud do
16 if d € Cloud.D matches r then

17 | route (r, x) to source of r;

18 else

19 for all e in Edge Nodes do

20 if match(r, e.f) == true then

21 | forward (r, DOWN) to Edge e;

4.1. Overall description

Algorithm 1 depicts the procedures of data push strategy. Data
readings are generated and stored at ordinary nodes (line 2). The
map function returns compatible filter for data d, and function
updateX(d, f) updates the statistics of data about the filter (line 3).
If the filter is at “open” state, data could pass through the filter and
be forwarded to the edge node that currently covers the vehicular
node (lines 1-5). Similarly, when the edge node receives data from
ordinary nodes, it stores them, updates the filter statistics and
forwards the data to the cloud if the filter is at “open” state (lines
6-10). When the cloud receives data readings from edge nodes, it
just stores them (line 12).

Algorithm 2 depicts the procedures of the data pull strategy. A
request message is represented by (r, x), where r is the request and
x € {UP, DOWN} denotes the direction of the request diffusion.
When an ordinary node receives a request (r, x), it first gets the
compatible filter and updates the request statistic of the filter (line
2). If there are data readings in local storage that could answer the



134 Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142

Algorithm 3: Procedure of sliding the window.

1 for each time slot do
slide forward window W;
for all filter f at nodes and edges do
calculate cost ratio of f according to Eq. (7);
L update state of f;

a b W N

for all e at edges do
L route update of filter to the cloud;

N

request, the data are routed to the source of the request, and the
matching statistics about the filter are updated (lines 4). If there are
not matched data and the direction of message is UP, the request
is forwarded to the edge node that covers the vehicular node (line
6). Similarly, when an edge node receives a request, it checks its
local storage, and data readings in the storage that could answer
the request are extracted and routed to the source of the request,
and the matching statistics about the filter are updated (line 8-10).
If there are no matched data for the request, the request is handled
according to the direction parameter. If the request is diffused
up the network layer, it is forwarded to the cloud (line 12). If it
is diffused down the layer, the request is broadcasted within the
nodes covered by the edge node to search the matched data (line
14). When the cloud receives a request, it first searches its local
storage for the match. If there are data readings that could answer
the request, the data is routed back to the source of the request
(line 17); otherwise, the request is forwarded down to edge nodes
to search for the results (lines 19-21). Note that FERA maintains a
copy of filters of all edge nodes at the cloud, so it could calculate
a set of edge nodes whose filters could match the request, and the
request is forwarded to these edge nodes.

The push and pull of data depend on the setting of filters
installed in ordinary nodes and edge nodes. FERA adopts a sliding
window to maintain statistics and states of the filters. Algorithm 3
is the pseudocode of the window sliding. At each time slot window
W is slid forward with two operations. First, the cost ratio of the
filters at the node and edge nodes is calculated and the states
of the filters are updated (lines 3-5). The cost ratio is calculated
distributively among ordinary nodes and edge nodes based on the
statistics of the data and requests. The calculation is performed
according to Eq. (7) at Section 5, where the update operations are
also discussed. Second, the update of the filter at each edge node
is sent to the cloud (line 7), so the cloud has the knowledge of the
latest distributions of data in the edge nodes.

4.2. Overall cost analysis

The cost of the request answering actually consists of several
parts:

e P1: pushing data to edge nodes or to the cloud;

e P2: forwarding requests up to edge nodes or to the cloud;

e F3: forwarding requests down to edge nodes or to the ordi-
nary nodes;

e P4: forwarding matched results to the source nodes of re-
quests;

e P5: exchanging auxiliary data (e.g. filters) among layers of the
network.

Cost P1, P3, P4 relate to each other. The more data are pushed to
edge nodes or the cloud (larger P1), the larger possibility a request
could be matched. Hence fewer requests have to be forwarded
down to the edges or ordinary nodes (smaller P3), which leads to
smaller number of hops for the results to be forwarded back to the
request source (smaller P4).

Suppose we have oracle knowledge about all matches between
the requests and the data, then only the part of matched data need
to be pushed to the cloud, where the data match requests and are
routed back to the sources of the requests. We call the cost of data
gathering under oracle knowledge assumption the minimal cost,
which is denoted by Cost(opt):

Zcost(r, r.s, cloud) + Z cost(d, d.s, cloud) (4)

reR deDxR

where cost(a, s, t) is the cost forwarding a from s to t, r.s is the
source of request r, d.s is the source of data reading d, and D x R
denotes a join operation that extracts the set of matched data.

In real applications it is unknown whether the requests and
data readings would match or not beforehand, yet we could es-
timate the matches through filters. Filters determine the passage
or blocking of data readings at each layer of the network, so it
strikes a balance between the push and pull of the data readings.
The mechanism of filter design and update plays an important role
for the performance of the request answering. In the following
sections we present the detailed mechanisms for the update of
filters.

5. Update a single filter

When afilter is at the “open” state, its compatible data readings
pass through; else the data is blocked at the node where the filter is
deployed. When the pattern of requested data changes with time,
the filter is updated accordingly through a review operation, which
checks and calculates the state of a filter to determine whether a
change of the state is needed. There are three issues that need to be
concerned about in the review operation: (1) Criteria: what is the
criteria to change the state of a filter? (2) Frequency: how often
does the review operation should be done? (3) Efficiency: how to
update and set filters efficiently, especially when there are large
number of filters?

These issues relate to each other and their solutions are pre-
sented in this research. We will discuss request answering through
a single filter in this section, and present the details of request
answering through a filter cube in Section 6.

5.1. Cost of a filter

Datareadings would pass through a filter if the data are compat-
ible with the filter and the filter is at the “open” state. Some of these
data answer requests, and some might not match any requests.
However, when the filter is at the “close” state, all its compatible
data are blocked and not forwarded to the upper layer. So requests
that are not matched at current layer have to be routed down to
the lower level to extract the requested data.

We denote the set of data and the set of requests that are
compatible with filter f within the time window as Dy and Ry
respectively. Then the cost of state for filter f is calculated as
follows:

{cost(f, “open”) = wp * |Dy|

5
cost(f, “close”) = wyq * |Dy x Re| + w1 * |Ry| (3)

where wy is the factor for one-time data transmission, and w is the
factor for one-time request transmission and request broadcasting,
Ds x Ry denotes the set of data that are matched with the requests
in Rf.

5.2. Criteria of state change

The state of a filter is set and updated according to a cost metric.
If cost(f, “close”) > cost(f, “open”), it is more efficient for f be in



Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142 135

the “open” state, else it is better for f to be in the “close” state. In
other words, if the cost ratio meets the following condition:
cost_ratio(f) > 1 (6)
that is,

cost(f, close)

cost(f, open)

_ Wq * |Df X Rf| =+ wq * |Rf|

cost_ratio(f) =

wo * |Dr|
Df x R w R
=7|f f|+—1*ﬂ>l (7)
Dy wo  |Dy

then f is set “open” within a period of time. Here we define the
data match ratio ¢(Dy, Ry) and the request-to-data ratio p(Dy, R¢) as

follows:
|Df X Rf| |Rf|
@(Dr, R) = ———, p(Df,Re) = =
s Rf \Dy| s Rf IDy|

where Dy x Ry denotes the set of data that are matched with the
requests in Ry, and ¢(Dy, Ry) is calculated as dividing the number
of matched data by the number of the whole dataset. p(Dy, Ry) is
calculated as dividing the number of requests by the number of
data readings.

Formula (7) could be rewritten as:

(8)

cost_ratio(f) = ¢(Dy, Rf) + bt * p(Dy, Re) > 1 (9)
Wo

If Formula (9) holds, filter f is set to “open” state, else it is set to
“close” state. The main idea of our approach is to always choose
a “cheaper” cost by adaptively setting the status of filters. The
cost_ratio is calculated based on a sliding window, where the
numbers of data and requests compatible with filter f are recorded.
In formula (8), the set Dy and Ry is assumed not empty. Yet when
|Df| = O or |Rf| = 0, the state of f is simply set to “close” without
further calculation.

5.3. Review operation

The numbers of data and requests compatible with filter f are
recorded at each time slot of a window, e.g. W. Sequences that
indicate the amount of data and requests are denoted by X; =
[X1.X2, ..., %] and Yf = [y1,¥2, ..., Ykl respectively, where k is
the size of the window, x; and y; are the number of data readings
and requests at the ith time slot respectively. When W moves
a time slot forward, the latest numbers are added as x, yi. The
oldest element x, y; are removed, and other elements are updated
accordingly: x; = Xi_1, i = Yi—1. These update operations are
denoted by the functions updateX(d, f), updateY(r, f), which are
illustrated in Algorithm 1 and 2.

Given a time window W, the data match ratio and request-to-
data ratio defined at Formula (8) are calculated as follows:

ko k
min(x;, X; * y;) Vi
@(Ds, Re) = 2 MmN, X 1) = p(Dy,Ry) = Z:,1 l (10)
1%i D1k

Here when there is not matched request at the ith time slot,
i.e.y; = 0, min(x;, x; * y;) would return zero. Hence the unmatched
data readings are pruned when calculating ¢(Dy, Ry). For each time
slot, the algorithm recalculates the cost ratio defined at Formula (9)
and determines whether to reset the filter state.

Table 2 is an example that illustrates moving the window for-
ward when conducting the review operation, where Z in X; and Yy
means there are z readings or requests at current time slot. Given
wo = 1and wy = 2, the ratios of filter f are calculated according to
Formula (10), and the cost ratio at t, t + 1, t 4+ 2 are calculated as:
16/13 = 8/13 4+ (2/1) % (4/13), 16/21 = 8/21 + (2/1) % (4/21),
30/22 = 14/22 + (2/1) % (8/22) in time ¢, t+1, t+2. So according
to Formula (9), the state of f is set as “open”, “close”, “open” during
the time period.

Table 2

Example of sliding a window forward and conducting the review operations (wy =
1,wy; = 2).Z in X; and Y; means there are data readings or requests of size z at
current time slot.

Time t t+1 t+2
X [058] 0[588] 05[886]
Yy [004] 0[040] 00[404]
@(Dy, Ry) 8/13 8/21 14/22
o(Dy, Ry) 4/13 421 8/22
cost_ratio 16/13 16/21 30/22
state “open” “close” “open”
Table 3

Cost of states of a filter.

Cases  State Data match  Pushdata  Pulldata  Cost

cost; “open”  Yes d ¢ wo * |d]

costy “close”  No ) ) 0

cost;  “open”  No d ¢ wo * |d

costy “close”  Yes 13 d+r wo * |d|4+wq * |r]|

5.4. Cost analysis of models

Suppose the ratio of matched data belong to f is m, i.e. ¢(Dy, Rf)
=m € [0, 1], it is clear that the cost of push-based and pull-based
strategies are calculated as follows:

COStyysh = wo * |Df| 11
COStpy = wo * [Dy| * m + wq * |r] (12)

Term wo*|Dy|+m is the minimal cost Cost(opt) defined at Eq. (4). So
both cost,usn and cost,,y have extra costs compared to the minimal
cost. FERA aims to capture the pattern of request-data matching
S0 as to gain on the minimal cost through setting the filter states.
Given a set of data readings d, there are four cases when setting the
states of filters (see Table 3):

Suppose the accuracy of setting the state of a filter is & € [0, 1],
i.e. the probability of case 1, 2 is &, and the probability of case 3, 4
is 1 — £. Then the overall cost of state setting for a filter in FERA is:

costrgra =& % (costy + costy) 4+ (1 — &) * (costs + costy)
=& % (wo *x |d| *xm+0)+ (1 —&)x
(wo * |d] * (1 —m) + (wo * |d| + wq * [r])xm)  (13)
=Exwox|dxm+(1—E&)*(wo*|dl +wq*|r|xm) (14)

The cost of FERA depends on the predicting accuracy &. If the
predicting accuracy is high, e.g. & — 1.0, then in Eq. (14) the
first term approximates the Cost(opt) and the second term approx-
imates 0, so the cost of FERA gains on the minimal cost. There
has been numerals research that indicates the spatial-temporal
patterns on the trajectory or vehicular applications [33], and other
schemes, e.g. [34], that achieve high accuracy of request or query
predication could be integrated into the proposed scheme.

6. Filter cube construction and update

A filter is updated through review operator, which is performed
according to the cost ratios within the time window. Hereby we
have handled the criteria and frequency issues about the update of
filters. In this section we address the third issue, i.e. the efficiency of
updating filters. We present the details of constructing, updating,
and storing a large number of filters.

6.1. Filter cube
Afilter cube is denoted by F([D1, s1],[D2, s21, ..., [Dk, sk]), where

K is the number of dimensions, [D;, s;] denotes the range of dimen-
sion Dj is split into s; segments. c(sg1, Sg2, - - . , Sgk ) is called a cell,



136 Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142

where sg; is a segment in the ith dimension. For the continuous
dimension, it is evenly split into segments on its value range; for
the categorical dimension, it is split according to the number of
elements contained in segments. Each cell has a filter attached to it,
and the state of a cell refers to the state of the attached filter. There
are |F|| = ]_[11< sj cellsin F. All these cells form a cube, i.e. filter cube.

F, = F([Dq, msq1], [D,, ms;], ..., [Dg, msg]) is called the basic
filter cube, where ms; is the maximal number of splits on dimension
D;,i = 1,2,...,K. Basic filter cube has the dimensions that are
split at the lowest level of granularities, and has the largest number
of cells. Also, the filter that is attached to the cell in a basic filter
cube is called a basic filter.

6.2. Cube construction

The basic filter cube F; is constructed at the very beginning of
request answering. F, contains basic filters that have the maximal
splits on all dimensions. The state of each basic filter within the
cube is set based on the cost ratio, and each basic filter answers
requests and prunes out unmatched data. After collecting some
statistics about the data and requests, a new filter cube F that
derives from F, and has fewer cells and filters would be generated
in FERA.

Two attributes are defined for a filter cube: the size and the
uniformity. A filter cube is preferable when it has smaller size and
higher uniformity. Smaller size means smaller number of filters,
so fewer review operations are needed. Higher uniformity means
that within a cell there are more basic filters that have the same
state, so there are fewer mismatches between the basic filters and
cells. We define a metric called split factor (x ) to capture these two
attributes, namely:

X(F):a*ﬂ—i—(l—a)*ZZmis(f,c) (15)

[[Fo | )

where« € [0, 1]is abalance factor between the two attributes, | o|
denotes the number of cells in cube o, £2, denotes the set of basic
filters within cell ¢ € F, and mis(f, c) is a function that indicates
the difference of states between basic filter f and cell c. mis(f, c)
returns O if f and c has the same state, else it returns 1. The state of
a cell refers to the state of its attached filter, which is set according
to the cost ratio defined at Formula (7).

The aim of cube construction is to find a split F* that minimizes
x (F*). One cube building approach works by searching all the pos-
sible partitions. It chooses a dimension D;, iterates the dimensional
splits from 1 to the maximal number of splits ms;, and for every
partition it calculates the split factor x(F). Given K dimensions, for
dimension d; there are ms; ways of splitting, so there are ]_['1( ms;
ways partitioning the cube. For each possible partition, there are
|IF|| cells and a total of ||F|| operations are needed to compute the
split factors yx (F). So the overall complexity of the algorithm is:

K
O([ [msi = IF1I) (16)
1

given that mis(f, c) is a unit operation. Suppose n is the maximal
number of splits of all dimensions, the overall time complexity of
Formula (16) could be rewritten as:

on*) (17)

as H’f ms; < 1%, |F|| < nX.The cube building approach in this way
is exponential and works only when K is small, e.g. less than 10.

In this research we adopt a greedy approach for the cube con-
struction that is based on the dimensional split factor, which is
defined as follows:

X(F,D,-,x):oz*misi+(1—a)*22mis(f,s) (18)

seD;j fef2s

Algorithm 4: Build a Filter Cube.
split=new array(K), mf=new array(K);
for i € [1,K] do
mf[i] = oo;
forj e [1, ms;] do
calculate x(F, D;, j) according to formula 18;
if x(F, D;, j) < mf[i] then
mfli] = x(F, D;, j);
split[i] = j;
9 | splitith dimension of F into split[i] segments;
o return F;

W N U R W N -

=

where « is the same as defined in Formula (15), x is the number of
splits on dimension D;, and £2; is the set of cells in F;, that belong to
segment s. Function mis(f, s) returns 0 if f and s has the same state,
otherwise it returns 1. The number of splits of D; is calculated as
follows:

ID;| = argmin {x(F, D;, x) : x € [1, ms;]} (19)
X

Algorithm 4 is the pseudocode of the greedy cube construc-
tion algorithm. It first creates two arrays to store the number
of splits (split) and the minimized split factor (mf) (line 1). For
each dimension, the split factor is initialized to oo (line 3) and
the algorithm loops from 1 to ms; to search for the splits of the
dimension to calculate the minimal dimensional split factor (lines
4-8).Then that dimension is split accordingly and finally filter cube
F is returned (lines 9-10). Note that in the initial phase of the
request answering the mismatch mis(f, s) in Formula (18) could
be efficiently calculated because the requests and readings are
recorded at the basic cube F,. Also, as ||F|| < ||Fp|l, the cost of
update on F is much smaller than that on F,.

6.3. Review operation and states update

Once a filter cube is built, newly arrived data or requests are
forwarded to the compatible filters in the cube. A filter is able
to accumulate statistics on its compatible data and requests, and
calculates its cost ratio to determine its state. This is called a review
operation of a filter. The review operation of a filter cube is done
through reviewing all filters within a cube.

For a data reading that is routed to a filter within a cube, four
cases might occur: (1) the data passes through the filter and is
pushed to the upper level, it then matches to a request; (2) the
data passes through the filter and is pushed to the upper level, yet
it is not matched by any requests; (3) the data is blocked by the
filter, and it matches no requests in the higher level; (4) the data
is blocked by the filter, but could match some requests from the
higher level. Case 1 and 3 are called “correct” match of the filter,
yet case 2 and 4 are called “incorrect” match. We defined a metric
called mismatch factor €(Dy, Ry) to reflect the cost of the incorrect
match by combining case 2 and 4:

ID}| + IDf |

“Or 8=,

(20)

where Dy is the set of data readings that are directed to f, Df+ is

the set of data readings that pass through f to the higher level yet
match no requests, D; is the set of data readings that are blocked
by f yet are pulled by requests from higher level.

Mismatch factor €(Dy, Ry) reflects the error of predicted match
between data readings and requests in a realtime streaming envi-
ronment. Two factors would lead to a larger error €(Dy, Ry) for a



Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142 137

Algorithm 5: Review a Filter Cube.

for allf € F do
calculate €(Dy, Rf) by formula 20;
if e(Ds, Ry) < t then
calculate cost ratio of f by formula 7;
L update state of f;

a b W N =

else
generate basic filter cube f, on f;
f .state = basic;
set timer Timer(f, T, €(Dy, Rf));

10 if Timer(f, T, e(Dy. R)) fires then

© N

mis(a,
no ave= Zaejf’vbn( = er = D
12 if er > n then
13 calculate cost ratio of f by formula 7;
14 update state of f;
15 else
16 (I, k) = argming o {x(f, Di,x) :i € [1,K], x €
[1, ms;]};
17 split f into k filters by splitting dimension D;;
18 add split filters {f, ..., fi} into F;
19 f .state = “more”;

filter. The first one is predictability error. For example, when data
and requests arrive in a random way, filters are not able to capture
the patterns and hence cannot predict whether a data reading
could contribute to the final matched results. In this study we
assume there are some spatial-temporal patterns for the matches
between the requests and data readings, and assume the pre-
dictability error is a constant given the distributions of data and
requests. The second one is granularity error. It occurs when a
filter is in relatively large granularity and could not represent the
detailed characteristics of the basic filters contained in the filter.
For this case, FERA would further split and transform the filter into
smaller filters so that each smaller filter could have its own “open”
or “close” states to control the passage of data readings, which leads
to smaller mismatch factor.

Algorithm 5 presents the details of reviewing a filter cube. For
every filter f in the cube, it calculates the mismatch factor €(Dy, Ry).
If the value is less than a predefined threshold t, the algorithm
updates the cost ratio and state (lines 2-5); else a basic filter based
on f is built and a timer Timer(f, T) is set for possible splits on f,
and the state of f is set to basic (lines 7-9). Here T is a time period
for observing the statistics of the filter, and during that period the
incoming data compatible with f are processed by the basic filters
inf, (line 8). When Timer(f, T)is fired, the average mismatch factor
avg on all basic filters on f and the ratio er that divides avg by
€(Dy, Ry) are calculated. er is the ratio of granularity error in the
mismatch factor (line 11). If er is greater or equal than threshold n
(predictability error dominates), filter f is set according to the cost
ratio defined by Formula (7). If er is less than n (granularity error
dominates), filter f is split into k filters on dimension d; and added
to the original filter cube (lines 19-18). In line 16 the dimension
and the number of splits on f are determined by the dimensional
split factor defined in Formula (18). The state of filter f is also set to
“more”, meaning further filters would control the passage of data
readings, i.e. data or requests compatible to f are furthered mapped
to the split filters and processed there.

6.4. Storage of filter cube

The generation and update of a filter cube, which we have dis-
cussed in previous sections, also needs an efficient storage struc-
ture. We adopt a lazy storage strategy that uses hash tables [35] to
store filters within a cube.

Filter cube F is split to seg; segments on dimension d;,i =
1..., K. So each cell is represented by an entry of a hash table #,
ie. (key : [hq, hy, ..., hgl, value : {state, X, Y, S}), where h; is the
index for filter f on dimension d; in cube F, Xy, Y are data sequence
and request sequence defined at Section 5.3, and S is data structure
that stores how f is split when f is at “more” state. A filter is only
created when there are some data to be added to X; or Y;. For filters
or cells that do not have compatible data readings or requests, no
entry is needed at the hash table, so large number of storage space
could be saved. It is worth noting that other data structures that
handle sparse data are also feasible for the storage of filter cubes,
yet the detailed description of the data structure is out of the scope
of this paper.

Filters are stored in a cube with equal cells. A data reading could
mapped to dimensional indexes that are used to access the filter
quickly. When a data reading or request arrives to a filter cube, it
needs O(1) to locate the compatible filter. Moreover, a filter cube
achieves two aspects of efficiency compared to the set of individual
basic filters when doing the request answering. First, A filter cube
F is built based on the basic cube F,. The number of filters that
it maintains is reduced by a ratio of % = ]_[’1( % where the
splits at dimension D; is smaller than or equal to the maximal
split ms;. In the cube building procedure we could also see that
IIF|l < ||Fy|l holds. Second, a lazy and spare storage strategy is
adopted for the cube storage. A large proportion of filters within a
filter cube are “empty” filters because no data readings or requests
are compatible to them. So they do not need any storage structure
to maintain their statistics of the readings or requests.

7. Experimental study
7.1. Environment setup

We conduct experiments on the ONE platform [36] with real-
world road network to verify the performance of the proposed
algorithm. The ONE is a popular simulation environment that is
capable of generating node movement using different movement
models and routing messages between nodes with various routing
algorithms.

7.1.1. Trajectory dataset and network setting

The Xiamen Taxi Dataset is used for the simulation. The dataset
contains trajectories of about 5000 taxis in Xiamen city, China
during July 2014. The region is limited to [118.066E, 118.197E] x
[24.424N, 24.561N], and maps provided from OpenStreetMap is
used to build a road network. In the simulation, the most active
300 taxis are selected to act as vehicular nodes. Each vehicle moves
along the historic trajectory. The moving speed ranges from 0 to 72
KM/h, which differs according to road segments and time periods.
The simulation runs on a 64 bit desktop with 8G memory and Intel
CoreTM i7 3.60 GHz CPU.

There are 81 edge nodes (RSUs) evenly deployed in the map,
and each edge node periodically updates its filters in the cloud
every 60 s. The communication range of 121 or 12V used by the
vehicles to exchange data is set to 200 m. The total simulation
time is 6 h within a day, from 8:00 to 14:00. The size of sliding
window is 5 min, and each time slot is 30 s. The ratio of unit cost
Z%; defined in Formula (9) is 1/2 by default. As the proposed scheme

1 http://mocom.xmu.edu.cn/xmdata.


http://mocom.xmu.edu.cn/xmdata

138 Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142

() ONE - default_scenario _ o x
Playfield options  Tools Help
l -
00 0.001is - | Guiupdate: - 0038=] | screen shot +| Nodes[
» » [ » » [
[ 7348 = 0
ey NI jaapy NG el
ef8 ) =
e g ) T e Py
mx 71 mnﬁ 3
,x 3 uaﬁ"gm] 54481356 1384 L L e =)
€287 pTg3g (160
04 o 5
i,
1307, ,315@3131?’*’ B38| s ,35"1“3,3“ 7 1380 )
5206 o8l
e Sy e i <
c8
rived. "% AN e R mmg rﬂ“mm =l
c, r148
% o )
291 pqg 280200/ 1D ‘:m A w?c oo 10
ot it iR’ sl ol o ﬁfﬁﬁ@@?ﬁ‘é’“
224 360, £ 81 e
‘R"h Lir e el 253 TS —_—
M £236 c12
w%qﬂ@,ga, thei et ,;”5 ,342 (m ‘“nsv Wﬂb&
(ﬁ;ii 2 2 c13
£ 3% ~,2w 7 f G, i
32T\ T mwl ‘ﬁ 7 S
B e 3
i gl b T i T,
#1993 paan 81 64,
17y &7 2 <16
1425 ¢
‘zvssiﬁg usd | s 0 fﬂfxmasa‘?’w e
#30 ;;g?ﬂfs“!czun - cfd e o1 —
7Aoo\ ffle7e 3 <
I 24582
8 =
50 e s czﬂe%m"‘” a0

815

4333 hsag

|

< v 2

[ Event log controls

;:I Event log

Fig. 3. Snapshot of the simulation field in Xiamen Island. The blue texts denote
vehicular nodes, and green circles denote the coverage areas of RSUs.

belongs to the application layer of the network protocol stack,
we assume ideal links when two nodes encounter and establish a
connection. The size of a message is set 1024 Byte and the metadata
are wrapped in one message per request. The bandwidth of the V2V
or V2I channel is 500 Kbps/250 Kbps for the down/up links.

7.1.2. Data and request generator

Data readings are in the form of (s, t, lat, lon, type, size), where
sis the ID of the node that generates the data, t is the time, lat, lon
are the latitude and longitude of the location, type is the type of
the generated data, and size is the detailed sampled data whose
size corresponds the type of the data. In the experiment there are
five types of data whose sizes are {16 K, 64 K, 512 K, 1024 K, 18
M}. Each vehicle periodically reports one data reading every 150s,
and we construct a request data generator to synthesize the data
readings.

Requests are in the form of req(s, t, f, I"), where s is the source
node that generates the request, t is the time when request is
issued, f is a filter describing the requested data, and I" is the
time interval of the requested data. Here, the filter is defined as
(type, lat, lon), where type denotes the type of the requested data,
lat, lon are the latitude and longitude of the position to which the
requested data belong. Also, the requests are generated from two
ways: (1) each origin-destination (OD) pair is mapped to a request
that is generated from the origin and targets the data readings
from the destination, so the real-world origin-destination dataset
is integrated into the request answering. Existing research [33]
has disclosed that there are some spatial-temporal patterns in the
OD pairs, which matches the request answering scenarios in this
paper; (2) requests are generated in the form of Zipf's law [37],
where a skewness parameter determines where target locations
of the requests. We construct a request generator to control the
generation process of requests, and the query rate, skewness, and
deadlines are defined as parameters of the generator.

For both the data and requests, the domain of the latitude
and longitude dimensions are [118.066 E, 118.197 E|, [24.424 N,
24.561 N] respectively, as showed in Fig. 3. The deadline of query
is five minutes, and the queries are generated according to uniform
distribution from 2 to 5 s by default.

7.1.3. Evaluation metrics

We use the success ratio and the transmission cost as the main
metrics for performance evaluation. The success ratio is defined
as:

X n.s
success_ratio =

(21)
n_req

where n_req denotes the number of requests submitted by all
the vehicular nodes, n_s denotes the number of requests whose
query results are successfully received by the requested nodes.
The transmission cost is represented by the number of messages
that include the requests forwarding, filters and data pushing, and
query results forwarding.

7.2. Performance analysis

We compare the proposed FERA scheme with other schemes.
Yet to the best of our knowledge, there are few research directly
related to the data request answering schemes in VANET, so for
the performance comparison, we implement other four request
schemes as follows:

e CLOUD: all sensed data are uploaded to a centralized cloud
server. Requests are processed at the cloud and results are
routed back to the requested node;

e REED [20]: a pull based method where the sensed data are
stored locally, and all requests are forwarded to RSUs and
broadcasted to search the requested data readings;

e EDGE: all the sensed data are stored in the edge nodes (RSUs),
and requests are forwarded to all edge nodes to search for the
requested data readings;

e GeoVanet [15]: datareadings are first pushed to a DHT-based
fixed geographical locations, and requests are forwarded to
this location to extract the matched data within a bounded
time interval.

We vary the parameters to study their impacts on these
schemes.

7.2.1. Interval of requests

Data requests are generated periodically by a request generator,
where a smaller interval means a larger number of requests. Fig. 4
depicts the impact of the request interval. From 4(a) we could see
that the CLOUD approach achieves the best success ratio, as high
as 0.98, and the REED approach has the lowest success ratio that is
around 0.07. The success ratios of FERA, EDGE and GeoVant are in
the middle. Most of the failed requests are due to the fact that the
vehicular node that issues the request will move to other places,
and when the query results are returned, they cannot find the
requester. Also, when the request is outdated, the request would
be failed. Yet for the CLOUD approach, because all the data are
uploaded to the centralized server, the query processing time is
relatively small so the results could be routed back to the requester
just before vehicular nodes move out the coverage areas of RSUs.
However, the CLOUD approach incurs large number of message
transmissions, as depicted in Fig. 4(b). The success ratio of FERA
is about 0.84 when the interval is (0.5,1], yet it decreases as the
requests interval increases. This is because when there are more
requests, the pattern would be captured by the filters, which would
adaptively adjust the states of filters and push more data readings
to upper layers of the networks. In this way, FERA has fewer request
processing time and higher success ratio.

Fig. 4(b) depicts the number of the messages. From the figure
we could see that the amount of messages decreases as the re-
quest interval increases. This is easy to explain as there are fewer
requests when the request interval is larger. The GeoVant and
the CLOUD have largest amount of message transmissions. The



Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142 139

1.04

1o
s

Messages (10000)

0.4
96~ FERA == REED == GeoVant
024 CLOUD =@~ EDGE
L —— L L E—
| p— T m T
0.0 - - - - -
(0.5, 1] (1, 2] (2, 5] 6, 91 (10, 15]

Interval of Queries (seconds)

(a) Success Ratio

2000

Fig. 4. Impact of queries intervals.

s —+——

o
P % *
S o6
“ 94~ FERA ~—}— REED =~ GeoVant
» cLouD =@~ EDGE
[
S04
>
w
0.2
. . —t
o
0.0
1 2 3 4 5 6 7

Request Deadline (minutes)

(a) Success Ratio

Fig. 5. Impact of request deadlines.

message transmissions in the FERA and EDGE schemes are about
48-52 percent of those in the CLOUD and GeoVant schemes. This
is because in FERA and EDGE only part of the data readings are
pushed to upper layer of the network, yet in CLOUD and GeoVant
all the data readings are routed to the cloud or hashed point, which
incur the largest transmission cost.

7.2.2. Deadline of request

Fig. 5 depicts the impact of the request deadlines. The suc-
cess ratio increases as the request deadline increases for all the
approaches except CLOUD. This is understandable as when the
deadline of requester are larger, fewer requests would be outdated
and failed. The success ratio of FERA increase from 0.728 to 0.802.
The request deadline has a relatively small impact on the number
of message transmissions.

7.2.3. Skewness of requests

Request generator has a skewness parameter that determines
where the target locations of requests are. In the experiment the
map is split into 81 grids, and requests are generated in the form
of Zipf's law [37]. The skew parameter determines the skewness of
requests targeting the grids. From Fig. 6, we could see that the suc-
cess ratio of FERA increases from 0.72 to 0.86 when the skewness
parameter increases from 0.1 to 3. Higher skewness means more
requests are routed to the same grids, hence it facilitates filters
to control their states effectively. The message transmissions first

94— FERA —— REED  —k— GeoVant
cLow  -@- EDGE
1750 -
1500 -
~
o
S
S 1250 4
o
2
=
& 10004
(o]
&
& 750
(%]
[0}
=
500 1
‘ ,
2504 T ! t t —t
©.5, 11 a, 2 @, 51 ®, 91 (10, 151
Interval of Queries (seconds)
(b) Messages
600
=0~ FERA
575
550
~
=)
8 525
o
S —x
& 5004
(o)
o
& 475
[}
()
=
450
425
400 L . . . . . .
0.0 05 10 15 2.0 25 3.0
skew
(b) Messages
1.0 700
[ 650
0.94
%
~
o Feoo S
s o
=
© 0.8 o
o Z
” I 550
@ o
Q o0
o7 @
S - »
a bsoo @
=
0.64
98- Success Ratio [ 450
~@- Vessages
0.5 . ‘ . . ‘ —L 400
0.0 05 10 15 20 25 30

skew

Fig. 6. Impact of query skewness.

increase with the skewness, and then decrease with the skewness
factor. When skewness is low, the requests are distributed among
grids. Each RSU would receive smaller amount of requests, and the
filters would be more likely to be at the “close” state. So there are
fewer message transmissions compared to those when with larger
skewness.



140 Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142

0.90 700
0.85
650
0.80 “___“,/'~\g
~
o 600 S
5 0.75 1 S
5 S
o Z
® 0.70 I 550
@ H
3 on
3 ©
0.65 ) o
a 98- Success Ratio Lsoo @
=
0. 60 4 ~@- Messages
I 450
0.55
0.50 , . . . 400

5 10
Size of Sliding Window (minutes)

Fig. 7. Impact of sliding window.

7.3. Impact of parameters of FERA

7.3.1. Size of sliding window

FERA uses a sliding window to control the states of the filters. So
in the experiment we vary the window size to study its impact on
the performance. As showed in Fig. 7, the success ratio achieves the
best performance at 0.86 when the size is 10 min. A window size
either too smaller (e.g. 2 min) or too larger (e.g. 15 min) does no
good for utilizing the pattern of requests, which harms the success
ratio. The size of sliding window has a relatively smaller impact
on the message transmissions. The number of messages decreases
a little when the window size is large. This is because a larger
window makes it harder to change the states of filters, and hence
the data readings would be blocked by the “closed” filters.

7.3.2. Ratio of transmission cost

We use :—(‘) to denote the ratio of transmission cost for a one-
time request transmission versus a data transmission. When the
cost of request transmission is larger than that of data transmis-
sion, i.e. a larger 2%, FERA prefers pushing the data from lower

wo

layers; otherwise, FERA prefers pulling the data from the upper
layers. This is verified by the experiments. From Fig. 8(a) we could
see that the number of push messages increases with the cost ratio,
and the number of pull messages decreases with cost ratio. But
generally, the amount of push messages is much larger than that of
the pull messages, and the overall success ratio is relatively stable,
as depicted in Fig. 8(b).

600 50

580 [ 48
~ ~
o o
o o
o o
o o
= =
560 46~
» »
[0} (]
o o
© ©
o »
» »
O 540 F44 ©
= =
= —
] =
S S
(=N (=9

520 |42

=96~ Push Messages Total Messages
=%~ Pull Messages
T T 40

500

0.5 1 8 2 80 120
Ratio of Transmission Cost

(a) Messages

600 0.90
0.85
580
S)
8 0.80
S
S )
= 2
0.75
~ 560 X
@ o
o 070 @
@ @
: g
122}
540
%) I3)
2 o.osu__;
<
e 0.60
Q- 520
98— Push Messages 055
~#- Success Ratio
- 0.50

500

0.1 0.3 0.5 0.6 0.75 0.9
Balance Parameter for Split Factor

Fig. 9. Impact of balance parameter for the split factor.

1400

1200 -

1000 -

@
<3
S

o
3
3

Update Time (ms)

200

10000 15000 20000

Time (s)

0 5000

Fig. 10. Update Time of filter cube.

7.3.3. Balance parameter for the split factor

FERA uses a balance parameter « for the dimensional split factor
in Formula (18). It balances the size and the uniformity of filters.
From Fig. 9 we could see that when « is 0.75, the success ratio
gets to the maximal, and at the same time the push messages is
the lowest. So we choose 0.75 as the default value for .

The average time of updating a filter cube is also depicted in
Fig. 10 in our simulation. The cost time increases as the request
answering progresses. This is because more filters cells are gener-
ated as data and requests are received by the nodes and RSUs, so

0.90

Success Ratio

05 1 8 4 80 120
Ratio of Transmission Cost

(b) Success Ratio

Fig. 8. Impact of ratio of transmission cost.



Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142

600

3500

3000
~ 580 1
8
S I 2500
S
-
7 se0 2000
%]
(0]
®
b 1500
2]
@ 5404
(]
=
- I 1000
3
520
o
- Push Messages L 500
8- Cube Split
500 -— . . . . —Lo
0.1 0.25 0.4 0.5 0.7 0.9
Threshold for Cost Ratio Update

(a) Messages

Split Operations

0.90

Success Ratio

0.85

e o [
= ~ @
S o S

Success Ratio
o
&

0.25 0.9

0.4 0.5 0.7
Threshold for Cost Ratio Update

(b) Success Ratio

Fig. 11. Impact of threshold for cost ratio update.

the time for reviewing a filter cube increases. The time of update
increases to the maximal of 1344 ms when the time is at about
19203 s, and then it decreases to about 862 ms. The decrease is
mainly because of restructuring filters in the cube.

7.3.4. Threshold for filter cube update

In the cube update operation in Algorithm 5, threshold t is
used to determine whether updating the cost ratio and state or
building basic filter cube. Larger t means it harder for filters to
be split. Fig. 11(a) depicts the number of push messages and the
number of split operations versus threshold z. From the figure, we
could see that as t increases from 0.1 to 0.9, the number of split
operations decreases from about 3000 to 1000 and the number
of push messages decreases from 5.56 to 5.32 (x 10°). However,
the success ratio increases to the maximal when 7t is 0.25, and
then decreases as t grows larger, i.e. when it is harder to split the
filters. This indicates the necessary to split the filter when the error
€(Ds, R) grows larger. So the threshold 7 is set 0.25 by default
in our experiment. Similarly, we vary the other threshold » that
determines the proportion of granularity error or predictability
error, and set the threshold as 0.6 by default.

7.4. Discussions and comments

FERA adopts the pull/push strategies to adaptively and effi-
ciently gather the requested data in vehicular ad hoc networks. It
has larger request success ratio and fewer message transmissions
compared to other schemes that are solely push-based or pull-
based. Although the CLOUD has higher success ratio, the CLOUD
is actually infeasible in request answering scenarios. Firstly, the
CLOUD scheme incurs about twice of the message transmissions
of that in FERA, which makes it expensive. Secondly, in the CLOUD
scheme each vehicle has to establish a connection with the cloud to
upload its data readings. The in-network processing is not available
in this scheme. Instead, it needs a scalable and much more expen-
sive backend system to answer the requests when there are large
number of vehicles.

The request deadline has a relatively small impact on the num-
ber of message transmissions, but the skewness of requests plays
a role. Higher skewness means more requests are routed to the
same grids, hence it facilitates filters in FERA to control their states
effectively. For the sliding window, either smaller or larger size
does no good for utilizing the pattern of requests, which harms the
success ratio. Actually, the states of filters are determined by the
ratio of transmission cost. When the cost of request transmission
is larger than that of data transmission, FERA prefers pushing data

from lower layers; otherwise, FERA prefers pulling the data from
the upper layers.

The time of updating filter cube reflects the cost of reviewing
large number of filters. As the request answering progresses, more
filters cells are generated as data and requests are received by the
nodes and RSUs, so the time for reviewing a filter cube increases.
Also, the balanced factor and threshold for filter cube update are
studied. The experiments indicate the necessary to split the filter
when the mismatch error €(Dy, Ry) grows larger.

8. Conclusions

We have proposed a filter-based framework FERA that com-
bines the pull/push strategies to adaptively and efficiently process
data requests in VANET. Data readings that could pass through
the filters are forwarded to higher layer, and those blocked are
stored at the current layer. Requests are forwarded up to edge
nodes and the cloud to extract matched data. Also, to update and
set filters efficiently, the concept of filter cube is proposed and
efficient algorithms are developed to construct, update and store
a filter cube that is effective to push matched data readings and
block unmatched data readings. Experiments based on simulations
are conducted to demonstrate the effectiveness of the proposed
scheme in vehicular sensing and request answering applications.
The proposed scheme has much higher success ratio of request
answering than existing schemes, while at the same time with a
relatively low query cost.

For the future work, we are going to further optimize the struc-
ture of filters, e.g. the dynamic data structures that could store and
update the filters efficiently. As FERA adopts a best-effort approach
for the request answering, we are also to investigate effective
approaches and integrate it to our framework to guarantee the
return of data results, i.e. the successful ratio is higher than some
thresholds.Also, the data traffic scheduling techniques, e.g. priority
queuing, first-in-first-out and weighted fair queuing as discussed
in [38], could be integrated into the proposed framework.

References

[1] U. Lee, E. Magistretti, M. Gerla, P. Bellavista, A. Corradi, Dissemination and
harvesting of urban data using vehicular sensing platforms, IEEE Trans. Veh.
Technol. 58 (2) (2009) 882-901, http://dx.doi.org/10.1109/TVT.2008.928899.
Y. Lai, F. Yang, L. Zhang, Z. Lin, Distributed public vehicle system based on fog
nodes and vehicular sensing, IEEE Access 6 (2018) 22011-22024.

G. Pau, R. Tse, Challenges and opportunities in immersive vehicular sensing:
lessons from urban deployments, Signal Process., Image Commun. 27 (8)
(2012) 900-908.

(2]
(3]


http://dx.doi.org/10.1109/TVT.2008.928899
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb2
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb3
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb3

142

[4

[5

6

(7

8

[9

[10]

(1]

[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

Y. Lai et al. / Future Generation Computer Systems 93 (2019) 130-142

Y. Lai, F. Yang, J. Su, Q. Zhou, T. Wang, L. Zhang, Y. Xu, Fog-based two-phase
event monitoring and data gathering in vehicular sensor networks, Sensors
18 (1)(2017) 82.

S. Al-Sultan, M.M. Al-Doori, A.H. Al-Bayatti, H. Zedan, A comprehensive survey
on vehicular ad hoc network, ]. Netw. Comput. Appl. 37 (2014) 380-392.

A. Dua, N. Kumar, S. Bawa, A Systematic Review on Routing Protocols for
Vehicular Ad Hoc Networks, Vol. 1, Elsevier, 2014, pp. 33-52.

D. Jiang, L. Delgrossi, leee 802.11 p: towards an international standard for
wireless access in vehicular environments, in: Vehicular Technology Confer-
ence, 2008. VTC Spring 2008. IEEE, IEEE, 2008, pp. 2036-2040.

Y. Lai, J. Xie, Z. Lin, T. Wang, M. Liao, Adaptive data gathering in mobile sensor
networks using speedy mobile elements, Sensors 15 (9)(2015) 23218-23248.
T. Wang, ]. Zeng, Y. Cai, H. Tian, Y. Chen, B. Wang, et al., Data collection from
wsns to the cloud based on mobile fog elements, Future Gener. Comput. Syst.
(2017).

M. Dighriri, G.M. Lee, T. Baker, Measurement and classification of smart sys-
tems data traffic over 5g mobile networks, in: Technology for Smart Futures,
Springer, 2018, pp. 195-217.

U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, A. Corradi, Mobeyes:
smart mobs for urban monitoring with a vehicular sensor network, IEEE
Wirel. Commun. 13 (5) (2006) 52-57.

C.E. Palazzi, F. Pezzoni, P.M. Ruiz, Delay-bounded data gathering in urban
vehicular sensor networks, Pervasive Mob. Comput. 8 (2) (2012) 180-193.
M. Motani, V. Srinivasan, P.S. Nuggehalli, Peoplenet: engineering a wireless
virtual social network, in: Proceedings of the 11th annual international con-
ference on Mobile computing and networking, ACM, 2005, pp. 243-257.

U. Lee, ]. Lee, ].-S. Park, M. Gerla, FleaNet: a virtual market place on vehicular
networks, IEEE Trans. Veh. Technol. 59 (1) (2010) 344-355.

T. Delot, N. Mitton, S. Ilarri, T. Hien, GeoVanet: A routing protocol for query
processing in vehicular networks, Mob. Inf. Syst. 7 (4) (2011) 329-359.
Y.Zhang,]. Zhao, G. Cao, Roadcast: a popularity aware content sharing scheme
in vanets, ACM SIGMOBILE Mob. Comput. Commun. Rev. 13 (4) (2010) 1-14.
J. Zeng, T. Wang, Y. Lai, J. Liang, H. Chen, Data delivery from wsns to cloud
based on a fog structure, Fourth IEEE Int. Conf. Adv. Cloud Big Data accepted
(3)(2016) 959-973.

T. Wang, J. Zhou, M. Huang, M.Z.A. Bhuiyan, A. Liu, W. Xu, M. Xie, Fog-based
storage technology to fight with cyber threat, Future Gener. Comput. Syst. 83
(2018) 208-218.

Intel, Next unit of computing, https://www.intel.com/content/www/us/en/
products/boards-kits/nuc.html.

D.J. Abadi, S. Madden, W. Lindner, Reed: robust, efficient filtering and event
detection in sensor networks, in: Proceedings of the 31st international con-
ference on Very large data bases, VLDB Endowment, 2005, pp. 769-780.

M.F. Majeed, S.H. Ahmed, M.N. Dailey, Enabling push-based critical data
forwarding in vehicular named data networks, IEEE Commun. Lett. 21 (4)
(2017) 873-876.

Y. Lai, Y. Chen, H. Chen, In-Network execution of external join for sensor
networks, in: Web-Age Information Management, 2008. WAIM'08. The Ninth
International Conference on, IEEE, 2008, pp. 78-85.

Y. Xu, S. Helal, M. Scmalz, Optimizing push/pull envelopes for energy-efficient
cloud-sensor systems, in: Proceedings of the 14th ACM international confer-
ence on Modeling, analysis and simulation of wireless and mobile systems,
ACM, 2011, pp. 17-26.

A.Silberstein, Push and pull in sensor network query processing, in: Southeast
Workshop on Data and Information Management (SWDIMO6), Raleigh, North
Carolina, 2006.

F. Bai, B. Krishnamachari, Exploiting the wisdom of the crowd: localized,
distributed information-centric vanets, IEEE Commun. Mag. 48 (5) (2010).

Q. Zhao, Y. Zhu, C. Chen, H. Zhu, B. Li, When 3g meets vanet: 3g-assisted data
delivery in vanets, IEEE Sens. J. 13 (10) (2013) 3575-3584.

M. Eltoweissy, S. Olariu, M. Younis, Towards autonomous vehicular clouds, in:
International Conference on Ad Hoc Networks, Springer, 2010, pp. 1-16.

K. Kai, W. Cong, L. Tao, Fog computing for vehicular ad-hoc networks:
paradigms, scenarios, and issues, J. China Univ. Posts Telecommun. 23 (2)
(2016) 56-96.

Y. Lai, L. Zhang, T. Wang, F. Yang, Y. Xu, Data gathering framework based on
fog computing paradigm in vanets, in: Asia-Pacific Web (APWeb) and Web-
Age Information Management (WAIM) Joint Conference on Web and Big Data,
Springer, 2017, pp. 227-236.

(30]

[31]

(32]

(33]
(34]
(35]

(36]

(37]

(38]

Y.C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, Mobile edge computinga
key technology towards 5g, ETSI White Paper 11(11) (2015) 1-16.

F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the
internet of things, in: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, ACM, 2012, pp. 13-16.

Y. Lai, F. Yang, J. Su, Q. Zhou, T. Wang, L. Zhang, Y. Xu, Fog-based two-phase
event monitoring and data gathering in vehicular sensor networks, Sensors
18 (1) (2018).

D. Guo, X. Zhu, H. Jin, P. Gao, C. Andris, Discovering spatial patterns in origin-
destination mobility data, Trans. GIS 16 (3) (2012) 411-429.

H. Jeung, M.L. Yiu, X. Zhou, C.S. Jensen, Path prediction and predictive range
querying in road network databases, VLDB ]. 19 (4) (2010) 585-602.

T.H. Cormen, Chapter 11: Hash Tables, Introduction to Algorithms, MIT press,
2009.

A. Kerdnen, J. Ott, T. Kdrkkdinen, The ONE Simulator for DTN Protocol Evalu-
ation, in: SIMUTools '09: Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, ICST, New York, NY, USA, 2009.

M.E. Newman, Power laws, pareto distributions and zipf's law, Contemp. Phys.
46 (5)(2005) 323-351.

M. Dighriri, A.S.D. Alfoudi, G.M. Lee, T. Baker, R. Pereira, Comparison data
traffic scheduling techniques for classifying qos over 5g mobile networks,
in: Advanced Information Networking and Applications Workshops (WAINA),
2017 31st International Conference on, IEEE, 2017, pp. 492-497.

Yongxuan Lai received the PhD degree in computer sci-
ence from Renmin University of China in 2009. He is cur-
rently an associate professor in Software School, Xiamen
University, China. His research interests include network
data management, vehicular ad-hoc networks, big data
management and analysis. He is an academic visiting
scholar during Sep. 2017-Sep. 2018 at Data and Knowl-
edge Engineering (DKE) Group, University of Queensland,
Australia.

Hailin Lin is an undergraduate student in the Department
of Software Engineering at Xiamen University, China. His
research interest includes vehicular networks and data
mining using trajectories.

Fan Yang received the Ph.D. degree in control theory and
control engineering from Xiamen University, Xiamen,
China, in 2009. He is currently an associate professor in
the Institute of Pattern Recognition & Intelligent Systems,
Department of Automation at Xiamen University. His cur-
rent research interests include mobile computing, pat-
tern recognition, data mining and bioinformatics. He has
published more than 50 journal articles and conference
papers.

Tian Wang received the B.Sc. and M.Sc. degrees in com-
puter science from Central South University in 2004 and
2007, respectively, and the Ph.D. degree from the City
University of Hong Kong in 2011. He is currently a Profes-
sor with National Huagiao University, China. His research
interests include wireless sensor networks, fog comput-
ing, and mobile computing.


http://refhub.elsevier.com/S0167-739X(18)31619-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb4
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb5
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb6
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb7
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb8
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb8
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb8
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb9
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb9
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb9
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb9
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb9
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb10
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb10
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb10
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb10
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb10
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb11
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb11
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb11
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb11
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb11
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb12
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb12
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb12
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb13
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb14
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb15
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb15
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb15
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb16
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb17
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb18
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb18
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb20
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb21
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb22
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb23
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb24
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb25
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb26
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb26
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb26
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb27
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb28
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb29
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb30
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb30
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb30
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb31
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb32
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb33
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb34
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb34
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb34
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb35
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb36
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb37
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb38
http://refhub.elsevier.com/S0167-739X(18)31619-4/sb38

	Efficient data request answering in vehicular Ad-hoc networks based on fog nodes and filters
	Introduction
	Related Work
	Push-based Model
	Pull-based Model
	Push/pull-based Model
	Fog/edge Computing

	Preliminaries
	Requests and Data
	Filter
	Sliding Window

	Filter-based Efficient Request Answering
	Overall Description
	Overall Cost Analysis

	Update a Single Filter
	Cost of a Filter
	Criteria of State Change
	Review Operation
	Cost Analysis of Models

	Filter Cube Construction and Update
	Filter Cube
	Cube Construction
	Review Operation and States Update
	Storage of filter cube

	Experimental Study
	Environment Setup
	Trajectory Dataset and Network Setting
	Data and Request Generator
	Evaluation Metrics

	Performance Analysis
	Interval of Requests
	Deadline of Request
	Skewness of Requests

	Impact of Parameters of FERA
	Size of Sliding Window
	Ratio of Transmission Cost
	Balance Parameter for the Split Factor
	Threshold for Filter Cube Update

	Discussions and Comments

	Conclusions
	References


