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A B S T R A C T

This study is devoted to seismic performance assessment of optimally designed steel moment frames (SMFs) in
the framework of performance-based design (PBD). The methodology presented in this work includes three
phases. The first phase involves the optimization of SMFs by employing an efficient metaheuristic algorithm to
meet the PBD requirements according to FEMA-350 code. Subsequently, the overall damage index (ODI) is
calculated for the obtained optimal SMFs based on the Park-Ang local damage index (DIPA). In the second phase,
incremental dynamic analysis (IDA) is conducted for the optimally designed SMFs and their fragility curves are
derived and their collapse margin ratios (CMRs) are determined based on FEMA-P695. In the last phase, the
fragility curves of the optimal SMFs are generated for different damage levels ranging from slight damage to
collapse state and a new damage measure termed as damage margin ratio (DMR) is introduced to assess the
damage-resistance capacity of the SMFs at the different damage levels. In order to illustrate the efficiency of the
proposed methodology, three numerical examples of 3-, 6-, and 12-story SMFs are presented and the total cost of
optimal SMFs, including initial and seismic damage costs, are determined. The numerical results demonstrate
that the SMF with the best total cost has the best CMR, DMR, and degree of repairability.

1. Introduction

In the last years, performance-based design (PBD) has emerged as
one of the most efficient seismic design approaches which its main
purpose is to design structures that present a predictable and reliable
behavior against seismic actions through their lifespan. It is expected
that the structures designed according to the PBD methodologies will
resist earthquakes by tolerating levels of seismic damage. The structures
designed in the framework of PBD satisfy a sort of predefined perfor-
mance levels about their corresponding hazard levels. An efficient de-
sign framework may be offered by integrating PBD methodologies and
structural optimization techniques. During the last few years some re-
searches have been conducted in this context for steel structures. Choi
and Park [1] employed a non-dominated sorting genetic algorithm-II
(NSGA-II) for seismic PBD optimization of SMFs to ensure beam-hinging
mechanism. Saadat et al. [2] achieved multi-objective PBD optimiza-
tion of a SMF taking into account two conflicting objective functions:
direct social and economic losses. Gholizadeh [3] utilized a combina-
tion of neural network (NN) and a modified firefly algorithm (MFA) for
PBD optimization of SMFs. Gholizadeh and Poorhoseini [4] proposed a
methodology for optimal placement of braces in steel braced frames
(SBF) in the framework of PBD using an improved dolphin echolocation
algorithm. Xu et al. [5] employed generalized pattern search (GPS)

algorithm to implement multi-objective PBD optimization of steel
frames subject to random excitation. Gholizadeh and Baghchevan [6]
proposed a chaotic multi-objective firefly algorithm (CMOFA) for
finding the Pareto front of the multi-objective PBD optimization pro-
blem of SMFs.

The last decades have witnessed a great effort to develop procedures
for seismic assessment of structures because, the most important issue
that the engineers and designers have to deal with is to evaluate the
collapse safety of the structures. In order to achieve this purpose, the
fragility assessment of structures can be carried out to provide a mea-
sure of the safety margin for the structures. The collapse fragility curves
are often developed to characterize the fragility of structures subject to
earthquake. A simplified methodology was proposed by Shafei et al. [7]
to predict the collapse capacity of SMF and shear wall structural sys-
tems. They employed a database of collapse fragilities and pushover
curves to develop closed-form equations. Hardyniec and Charney [8]
proposed a parallel computing-based methodology to determine the
collapse margin ratio (CMR) of steel structures which does not require
the implementation of incremental dynamic analysis (IDA) [9]. As-
garian and Ordoubadi [10] studied effects of inherent uncertainties on
seismic performance of SMFs through seismic fragility analysis of or-
dinary and special SMFs for different performance limit states. Cha and
Bai [11] achieved seismic fragility assessment of a SMF controlled by
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magnetorheological dampers with a direct PBD procedure by devel-
oping fragility curves considering four capacity limits.

Today, literature on the fragility assessment of optimally designed
structures is so sparse and there is a serious lack of information in this
regard. In fact, this is the first paper to evaluate the seismic collapse
safety of SMF structures optimized in the framework of PBD. In order to
carry out the PBD optimization task of SMFs an efficient and robust
optimization algorithm should be utilized to minimize an objective
function subject to several constraints on performance capabilities. In
the present work, enhanced colliding bodies optimization-II (ECBO-II)
[12] is selected as the optimizer to find optimal solutions for PBD op-
timization problem of SMF structures. ECBO-II is a modified version of
the ECBO [13] metaheuristic which is based on the collision phenom-
enon between two bodies in which the velocity and position of the
bodies are updated in a way that their energy level reaches a minimum
value. The merit of ECBO-II over a sort of metaheuristics has been de-
monstrated in [12] for tackling the PBD optimization problem of SMFs.
In order to account for the stochastic nature of the ECBO-II metaheur-
istic algorithm, twenty-five independent PBD optimization runs are
carried out for SMFs based on FEMA-350 [14] provisions. In the next
stage, collapse capacity of the best five optimal structures is evaluated
based on FEMA-P695 [15] methodology. For this purpose, IDA curves
need to be determined by conducting a number of nonlinear response-
history analyses for a suite of records scaled at increasing intensity le-
vels. Then, the collapse safety of the optimal designs is determined by
the fragility assessment that can be achieved based on the IDA results at
collapse. One of the most important issues in performing incremental
dynamic analyses is selecting an appropriate damage measure. Max-
imum inter-story drift ratio is the most commonly used damage mea-
sure in the framework of IDA.

In order to quantify the level of damage in structures subject to
earthquake, a more accurate damage index (DI) should be taken into
account. During the last decades several DIs have been developed and
one of the popular ones is the so-called Park-Ang [16] damage index
(DIPA) which combines the ductility and cumulative energy demands.
The DIPA is locally defined for structural elements however, an overall
damage index (ODI) may be defined for whole the structure to compute
its seismic damage cost. The seismic damage cost can then be added to
the structural initial cost to characterize the life cycle or total cost of the
structure. In the present study, in order to assess the performance of
SMFs, not only in collapse point but also in different levels of damage,
ODI-based fragility curves are derived for various damage levels and a
new damage measure named as damage margin ratio (DMR) is defined
for the optimal designs. The mean value of ODIs at collapse is then used
to determine the repairability border of the SMFs and to compute the
seismic damage cost and consequently the total cost of the structures.
The effectiveness of the proposed methodology is illustrated through
three numerical examples of 3-, 6-, and 12-story SMF structures. The
numerical results reveal that the structures with the best overall cost
have the best distribution of local damages which leads to the highest
CMR and DMR values. This observation clearly supports the importance
of optimization of structural total cost in order to design safe and cost-
efficient structures subject to earthquake.

2. Performance-based design optimization

PBD is a modern methodology for the seismic design of structures to
increase the safety of structures in their lifespan in which performance
is divided into some levels each corresponding to a hazard level. In the
framework of PBD, structural nonlinear response needs to be evaluated
at predefined performance levels to identify the seismic damage levels.
In other words, PBD attempts to evaluate structures at different damage
states under specific levels of seismic hazards. In this work, immediate
occupancy (IO) and collapse prevention (CP) are considered as the
performance levels. Moreover, maximum considered earthquake (MCE)
and frequent earthquake (FE) ground motions respectively, with less

than 2% and 50% probability of exceedance in 50 years are taken into
account as two hazard levels based on FEMA-350 [14], named here as
2/50 and 50/50 hazard levels. On the other hand, the number of
parameters affecting the seismic performance of structures is so large
which makes it difficult to recognize that the current solution is the
optimum design or still there is room for improving the design. In order
to design cost-efficient structures having appropriate seismic perfor-
mance, structural optimization techniques can be effectively utilized.

In the PBD optimization process of SMFs proposed in the present
study, structural weight is treated as the objective function (OF), while
the seismic performance requirements, in accordance with FEMA-350,
are treated as the PBD constraints. In this case, the constraints for
confidence level (CL) for CP and IO performance levels are considered
as follows:

⩽
′

CL
CL

1 IO

IO (1)

⩽
′

CL
CL

1 CP

CP (2)

where ′CLIOand ′CLCP are considered confidence levels of IO and CP
performance levels, respectively which both are chosen to be 90% in
the present study.

In the performance evaluation process, inter-story drifts (structural
response parameters) are determined for suites of earthquakes in 2/50
and 50/50 hazard levels using nonlinear response-history analysis. To
determine the CL for each hazard level, the factored-demand-to-capa-
city ratio (λ) is computed as

=λ
γ γ D

ϕ C
a

(3)

where γ and γa are a demand variability factor and an analysis un-
certainty factor, respectively; D and C are the calculated demand and
the capacity of the structure, respectively; and ϕ is a resistance factor
for considering the uncertainty and variability in the prediction of
structural capacity [14].

To compute the CL for each hazard level the following equation is
used:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

CL
kβ λ

bβ
Φ

2
ln( )UT

UT (4)

where Φ is the normal cumulative distribution function; k is the slope of
the hazard curve, in ln- coordinates, at the hazard level of interest; βUT
is an uncertainty measure equal to the vector sum of the logarithmic
standard deviation of the variations in demand and capacity resulting
from uncertainty; and b=1.0 [14].

Furthermore, serviceability and strong column/weak beam (SCWB)
requirements have to be considered in the optimization process, re-
spectively based on AISC 360-16 [17] and AISC 341-16 [18] design
codes. As the serviceability constraints strength of beams and co-
lumns of SMFs is checked for only gravity loads and geometry of the
beam-column connections is checked to ensure constructability of the
structures [19]. Moreover, the SCWB constraint is checked to prevent
the formation of weak or soft story mechanisms.

The formulation of the PBD optimization problem of SMFs with ng
design variable groups and nc design constraints is presented as follows:

= …X x x xFind: { , , , }ng
T

1 2 (5)

OF XTominimize: ( ) (6)

⩽ = …g X i ncSubject to: ( ) 0, 1, 2, ,i (7)

where X is a vector of design variables; OF is the objective function to
be minimized; and gi is the ith design constraint.

In this study, in order to solve the formulated optimization problem,
an efficient metaheuristic algorithm, i.e. enhanced colliding bodies
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optimization-II (ECBO-II) [12], is utilized which its computational
merit in tackling the problem of PBD optimization of steel SMF struc-
tures has been demonstrated in [12].

3. Seismic damage indices

The assessment of the severity of local damage in structural mem-
bers and overall damage in the structure during earthquake is usually
achieved by the means of a damage index (DI). One of the most fre-
quently employed DIs is the so-called Park-Ang DI (DIPA) [15] which its
efficiency in representing the actual state of damage in steel structures
has been demonstrated in literature [20]. The use of the DIPA as a better
alternative to the inter-story drift (or residual drift) is not always jus-
tified. In fact, quite a few studies [21,22] have revealed that hysteretic
energy dissipation is not consistently in good correlation with seismic
performance. Hence, the selection of an energy-based DI could render
the comparison of structural systems with different hysteretic char-
acteristics (e.g. different connection typologies) problematic. In the
present work, it is assumed that the considered SMF structures have the
same connection typology. For the structural members, local DIPA is
defined as follows [20]:

∫= −
−

+DI θ θ
θ θ

β
θ M

Edm r

u r u y
PA

(8)

where θm and θu is the maximum rotation of the structural element end-
section and its ultimate rotation capacity, respectively; θr represents the
recoverable rotation during unloading; β is a strength deteriorating
constant; and My is the yield moment of the structural element.

The damage indices are classified as local and global DIs based on
their application for quantifying of damage in individual members or
entire building, respectively. It is obvious that the overall damage of a
structure is a function of its members’ damages and their distribution
throughout the structure. As the damage distribution is closely related
to the distribution of the absorbed energy, the overall damage index
(ODI) of a structure can be represented by a weighted summation of
members’ local DIs as follows [23]:

∑=
=
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where ne is the number of elements; Ei is the absorbed hysteretic energy
by the ith member.

As the ODI is an indicator of structural distress, the seismic repair
cost of a structure can be calculated based on this index as CR(ODI)
occurring at a time t. A common form of CR(ODI) may be expressed as

follows [24]:

⎜ ⎟= ⎛
⎝

⎞
⎠

C ODI η C ODI
ODI

( ) . .R
R

0
(11)

where η is a factor to account for demolition and clearing and in the
present work is considered to be 1.5; ODIR is a repairability overall
damage index which is usually taken as 0.6 for RC structures [24] and
in the present paper, its values are computed for steel structures based
on the results of IDA; C0 is the complete replacement cost of SMF which
here is taken as its structural weight as follows:

∑=
=
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i

ne

i i i0
1 (12)

where ρi, Ai and Li are the weight density, cross-sectional area and
length of the ith structural member, respectively.

The deterministic expected present repair cost, CRE, is computed as
follows [24]:

∫= =
+

∞
− +C υC ODI t υ
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r υ t
R

0
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(13)

where r and υ are the discount rate and a Poisson coefficient, respec-
tively which in the present study are taken as r= 0.05 andυ =1.

As a result, the total cost of the structures (CT) can be simply defined
as follows:

= +C C CT RE0 (14)

In this work, C0 is taken as the objective function of the PBD opti-
mization problem, and the obtained optimal designs are compared in
terms of CT.

4. Collapse margin ratio

Quantification of structural performance based on seismic collapse
capacity is one of the reasonable methodologies for seismic evaluation
of structural systems. FEMA-P695 proposes an efficient framework
based on IDA to assess the collapse safety of structures in which nu-
merous nonlinear response-history analyses need to be conducted for a
suit of 22 ground motions scaled to MCE. In fact, IDA is a technique to
process the effect of a ground motion intensity measure (IM) on an
engineering demand parameter (EDP) up to collapse. The IM and EDP
are usually taken as 5% damped spectral acceleration at fundamental
period, Sa (T1, 5%), and maximum inter-story drift ratio, dmax, respec-
tively. In the framework of IDA, a nonlinear response-history analysis of
structures subject to increasingly scaled records is implemented and
IDA curves are obtained by recording the EDP versus the IM and the
process is continued until one of the following collapse criteria is met:
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Fig. 1. Schematic of the typical IDA curves and fragility curve generation using the collapse data.
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– Maximum inter-story drift ratio (dmax) exceeds 0.1
– The slope of the IDA curves decreases to a value less than 0.2 of the
median of their initial slope

– The structure collapses due to plastic hinges formation in its mem-
bers.

As the subsequent step in the collapse safety assessment process, the
fragility curve must be generated for the structure at hand using the IM
values associated with the collapse state from a set of IDA curves which
relates the IM to the probability of collapse by fitting a lognormal
distribution function to the collapse data. FEMA-P695 defines the CMR
as the ratio of the spectral acceleration for which half of the pre-defined
earthquake records cause collapse (denoted as IM50%) to the spectral
acceleration of the MCE ground motion (denoted as IMMCE). The
schematic of the fragility curve generation based on the collapse data is
depicted in Fig. 1.

Accordingly, CMR can be computed as follows based on FEMA-
P695:

=CMR IM
IM

50%

MCE (15)

It is obvious that the larger value of CMR implies that the structure
has a higher level of seismic collapse safety.

Frequency content or spectral shape of a suit of earthquake records
set can significantly affect the calculation of CMR and consequently the
seismic collapse safety of a structure. In order to address the spectral
shape effects, an adjusted collapse margin ratio (ACMR) is defined as
follows [15]:

= ×ACMR SSF CMR (16)

where SSF is the spectral shape factor which depends on fundamental
period and period-based ductility determined from Table 7-1 of FEMA-
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Fig. 2. Schematic of (a) typical ODI-based IDA curves and (b) fragility curves for different damage states.

Table 1
Damage states based on overall Park-Ang damage index [30].

Damage state ODI Comments

Minor 0.0–0.2 Minor damage
Moderate 0.2–0.4 Repairable
Severe 0.4–1.0 Beyond repair
Collapse 1.0 < Loss of building

S a
(T

1,5
%

) (
g)

CODIR=0.4× CODI=0.0

UnrepairableRepairable

ODI=1

Fig. 3. Repairable and unrepairable regions in the Sa-ODI space.

Table 2
Ground motion records set.

No. Earthquake Record motion

M Year Name Record station PGAmax (g) PGVmax

(cm/s)

1 6.7 1994 Northridge Beverly Hills -
Mulhol

0.52 63

2 6.7 1994 Northridge Canyon
Country-WLC

0.48 45

3 7.1 1999 Duzce, Turkey Bolu 0.82 62
4 7.1 1999 Hector Mine Hector 0.34 42
5 6.5 1979 Imperial Valley Delta 0.35 33
6 6.5 1979 Imperial Valley El Centro Array

#11
0.38 42

7 6.9 1995 Kobe, Japan Nishi-Akashi 0.51 37
8 6.9 1995 Kobe, Japan Shin-Osaka 0.24 38
9 7.5 1999 Kocaeli, Turkey Duzce 0.36 59
10 7.5 1999 Kocaeli, Turkey Arcelik 0.22 40
11 7.3 1992 Landers Yermo Fire

Station
0.24 52

12 7.3 1992 Landers Coolwater 0.42 42
13 6.9 1989 Loma Prieta Capitola 0.53 35
14 6.9 1989 Loma Prieta Gilroy Array #3 0.56 45
15 7.4 1990 Manjil, Iran Abbar 0.51 54
16 6.5 1987 Superstition Hills El Centro Imp.

Co.
0.36 46

17 6.5 1987 Superstition Hills Poe Road
(temp)

0.45 36

18 7.0 1992 Cape Mendocino Rio Dell
Overpass

0.55 44

19 7.6 1999 Chi-Chi, Taiwan CHY101 0.44 115
20 7.6 1999 Chi-Chi, Taiwan TCU045 0.51 39
21 6.6 1971 San Fernando LA - Hollywood

Stor
0.21 19

22 6.5 1976 Friuli, Italy Tolmezzo 0.35 31
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P695 [15].
The total system collapse uncertainty, βTOT, is one of the most im-

portant factors in evaluation of collapse safety which is calculated by
combining uncertainty sources of record-to-record (βRTR), design re-
quirements (βDR), test data (βTD), and modeling (βMDL) as follows:

= + + +β β β β βTOT RTR DR TD MDL (17)

The shape of collapse fragility curve and consequently the accep-
table values of ACMR are highly influenced by βTOT. In the present
study, the values of βRTR, βDR, βTD, and βMDL are taken as 0.4, 0.1, 0.2,
and 0.2, respectively, for which Eq. (17) gives βTOT = 0.5.

Performing PBD optimization of SMFs to 
obtain 25 distinct optimal designs

Selecting five best designs in terms of initial 
cost

Developing Fragility curves 
for dmax and ODI

Implementing IDA based on FEMA-P695 
methodology considering dmax and ODIComputing ODIR

Computing ACMRComputing DMRODIComputing CRE Computing CT

Comparing the Optimal SMFs in terms of
C0, CT, ACMR, and DMRODI

Introducing the best optimal design

Phase 1

Phase 2

Phase 3

Fig. 4. Flowchart of the proposed methodology.

Fig. 5. Topology and grouping details of 3-, 6-, and 12-story SMFs.

Table 3
List of available sections for columns and beams.

Column Beam

W14×30 W14×82 W14×193 W12×26 W18×46
W14×34 W14×90 W14×211 W12×30 W18×50
W14×38 W14×99 W14×233 W12×35 W18×60
W14×43 W14×109 W14×257 W12×40 W21×44
W14×48 W14×120 W14×283 W16×26 W21×55
W14×53 W14×132 W14×311 W16×36 W21×57
W14×61 W14×145 W14×342 W16×45 W24×55
W14×68 W14×159 W14×370 W16×57 W24×62
W14×74 W14×176 W14×398 W18×35 W24×68
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5. Margin ratio for different levels of damage

In fact, CMR is a measure of the collapse safety and reflects the
resistance of structures against collapse without providing any in-
formation regarding the damage spreading in the structures.
Assessment of performance of structures at various levels of damage
and defining a safety margin for structural repairability is of great
importance. In most cases, the level of seismic damage in framed
structures is characterized using DIs based on inter-story drift ratio
[25,26] however, these DIs do not consider the total energy dissipated
by the structural systems during an earthquake and therefore the
seismic performance of structures cannot be adequately characterized
through these DIs [27–29]. On the other hand, the maximum inter-story
drift ratio cannot reflect the seismic damage distribution through the
structure. In such a case, the overall damage index, defined by Eq. (9),
eliminates the mentioned drawbacks of the maximum inter-story drift
ratio and therefore it can be utilized as an efficient alternate EDP to
conduct IDA.

In this study, ODI is taken into account as the EDP and IDA curves
are extracted for the structures by recording ODI versus Sa (T1, 5%). The
generated ODI-based IDA curves can be used to generate fragility curves
for various damage levels characterized by ODI. A sort of typical ODI-
based IDA curves and four fragility curves for different damage states
are depicted in Fig. 2. An indicator is proposed to assess the perfor-
mance of structures in each level of damage ranging from ODI=0.0 to
ODI at collapse. The proposed indicator is termed as damage margin

ratio (DMR) and is defined for each level of damage as the ratio of Sa for
which half of records give ODIs greater than an specific ODI to the Sa
MCE:

= =DMR S
S

ODI( ) , 0.0,...,CollapseODI
a ODI

a

50%

MCE (18)

where (Sa 50%)ODI denotes the spectral acceleration for which 50% re-
cords exceed an specific ODI.

A classification for identifying different damage levels of structures
based on ODI has been developed in ATC-13 [30] given in Table 1.

It can be observed that ODI≤ 0.4 implies that the structure is re-
pairable, 0.4≤ODI≤ 1.0 means damage beyond repair, and total
collapse is represented by 1.0≤ODI [23,30]. As regards the damage
distribution in low-, mid-, and high-rise structures is not the same, it is
not rational to consider the same repairability index (i.e. ODI=0.4) for
the structures with different heights. Furthermore, our numerical re-
sults demonstrate that Eqs. (8)–(10) give an ODI less than unity at
collapse points of structures and this means that the repairability border
of Table 1 (i.e. ODI=0.4) needs to be slightly modified. In the present
work, an attempt is done to determine a distinct repairability index for
low-, mid-, and high-rise optimally designed SMFs reflecting their dis-
tribution of damage. In this way, as shown in Fig. 3, the mean value of
ODI at collapse, ODI¯ C, is calculated and the overall damage index re-
presenting the repairability border, ODIR, is taken as 40% of ODI¯ C.

∑=
=

ODI
Nr

ODI¯ 1
C

i

Nr

C i
1

,
(19)

= ×ODI ODI0.4 ¯R C (20)

where Nr is the number of records used to conduct IDA, and ODIC,i is
overall damage index at collapse point of ith record.

6. Proposed methodology

This section describes the methodology proposed in the present
work to conduct seismic assessment of optimally designed 3-, 6-, and
12-story SMFs in the framework of PBD. The proposed methodology
includes three phases as explained below.

In the first phase, The optimization task is achieved using ECBO-II
[12] algorithm as its computational advantages in dealing with PBD
optimization problems of SMFs has been already demonstrated in [12].
The objective function of the optimization process is initial cost of the
SMFs given by Eq. (12). Herein, ground motion records listed in

Table 4
Five best optimal solutions for 3-story SMF.

Design variables Optimum performance-based solutions

S1 S2 S3 S4 S5

C1 W14×34 W14×38 W14×34 W14×38 W14×48
C2 W14×34 W14×38 W14×34 W14×38 W14×48
C3 W14×30 W14×30 W14×30 W14×30 W14×30
C4 W14×68 W14×61 W14×68 W14×68 W14×68
C5 W14×68 W14×61 W14×68 W14×68 W14×68
C6 W14×53 W14×53 W14×43 W14×48 W14×53
B1 W12×30 W12×30 W12×35 W12×30 W12×30
B2 W12×35 W12×35 W12×35 W12×35 W12×30
B3 W12×26 W12×26 W10×26 W10×26 W12×26
C0 (kg) 3075.66 3084.75 3104.59 3123.84 3218.36
CLIO (%) 98.96 98.97 99.40 99.08 98.96
CLCP (%) 99.84 99.83 99.93 99.89 99.91
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Table 2, chosen from FEMA-P695, are considered and scaled to the 5%-
damped acceleration response spectra of FE and MCE hazard levels
presented in ASCE/SEI 7-10 [31] and seismic responses of SMFs are
computed at IO and CP performance levels for the corresponding scaled
records during the optimization process. In order to account for the
stochastic nature of the optimization algorithm, 25 independent runs
are performed and among the obtained optimal designs, 5 best solutions
are taken into account.

In the second phase, incremental dynamic analyses are carried out
using the records of Table 2 and dmax-based and ODI-based IDA curves
are determined for all the obtained optimal designs. Afterward, the
fragility curves are generated for different damage states and the values
of ACMR and DMRODI are computed. In addition, the repairability
border is determined for all the optimal deigns and therefore the total
costs of the structures, CT, are calculated using Eqs. (9)–(14).

In the third phase, the optimal 3-, 6-, and 12-story SMFs are com-
pared in terms of collapse safety, damage margin ratio at various levels
of damage, total cost, and repairability and the best ones of low-, mid-,
and high-rise SMFs are presented. Flowchart of the proposed metho-
dology is depicted in Fig. 4.

7. Numerical examples

In order to illustrate the efficiency of the proposed methodology,
three numerical examples of 3-, 6-, and 12-story SMFs, shown in Fig. 5,
are presented.

Yielding stress and modulus of elasticity for steel materials are
fy = 235MPa and E=210 GPa, respectively. The dead load of
QD=24.5166 KN/m and live load of QL=9.8067 KN/m are applied to
all beams. A rigid diaphragm is considered at floor levels due to the
presence of slabs. The constitutive law is bilinear with pure strain
hardening slope equal to 3% of the elastic modulus. The sections of
beams and columns are selected from a data base of W-shaped sections
listed in Table 3. In addition, OpenSees [32] platform has been used to
model and perform the structural analyses. Force-based nonlinear
beam-column element with distributed plasticity is employed and
second-order P-Delta effects are included by using the P-Delta co-
ordinate transformation object. The other required computer programs
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Table 5
Five best optimal solutions for 3-story SMF.

Optimal SMF C0 (kg) ODI at CP level ODI¯ C ODIR CT (kg) ACMR DMR at ODI Sa 50% (g) from fragility curve based on

0.2 ODIR ODI¯ C dmax ODI

S1 3075.66 0.41 0.963 0.385 7754.77 4.59 0.971 1.362 3.593 5.28 4.96
S2 3084.75 0.44 0.967 0.387 8095.05 4.67 0.956 1.311 3.636 5.37 5.02
S3 3104.59 0.38 0.968 0.387 7459.50 4.82 1.072 1.528 3.737 5.54 5.16
S4 3123.84 0.42 0.969 0.388 7954.52 4.77 1.000 1.442 3.685 5.40 5.01
S5 3218.36 0.39 0.959 0.384 7887.85 4.63 1.014 1.449 3.607 5.32 4.98

Table 6
Five best optimal solutions for 6-story SMF.

Design variables Optimum performance-based solutions

S1 S2 S3 S4 S5

C1 W14×48 W14×48 W14×48 W14×43 W14×43
C2 W14×48 W14×48 W14×48 W14×43 W14×43
C3 W14×30 W14×30 W14×30 W14×43 W14×43
C4 W14×53 W14×53 W14×61 W14×53 W14×61
C5 W14×48 W14×53 W14×48 W14×53 W14×53
C6 W14×48 W14×48 W14×48 W14×53 W14×53
B1 W10×26 W10×26 W12×26 W10×26 W12×26
B2 W10×26 W12×26 W10×26 W12×26 W10×26
B3 W10×26 W10×26 W10×26 W10×26 W10×26
C0 (kg) 8382.58 8479.55 8528.26 8616.14 8755.94
CLIO (%) 99.11 99.10 99.23 99.10 99.23
CLCP (%) 99.24 99.15 99.32 98.95 99.31
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to carry out optimization are coded in MATLAB [33].

7.1. 3-Story SMF

Five best optimal solutions obtained for 3-story SMF, denoted re-
spectively by S1 to S5, are sorted in Table 4 by the increasing value of
the initial cost C0 which the initial cost of S5 is 4.64% more than that of
S1. In addition, confidence levels of the reported solutions at IO and CP
performance levels demonstrate the feasibility of the solutions.

Fig. 6 (a) to (e) show DIPA at CP performance level for members of

optimal solutions S1 to S5 and Fig. 6 (f) compares mean and standard
deviation of DIPA for these solutions. The results show that S3 has the
least mean and standard deviation of DIPA among all solutions. Ad-
ditionally, the ODI values for the 3-story S1 to S5 solutions are 0.41,
0.44, 0.38, 0.42, and 0.39, respectively.

Mean inter-story drifts along with the height of the optimal 3-story
SMFs at IO and CP performance levels are illustrated in Fig. 7. It can be
seen that the least dmax at both IO and CP performance levels is related
to the optimal solution of S3.

The results obtained from dmax-based incremental dynamic analyses
of the 3-story optimal SMFs S1 to S5 subject to the set of 22 ground
motions are illustrated in Fig. 8 (a) to (e), respectively. Moreover, the
dmax-based collapse fragility curves of the SMFs are generated using the
IDA curves and are shown in Fig. 8 (f). The ACMR for the S1 to S5 SMFs
is 4.59, 4.67, 4.82, 4.77, and 4.63, respectively. As regards, based on
FEMA P-695, the acceptable ACMR is equal to 1.56, the computed
ACMRs indicate that all of these designs have considerable collapse
safety and the highest ACMR belongs to S3.

ODI-based IDA curves are depicted in Fig. 9 for the 3-story optimal
SMFs of S1 to S5. The mean value of ODI at collapse point, ODI¯ C, for
these optimal SMFs is 0.963, 0.967, 0.968, 0.969, and 0.959, respec-
tively. Consequently, the repairability border, ODIR, for the designs is
0.385, 0.387, 0.387, 0.388, and 0.384, respectively. The mean of ODIR
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Fig. 15. ODI-based IDA curves for the 6-story optimal designs (a) S1, (b) S2, (c) S3, (d) S4, (e) S5.
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values for all the 3-story optimal designs is equal to 0.386. Further-
more, the total cost (CT) of SMFs S1 to S5 computed based on the ODI at
CP performance level and ODIR are 7754.77, 8095.05, 7459.50,
7954.52, and 7887.85 kg, respectively.

In addition, ODI-based fragility curves and DMRs for different da-
mage levels (ODI=0.2, ODIR, and ODI¯ C) are respectively shown in
Figs. 10 and 11 for the 3-story S1 to S5 SMFs. The comparison of DMRs
in Fig. 11 indicates that S3 SMF has the best DMR in all damage levels.

All of the obtained results in this example are summarized in
Table 5. It is clear that S3 is the best design in terms of total cost and its
CT is 3.81%, 7.85%, 6.22%, and 5.43% less than that of S1, S2, S4, and
S5, respectively. Comparison of ODIs at CP Level with ODIR reveals that
only S3 is repairable and the other designs are unrepairable. Moreover,
it can be observed that, as the best design, S3 SMF has the highest
ACMR and DMR values at different damage levels in comparison with
other optimal solutions. ACMR of S3 is 5.01%, 3.21%, 1.05%, and
4.10% more than that of S1, S2, S4, and S5, respectively. In addition,
ODIR of S3 is 12.19%, 16.55%, 5.96%, and 5.45% more than that of S1,
S2, S4, and S5, respectively. Furthermore, the median collapse Sa
evaluated from the dmax and ODI-based collapse fragility curves are
compared in Table 5. It can be observed that Sa 50% values obtained
from ODI-based collapse fragility curves are less than those of dmax-
based collapse fragility curves.

7.2. 6-Story SMF

Table 6 reports five best optimal solutions for 6-story SMF. The
difference between maximum and minimum of C0 is 4.26% only. The
feasibility of the optimal designs is demonstrated based on the values of
CL at IO and CP performance levels.

For the members of 6-story optimal solutions S1 to S5, DIPA at CP

Table 7
Five best optimal solutions for 6-story SMF.

Optimal SMF C0 (kg) ODI at CP level ODI¯ C ODIR CT (kg) ACMR DMR at ODI Sa 50% (g) from fragility curve based on

0.2 ODIR ODI¯ C dmax ODI

S1 8382.57 0.34 0.787 0.31 21516.55 2.48 0.70 1.01 1.95 1.12 1.06
S2 8479.55 0.38 0.795 0.32 22864.50 2.61 0.72 1.00 2.05 1.24 1.18
S3 8528.25 0.31 0.802 0.32 20330.74 2.87 0.77 1.16 2.09 1.38 1.19
S4 8616.14 0.40 0.796 0.32 24002.10 2.52 0.67 0.95 1.89 1.19 1.18
S5 8755.93 0.33 0.815 0.33 21264.40 2.84 0.74 1.12 2.07 1.36 1.09

Table 8
Five best optimal solutions for 12-story SMF.

Design
variables

Optimum performance-based solutions

S1 S2 S3 S4 S5

C1 W14×68 W14×61 W14×68 W14×53 W14×61
C2 W14×61 W14×48 W14×68 W14×53 W14×61
C3 W14×48 W14×48 W14×53 W14×53 W14×61
C4 W14×48 W14×48 W14×53 W14×53 W14×61
C5 W14×48 W14×43 W14×43 W14×48 W14×43
C6 W14×48 W14×43 W14×43 W14×48 W14×43
C7 W14×99 W14×82 W14×90 W14×74 W14×90
C8 W14×68 W14×82 W14×68 W14×74 W14×90
C9 W14×61 W14×74 W14×68 W14×74 W14×90
C10 W14×61 W14×74 W14×61 W14×74 W14×61
C11 W14×53 W14×61 W14×53 W14×61 W14×53
C12 W14×53 W14×61 W14×48 W14×61 W14×53
C13 W14×109 W14×109 W14×109 W14×109 W14×109
C14 W14×99 W14×82 W14×109 W14×82 W14×74
C15 W14×74 W14×68 W14×68 W14×68 W14×74
C16 W14×74 W14×61 W14×68 W14×68 W14×74
C17 W14×53 W14×53 W14×53 W14×68 W14×61
C18 W14×48 W14×48 W14×53 W14×61 W14×48
B1 W12×26 W12×26 W12×30 W12×26 W12×26
B2 W12×26 W12×26 W12×26 W12×26 W12×26
B3 W12×26 W12×30 W12×30 W12×26 W12×35
B4 W12×26 W12×30 W12×26 W12×35 W12×26
B5 W12×26 W12×26 W12×26 W12×26 W12×26
B6 W10×26 W10×26 W10×26 W12×26 W10×26
C0 (kg) 26160.34 26440.32 26652.89 26884.21 27456.91
CLIO (%) 0.9986 0.9978 0.9986 0.9957 0.9986
CLCP (%) 0.9889 0.9889 0.9933 0.9889 0.9932
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performance level are depicted in Fig. 12 (a) to (e), respectively and the
mean and standard deviation of DIPA for the SMFs are compared in
Fig. 12 (f). The results show that S3 has the least mean and standard
deviation of DIPA among all solutions. Furthermore, for the 6-story S1 to
S5 SMFs, the values of ODI at CP performance level are 0.34, 0.38, 0.31,
0.40, and 0.33, respectively.

Fig. 13 compares the mean inter-story drift profile of the optimal 6-
story SMFs at IO and CP performance levels. It can be seen that the drift
profiles of S3 and S5 are very close to each other and the least dmax at
both IO and CP performance levels belongs to the optimal solution of
S3.

The dmax-based IDA curves of the 6-story optimal S1 to S5 SMFs are

shown in Fig. 14 (a) to (e), respectively. Moreover, the dmax-based
collapse fragility curves of the optimal SMFs are generated using the
IDA curves and are shown in Fig. 14 (f). The ACMRs for the 6-story
optimal S1 to S5 SMFs are 2.48, 2.61, 2.87, 2.52, and 2.84, respectively
which all are greater than the acceptable ACMR of 1.56 [15] and this
means that all of the designs are of considerable collapse safety and S3
has the highest ACMR.

Fig. 15 illustrates ODI-based IDA curves of the 6-story S1 to S5
SMFs. The mean value of ODI at collapse point, ODI¯ C, for the 6-story S1
to S5 SMFs is 0.787, 0.795, 0.802, 0.796, and 0.815, respectively.
Consequently, the repairability border, ODIR, for these designs is 0.315,
0.318, 0.321, 0.318, and 0.326, respectively. The mean of ODIR values
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Fig. 19. Mean inter-story drifts of the 12-story optimal designs at IO and CP performance levels.
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Fig. 20. dmax-based IDA curves for the 12-story optimal designs (a) S1, (b) S2, (c) S3, (d) S4, (e) S5 and (f) their collapse fragility curves.
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for all the 6-story optimal designs is equal to 0.320. Furthermore, CT of
SMFs S1 to S5 computed based on the ODI at CP performance level and
ODIR are 21516.55, 22864.50, 20330.74, 24002.10, and 21264.40 kg,
respectively.

Figs. 16 and 17 show ODI-based fragility curves and DMRs at dif-
ferent damage levels respectively for the 6-story S1 to S5 SMFs. The
comparison of DMRs in Fig. 17 indicates that S3 SMF has the best DMR
in all the damage levels.

Table 7 summarizes the results of this example for the SMFs of S1 to
S5. It is clear that S3 is the best design in terms of total cost and its CT is

5.51%, 11.08%, 15.29%, and 4.39% less than that of S1, S2, S4, and S5,
respectively. Comparison of ODI at CP Level with ODIR of the optimal
designs indicates that only S3 and S5 are repairable and the other ones
are unrepairable. Moreover, it can be observed that, the highest ACMR
and DMR values at different damage levels belong to SMF S3. ACMR of
S3 is 15.73%, 9.96%, 13.89%, and 1.05% more than that of S1, S2, S4,
and S5, respectively. In addition, ODIR of all designs is very close to
each other. Table 7 compares the median collapse Sa evaluated from the
dmax and ODI-based collapse fragility curves indicating that Sa 50% va-
lues obtained from ODI-based collapse fragility curves are less than
those of dmax-based collapse fragility curves.

7.3. 12-Story SMF

For the 12-story SMF, five best optimal solutions of S1 to S5 are
sorted in Table 8 indicating that C0 of S5 is 4.72% more than that of S1.
Additionally, the values of CL at IO and CP performance levels de-
monstrate that the optimal designs are feasible.

DIPA at CP performance level for members of 12-story optimal de-
signs S1 to S5 and their corresponding mean and standard deviation of
DIPA are shown in Fig. 18 implying that the S3 solution has the least
mean and standard deviation of local damages. The overall damage
index is determined for these solutions and the results reveal that the
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Fig. 21. ODI-based IDA curves for the 12-story optimal designs (a) S1, (b) S2, (c) S3, (d) S4, (e) S5.
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values of ODI at CP performance level are 0.33, 0.33, 0.31, 0.37, and
0.33, respectively.

For the 12-story optimal SMFs, the mean inter-story drift profiles at
IO and CP performance levels are compared in Fig. 19 indicating that in
the inter-story drift profiles of S1 to S5 the least dmax at both IO and CP
performance levels is observed in that of the S3 solution.

Fig. 20 (a) to (e) depict the dmax-based IDA curves for the 12-story
S1 to S5 SMFs, respectively and Fig. 20 (f) shows the dmax-based col-
lapse fragility curves of these optimal structures. For the 12-story S1 to
S5 SMFs, the ACMR values are 1.66, 1.62, 1.72, 1.57, and 1.68, re-
spectively which all are greater than the acceptable ACMR of 1.56 [15]
and this means that the collapse safety of the optimal 12-story SMFs is
acceptable and the ACMR of S3 is the maximum among all the designs.

For the 12-story S1 to S5 SMFs, the ODI-based IDA curves are de-
picted in Fig. 21. For the designs of S1 to S5, ODI¯ Cvalues are 0.779,
0.754, 0.762, 0.779, and 0.770, respectively. As a result, the values of
ODIR for these designs are 0.31, 0.30, 0.30, 0.31, and 0.31, respectively.
The mean of ODIR values for all the 12-story optimal designs is equal to
0.306. In addition, CT of S1 to S5 SMFs computed based on the ODI at
CP performance level and ODIR are 65943.35, 67989.39, 64728.45,
72723.65, and 69211.66 kg, respectively.

The ODI-based fragility curves of the 12-story optimal designs and
their DMRs at different damage levels are shown in Figs. 22 and 23,
respectively. It can be seen from Fig. 23 that the best DMR at all the
damage levels belongs to S3 SMF.

In the Table 9 a summary of the obtained results for the 12-story
SMF is reported. The comparison of CT of the optimal solutions indicate
that the best design is S3 and its CT is 1.84%, 4.80%, 10.99%, and
6.48% less than that of S1, S2, S4, and S5, respectively. On the other
hand, S3 is the only design that its ODI at CP Level is less than its
corresponding ODIR and therefore it is repairable while the other ones
are unrepairable. The results also show that the highest ACMR and DMR
values at different damage levels belong to SMF S3. ACMR of S3 is
3.61%, 6.83%, 10.26%, and 2.38% more than that of S1, S2, S4, and S5,
respectively. In addition, ODIR of all designs is almost identical. Com-
parison of the median collapse Sa evaluated from the dmax and ODI-
based collapse fragility curves in Table 9 reveals that Sa 50% values
obtained from ODI-based collapse fragility curves are less than their
corresponding values obtained from dmax-based collapse fragility
curves.

8. Conclusions

The main aim of the present study is to propose a methodology for
assessing seismic collapse-resistant capacity and repairability of opti-
mally designed SMFs. In order to achieve this purpose, initial cost (C0)
of SMFs is optimized in the framework of PBD based on the require-
ments of FEMA-350 using the ECBO-II metaheuristic algorithm. The
local damages distribution and the overall damage index of the optimal
SMFs are determined using the Park-Ang damage index. Afterward, the
IDA is implemented for the optimally designed SMFs and their fragility
curves are generated to compute their ACMR values based on the
methodology of FEMA-P695. Finally, the ODI-based fragility curves are
generated at different damage levels to compute the newly proposed

DMR indicator for the optimally designed SMFs. Three design examples
including 3-, 6-, and 12-story SMFs are presented to demonstrate the
efficiency of the proposed methodology. As regards such an optimiza-
tion process is of a stochastic nature, twenty-five independent optimi-
zation runs are carried out for each example and among the solutions,
five best ones are selected. The main concluding remarks of this study
can be summarized as follows:

1. In all examples of 3-, 6-, and 12-story SMFs, it is observed that the
best solutions, having the least CT, have the best seismic damages
distribution with the least mean and standard deviation of DIPA and
consequently the least ODI among all solutions.

2. The least dmax in the inter-story drift profiles of different 3-, 6-, and
12-story optimal SMFs occurs at both IO and CP performance levels
in the case of solutions having the least CT.

3. The results show that in all examples, the highest ACMR belongs to
the optimal designs with the least total cost CT. For these best 3-, 6-,
and 12-story SMFs, the ACMR values are 4.82, 2.87, and 1.72, re-
spectively.

4. In 3- and 12-story examples, among the obtained optimal solutions,
only the best one with the least CT and in 6-story example two first
best solutions, in terms of CT, satisfy the repairability condition
proposed in this study and the other ones are unrepairable.
Furthermore, for each example, the superiority of the best design
over the other ones is demonstrated in terms of DMR at different
damage levels.

5. In all examples, the comparison of the median collapse Sa evaluated
from the dmax and ODI-based collapse fragility curves reveals that Sa
50% obtained from ODI-based collapse fragility curves represents a
higher collapse risk.

6. Based on the findings of the present study, it can be asserted that the
collapse of different 3-, 6-, and 12-story SMFs occurs in a damage
level in which the overall damage index is less than unity and this
indicates that the repairability border of ODI=0.4 should be en-
hanced. In this work, the repairability border for the 3-, 6-, and 12-
story optimal SMFs is proposed to be 0.39, 0.32, and 0.30, respec-
tively.

It can be concluded that optimization of total cost of SMFs will re-
sults in a design with considerable collapse safety, appropriate damage
margin ratio and uniform damage distribution in which an appropriate
trade-off between total cost and seismic safety can be achieved.

Finally, it should be noted that all the numerical examples are based
on the optimized SMF structures. For the real structure which is not
optimized, the conclusions such as the repairability border of ODI could
be different.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.engstruct.2018.10.075.

Table 9
Five best optimal solutions for 12-story SMF.

Optimal SMF C0 (kg) ODI at CP level ODI¯ C ODIR CT (kg) ACMR DMR at ODI Sa 50% (g) from fragility curve based on

0.2 ODIR ODI¯ C dmax ODI

S1 26160.34 0.33 0.779 0.31 65943.35 1.66 0.55 0.81 1.23 0.39 0.38
S2 26440.32 0.33 0.754 0.30 67989.39 1.61 0.54 0.79 1.18 0.39 0.37
S3 26652.89 0.30 0.762 0.30 64728.45 1.72 0.57 0.85 1.26 0.42 0.40
S4 26884.21 0.37 0.779 0.31 72723.65 1.56 0.51 0.73 1.15 0.37 0.36
S5 27456.91 0.33 0.770 0.31 69211.66 1.68 0.53 0.81 1.25 0.41 0.40
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