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A B S T R A C T

The modeling and estimation of the inelastic response of wind excited structures is attracting growing interest
with the introduction of performance-based wind engineering. While frameworks based on direct integration
have been widely adopted in earthquake engineering for estimating inelastic responses, the significantly longer
duration of typical windstorms, as compared to seismic events, makes this approach extremely computationally
challenging in the case of wind excited systems. This is especially true in the case of modern performance-based
wind engineering frameworks, which are based on probabilistic metrics estimated through simulation and
therefore repeated evaluation of the system. This paper addresses this challenge through the development of a
simulation framework based on dynamic shakedown theory. In particular, an efficient path-following algorithm
is proposed for estimating not only the shakedown multipliers, but also the plastic strains and deformations
associated with occurrence of the state of shakedown. The efficiency with which this information can be esti-
mated for any given wind load time history enables the development of a simulation-based framework, driven by
general stochastic wind load models, for the estimation of the system-level inelastic performance of the struc-
ture. The validity and practicality of the proposed framework is illustrated on a large-scale case study.

1. Introduction

With the introduction of performance-based design (PBD) frame-
works in wind engineering, inelastic/non-linear performance assess-
ment is assuming an increasingly important role. Indeed, PBD ap-
proaches require the evaluation of building performance under various
hazard levels, including structural behavior beyond the elastic limit. In
seismic engineering, many methods have been developed for char-
acterizing the inelastic behavior of the structure based on direct step-
by-step integration [1], including specialized methods such as incre-
mental dynamic analysis (IDA) [2]. In the field of wind engineering,
however, the extremely long duration of typical windstorms effectively
prevents the application of such computationally intensive methods, as
they require non-linear dynamic integration over the entire load his-
tory. This computational hurdle becomes exasperated in applying
modern performance-based wind engineering frameworks that are
based on propagating uncertainty through the system using simulation
methods that require the repeated evaluation of the system [3–9].
Notwithstanding these issues, a number of studies have been carried out
over the years using direct integration methods with the aim of better
understanding the inelastic behavior of wind excited systems [10–15].
These studies have provided insight into the inelastic failure

mechanisms affecting wind excited structures, e.g. ratcheting in the
alongwind direction and low cycle fatigue in the acrosswind direction.
In alternative to direct integration, methods have recently been pro-
posed based on nonlinear static pushover analysis [16]. While pro-
viding significant computational gains over direct integration, these
methods are affected by the inherent difficulty of nonlinear static
pushover analysis to capture cumulative damage mechanisms, e.g.
ratcheting and low cycle fatigue [17,18]. This has led to the recent
development of a computationally efficient approach for determining
safety of wind excited systems against these inelastic failure mechan-
isms within the context of simulation-based wind PBD frameworks
[19,9]. This approach is based on applying the theory of dynamic
shakedown [20–24] as a means to rapidly provide a complete picture of
the inelastic structural behavior, from incremental plastic collapse to
low cycle fatigue. Based on the extension of the classic Bleich-Melan
and Koiter shakedown theorems [25] to dynamic excitation, this ap-
proach was developed to determine if an elastoplastic structure subject
to a given dynamic load history will eventually respond elastically after
a finite amount of plastic deformation. While theoretical frameworks
for dynamic shakedown of systems subject to excitation of finite
duration have been proposed [23,24], a special case that significantly
facilitates the determination of the state of dynamic shakedown exists
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when the external loads can be considered of infinite duration and
periodic. This special case is at the basis of the approaches outlined in
[19,9] where the finite duration of real dynamic wind loads was con-
sidered by simply repeating indefinitely the windstorm of interest. In
particular, if the yield domains of the structure are modeled as piece-
wise linear, the limit state that separates plastic collapse from the safe
state of dynamic shakedown can be efficiently identified through sol-
ving a linear programming problem (LPP) for each dynamic wind load
trace of interest [19]. The efficacy with which LPP problems can be
solved in high dimensions has enabled this approach to be integrated in
simulation-based wind PBD frameworks applied to large-scale struc-
tural systems [9].

Notwithstanding these advances, a significant limitation of the ap-
proaches outlined in [19,9] is the lack of any estimation of the plastic
deformations and strains that occur during the process of dynamic
shakedown. This limits the applicability of these approaches, as these
quantities play a fundamental role in determining whether a building is
repairable after an extreme wind event, or, more critically, if the
building has collapsed due to asymptotically limited but excessive
plastic deformations. To overcome this limitation, this paper is focused
on the development of models for the efficient estimation of the plastic
deformations and strains occurring during shakedown under a given
dynamic wind load time history. By integrating these approaches with
data-driven stochastic models for describing the record-to-record
variability of the dynamic wind load histories, a Monte Carlo frame-
work is proposed for rapidly assessing the collapse performance of
large-scale wind excited systems within recently introduced probabil-
istic performance-based wind engineering frameworks.

2. Problem setting

The Pacific Earthquake Engineering Research (PEER) Center’s fra-
mework for performance-based earthquake engineering [26–28] was
recently extended to wind engineering [3,29,9]. In particular, within an
intensity-based assessment setting, this framework measures perfor-
mance in terms of the following conditional exceedance probability:

∭=P dv im G dv dm dG dm edp dG edp ip dG ip im( ) ( )·| ( )|·| ( )|·| ( )|f

(1)

where dv is a decision variable threshold of interest (e.g. critical repair
cost or downtime value); G a b( ) is the complementary cumulative dis-
tribution function of a conditional on b dm; is the damage measure; edp
is the engineering demand parameter, which for structurally induced
damage is generally taken as the peak structural response over the
duration of the wind event; ip represent interaction parameters (i.e. the
stochastic aerodynamic loads acting on the structure); while im is the
intensity measure which, in the case of wind hazards, is generally taken
as a wind speed with specified mean recurrence interval (MRI).

As pointed out in [9], strictly speaking, the framework of Eq. (1)
only applies to buildings that are repairable, i.e. those that do not
collapse during the windstorm of intensity im. To further consider both
collapse and non-collapse scenarios, the following decomposition based
on the total probability theorem can be used:

> = >

+ >

P DV dv im P DV dv NC im P NC im

P DV dv C im P C im

( ) ( , ) ( )

( , ) ( ) (2)

where P C im( ) and P NC im( ) are the conditional probability of collapse
and non-collapse for the wind event of intensity >im P DV dv NC im, ( , )
is the exceedance probability of dv given that the building does not
collapse (i.e. the contribution to >P DV dv im( ) of Eq. (1)), while

>P DV dv C im( , ) is the exceedance probability of dv given that the
building collapses during the wind event of intensity im. In general, a
wind excited structure can be identified as collapsed under two possible
failure scenarios: (1) failure due to low cycle fatigue (acrosswind
failure) or incremental plastic collapse (alongwind failure); and (2)

failure due to excessive plastic deformations and strains, e.g. excessive
peak/residual displacements or hinge rotations. In order to estimate the
collapse and non-collapse probability associated with the first failure
scenario, dynamic shakedown theory can be applied to define a limit
state separating low cycle fatigue and/or incremental plastic collapse
from the safe state of dynamic shakedown [19]. This method, however,
does not provide any information on the plastic strains and deforma-
tions of the structure, which are essential for not only evaluating the
second collapse scenario, but also for estimating >P DV dv NC im( , ) in
the case of non-collapse. This paper is focused on developing models
that address this issue therefore enabling a general description of
failure.

Before closing this section, it should be observed that Eq. (2) pro-
vides a general framework that can be used to assess a set of perfor-
mance objectives, ranging from serviceability to collapse prevention, by
identifying for each performance objective a value of interest for the
intensity measure (e.g. a wind speed with an MRI of interest) and an
appropriate decision variable.

3. Mechanical model

For a given external dynamic wind load, the inelastic response of
the structural skeletal systems of interest to this work can be described
through the following dynamic equilibrium equation:

+ + =t t t t v αMu Cu f f¨ ( ) ̇ ( ) ( ) ( ; ¯ , )ynl (3)

where tu̇( ) and tü( ) are the velocity and acceleration response vectors,
M and C are the mass and damping matrices of the system, t v αf( ; ¯ , )y is
the external dynamic wind load with v̄y the wind speed of MRI y at the
building top (i.e. the intensity measure im) and α the direction of v̄y
with respect to the building, while tf ( )nl is a vector of non-linear re-
storing forces. Following general plasticity theory [30–32], tf ( )nl can be
written as:

= = −t t t tf B Q B E( ) ( ) [ ( ) ( )]T T
pnl ∊∊ ∊∊ (4)

where = …E E Ediag[ , , ]m1 is the block-diagonal matrix collecting the
elastic stiffness matrices of the m members composing the structural
system; B is a compatibility matrix that in small deformation theory
depends exclusively on the undeformed configuration of the system;

tQ( ) is the generalized stress history response (i.e. internal force his-
tories in the critical sections of the structure); t( )∊∊ are the corre-
sponding generalized strain histories (i.e. relative rotations and axial
deformations) that must satisfy the compatibility conditions

=t tBu( ) ( )∊∊ (5)

with tu( ) the global displacement response of the system; while t( )p∊∊ is
the generalized plastic strain response of the system.

Under the assumption of elastic perfectly plastic (EPP) material
behavior, piece-wise linearization of the yield surfaces associated with
each critical section of the structural system, and associated plastic
flow, t( )p∊∊ will be governed by the following equations:

= − ⩽φ t tN Q R 0( ) ( )T (6a)

= =φ λ φ λt t t t( ) ̇ ( ) ̇ ( ) ̇ ( ) 0T T (6b)

= ⩾λ λt t tN 0̇ ( ) ̇ ( ), ̇ ( )p∊∊ (6c)

where φ represents the yield functions (i.e. the interaction domains of
the potential plastic hinges), N is the block diagonal matrix collecting
the unit external normals to the piece-wise linear yield surfaces defining
the yield functions, R is the plastic resistance vector, while λ ̇ is the
vector of plastic multiplier rates. In particular, Eq. (6a) represents the
yield condition that requires a generalized stress point to remain in the
yield domain of the cross section (i.e. within the interaction domain of a
potential plastic hinge) while Eqs. (6a) and (6b) govern the loading-
unloading process and confer to the system a path-dependent nature.
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Finally, Eq. (6c) expresses the normality rule. At this juncture, it should
be observed that, while EPP material behavior will be assumed in this
work, the governing elastoplastic equations of Eqs. (6a)–(6c) can be
formulated for a wide class of material constitutive laws [31], as can the
dynamic shakedown problem that will be introduced in the following
[e.g., 33,34]. The interest in considering an EPP material behavior
stems from how it enables not only a straightforward formulation of the
shakedown problem, but also the straightforward inelastic modeling of
steel structures without precluding the inelastic modeling of reinforced
concrete structures [e.g., 35].

Eqs. (3)–(5), (6a)–(6c) together with the following initial conditions

= =u u u u(0) , ̇ (0) ̇0 0 (7)

govern the dynamic EPP response of structural systems discretized into
m frame elements with potential plastic hinge yielding at their ex-
tremes. In particular, the resolution of this problem generally requires
the adoption of a step-by-step integration scheme [36,31,37] of a non-
trivial computational effort, especially for long duration external load
histories (e.g. typical dynamic wind load histories).

4. Dynamic shakedown

4.1. Definition and classic solution

If during the dynamic EPP response the plastic deformations t( )p∊∊

become constant, i.e. time independent, the structure is said to have
adapted or reached a state of “dynamic shakedown”. In other words, a
finite field of plastic strains have formed allowing the structure to re-
spond in a purely elastic regime for the remainder of the load history
[24]. This state is of particular interest as it rules out the uncontrolled
growth of plastic deformation over the load history, i.e. incremental
plastic collapse (ratcheting), and of alternating plasticity that can lead
to low cycle fatigue failure.

A criterion for the determination of the state of “dynamic shake-
down” for a fully specified load history ∞ tf ( ) of infinite duration, i.e.
from =t 0 to = +∞t , can be announced as [22,38,24]: a necessary and
sufficient condition for dynamic shakedown is that there exists a finite
time ⩾∗t 0 and some arbitrary initial conditions ∗ ∗u u( , ̇ )0 0 for which the
following holds:

+ − ⩽ ∀ ⩾ ∗ρt t tN Q R 0( ( ) ) ,T E (8)

where tQ ( )E is the purely elastic generalized stress response to ∞ tf ( )
with initial conditions ∗ ∗u u( , ̇ )0 0 , while ρ is a time independent gen-
eralized self stress distribution (associated with the time independent
plastic distortions enabling shakedown) that, when summed to tQ ( )E ,
ensures that the generalized stress response of the system satisfies the
yield condition of Eq. (6a) for ⩾ ∗t t .

In general, the verification of the criterion announced above is not
straightforward. A special case that significantly simplifies the problem,
and which will be seen to be of interest to this work, is when the ex-
ternal load ∞ tf ( ) is not only of infinite duration but also periodic with
period T (indicated in the following as ∞̃ tf ( )). Indeed, under these cir-
cumstances, shakedown will occur if a time independent generalized
stress distribution, ρ, can be found for which Eq. (8) is satisfied for the
steady state elastic response in T[0, ] [22,38,24]. Because only the
steady state elastic response is now required, the problem of verifying
whether shakedown occurs has become independent of the choice of
initial conditions ∗ ∗u u( , ̇ )0 0 .

4.1.1. Dynamic shakedown multiplier: classic solution
A classic problem of interest in dynamic shakedown is the estima-

tion of the dynamic shakedown multiplier sp, defined as the maximum
amplification that the external loads ∞̃ tf ( ) can undergo before shake-
down no longer occurs, i.e. the conditions of Eq. (8) can no longer be
satisfied. It can be shown that, under the assumption of piece-wise
linear yield surfaces and infinite duration periodic loads, the search for

sp can be posed in the form of the following linear programming pro-
blem (LPP):

=

=

= + − ⩽
=

⩽ ⩽

φ ρ
ρ

s s

t

s

Q N Q

Q N R 0
B 0

max

subject to
¯ max [ ( )]

¯

ρ
p

s

s

t T
T

s
E

s
s T

T

,

0

(9)

where φs is the amplified and time maximized yield function with Q t( )s
E

the purely elastic steady state generalized stress response in T[0, ],
while Q̄s is the maximum generalized stress demand for each linearized
yield mode of each critical section of the system. The last condition in
Eq. (9) ensures that the generalized stress state associated with the
plastic distortions occurring during shakedown are self-equilibrated. It
should be observed that by setting =ρ 0, the LLP of Eq. (9) will provide
an estimate of the elastic multiplier se, i.e. the maximum amount the
external loads ∞̃ tf ( ) can be amplified before inelasticity will occur [19].

4.2. A strain-driven formulation of dynamic shakedown

The resolution of the LPP of Eq. (9) provides a classic solution to the
dynamic shakedown problem in terms of sp. A limitation of this ap-
proach is that it does not provide any information on the entity of the
time independent plastic strains, p∊∊ , occurring during the adaption
process. Therefore, if the inelastic deformations are required, an alter-
native approach to estimate shakedown has to be explored. To this end,
the algorithms proposed in [39,35] for estimating the shakedown
multiplier in quasi-static conditions are of interest. Indeed, these algo-
rithms are based on using a path-following scheme which provides, as a
byproduct, estimates of the plastic strains and deformations associated
with reaching the state of shakedown. Unfortunately, these estimates
are associated with a simulated load path and not the actual load path
followed by the structure in reaching shakedown. However, by first
extending these algorithms to dynamic shakedown problems, it can be
observed that, under the conditions outlined in Section 4.2.3, direct
estimations of the plastic strains and deformations occurring during
shakedown can be made.

4.2.1. Problem formulation
To formulate the dynamic shakedown problem for periodic and

infinite duration dynamic loads in terms of strains and displacements, it
is convenient to first consider a residual displacement increment ur
together with a load multiplier s satisfying ⩽ ⩽s s se p. From ur the
following strain increment can be defined [39]:

= Bur r∊∊ (10)

An admissible stress vector, ρ, corresponding to ur and s can be ob-
tained through the following return mapping scheme:

= + ⩽ρ ρ ρ φ ρs su( , ) Δ , ( , ) 0r E s (11)

where = +ρ ρ EBuE r0 is the elastic predictor of ρ with ρ0 an initial
generalized stress distribution, while = −ρ EΔ p∊∊ with p∊∊ the plastic
part of the strain increment r∊∊ which is defined by the Kuhn-Tucker
condition:

= = ⎧
⎨⎩

= <
⩾ ⩾

= …λ
ρ
ρ

λ
φ s
φ s

i NN ,
0 if ( , ) 0
0 if ( , ) 0

for 1, ,p i
si E

si E
s∊∊

(12)

with λi the ith component of the plastic multiplier vector λ and Ns the
total number of yield modes of the system. Instead of estimating
ρ s u( , )r by directly solving the return mapping of Eqs. (11) and (12),
ρ s u( , )r can be more conveniently estimated by minimizing the Haar-
Kàrmàn function subject to the dynamic shakedown feasibility condi-
tions:
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=

= + + − ⩽

−

⩽ ⩽

ρ ρ

φ ρ ρ

t

s

E Δ

Q N Q

Q N R 0

min Δ

subject to
¯ max [ ( )]

¯ ( Δ )

ρ
T

s

t T
T

s
E

s
s T

E

Δ

1
2

1

0

(13)

Eq. (13) represents a standard strictly convex quadratic programming
problem that can be efficiently solved in high dimensions through
standard optimization algorithms. By solving the return mapping
scheme for given values of s and ur , solutions in terms of ρ s u( , )r will be
found that satisfy the shakedown feasibility condition ⩽φ ρs( , ) 0s .
However, for ρ s u( , )r to satisfy the dynamic shakedown criterion of
Section 4.1, it must also be self-equilibrated. This requirement can be
imposed in terms of the internal force vector, S, associated with the
residual displacement increment ur and multiplier s as:

= =ρs sS u B u 0( , ) ( , )r
T

r (14)

By combining this condition with the strain-driven scheme for the
identification of admissible values of ρ s u( , )r , the following dynamic
shakedown problem can be stated directly in terms of the residual
displacement increments:

= ∃ =s s su S u 0max : : ( , )p r r (15)

To solve Eq. (15), an incremental iterative scheme can be adopted
based on producing a sequence of admissible safe states that are self-
equilibrated.

4.2.2. An iterative solution scheme
Commencing from the elastic limit state = = =ρs s 0 u 0( , , )e r , the

iterative solution method estimates the shakedown multiplier sp and the
corresponding admissible self-equilibrated stress state ρ with associated
residual displacement vector ur by producing a sequence of admissible
safe states ρs u( , , )k k

r
k( ) ( ) ( ) with s k( ) monotonously increasing at each step

and convergent to sp. The overall procedure is outlined in the flowchart
of Fig. 1. In particular, at each step, the multiplier s and residual dis-
placement field ur are initialized through the following equations:

= + −
= + −

− − −

− − −

s s β s s
βu u u u
( )

( )

k k k

r r
k

r
k

r
k

1
( 1) ( 1) ( 2)

1
( 1) ( 1) ( 2) (16)

with β an appropriate scaling factor. The iterative process within each
step k produces a monotonically decreasing sequence, indexed with j, of
nodal forces sS u( , )r until the self-equilibrated condition =sS u 0( , )j rj is
satisfied. To obtain this sequence, us andj rj are updated at the jth
iteration through the condition:

⎧
⎨
⎩

+ + =

=

s sS u K u y 0

y u

( , ) ̇ ̇

̇ 0
j rj j rj j j

j
T

rj (17)

where sS u( , )j rj is estimated by solving for ρ s u( , )j j rj through Eqs. (11)
and (13), Kj and yj are the initial tangent in s u( , )j rj of the nodal force

sS u( , )j rj given by

⎧

⎨
⎪

⎩⎪

=

=

∂
∂

∂
∂

K

y

j
s

s

j
s
s s

S u
u u

S u

u

( , )

( , )

( , )

( , )

r
r j rj

r

j rj (18)

while u̇rj and s ̇ are corrections estimated as follows, together with the
updated values of the multiplier and residual displacement field:

⎧

⎨
⎪

⎩⎪

= − +

= −
⎧
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= +
= +

−

+

+
−

−

s
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u K S y
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̇
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rj j j j j

j

rj rj rj

j j j
y K S

y K y

1

1

1
j
T

j j

j
T

j j

1

1
(19)

To improve the efficiency of the solution process and to guarantee
convergence of the iterative scheme, Kj can be taken as the elastic
stiffness matrix of the system K, defined at the start of the process [35].

The solution provided at each step k satisfies the plastic admissibility
and self-equilibrium condition while the multiplier s k( ) is less than or
equal to sp. As such, the solution process is terminated when

= −s sk k( ) ( 1), providing the shakedown multiplier.
In addition to the total self-stresses, ρ, and residual displacements,

ur , the solution process can also produce estimates of the total plastic
strains to occur during the shakedown process, p∊∊ , through the fol-
lowing expression:

∑ ∑= = ⎛

⎝
⎜ − ⎞

⎠
⎟

= =

− ρBu Ep
k

K

p
k

k

K

r
k k

0

( )

0

( ) 1 ( )∊∊ ∊∊
(20)

with K the total number of steps required in obtaining sp.
Before closing this section, it should be observed that significant

computational gains over direct integration are expected from the im-
plementation of the proposed algorithm. Indeed, for a given load his-
tory of duration T, the algorithm outlined above only requires the es-
timation of elastic dynamic response in T[0, ] for unamplified loads.
Moreover, the iterative process of Fig. 1 only has to be carried out once,
at the peak steady state elastic responses Q̄s, for a given load history of
arbitrary length T. In other words, a single non-linear problem is solved
in T[0, ] as opposed to the multiple non-linear problems that are solved
in T[0, ] when implementing direct integration methods. By observing
that at each internal iteration j the iterative process of Fig. 1 only re-
quires the resolution of a strictly convex QPP (i.e. a problem type that
can be efficiently solved through well established optimization algo-
rithms), significant computational gains over direct integration are
expected. In particular, the longer the load duration, the greater the
expected computational gains. The only potential challenge of the
proposed approach lies in the number of internal, j, and external, k,
iterations necessary before convergence. However, by adopting K in
place of Kj, convergence of the scheme is guaranteed [39].

4.2.3. The simulated load path
The load path of the strain-based scheme of Section 4.2.2 is defined

in terms of the peak steady state purely elastic dynamic response to
∞̃ tf ( ), i.e. in terms of the generalized stress Q̄s that appears in Eq. (13).
The actual load path depends on the elastoplastic dynamic response to

∞̃ tf ( ). The two paths will differ due to: (1) elastoplastic vs. elastic
material behavior; and (2) the initial conditions u u( , ̇ )0 0 that generally
cause transient dynamic effects. The steady state response assumption
of the simulated load path implies that plastic strain and deformations
caused by any transient dynamic effects cannot be captured by the
strain-based scheme. However, if it is assumed that each period of the
load ∞̃ tf ( ) starts with the structure at rest, then the purely elastic re-
sponse of the structure estimated for the homogeneous initial condi-
tions:

= =u 0 u 0(0) , ̇ (0) (21)

will coincide with the steady state elastic response to ∞̃ tf ( ). Under these
conditions, the only difference between the simulated and actual load
paths is in how, for the actual load path, plastic strains and deforma-
tions are produced in the peaks of the path dependent elastoplastic
generalized stress Q t( )s

EP as opposed to the peaks of the path dependent
elastic generalized stress Q t( )s

E . Because for moderate inelasticity, i.e.
shakedown occurs, these peaks must be closely related, the simulated
load path should provide a good approximation of the plastic strain and
deformations occurring in reaching shakedown under the prescribed
load ∞̃ tf ( ).

Before closing this section, it should be observed that the require-
ment that the structure be at rest at the start of the load period T is not
restrictive for the systems of interest to this work. Indeed, there will
always be a period of calm before a major windstorm during which time
the structure will come to a rest due to damping. It should be observed
that, from the estimation of the plastic strains and deformations, peak
responses at shakedown can be directly estimated as:
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̂ ̂= + = +
⩽ ⩽ ⩽ ⩽

t tu u umax [ ( )], max [ ( )]r
t T

s
E

p
t T

s
E

0 0
∊∊ ∊∊ ∊∊

(22)

where tu ( )s
E and t( )s

E∊∊ are the purely elastic displacement and strain
response at shakedown. Finally, it can be observed that the strain-based
iterative scheme is capable of estimating plastic strains and deforma-
tions for any multiplier value, s, satisfying ∈s s s[ , ]e p . Indeed, under
these circumstances, it is simply necessary to terminate the strain-based
iterative scheme once s is reached.

5. A probabilistic collapse estimation framework

As discussed in Section 2, the ultimate goal of this work is to define
a probabilistic framework based on dynamic shakedown for the esti-
mation of P C im( ) and therefore of the probability of collapse of a
structure subject to a windstorm of direction α and intensity =im v̄y. To
this end, the following collapse modes are considered:

1. The inability of the structure to reach the state of dynamic shake-
down. This leaves the structure at risk of collapse due to ratcheting
(progressive collapse), low cycle fatigue (failure due to alternating
plasticity) and instantaneous plastic collapse.

2. Excessive peak ̂u and/or residual ur displacements/drifts at shake-
down. Excessive peak displacements/drifts leave the structure sus-
ceptible to global instability, while excessive residual deformations
can lead to structures that are unstable/irreparable after the event
(it should be observed that, if necessary, P-Delta effects can be in-
cluded in the proposed framework through methods similar to those
outlined in [40]).

3. Excessive plastic deformations p∊∊ and/or local member response at
shakedown. Excessive local beam and column response can lead to

member failure.

In defining the first collapse mode, the inability to reach dynamic
shakedown is here interpreted as the shakedown multiplier sp, esti-
mated through solving the LPP problem of Eq. (9), assuming a value less
than 1. It should be observed that, while failure to find solutions to the
LPP of Eq. (9) is highly unlikely due to the convexity of LPPs (i.e. no
local minima) and the wide availability of robust optimization algo-
rithms with proven convergence properties for their resolution (i.e.
simplex algorithm/interior point methods), the estimation of the first
collapse mode is based on the results of a numerical algorithm solved to
within a convergence tolerance.

Given an appropriate periodic and infinite duration stochastic wind
load model, the conditions outlined above can be probabilistically
characterized through combing Monte Carlo simulation with the strain-
based dynamic shakedown framework of Section 4.2. The first step
towards this goal is therefore the definition of an appropriate stochastic
wind loads model.

5.1. Wind load model

A straightforward approach for defining an infinite duration and
periodic load from any given wind load history t v αf( ; ¯ , )y of interest is to
simply consider t v αf( ; ¯ , )y infinitely repeated. This “artificial” windstorm
can be formally defined as:

̃ ⎜ ⎟ ⎜ ⎟
⎛
⎝

+ ⎞
⎠

= ⎛
⎝

⎞
⎠

⎧
⎨⎩

= … +∞
∈∞ t nT v α t v α

n
t Tf f; ¯ , ; ¯ , for

0, 1, ,
[0, ]y y

(23)

and is illustrated in Fig. 2. In defining ∞̃ t v αf ( ; ¯ , )y , it is important to
observe that the application of the proposed approach for determining

Fig. 1. Flowchart of the strain-based dynamic shakedown algorithm.
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whether a structural system subject to ∞̃ t v αf ( ; ¯ , )y will shakedown, and if
so the entity of the plastic deformations and strains at shakedown, only
requires the estimation of the purely elastic steady state dynamic re-
sponse over one period of ∞̃ t v αf ( ; ¯ , )y . In particular, if it is assumed that
inelastic behavior will only occur over a critical window of the period
(e.g. in the maximum stationary segment of the windstorm as illu-
strated in Fig. 2), then the elastic steady state response estimation is
only required in the critical window. To fully appreciate the compu-
tational savings of the proposed approach, it should be recalled that to
estimate the plastic deformations and strains at shakedown through
direct integration, full dynamic elastoplastic solutions over a number of
cycles of ∞̃ t v αf ( ; ¯ , )y would be necessary. Finally, it should be observed
that the elastic stress response is in a “steady state” under a periodic
load when the free-vibration response associated with an arbitrary set
of initial conditions damps out. In particular, as discussed in Section
4.2.3, to ensure that the system is always in a steady state, it is simply
necessary to assume that the structure is at rest at the beginning of each
load repetition (i.e. there is a period of calm between each load re-
petition that allows the structure to come to a rest due to damping).
This condition is independent of how the loads vary in each period of
loading, i.e. the form of the load history in T[0, ] does not affect how,
under the aforementioned conditions, the structure’s elastic response
will always be steady state. Therefore, t v αf( ; ¯ , )y can be a realization of a
stationary or non-stationary stochastic process. This enables the con-
sideration of both synoptic and non-synoptic wind events in the pro-
posed framework.

5.1.1. Stochastic representation of the wind load history
In order to study the record to record variability in the inelastic

response of the system, multiple wind load histories are required, i.e.
multiple realizations of ∞̃ t v αf ( ; ¯ , )y , and therefore of t v αf( ; ¯ , )y , are ne-
cessary. From a probabilistic standpoint, t v αf( ; ¯ , )y can be viewed as a
vector-valued stochastic process [41]. In particular, an efficient ap-
proach for the simulation of f is to decompose the N-dimensional vector
f into N independent vector valued subprocesses through spectral
proper orthogonal decomposition (POD) and therefore as
[42–44,41,45]:

∑⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟

=

t v α t v αf f; ¯ , ; ¯ ,y
j

N

j y
1 (24)

where tf ( )j is the jth subprocess which can be given the following
spectral representation:

∑= × + +
=

θt v α ω α ω v α ω ω t ωf Ψ( ; ¯ , ) ( ; ) 2Λ ( ; ¯ , )Δ cos ( ( ) ϑ )jj y
k

K

j k j k y k k kj
1

(25)

where Λj and Ψj are the jth frequency dependent eigenvalue and ei-
genvector of Kf, is the total number of discrete frequencies considered

in the interval K ω[0, Δ ] with ωΔ the frequency increment that is related
to the Nyquist (cutoff) frequency through

= = θω K ω ω k ωΔ /2, Δ , jkNyquist is a vector of complex angles, while ϑkj
are independent and uniformly distributed random variables in π[0, 2 ].
In particular, the ith component of θj can be estimated as:

= ⎧
⎨⎩

⎫
⎬⎭

−θ ω
ω
ω

( ) tan
Im[Ψ ( )]
Re[Ψ ( )]ji k

ji k

ji k

1

(26)

with ωIm[Ψ ( )]ij k and ωRe[Ψ ( )]ij k the imaginary and real parts of the ith
component of Ψj.

To ensure a complete description of the complex aerodynamic re-
sponse of typical high-rise structures (e.g. acrosswind wake-induced
vortex shedding), in this work the frequency dependent eigenvalues
and eigenvectors of f are estimated directly from wind tunnel data. This
will ensure that any aerodynamic phenomena captured in the wind
tunnel tests will be present in the simulated load histories. To generate
realizations of t v αf( ; ¯ , )y following the model outlined above, the sub-
processes are first generated through the Fast Fourier Transform ap-
proach [46] and then combined as indicated in Eq. (24). The possibility
to generate the subprocesses independently while considering only the
first few spectral POD modes of f ensures the efficiency of the approach.

5.2. Monte Carlo algorithm

From the definition of ∞̃ t v α P C vf ( ; ¯ , ), ( ¯ )y y can be estimated for a
given wind direction α, and in terms of the collapse conditions outlined
at the beginning of Section 5 as:
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s i

N

C
i

y
1

( )
s

(27)

where Ns is the total number of samples used in the simulation while IC
i( )

is the following indicator function evaluated for v α( ¯ , )y as:
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(28)

where ̂s u u, ,p
i

r
i i( ) ( ) ( ), and p

i( )∊∊ are the ith sample of the shakedown mul-
tiplier, residual displacements, peak displacements, and plastic strains
at shakedown, while ̃ ̂ ̃u u,r , and p̃∊∊ are user defined collapse limits set
respectively on ̂u u,r , and p∊∊ . A flowchart of the overall procedure for
evaluating Eq. (27) through the indicator function of Eq. (28) is shown
in Fig. 3. In particular, the step-by-step Monte Carlo algorithm is as
follows:

1. Set the intensity v̄y and direction α of the windstorm of interest. Set
=i 0.

2. Generate a realization of ∞̃ t v αf ( ; ¯ , )y through the stochastic wind load
model of Section 5.1.1 after calibration to appropriate wind tunnel
data. Set = +i i 1.

Fig. 2. Illustration of a generic component of ∞̃f for a windstorm of duration T .
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3. Calculate the steady state elastic generalized stress response tQ ( )s
E in

T[0, ] for the load history of step 2 using any dynamic elastic ana-
lysis procedure (e.g. direct integration of the elastic modal equa-
tions).

4. Estimate the elastic and plastic multipliers, se and sp, by solving the
linear programming problem of Eq. (9) with =ρ 0.

5. If ⩾s 1e (i.e. the structure remains elastic) set = =u 0 0,r
i

p
i( ) ( )∊∊ , and

=I 0C
i( ) and return to step 2.

6. If <s 1p (i.e. structure collapses for =s 1 due to lack of shakedown)
set =I 1C

i( ) and return to step 2.
7. If <s 1e and ⩾s 1p , then estimate the residual displacements, ur,

peak displacements ̂ur , and strains, p∊∊ , for the unamplified wind-
storm, i.e. =s 1, using the strain-based scheme of Section 4.2.

8. Check if any of the collapse limits ( ̃ ̂ ̃u u,r , and p̃∊∊ ) have been ex-
ceeded. If yes, set =I 1C

i( ) and return to step 2, otherwise set =I 0C
i( )

and return to step 2.

By repeating steps 2 to 8 for Ns samples of the wind loads, the safety
of the system can be estimated probabilistically using Eq. (27). In ad-
dition to the collapse probability of Eq. (27), the proposed framework
can be used to directly estimate the probability distributions of the
plastic strains, deformations, and peak responses at shakedown.

6. Case study

6.1. Overview

In this section, the probabilistic framework of Section 5 is illustrated
on the steel frame of Fig. 4. In particular, a study on the accuracy of the
simulated load path of the strain-based dynamic shakedown formula-
tion of Section 4.2 is also presented through direct comparison to re-
sults obtained from step-by-step integration of the elastoplastic equa-
tions of Section 3.

Fig. 3. Flowchart of the overall simulation strategy.
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6.1.1. Model description
The structure considered in this section is the 37-story six-span

plane steel frame of Fig. 4 that was assumed located in the Miami region
of Florida, USA. The geometry consists of beam span lengths of 5m and
interstory heights of 6m at ground level and 4m for all other floors.
The overall height of the structure is 150m. The columns have square
box cross-sections, while the beams are wide flange standard W24
sections. The dimensions of the box columns are defined by their cen-
terline diameters D. The thickness of the section’s walls is set to D/20.
The steel composing the frame is assumed to be elastic-perfectly plastic,
and is therefore completely described by the Young’s modulus Es and
yield stress σy, which were respectively taken as 200 GPa and 355MPa.
In particular, this last was derived from fitting a lognormal distribution
to the yield strength data for Grade 50 steel reported in Appendix B of
[47] and taking the threshold corresponding to the 5% percentile. The
mass of the structure was lumped at each floor and calculated as the
sum of the element mass and carried mass which was taken as 100 kg/
m3 and led to a super dead load of 23.5 kN/m acting on each beam
element. The member sizes of the structure were determined to ensure a
predominantly elastic response under the combination of dead and
super dead loads mentioned above, as well as wind loads calibrated to a
wind speed at the building top of =v̄ 52.5y m/s, which approximately
corresponded to an MRI of =y 700 years for Miami. To estimate the
wind loads given v̄y, the wind tunnel data described in Section 6.1.2 was
used. To ensure serviceability, a 1/400 limit on the peak interstory drift
ratios was imposed under wind loads calibrated to a 50 year MRI wind
speed of =v̄ 34.2y m/s. Stability requirements for the columns were
ensured by considering compact sections, as defined in [48], that had
unbraced lengths that were always smaller than the limiting laterally
unbraced length for full plastic bending capacity, as defined in [48].
Seismic loads were not considered as the building was assumed in the
Miami region of Florida. A summary of the resulting section sizes is
reported in Table 1. As designed, the first two natural frequencies of the
frame were respectively =f 0.18731 Hz and =f 0.53402 Hz.

To evaluate the inelastic response of the structure, rigid-perfectly
plastic moment hinges were assumed at the extremes of all elements for
a total of 962 possible hinges. The yield domains associated with plastic

hinges were defined by the ultimate moments of the sections, i.e.
=M σ Zu y with Z the plastic modulus of the cross section.

6.1.2. Wind loads
To simulate wind load histories, the stochastic wind load model of

Section 5.1.1 was calibrated to wind tunnel data collected on a 1/300
rigid model of the building. In particular, the data was part of the Tokyo
Polytechnic University’s (TPU) aerodynamic database [49] and was
measured considering a sampling frequency of 1000 Hz and wind speed
at the building top of 11m/s. A total of 512 pressure taps were used for
32 s of recorded data. This data was integrated and scaled therefore
defining X Y, and torsional loads at the center of mass of each floor.
For the application here considered, 1/6 of the X direction loads were
considered acting on the moment resisting frame. These loads were
used to estimate the eigenvalues Λj and eigenvectors Ψj of Eq. (25). In
calibrating Eq. (25), a sampling frequency of 2 Hz was considered for a
cutoff frequency of 1 Hz. When carrying out direct integration of the
elastoplastic equations of Section 3, the sampling frequency was in-
creased through linear interpolation to 100 Hz in order to ensure the
stability and accuracy of the integration scheme.

6.2. Verification of the simulated load path

To illustrate the validity of the simulated load path, this section
focuses on the comparison between the non-linear responses at

Fig. 4. Schematic of the 37-story steel frame of the case study.

Table 1
Section sizes of the steel frame.

Wide-flange Beams Box Columns

Level Section size Plastic modulus
(m3)

Section size
(m)

Plastic modulus
(m3)

1–10 W24×192 0.0092 =D 0.5 0.0094
11–20 W24×192 0.0092 =D 0.5 0.0094
21–30 W24×103 0.0046 =D 0.4 0.0048
31–37 W24×103 0.0046 =D 0.35 0.0032
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shakedown obtained for the 37 story frame through direct integration
and those obtained from the proposed strain-based dynamic shakedown
scheme. In particular, the finite element environment OpenSees (Open
System for Earthquake Engineering Simulation) was used for carrying
out the direct integration using a Newmark-Beta integration scheme.
For the direct integration approach, Rayleigh damping was considered
with damping ratios at the first two modal frequencies equal to 2.5%,
while, for estimating the steady state elastic generalized stress response
in the strain-based dynamic shakedown scheme, a modal integration
was used while considering the first five modes with damping ratios of
2.5%. To model the rigid-perfectly plastic moment hinges in OpenSees,
TwoNodeLink elements of 1 cm length were placed at the two ends of
each beam and column. The moment capacity of the hinges were taken
as =M σ Zu y while the rotational stiffnesses were calculated based on
the stiffness that would be provided by a 1 cm segment of the original
elastic beam/column element.

Due to the significant computational effort involved in performing
direct integration, the total length of the windstorm was set to =T 360
s. The first and last minute of the loads were linearly ramped to ensure
approximately zero initial conditions at the beginning of each load
cycle of the direct integration approach. To capture the dynamic sha-
kedown phenomena, a total of 15 cycles were considered in the direct
integration approach before returning to zero for a full cycle, as illu-
strated in Fig. 5 for two representative top floor time histories. This
final unloading cycle allowed for the dynamic responses to completely
damp out therefore enabling the direct estimation of the residual dis-
placements and plastic rotations in the hinges. The mean wind speed at
the building top was set to =v̄ 52.5y m/s, which approximately corre-
sponds to an MRI of =y 700 years for the Miami region of Florida. To
make the comparison, 200 randomly selected wind load histories were
considered. Wind directions were selected from the set

∈ ° ° ° … °α {0 , 10 , 20 , ,90 } following a uniform distribution. Therefore,
both alongwind and acrosswind directions were considered as well as
intermediate wind directions.

6.2.1. Comparison
Fig. 6 reports the residual displacement comparison for four

randomly selected alongwind ( = °α 0 ) and acrosswind ( = °α 90 ) re-
sponses. As can be seen, the residual displacements estimated through
the proposed framework are almost identical to those obtained from
direct integration for both incident wind directions. Plastic strains, i.e.
plastic hinge rotations θp, corresponding to the samples generating the
residual displacements fields of Fig. 6(a) and (b) are shown in Figs. 7
and 8 with hinge locations shown in Fig. 9. Once again, strong corre-
spondence between the responses is seen. It should also be observed
that, for all 200 samples, the prediction of the state of shakedown by
the strain-based dynamic shakedown scheme was confirmed by the
direct integration. To illustrate this, the moment rotation histories of
three representative plastic hinges are shown in Figs. 10 and 11 for the

Fig. 5. A realization of the top floor stochastic wind loads for: (a) alongwind
direction, i.e. = °α 0 ; (b) acrosswind direction, i.e. = °α 90 .

Fig. 6. Comparison between the residual displacements evaluated through the
proposed model and direct integration for four randomly selected wind load
histories.
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alongwind and acrosswind sample generating the residual displace-
ments of Fig. 6(a). In particular, the final residual moments and rota-
tions are marked by squares. As can be seen, after several cycles of
loading, an absence of further plastic accumulation is seen as the
structure begins to respond in a purely elastic manner, i.e. the state of
shakedown has been reached.

Similar results as shown in Figs. 6–8 were seen for the other samples
and wind directions. To illustrates this, Fig. 12 shows the comparison
between all 200 residual displacements estimated from the strain-based

dynamic shakedown scheme and direct integration for the first floor,
while Fig. 13 shows the same comparison for the plastic rotations of
Hinge 1. As can be seen from these figures, there is strong correspon-
dence between the results of the two methods. Indeed, a correlation
coefficient greater than 0.99 existed in both cases. Similar results were
seen for all other responses.

Finally, it should be observed that the proposed model estimated
solutions for each sample in a matter of seconds while the direct in-
tegration approach required around six hours per sample on the same
machine. This corresponds to a computational difference of over three
orders of magnitude. In particular, it is worth mentioning that the
computational efficiency of the proposed model is nearly independent
of the length of T (i.e. period of the forcing function). Indeed, this only
comes into play in calculating the dynamic steady state elastic response
of the system in T[0, ], which, due to the elasticity of the system, is
negligible. This makes the proposed approach very attractive for sys-
tems subject to long duration dynamic loads, i.e. wind excited struc-
tural systems.

6.3. Application of the proposed probabilistic framework

In this section, the probabilistic framework of Section 5 is illustrated
on the steel frame of Fig. 4. For this application, the wind load histories
were given a total length of =T 3600 s. A full range of wind directions
were considered, namely α was varied between °0 and °90 , for mean
wind speeds at the building top of =v̄ 52.5y m/s (approximately
700 year MRI for Miami) and =v̄ 56.5y m/s (approximately 1700 year
MRI for Miami). The first five vibration modes with damping ratios of
2.5% were once again considered in estimating the dynamic steady state

Fig. 7. Plastic hinge rotation, θp, for (a) alongwind and (b) acrosswind re-
sponses corresponding to the samples generating the residual displacement
fields of Fig. 6(a).

Fig. 8. Plastic hinge rotation, θp, for (a) alongwind and (b) acrosswind re-
sponses corresponding to the samples generating the residual displacement
fields of Fig. 6(b).

Fig. 9. Plastic hinge locations.
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elastic response of the system. The following deformation limits were
considered for describing failure:

1. Residual drift ratio: ̃ =u 0.5%r

2. Peak interstory drift ratio: ̂ ̃ =u 2.5%r

3. Plastic hinge rotation: ̃ =θ 0.01p rad

These limits were considered for all components of ̂u u,r , and θp.

6.3.1. Results
The analyses were carried out for α varying from = °α 0 to = °α 90

in 10 degree increments and for two wind intensities. For each wind
direction and intensity, =N 5000s samples were considered in the

Monte Carlo simulation. Table 2 reports the collapse probabilities for all
wind directions and a wind intensity corresponding to an MRI of
700 years while Table 3 reports the analogous quantities for a wind
intensity of MRI 1700 years. In particular, as can be seen from Fig. 14,
the alongwind ( = °α 0 in Fig. 4) response of the structural system led to
the highest total collapse probabilities. Having said this, in the
acrosswind direction ( = °α 90 ), the structural system experienced a
significant increase in failure probability, with respect to immediately
adjacent wind directions, due to vortex shedding. From Tables 2 and 3,
it can be seen that, in the alongwind direction, the structure experi-
enced inelastic collapse due to incapability to shakedown, excessive
residual drift, and excessive plastic hinge rotations. In the acrosswind
direction, on the other hand, failure for this structural system was due
exclusively to an incapability to shakedown. For the intermediate wind

Fig. 10. Moment rotation history corresponding to the sample generating the alongwind residual displacement field of Fig. 6(a) at: (a) Hinge 1; (b) Hinge 223; and (c)
Hinge 530.

Fig. 11. Moment rotation history corresponding to the sample generating the acrosswind residual displacement field of Fig. 6(a) at: (a) Hinge 1; (b) Hinge 223; and
(c) Hinge 530.

Fig. 12. Comparison between residual displacements at the first floor for all
200 samples.

Fig. 13. Comparison between plastic rotations at Hinge 1 for all 200 samples.
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directions, it is interesting to observe how, for the deformation limits
considered in this case study, collapse can easily be produced by ex-
cessive deformations. This illustrates the importance of estimating the
plastic deformations and strains alongside the shakedown probability in
order to fully characterize the collapse of wind excited structural sys-
tems. Because the structural system considered in this work showed
particular sensitivity to collapse for alongwind and acrosswind actions
(the wind directions = °α 10 and = °α 20 produce, for all intents and

purposes, alongwind responses), the following discussion will focus on
the wind directions of = °α 0 (alongwind) and = °α 90 (acrosswind).

As mentioned in Section 5.2, alongside the collapse probabilities,
the proposed framework also allows the probability distributions as-
sociated with peak/residual deformations and plastic strains at shake-
down to be directly estimated. To illustrate this, Figs. 15 and 16 report
the exceedance probability distributions associated with the peak hor-
izontal displacement responses given shakedown (SD) for the 1st, 20th
and 37th floor in the alongwind and acrosswind directions. As can been
seen, for low probabilities, significant deviation from the purely elastic
peak responses can be observed. As mentioned in Section 2 this in-
formation is essential for the correct estimation of >P DV dv NC im( , )
(i.e. losses given that the building does not collapse (NC)). Exceedance
probability distributions can also be estimated directly in terms of the
residual deformations and plastic strains. As an example, Fig. 17 reports
the distributions associated with the residual displacements at select
floors under 700-year alongwind loads. Fig. 18, on the other hand, il-
lustrates the exceedance probability distributions associated with
plastic hinge rotations at two select hinges (see Fig. 9) for 1700-year
acrosswind loads. From Fig. 18, it can be observed that for the structure
considered in this case study, 57% of Hinge 263 responses, located at the
21st story, experienced plastic deformations while less than 40% of
Hinge 223 responses experienced plastic deformations. Through the
proposed framework, this kind of detailed information is made avail-
able for all 962 possible plastic hinge locations. Similarly, information
such as that shown in Fig. 17 is available for all the degrees of freedom

Table 2
Inelastic collapse performance for v̄y with an MRI of 700 years.

Wind direction, α °0 °10 °20 °30 °40 °50 °60 °70 °80 °90

Non-shakedown collapse prob. 0.0718 0.0534 0.0040 0.0004 0 0 0 0 0 0.0034
Residual drift collapse prob. 0.0474 0.0194 0.0018 0.0002 0 0 0 0 0 0
Plastic hinge collapse prob. 0.0174 0.0098 0.0010 0 0 0 0 0 0 0
Peak drift collapse prob. 0 0 0 0 0 0 0 0 0 0

Total collapse prob. 0.137 0.0826 0.0068 0.0006 0 0 0 0 0 0.0034

Table 3
Inelastic collapse performance for v̄y with an MRI of 1700 years.

Wind direction, α °0 °10 °20 °30 °40 °50 °60 °70 °80 °90

Non-shakedown collapse prob. 0.9830 0.9914 0.6372 0.0364 0.0130 0.0064 0.0014 0.0004 0.0488 0.3690
Residual drift collapse prob. 0.0090 0.0022 0.0664 0.0130 0.0050 0.0026 0.0008 0 0.0014 0
Plastic hinge collapse prob. 0.0050 0.0028 0.0506 0.0074 0.0028 0.0020 0.0004 0 0.0018 0
Peak drift collapse prob. 0 0 0 0 0 0 0 0 0 0

Total collapse prob. 0.9970 0.9964 0.7542 0.0568 0.0208 0.0110 0.0003 0.0004 0.0520 0.3690

Fig. 14. Variation of the total collapse probability with wind direction.

Fig. 15. Probability of exceedance of the alongwind (MRI=700 years) peak displacement responses at: (a) Floor 1; (b) Floor 20; and (c) Floor 37.
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of the system.
Finally, it should be observed that the proposed approach provided

the solutions discussed above in a matter of hours. If a similar analysis
was carried out by directly integrating the elastoplastic equations of
Section 3 for each of the =N 5000s samples of the simulation, the es-
timated run time would be in the order of weeks.

7. Conclusions

The primary objective of the work outlined in this paper was the
development of an efficient framework for characterizing the inelastic
response of multi-degree-of-freedom wind excited structural systems.
Contrary to direct integration approaches, the proposed framework–-
which combines classic dynamic shakedown solution methods with a
path following strain-based scheme–can estimate the inelastic response
at shakedown for a single windstorm in a matter of seconds. This en-
ables the development of simulation-based methods for estimating the
probabilities associated with inelastic collapse scenarios involving limit
states in terms of plastic deformations and strains occurring at shake-
down. A case study consisting of a 37-story steel framework subject to
wind tunnel driven stochastic wind loads was presented to demonstrate
the potential of the proposed framework. The efficiency and accuracy of
the approach was shown, as was the capability to characterize inelastic
collapse in terms of modern probabilistic performance-based wind en-
gineering frameworks. In addition, by simulating over a suite of
windstorms, the proposed framework is well-suited for identifying cri-
tical windstorms for which full step-by-step non-linear analysis could be
carried out, therefore providing an exhaustive picture of the inelastic
performance of a given wind excited structure.
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