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A B S T R A C T

Externally prestressed reinforced concrete (EPC) is employed in long-span civil infrastructure, and a simplified
dynamic analytical method is required to evaluate the blast-resistant performance of these EPC components. A
theoretical approach is proposed that combines the elasto-viscoplastic rate-sensitive model with an improved
layered-section method to predict the dynamic responses of EPC beams subjected to blast loadings, based on an
equivalent single-degree-of-freedom system. A corresponding calculation program is compiled on the MATLAB
platform. The proposed approach and the compiled program are validated by application to existing static and
blast testing data, as well as the corresponding finite element calculation results. Three key parameters—the
conventional reinforcement ratio ρs, the prestressing reinforcement ratio ρp, and the span-depth ratio l/h—that
significantly affecting the dynamic responses of the EPC beam to explosion are discussed, providing useful design
insights. The analytical results indicate that the determination of the three affecting parameters should be ba-
lanced to achieve a higher blast resistance in designing the EPC beam.

1. Introduction

External prestressing is a technique in which concrete structural
members are prestressed longitudinally using tendons located entirely
outside the concrete section. This technique is widely used to
strengthen or rehabilitate existing concrete structures and in the con-
struction of new concrete structures because of its superiority compared
with other conventional prestressing techniques [1]. The advantages of
external prestressing tendon systems include their easier tendon layout
and placement, better corrosion protection, and significant contribution
to restricting the deflection of long-span structures [2]. Furthermore,
externally prestressed reinforced concrete (EPC) structures can poten-
tially resist explosion, and are therefore used in key civil infrastructure,
particularly in long-span concrete structures.

Because of the ubiquity and importance of the external prestressing
technique, the associated static behaviors have been intensively stu-
died, including in engineering applications. The use of external pre-
stressed tendons increases the load-carrying performance of beam
components, which has been confirmed both theoretically and experi-
mentally [3–7]. The load-bearing capacity is influenced by several
factors, researchers have paid much attention to study the effects of
these factors. Aparicio et al. [8] tested five monolithic and three

segmental EPC beams in bending failure and in combined bending and
shear failure. They observed that reducing the length of the tendon will
increase the ultimate load-bearing capacity. Lou et al. [9] and El-Ariss
[10] studied the flexural behavior of EPC beams, the results showed
that high span-to-depth ratios led to a significant decrease in the ec-
centricity and therefore resulted in reduced rigidity and lower flexural
capacity. The setting of the external tendons has a great influence on
the load-bearing capacity of structures. Ghallab and Beeby [11] found
that the ultimate stress in the external tendon was slightly affected by
the internal bonded steel ratio, and was significantly affected by the
value of the prestress, the number of deviators, the concrete strength,
and the ratio of the distance between deviators to the span. Cao et al.
[12] investigated the design of anchor blocks for external tendons ex-
perimentally, and found that large shear span-depth ratio decreased the
ultimate loads of anchor block specimens. Ghallab [13] presented a
simple method of calculating the increase in stress in external pre-
stressing tendons at the ultimate stage and verified this method in re-
lation to experimental results: the calculation could be applied at any
loading stage and could used without any limitation on the number of
deviators, loading pattern, deviated tendon profile, eccentricity of the
external tendons, or span/depth ratio. In addition, the method could be
used for both steel and/or fiber reinforced polymer tendons. Pisani [14]
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introduced two numerical methods that was able to describe the time
evolution of both the stress distribution and the displacement of a
simply supported EPC beam under long-term loading: one method of-
fered a solution that was theoretically exact and mathematically almost
exact; the other method significantly simplified the computation and
was demonstrated to yield a solution that was sufficiently refined to be
acceptable in common practice.

In addition, shear behaviors and moment redistributions have also
been investigated in extant researches. Qi et al. [15] investigated the
shear behavior and ultimate capacity of nine reinforced concrete (RC)
beams prestressed with external tendons, and the test results showed
that the presence of external prestressing enhanced the shear cracking
load and shear strength by 150% and 56%, respectively. El-Shafiey and
Atta [16] also found external prestressing to be a highly effective
strengthening method that increased the shear load-carrying capacity of
existing concrete beams. Wang et al. [17] presented a model to predict
the shear strength and possible modes of failure of EPC beams and
generate optimal strut-and-tie models for the design of complex EPC
members, and then derived a theoretical formula of the shear strength;
their calculated results agreed well with the experimental data. Song
et al. [18] studied the moment redistribution in EPC continuous curved
beams using three specimens with different curvature radii, and they
demonstrated that the results obtained using the current design codes
yielded conservative predictions of the moment redistribution. Lou
et al. [19] numerically studied the flexural responses of two-span
continuous EPC beams having various linearly-transformed cable pro-
files, and they found that the redistribution of the moment over the
center support was significantly affected by the linear transformation of
the cable line.

Inconsistencies with regard to ductility findings have also been re-
ported in extant studies. Grace and AbdeiSayed [20] examined the re-
sponses of four bridge models with unbonded externally draped carbon
fiber reinforced polymer tendons under static and repeated loads. They
concluded that the use of such tendons improved ductility. An experi-
mental study of EPC beams was conducted by Ghallab [21], and the test
results showed a significant reduction in the ductility of the beams.
Although the research on the static behaviors of EPC structures is
comprehensive, more investigations are needed because of the com-
plications resulting from diverse influencing factors and potential
conflicts among them.

Very limited studies concerning the blast-resistant performance of
prestressed RC structures were found in the open literature, and the
prestressing tendons of these structures are all inside the structural
members. Chen et al. [22] proposed an analytical method to investigate
the dynamic responses of partially prestressed RC beams subjected to
blast loadings, and found that the dynamic resistance improved with
increased initial prestressing force and partial prestressing ratio. Chen
et al. [23] studied the dynamic response of a simply supported pre-
stressed RC beam under blast loadings by using finite element (FE) code
in LS-DYNA, and they found that optimal prestressing levels and higher
concrete compressive strength were necessary to enhance the blast
loading capacities of RC beams. Ngo et al. [24] investigated the blast
resistance of three partially prestressed panels made of ultra-high
strength concrete, and the three panels were able to sustain consider-
able deflections with only minor cracks. Cramsey and Natio [25] tested
a 30-ft partially prestressed concrete panel subjected to different blast
loadings, and found that the panel could rotate 2.7° without failure
under the highest-magnitude blast loading. Cofer et al. [26] created a
FE model of a precast, prestressed concrete girder subjected to near
field blast loading above and below, and verified the model by full-scale
experiments. The primary mode of failure for both scenarios was
dominated by the concrete smash and shear failure, leading to overall
structural instability and collapse.

Park et al. [27] examined the behavior of a bridge strengthened by
externally prestressed tendons under a live-truck load. The results in-
dicated that the strengthening had little effect on the natural frequency

and the shape of the bridge. However, the strengthening reduced the
mid-span deflection by 10–24% and increased the live load carrying
capacity. Chen et al. [28] studied the vibration performance of a long-
span concrete floor during the structure’s daily use and under con-
trolled human activities using a unique external prestressing system,
and compared the structure’s performance with the design guidelines,
concluding that a vibration amplitude threshold was more suitable for
assessing the vibration serviceability than a vibration frequency
threshold. Miyamoto et al. [29] studied the effects of external pre-
stressing on the flexural vibration characteristics of a composite girder
and proposed a formula to calculate the natural frequency. Analytical
and experimental results showed that with a slightly eccentric tendon
arrangement, the natural frequency decreased as the amount of pre-
stressing force increased, whereas the natural frequency increased as
the amount of prestressing force increased with the more eccentric
tendon arrangement. An analytical model of an EPC beam was estab-
lished by Shi et al. [30], in which the prestressing force was identified
by combining the frequency equation and the measured frequencies,
and the prestress force thus identified was in good agreement with the
test results.

As shown in the above literature review, existing investigations on
the external prestressing technique are mainly focusing on the flexural
behaviors and vibration performance under ultimate loads, service
loads, and fatigue loads, and unfortunately, studies on the blast-re-
sistant capacities of EPC structures are very limited.

Prestressed structures were initially considered to have lacked
ductility and not be suitable for use in blast-resistant structures [22].
Additionally, a methodology specific to the design of prestressed
structures subjected to blast loadings has been lacking in existing pro-
tective-design manuals. However, with the recent development in
prestressing technology and research, it has been demonstrated that
partially prestressed RC beams with a reasonable design possess has
good ductility when subjected to blast loadings [22,31]. The prestressed
tendons of the partially prestressed structures are inside, while the
prestressed tendons of the EPC structures are arranged outside the
concrete body. The only connection points between a prestressed
tendon and an EPC structure are located at the deviator and anchorage,
and a possible connection failure may lead to unknown, more severe
damage. Therefore, theoretical and experimental studies of EPC struc-
tures under blast loading is of interest for long-span structural compo-
nents. However, existing theoretical methods for analysis of EPC
structures are not applicable to structures subjected to blast loadings
with extremely short duration. This is because the effect of the strain
rate on material behaviors and the effect of the inertia forces
(mass× acceleration) must be considered during dynamic analysis of
protective structures [32].

Therefore, this study provides a simple and effective method for
predicting the dynamic flexural responses of EPCs subjected to uni-
formly distributed blast loadings by combining a rate-sensitive material
model and an improved layered section method, assuming the de-
formation mode of the EPC beams is flexural only or flexural governed.
The accuracy and applicability of the proposed method were verified by
FE calculation and existing experimental data. Key parameters were
identified, providing useful design insights for engineering applications.

2. Dynamic resistance model

The proposed approach was developed for an EPC beam that has a
pair of draped tendons and a corresponding deviator on the soffit at
mid-span of the beam. A schematic diagram of a simply supported EPC
beam is shown in Fig. 1(a), the beam is subjected to a uniformly dis-
tributed blast loading. The force analysis model of the EPC beam is
shown in Fig. 1(b), where the prestressing force P is treated as external
loads [33], θ is the tendon angle, e is the eccentricity and δ denotes the
deflection at mid-span.

As shown in Fig. 1(b), the external prestressing effect of the steel
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tendon was decomposed to external vertical force =V P δ θ( )sinP at the
end; external axial force =N P δ θ( )cosP ; external bending moment

=M P δ e θ( ) cosP ; and external restoring force =F δ P θ( ) 2 sin at mid-
span.

2.1. Stress-strain relation of concrete and steel

The dynamic responses of RC components under external loads
depends to a large extent on the stress-strain relation of concrete and
steel material. A simplified stress-strain envelope with an unloading-
reloading path for the concrete material, introduced by Izzuddin and
Fang [34], was adopted in this study, as illustrated in Fig. 2. There are
three discrete regions in the monotonic concrete stress-strain relations:
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fc and ε0 are the compressive strength and corresponding critical strain
to peak stress, respectively; ε c40 and εu represent the strain corre-
sponding to the residual strength of f0.4 c and the ultimate strain, re-
spectively; and ft is the tensile strength. The computational analysis of
RC structures subjected to dynamic loadings requires stress–strain
models to reproduce the dynamic behaviors of the structure. It is well
known that ‘under cyclic or dynamic loads, concrete may experience
complex loading processes involving not only full unloading–reloading
cycles in compression or tension, but also partial unloading and re-
loading processes and mixed cycles involving compression and tension
stresses and cracking’ [35]. The blast loading can be considered as a

monolithic load, however, it usually induces forced vibration and free
vibration of RC structures depending on the loading duration and in-
herent frequency. The unloading-reloading branches are defined to si-
mulate the vibration behaviors of concrete under or after blast loadings.
Therefore, simplified unloading-reloading curves are generally adopted
for their simplicity and computational efficiency in providing theore-
tical analysis of concrete structures, which is shown in Fig. 2.

The stress-strain relation of conventional steel material is con-
sidered as multi-linear in both tension and compression. The long-
itudinal stirrup steel bar and prestressed steel tendon are typically
modeled as linear elastic, linear strain-hardening materials in this
study. Therefore, the following stress-strain relation, which was in-
troduced by [34], was adopted to describe the monotonic envelope of
the conventional steel bar and prestressed steel tendon, as shown in
Eqs. (2) and (3), respectively. The unloading-reloading curves of the
steel reinforcement are also defined with the similar reason to concrete,
as shown in Fig. 3. The unloading and reloading stiffness was assumed
to be the same as the initial stiffness for simplicity and computational
efficiency [22].

For conventional steel bars,
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For the prestressed steel tendon,
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where σ σ( )s p and ε are the stress and strain of a conventional steel bar
(prestressed steel tendon), respectively; f f( )s y and ε ε( )s y are the yield
stress and corresponding yield strain of a conventional steel bar (pre-
stressed steel tendon), respectively; f f( )u pu and ε ε( )u pu are the ultimate
stress and corresponding ultimate strain of a conventional steel bar
(prestressed steel tendon), respectively; and E E( )s p and E E( )sp pu are the
elastic modulus and corresponding hardening modulus of a conven-
tional steel bar (prestressed steel tendon), respectively.

2.2. Rate-sensitive material model

Concrete and steel are both strain-rate dependent materials, and
high strain rate tend to enhance their respective strengths. The quasi-
static strain rate generally lies in the range of 10−6–10−4 s−1, however,
the strain rate induced by the blast loading in the concrete structures
can be as high as 101–103 s−1. Consequently, effects of the strain rate
on material behavior must be considered in the investigation of en-
gineering structures subjected to severe dynamic loadings, including
blast loadings and impact loadings [36,37]. If no strain rate analyses are
to be performed, it is recommended that the dynamic yield strength of
steel and concrete be 10% and 20% greater, respectively, compared to
the static yield strength [38], these are correspond to average increases
in yield strength. In fact, the local strain rate along the beam is different

Fig. 1. Analytical model of a simply supported EPC beam. l: span length, P(δ):
prestressing force, and F(δ): vertical restoring force. (b) Force analysis model.

Fig. 2. Stress-strain relation with unloading-reloading path of concrete (the ordinate representing tensile strength of concrete has been enlarged for clarity).
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at different locations and is a function of time. However, constant en-
hancement factors for steel and concrete are not sufficiently accurate
during dynamic-response analysis of EPC beams subjected to blast
loadings. An improved elasto-viscoplastic rate-sensitive model has,
therefore, been employed to accurately account for the strain-rate effect
on steel and concrete materials. A detailed description of the said model
can be found in [34] and [39].

Among the current mathematical models used in structural analysis,
the elasto-viscoplastic rate-sensitive model proposed by Malvern [40]
and Perzyna [41] has been widely applied to consider the effects of the
strain rate, which has been used and described in detail in [22]. Ac-
cording to Perzyna, the response of an elasto-viscoplastic material
comprises an elastic component, which develops instantaneously, and a
time-dependent viscoplastic component, which is related to the overs-
tress. As presented in Eq. (4), the parameter X represents the overstress,
namely, the difference between the dynamic stress and the corre-
sponding static stress:

= −X σ εg( ) (4)

where σ is the dynamic stress, and εg( ) represents the static stress in the
plastic range. Stresses generated under quasi-static loading and blast
loading correspond to static and dynamic stresses, respectively.

The following three-parameter relationship between the overstress
X and strain-rate ε ̇ was derived [34] and employed in this study:
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As presented in Eq. (6), the function f X( )is the strain-rate function,

and f X( )can be expressed as
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where ∗ε ̇ , S, and N are the model parameters, which can be de-
termined by tests of constant strain rate. The model parameters provide
more flexibility in fitting experimental data over a wider range of strain
rate, and thus the model can be applied to concrete, steel, and other
materials. The parameters used in the rate-sensitive model are listed in
Section 4.2.1.

2.3. Model of resistance to external dynamic load

This section presents a resistance model for analyzing the dynamic
responses of EPC beams under blast loadings. First, the relationship
between the mid-span deflection δ and section curvature φ is obtained
by the plastic hinge assumption. Second, the improved layered section
method is used to calculate the bending moment M corresponding to
different curvatures φ of the beam section, and then the relationship
between the bending moment M and curvature φ is obtained. Third, the
dynamic resistance R of the beam is calculated based on the bending
moment M considering strain-rate effects. The relationship between the
mid-span deflection δ and the strain of the external prestressing tendons
εp can be calculated through their geometric relations. Fig. 4 sum-
marizes these calculation steps, which are detailed in the following sub-
sections.

The proposed dynamic resistance model is based on the following
assumptions:

Fig. 3. Stress-strain curve with unloading-reloading path of steel bar and tendon. (a) Conventional steel bar. (b) Prestressed steel tendon.

Fig. 4. Sketch of the dynamic resistance model.
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(1) Boundary slip between concrete and steel bars is not considered,
and the section is assumed to remain planar after bending, modeled
as a linear strain distribution.

(2) Only flexural deformation occurs during the loading process; shear
deformation and shear failure are not considered in this study,
because the SDOF approach has limitation that requires applicable
shape function, such as the proposed approach is obviously not
suitable to the case of shear failure.

(3) The portions of the tendons between the ends and the deviator at
the mid-span are straight.

(4) The difference in the stress between the anchorage and prestressing
ends due to possible friction at the deviator is negligible for the
draped external tendon profile [2].

2.3.1. M-φ relation for the mid-span cross-section with external prestressing
load

The relation between the section moment M and curvature φ of a
simply supported EPC beam can be calculated by improving the layered
section method, where the prestressing force of the tendon could be
treated as external load, as presented in Fig. 1(b). The layered section
method avoids numerical oscillations before section yielding and
therefore enables efficient analysis of RC structures [42].

The strain and force distributions across a typical rectangular sec-
tion of EPC beam are shown in Fig. 5, where the cross-section is divided
into n layers, and layers n+1 and n+2 represent the conventional
compressive steel bars and conventional tensile bars, respectively.

Then, the following steps can be taken to determine the M-φ re-
lationship:

(1) Input the dimensions of the rectangular section, the eccentricity,
the initial curvature φ, and the initial strain at mid-depth ε̄ , which are
assumed to be 0 at the first step, i.e., =φ 0 and =ε̄ 0.

(2) Calculate the strain of each layer εi based on the plane section
assumption, and then determine the material stress according to the
stress-strain curves of concrete and steel = −ε ε z φ: ¯i i , where

= − + +−zi
h h i

n
h
n2

( 1)
2 is the distance from the center of the ith layer to

the middle axis.
(3) Change the value of ε̄ until horizontal force equilibrium is

reached.

∑ + + + =N N N N N( )ci ti si si
'

(7)

where Nci and Nti are the total compressive and tensile force of concrete
in the ith layer, respectively; Nsi and Nsi

' are the total compressive and
tensile force of the steel bars, respectively; and N is the external axial
force, which is a function of P δ( ), corresponding to φ (P δ( ), as de-
scribed in detail in Section 2.3.3).

(4) Output the cross-sectional moment M and corresponding cur-
vature φ after equilibrium reached:

∑= + + +M M M M M( )ci ti si si
'

(8)

where Mci and Mti are the moment of the concrete in the ith layer to

the middle axis; Msi
' and Msi are the moment of the steel bars in the ith

layer to the middle axis; and M is the external moment applied on the
cross-section.

(5) Increase the curvature by steps = ±φ φ φΔ and repeat steps (2)
through (4). Store the results of M and φ at each step, where ‘–’ re-
presents a curvature that is increasingly negative.

The prescribed method of adjusting the strain ε̄ at mid-depth of the
cross-section is very critical. An extrapolation-based method was first
adopted in this study to determine an appropriate value of ε̄ . However,
the extrapolation process has a tendency fall into an “endless loop”
once section yielding occurs. In this study, therefore, the extrapolation
step was replaced by interpolation during the stage-softening stage,
which would be obviously much easier to convergence, as reported by
Pan et al. [43]. Detailed information regarding the layered-section
method can be found in [43], which includes a flowchart for calculating
the sectional moment-curvature curve. The difference between their
procedure and the one followed in this study is that the influence of
prestressing forces within external tendons is considered in the pro-
posed study while that of temperature is not.

Computation of the M-φ relationship of the EPC beam is actually
divided into two stages. The first stage applies the initial decomposed
axial force and initial bending moment as external loads on the section
of the beam, and obtains negative M0 and φ0 of the section in the initial
state by decreasing φ, as shown in Fig. 1(b), which is caused by the
external prestressing force. The second stage increases the curvature
incrementally based on the stress state in the first period to obtain the
M-φ relation of the cross-section.

2.3.2. Computation of the δ-εu-εb relation for the plastic hinge
A constitutive equation of the employed rate-sensitive material

model with three parameters provides the relationship between overs-
tress and strain rate. Hence, establishing the relation between the mid-
span deflection δ and material strain is critical to establish the proposed
model of resistance to external dynamic load, which depends on the
rate-sensitive effects.

A large number of experimental results have shown that a plastic
hinge appears in RC beams with large bending moments before the
beams fail. There is no significant deformation or damage to the other
portions of the beams, except in the plastic section. A similar phe-
nomenon has been observed in experiments on EPC beams [2,44,45].
For the EPC beam with a deviator at the mid-span, the vertical force
F δ( ) provided by the deviator makes the maximum compressive stress
of the concrete near the deviator more evenly distributed along the
length of the beam, such that the length of the plastic hinge area is
longer than that of a beams with no deviator [46,47].

Therefore, both sides of the plastic hinge can be assumed to be rigid
after the plastic hinge forms in the simply supported EPC beam with a
mid-span deviator. The beam can then be divided into three sections, as
shown in Fig. 6.

Assuming that the length of the upper surface of the plastic hinge is
s2 u and the length of the bottom surface is s2 b, the compressive strain of
the concrete material at the upper surface is = −εu

s Z
Z

u and the tension

strain of the bottom surface is = −εb
s Z

Z
b , where 2Z is the length of the

plastic hinge. If the relations between δ and both εu and εb can be ob-
tained, the relations between the mid-span deflection and the cross-
sectional strains of different layers can also be established by linear -
interpolation.

Investigators have not reached a consensus regarding an appro-
priate expression for the length of an equivalent plastic hinge because
of the different important parameters that can be considered and the
scattered test results, although extensive research has been performed
on this topic [48,49]. The length of the plastic hinge can be estimated
by the following modified expression to account for the effect of the
prestressing force [50]:

Fig. 5. Cross-section analysis.
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= + −Z h a β1
2

[0.5 0.05 (1 )]p0 (9)

where h0 represents the effective depth of the beam; =βp
A σ
f bh

p pe

c 0
is the

index of the ratio of prestressing reinforcement; Ap is the area of the
prestressing steel tendons; σpe is the initial stress of the prestressing
tendons; b is the overall width of the cross-section; and a denotes the
length of shear span.

The theoretical height of the compression zone (equivalent rectan-
gular stress block) of the beam section is assumed to bexc. According to
the concrete structure design principle [51], the relative height of the
compression zone of the beam section x can be described as follows:
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where As and fy are the area and yield stress of sections of conventional

tensile steel bars, respectively; As
' and f y

' are the area and yield stress of
sections of conventional compressive steel bars, respectively; and α1 is
the ratio of the stress value of the equivalent rectangular stress block to
the compressive strength fc of the concrete. The geometric relationship
among the related parameters can then be described by the following
equations, according to Fig. 6.
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The relations between δ and ε1 and ε2 are established by combining
Eqs. (10) and (11) as follows:
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The definitions of certain parameters are shown in Fig. 6. The strain
of the nth layerεn of the mid-span section can be obtained via the linear
interpolation method according to the plane section assumption.

2.3.3. Computation of the εp-δ relation for the external prestressing tendon
Many equations have been proposed to express the stress in ex-

ternally prestressed tendons. Unfortunately, despite the extensive the-
oretical and experimental studies that have investigated the stress of

external tendons, the proposed expressions are typically complex and
differ substantially with regard to how the main parameters are con-
sidered [48]. In this section, the relation between the strain of the ex-
ternal tendon εp and the mid-span deflection δ is established according
to the geometric deformation of a simply supported EPC beam, as
shown in Fig. 7.

The lengths of the tendons between the deviators and supports is
assumed to be s1 after the tendons are prestressed, whereas the initial
length is s0. H is the vertical distance between the lower surface of the
deviator and the anchor point of the external tendon at the end of the
beam. Thus, the strain of the tendons can be calculated as

= − =
+ −( )

ε s s
s

H s

s

l

0
1 0

0

2

2 2
0

0 (13)

The deviators produce a downward deflection δ after the applica-
tion of external load, and the lengths of the tendons s1 become s2; then,

= − =
+ + −( )

ε s s
s

H δ s

s

( )
p

l

2 0

0

2

2 2
0

0 (14)

The relationship between the strain of the tendons εp and the mid-
span deflection δ can be described by combining Eqs. (13) and (14) as
follows:

= + +
+

+ −ε l H δ
l H

ε4( )
4

( 1) 1p
2 2

2 2 0 (15)

Here, the deflection δ is positive when it is downward and negative
when it is upward. The force of the prestressing tendon P can then be
obtained according to the beam deflection, that is P δ( ).

2.3.4. Resistance model considering strain-rate effects
The dynamic equivalent resistance to blast loadings of the simply

supported EPC beam could be calculated using the derived equations
presented above in conjunction with the relation between the deflection
and strain of materials, as follows:

= +R δ ε
M φ ε

Bl
F δ ε

Bl
( , )̇

( , )̇
/8

( , ̇ )
/4

p
2 (16)

where M depends on the curvature φ and strain rate ε ̇ of concrete and
conventional steel bars, and B is the width of the beam. The dynamic
resistance R δ ε( , )̇ is the ability of beams to resist bending deformation
under blast loadings, which can be calculated with the uniform static
load corresponding to the deformation δ , and taking into account the
strain-rate effects ε ̇ simultaneously [32].

In this case, the dynamic resistance R δ ε( , )̇ actually includes the
contribution of a vertical restoring force F δ ε( , ̇ )p , where the direction is
opposite to the direction of the external blast loading. Actually, F δ ε( , ̇ )p
is a nonlinear function with respect to the mid-span deflection δ and the
strain rate of the prestressing steel tendon εṗ . However, the strain-rate
effect of the external prestressing tendon is not significant because of
the low elastic modulus, and it was therefore neglected in this analysis.

Ays and Eys are assumed to be the area and modulus of elasticity of
the prestressing tendons, respectively. After the tendons are pre-
stressed, the initial strain of the externally prestressed tendons is

=εy
P

E A0 ys ys
0 . Taking the equilibrium position of the initial anti-deflection

Fig. 6. Deformation diagram of a simply supported EPC beam. (a) Without
deformation. (b) With deformation.

Fig. 7. Geometric deformation relationship.
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of the beam as the origin, when the downward mid-span displacement δ
is generated, according to the developed Eq. (15), the concentrated
vertical restoring force can be described as

= = + + +
+

−

∙ +
+ +

F δ P δ θ E A ε l H δ
l H

H δ
l H δ

( ) 2 ( )sin 2 [( 1) 4( )
4

1]

2( )
4( )

ys ys y0
2 2

2 2

2 2 (17)

3. Theoretical approach to dynamic responses of EPC beam

3.1. Equation of motion under blast loading

The purpose of the dynamic analysis is to obtain the time-dependent
dynamic deflection and stress of the structures, which serves as the
basis for the structural design. The equivalent single-degree-of freedom
(SDOF) method enables one to convert typical continuous structural
systems to SDOF systems and derive their dynamic response parameters
[32], which is sufficiently precise [52,53] and is typically used for
practical analysis of structures subjected to blast loadings. This ap-
proach is taken here because it is precise dynamic analysis is difficult
for distributed mass systems, which have an infinite number of degrees
of freedom. The equation of motion can be written as follows:

+ =M δ R δ ε P t¨ ( , )̇ ( )e e e (18)

where Me denotes the equivalent mass, =M K Me M , KM denotes
equivalent mass factor, which equals 0.5 in the elastic phase and 0.33 in
the plastic phase [32], M refers to the beam mass; P t( )e refers to the
equivalent external dynamic load, =P t K P t l( ) ( )e L , KL denotes the
equivalent load factor, which equals 0.64 in the elastic phase and 0.5 in
the plastic phase, P t( ) refers to the uniformly distributed blast load;
R δ ε( , )̇e denotes the equivalent dynamic resistance,

=R δ ε K R δ ε( , )̇ ( , )̇e R , KR represents the equivalent resistance factor,
which equals KL, R δ ε( , )̇ denotes the dynamic resistance. No damping
effect has been considered in this study, since it demonstrates no sig-
nificant effect on the maximum response of structures subjected to blast
loadings, and also that it is generally safe to ignore the effect of
damping in protective structures [32,38,54]. The explicit algorithm is
employed to solve transient problems under blast loadings, where the
convergence is conditional and the calculation time step is very small.

3.2. Solutions to equation of motion

The nonlinear equation of motion (Eq. (18)) is solved numerically
using the explicit predictor-corrector Newmark algorithm [55,56]. This
algorithm establishes predicted values for the displacement, velocity,
and acceleration in each time step and then adjusts the predicted values
using the corresponding R-δ curve. This method is highly efficient for
blast analysis because the equilibrium iteration is avoided in each time
step. The detailed steps for solving the algorithm are provided in Refs.
[43] and [22].

However, because of the presence of a nonlinear restoring force
F δ( ), the calculation of the residual stress in the Newmark algorithm
must be corrected as follows.

(a). The estimated value of the reaction force of the external tendons
and the external moment are calculated by the estimated value of
the deflection δ and then multiplied by the equivalent coefficient of
the load to obtain the estimated value of the equivalent restoring
force F δ( )e .

(b). When the residual stress Ψ is calculated, F δ( )e is added to the
calculation formula, yielding

̃ ̃= − −+ + +f F δ p d vΨ ( ) ( , )n e n n1 1 1 (19)

Ψ is divided by the stiffness, and the deflection correction value is

obtained to determine the real deflection value of the step.

(c). From the real deflection value, obtaining the true restoring force
F δ( )e yields the real dynamic resistance.

The computational steps are detailed as follows.

(1) Obtain the initial parameters, including the mid-span deflection
δ0, curvature φ0, and strain at the middle axis of the cross-section ε̄
based on the layered section method.

(2) Calculate the predictors of displacement, velocity, and accelera-
tion at step n, and then determine the predictor of the cross-sec-
tion curvature using the δ-εu-εb relation.

(3) According to the predictor of deflection δ and the layered section
method, determine the predictors of the restoring force F δ( ) and
the axial compressive force, which is perpendicular to the cross-
section.

(4) Combine the rate-sensitive material model and improved layered
section method to obtain the predictors of the mid-span moment
and dynamic resistance from the predictors of the cross-section
curvature and axial compressive force.

(5) Calculate the residual stress from Eq. (19), and then obtain the
displacement correction by dividing the residual stress by the
equivalent stiffness.

(6) Add the estimated displacement and the correction value to obtain
the true value of the deflection at step n.

(7) Calculate the true value of curvature and restoring force and axial
compressive force from the true value of deflection.

(8) Calculate the true value of the sectional moment and the dynamic
resistance from the real value of the axial compressive force and
the curvature according to the layered section method and rate-
sensitive material model.

(9) Calculate the real value of velocity and acceleration at step n.
(10) Repeat steps (2)–(9) until the end of the loop is reached or the EPC

beam is broken.

4. Verification of the theoretical approach

To verify the accuracy of the proposed theoretical approach, we
selected two EPC beams subjected to static loads by Ni et al. [57], and
two partially prestressed beams subjected to blast loadings by Cheng
et al. [31], as well as numerical simulations of the EPC beams tested in
[57] under different blast loadings, conducted in the FE software
ABAQUS.

4.1. Verification of the approach for static loads

When the proposed dynamic theoretical approach of the EPC beam
is applied to a static analysis, the proposed approach can be verified by
existing static load test data without considering the effects of strain
rate on the material behavior. This section presents the experimental
and numerical analyses of the tested beam specimens PB-3 and PB-4
[57]. The detailed configuration of beam PB-3 is shown in Fig. 8.

The four-point multistage bending loading was adopted during the
experiment, and the interval between each loading stage measured
approximately 5min. The corresponding load position is depicted in
Fig. 8. The load during each stage measured 15 kN prior to occurrence
of cracks within the beam, and the same was reduced to 10 kN post
cracking. The loading was stopped when concrete within in the com-
pression zone of the test beam was crushed or the loading system
reading no longer demonstrated a rise. At this time, plastic hinges ap-
peared at the beam midspan, and the bearing capacity of the beam was
lost.

An FE model of the PB-3 beam was established using the ABAQUS
package in accordance with the assumptions listed in section 2.3 by
employing 4-node plane stress elements CPS4R for concrete and two-
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dimensional (2-D) truss elements T2S2 for tendons and steel bars
[37,58]. An element size of 5×5 cm was used in accordance with a
mesh sensitivity analysis as well as recommendations from Mercan
et al. [59]. Given the symmetry of the PB-3 beam, only one-half of the
beam was modelled, as depicted in Fig. 9. Simple support conditions
simulating hinge and roller supports were applied to the ends of the
beam, and symmetry boundary was applied at the mid-span. The pre-
stressing tendon was embedded into the deviator and anchorage. The
interactions between prestressing tendon and deviator, between pre-
stressing tendon and anchorage were modeled by tie constraint in
ABAQUS, which considers a node on one surface to be tied to a cor-
responding node located on the contact surface. The two tied nodes
demonstrated identical displacements. The said condition assumes
slippage between the two contact surfaces to be negligible. Conven-
tional steel bars were embedded within the beam whilst assuming no
slip between steel bars and surrounding concrete.

The damaged plasticity concrete model, which represents a con-
tinuum, plasticity-based, damage model in ABAQUS and can be defined
to be sensitive to the strain rate under dynamic loading, was considered
in this study to be representative of concrete. The steel reinforcement
was simulated using the Mises model. Material properties of the de-
viator and anchorage were considered identical to those of conven-
tional steel bars.

A two-step loading pattern was considered during FE analysis. The
first step only accounts for response of the beam when subjected to an
effective prestressed force. The second step involves application of ac-
tual loads on the beam. The equivalent load method and cooling
method are two kinds of prestressing simulation methods [60]. The
equivalent load method involves prestress conversion into an equiva-
lent load applied to the structure. The method, however, is based on
simplified assumptions, which cannot simulate the spatial prestressed
effect on structures. Cooling method is relatively simple and can si-
mulate stress losses, which can be used to simulate prestressing. Con-
sidering nonlinear geometric effects, the analysis step was based on the
use of the “static general” algorithm.

The ultimate strength of the prestressing steel tendons is
= ×f 1.08 10u

3 MPa, and the concrete tensile and compressive strength
are =f 3.0t MPa and =f 40.77c MPa, respectively, with a modulus of
elasticity of = ×E 3.25 10c

4 MPa. The yield stresses of Φ12 and Φ16
conventional steel bars are 340MPa and 380MPa, respectively. In test
beam PB-4, the conventional tensile steel bars are 2Φ16 and 2Φ12 with
a corresponding reinforcement area of 628mm2, which is different
from the 2Φ16 steel bars with a corresponding reinforcement area of
402mm2 in beam PB-3. In addition, in PB-4, the initial stress of the
prestressing tendons is 667MPa, which is different from the initial
stress of 797MPa in PB-3. The other parameters are the same as those

Fig. 8. Configuration of test beam PB-3.

Concrete

Mirrored-symmetric boundary

Conventional reinforcing bars

External Tendons Deviator

Anchorage

Fig. 9. FE model for PB-3 beam.

Fig. 10. Moment-deflection curves at mid-span of the test EPC teams.
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for both beams.
Fig. 10 shows the mid-span moment-deflection curves of the PB-3

and PB-4 test beams predicted by the proposed dynamic approach and
numerical model, illustrating general agreement between the proposed
dynamic approach and the experimental and FE data. However, the FE
result yields a slightly larger moment after reaching the non-elastic
period, and maximum mid-span deflections are smaller, the FE result
are considered to be “harder”, that is, it appeared as if the bending
stiffness of the FE beam had increased. Occurrence of this phenomenon
could be possibly attributed to the Poisson ratio of the damaged plas-
ticity model for concrete within ABAQUS, which tends to remain con-
stant during calculations [61]. However, during actual loading, the
Poisson ratio of a material is not fixed. Especially when the strain is
large, the Poisson ratio increases with the increase of the strain [62],
consequently, FE results have been referred to as being “harder”.

4.2. Verification of the approach for blast loadings

4.2.1. Based on test data
No experimental study of EPC beams subjected to blast loadings was

found in the existing literature. In order to verify the accuracy of the
proposed dynamic approach, the test data of two blast-loaded partially
prestressed RC beams PC-1 and PC-2 [31] were chosen for analysis, as
shown in Figs. 11 and 12. The proposed approach was also degenerated
to calculate responses of partially prestressed RC beams subjected to
blast loadings. Owing to changes in the arrangement of prestressed
tendons, the process to determine the relationship between the sec-
tional moment and curvature was modified when the approach was
degenerated with other contents remaining unchanged. Details con-
cerning changes made within process can be found in [22].

The lengths and overall depths of the test beams were 2.6m and
0.16m, respectively, and the widths of PC-1 and PC-2 were 0.22m and
0.24m, respectively. The other parameters of the test beams PC-1 and
PC-2 are listed in Table 1. As depicted in Fig. 11, ends of the two test
beams were placed on two walls measuring 0.2 m thick with the inner
distance of the walls measuring 2.4 m. Upper surfaces of the beams
were covered with a 0.3m thick soil layer, and a detonating cord was
evenly placed above the soil at a distance of 0.45m away from the soil
surface. A soil-pressure transducer and a strain gauge and a displace-
ment transducer were, respectively, installed on the upper and lower
surfaces of the beams at an intermediate position, as shown in Fig. 12.
Experimental measurements demonstrated the blast load on the beam
surface to be uniform. Detailed description of the tests could be found in
[31] and [22]. The damage caused to the beams is depicted in Fig. 12
with plastic hinges appearing at the midspan. Moreover, the two beams
have been renamed to facilitate ease of description.

The concrete’s elastic modulus and cube compressive strength
measured at an age of 28 days were 21.3 GPa and 32.4MPa, respec-
tively. The elastic modulus and corresponding hardening modulus of a
conventional steel bar are =E 210 GPas and =E 18.6 GPasp , respec-
tively. Those for a prestressed steel tendon are =E 199 GPap and

=E 82.4 GPapu , respectively. The yield stress and corresponding yield

strain of a conventional steel bar are =f 0.235 GPas and
= × −ε 1.12 10s

3, respectively. Those for a prestressed steel tendon are
=f 1.49 GPay and = × −ε 7.5 10y

3. The ultimate stress and corre-
sponding ultimate strain of the prestressed steel tendon are

=f 1.86 GPapu and = × −ε 11.9 10pu
3, respectively. The initial prestress

was 1116MPa. The three parameters used in the rate-sensitive model
are listed in Table 2.

The simplified blast overpressure curve applied to the beams in the
test is shown in Fig. 13, wherein the peak pressure equaled 0.38MPa.
The approximate curve was obtained by simplifying the actual pressure
curve and preserving the the peak pressure, total impulse, and time
characteristics.

Fig. 14 compares the displacement time histories at mid-span be-
tween the predicted results and the test data, and an excellent agree-
ment can be observed here as well. The deflection of PC-2 increased
rapidly and the beam was destroyed before the end of the blast loading,
which is attributed to the fact that the prestressing tendon ratio of PC-1
was half that of PC-2.

4.2.2. Based on numerical simulation
Based on the FE model established in section 4.1, the blast loading

was incorporated into the ABAQUS using the explicit algorithm.
However, during the process of simulating prestresses, the rate of
cooling must be slow, since rapid cooling tends to form a dynamic load
acting on the beam, which in turn, causes beam vibrations and affects
calculation results [63,64].

The parameters of the EPC beams for the numerical simulation
under blast loadings were the same as those of PB-3. The rising time (tr)
and duration (td) of the equivalent triangular loading pulse on PB-3
were 2ms and 30ms, respectively, and the peak values of the triangular
pulses were 0.1, 0.2, and 0.3MPa, respectively, as shown in Fig. 15.

Fig. 16 shows the displacement time histories at mid-span of the test
beam subjected to blast loadings predicted by the proposed approach
and numerical model, which can be seen to agree well with one an-
other. The shapes of the deflection-time curves and maximum mid-span
deflections are similar to each other. The maximum mid-span deflec-
tions and corresponding times increase with the peak overpressure.
However, compared to results obtained using the proposed approach,
the observed drop in curves representing simulation results is rather
steep. This implies that the beam reaches the peak quickly and re-
bounds faster. The simulation result, therefore, is “harder”, and with
increase in blast load, this phenomenon become all-the-more obvious.
Probable reason for this phenomenon is that the Poisson ratio is as-
sumed constant during numerical calculations, similar to the case
mentioned in Section 4.1. Another reason is that there still is limited
error on evaluating the damage accumulation by the damaged plasticity
model for concrete in ABAQUS.

Fig. 17 shows the maximum deformation of the EPC beam under
blast loadings with different peak overpressures; the shape of the beam
is mostly straight, except for a certain area across the mid-span. This
result also supports the assumption that the plastic deformation of the
beam is mainly concentrated in a certain range of span, referred to as

Fig. 11. Configuration of PC-1 test beam [31].
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the plastic hinge in Section 2.3.2.

5. Parameter discussion

Blast-resistant properties of the beam structure actually depend on
the resistance function, including the maximum resistance and plastic
deformation. This section discusses the influence of three parameters,
the conventional reinforcement ratio ρs, the prestressing reinforcement
ratio ρp, and the span-depth ratio l/h, on the proposed theoretical ap-
proach’s predictions of the dynamic response of the EPC beam subjected
to blast loadings, using the EPC beam PB-3 as an example. The rate-
sensitive parameters used are same as those listed in Table 2. The peak
pressure, rising time (tr), and duration (td) of the triangular blast
loading applied to PB-3 are 0.4 MPa, 2ms, and 30ms, respectively.

Obviously, the derivation of the proposed theoretical approach is
based on the assumption that the response of the beam is flexural only

or flexural governed. In addition, if the rising time and duration of the
blast loading is longer than the vibration period, the beam is prone to
bending damage.

5.1. Conventional reinforcement ratio (ρs)

The displacement time histories at mid-span of the EPC beam with
different conventional reinforcement ratios (ρs = 0–2.5%) are shown in
Fig. 18(a). The EPC beam is symmetrically reinforced by conventional

Fig. 12. Failure modes of test specimens [31]. (a) upper surface (b) lower surface.

Table 1
Parameters of test beams.

Specimen Conventional tensile steel Prestressing steel External tendon ratio

PC-1 2Φ14 1Φj12.7 0.35%
PC-2 2Φ12+2Φ10 1Φj9.53 0.175%

Table 2
Parameters of the rate-sensitive model.

Material S (MPa) N ∗ε ̇ (/s)

Steel 6 1 0.00005
Concrete Compression 2.993 2 0.000666

tension 0.462 2 0.00015

Fig. 13. Simplified blast loading on the test beams.

Fig. 14. Mid-span displacement time histories.

Fig. 15. Simplified triangular blast loading on the test beams.
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reinforcing bars, and the other parameters are the same as those for PB-
3. Fig. 18(a) illustrates that the maximum deflection and the time to
reach the maximum deflection decrease with increasing ρs. In the case
of ρs = 0%, the deflection of the beam increases rapidly, and the beam
is destroyed before the end of the blast loading. When ρs reaches 2%,
the effect of the increase in the reinforcement ratio on the decrease in
the maximum deflection is no longer obvious. The bending rigidity of
the beam increases with increasing ρs, which leads to an increase in the
vibration frequency of the beam. This result is supported by the dis-
placement time histories at mid-span: when ρs reaches 2.5%, the time
history exhibits two distinct peaks over the duration of the load.

Fig. 18(b) shows the predicted dynamic resistance time histories of
the EPC beam. As shown in this Fig., the maximum dynamic resistance
increases with increasing ρs. When ρs reaches 2.5%, the curve shows
two peaks over the duration of the load, which is similar to the mid-
span displacement time curve of ρs = 2.5%.

Fig. 18(c) shows the curves of dynamic resistance versus deflection,
each of which can be divided into four segments: OA, AB, BC, and CO.
The dynamic resistance increases rapidly with increasing deflection in
segment OA, which is a straight line. In this segment, the beam is still in
the elastic deformation stage. However, the dynamic resistance remains
unchanged when the deflection increases rapidly in segment AB, which
has a similar shape to that of the static load-deflection curve of the
externally prestressed specimen, which had a single pair of draped
tendons and was tested by Harajli [2]. In this segment, the beam is in

the plastic deformation stage. Then, a rebound action appears at in-
flexion B. Fig. 18(c) illustrates that the size of the elastic deformation is
nearly identical to the reduction of ρs, whereas the size of the plastic
deformation increases significantly. In the case of ρs = 0%, the beam is
destroyed rapidly. When ρs reaches 2.5%, the size of the plastic de-
formation is approximately zero, which is uneconomical and not ex-
pected, particularly in protective structures, although a high value of ρs
might significantly enhance the dynamic resistance. Therefore, the
appropriate configuration of the conventional reinforcement can

Fig. 16. Mid-span displacement time histories for PB-3.

Fig. 17. Maximum deformation of PB-3.

Fig. 18. Influence of conventional reinforcement ratio (ρs). (a) Influence of ρs
on the δ-t histories. (b) Influence of ρs on the R-t histories. (c) Influence of ρs on
the R-δ histories.
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maximize the blast-resistant properties of the EPC beam after the
maximum permissible deflection is confirmed.

5.2. Prestressing reinforcement ratio (ρp)

The mid-span displacement time curves with different prestressing

reinforcement ratios (ρp= 0–1.48%) are shown in Fig. 19(a), with the
other parameters being the same as those for PB-3 with a ρp of 1.02%.
Fig. 19(a) illustrates that the maximum deflection and the time required
to reach the maximum deflection decrease with increasing ρp, which is
same as the influence of ρp. The beam will be destroyed within a short
period with no prestressing reinforcement, and the maximum deflection
reaches nearly 300mm. When ρp reaches 1.11%, increases in ρp have
only a slight effect on the maximum deflection. Fig. 19(b) illustrates
that the dynamic resistance increases with increasing ρp, although the
maximum dynamic resistance of the beam remains largely unchanged
after ρp reaches 1.11%.

Fig. 19(c) shows the dynamic resistance-deflection curves, each of
which can be divided into three segments: OA, AB, and BC. The general
properties of segments OA and OB are similar to those in Fig. 18(c). In
the case of ρp= 0%, the beam is destroyed and can no longer bear a
load because of the extent of plastic deformation, from which the beam
cannot recover. Fig. 19(c) also illustrates that the maximum dynamic
resistance increases with increasing ρp; however, when ρp reaches
0.74%, the effect of increases in ρp on the increase in the maximum
dynamic resistance is no longer obvious, although the maximum de-
flection decreases. Therefore, the dynamic resistance of PB-3
(ρp= 1.02%) cannot increase efficiently unless the structural para-
meters of the beam are changed, such as by increasing the conventional
reinforcement ratio.

5.3. Span-depth ratio (l/h)

The mid-span displacement time histories and dynamic resistance
time histories with different span-depth ratios (l/h= 6.67–16.7) are
shown in Fig. 20(a) and (b), respectively, with the other parameters
being the same as for PB-3, which has an l/h of 15. Fig. 20(a) and (b)
illustrate that higher values of l/h are associated with more deformation
and a lower dynamic resistance, which is similar to the trend in the
static case. The beam is essentially in the elastic deformation stage
when l/h is 10.0 and 6.67, and thus, the blast-resistant properties of the
test beam cannot be used sufficiently, as is also illustrated in Fig. 20(c).
In addition, the greater the l/h, the smaller the td/T, the vibration
period of the beam with l/h of 6.67 is smaller than the beam with l/h of
10, as shown in Fig. 20(b). More information about the vibration per-
formance of EPC beams could be found in the references introduced in
Section 1. In the case of l/h= 16.7, the maximum mid-span deforma-
tion is nearly 200mm. Hence, the value of l/h should be carefully
controlled in the design of protective structures.

6. Conclusions

This paper presents a theoretical approach to predict the dynamic
responses of EPC beams subjected to uniformly distributed blast load-
ings that have a single pair of draped tendons, combining a rate-sen-
sitive material model with an improved layered section method. The
new theoretical approach was developed under the framework of a
SDOF system, and computational steps are summarized and listed. The
proposed approach is only appropriate to the case when the response of
the beam is flexural governed. Based on the research studies presented
herein, the following conclusions are drawn.

(1) The explicit predictor-corrector Newmark algorithm is improved by
the proposed approach. When the residual stress is calculated, the
influence of the deviator on the beam is considered, and the cal-
culation precision and efficiency are improved.

(2) Numerical and theoretical results demonstrated that a plastic hinge
would appear in the mid-span of a simply supported EPC beam with
a deviator subjected to blast loadings, which is similar to that under
the static loads. The influence of the length of the plastic hinge is
considered in the theoretical approach.

(3) A corresponding calculation program was compiled on the MATLAB

Fig. 19. The influence of prestressing reinforcement ratio (ρp). (a) Influence of
ρp on the δ-t histories. (b) Influence of ρp on the R-t histories. (c) Influence of ρp
on the R-δ histories.
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platform. Testing beams subjected to static loadings and blast
loadings, as well as a developed FE model, were employed to verify
the effectiveness of the proposed approach and compiled program,
and the analytical results predicted by the proposed approach
agreed well with the experimental data.

(4) The effects of three arrangement parameters (the conventional

reinforcement ratio ρs, prestressing reinforcement ratio ρp and span-
depth ratio l/h) were analyzed. The dynamic resistance increased
with increasing ρs and ρp and with decreasing l/h, but the increase
was finite. Therefore, the values of the three arrangement para-
meters should be balanced to take full advantage of the blast-re-
sistant capacity of the EPC beams.
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