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Abstract 

Sensitivity analysis (SA) can be applied to building energy models (BEM) to identify which input 
parameters that drive the majority of the model output variation. The screening-based Morris 
method is often applied for this purpose; however, consideration regarding the effect of the user-
defined number of levels (p) and trajectories (r) on the obtained results are rare. This paper 
investigates how the choice of p and r affects the outcome of a SA using the Morris method on a 
high fidelity BEM. The results indicates that the Morris method was not able to replicate the 
ranking from the variance-based Sobol’ method no matter the choice of r and p. It was, however, 
able to identify groups of input parameters (parameter clusters) most sensitive to the model 
output variability, but it required significantly more r than usually applied in studies featuring 
the Morris method. The reason is that marginal differences in absolute values of elementary 
effects (the sensitivity indices of the Morris method) for some input parameters may lead to a 
change in ranking position several times as the number of r increases. Users of the Morris 
method must therefore not be predetermined on the size of the parameter cluster; instead, they 
must make a visual assessment of the convergence of the parameter ranking to qualitatively 
determine the appropriate size of parameter cluster. The final recommendation for future studies 
deploying the Morris method for SA applied to a high fidelity BEM is to choose p≥4 as it seems to 
lead the analysis towards a more truthful ranking, and then run simulations in steps of r=100 
when making the visual assessment to determine convergence and the size of parameter cluster. 
The identified need for more r questions the general notion that the Morris method is a 
computationally efficient screening method in terms of absolute time use. However, the Morris 
method is still much more computational efficient than a Sobol’-based analysis if the purpose of 
the SA is to identify a cluster of input parameters most sensitive to the model output variability.  
 

Keywords: Sensitivity analysis; Morris method; Sobol method; Building energy modelling 

______________________________________________________________________________ 

1. Introduction 

Building designers may find it informative to employ a sensitivity analysis (SA) to a building 
energy model (BEM) to identify which design variables that drive the majority of the model 
output variation in terms of indoor climate and energy use. SA methods for this purpose can in 
general be categorised as either local sensitivity analysis (LSA) or global sensitivity analysis 
(GSA) [1].  

                                                        
1 Corresponding author. Tel: +45 41893347; fax: +45 41893001 
E-mail address: stp@eng.au.dk 
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LSA methods rely on a one-parameter-at-a-time (OAT) technique where all parameter values 
have equal probability of occurrence. The OAT technique means that LSA methods do not account 
for any effects from correlated input parameters. However, LSA methods are easy to implement 
and fast to conduct as they require only few model evaluations.  
The GSA category covers a range of methods applying different techniques. Common for the 
methods in the GSA category is that they evaluate the effect of an input parameter on the output 
by varying not only the parameter in question, but all other input parameters chosen for analysis 
as well. GSA methods are therefore able to include effects from correlated input parameters as 
well as non-linear and non-additive model behavior. The outcome of a GSA may therefore be 
more reliable than the outcome from a LSA but GSA methods are more complicated to implement 
and are significantly slower to conduct as they require many model evaluations.  
A specific group of GSA methods are the so-called screening methods [2]. Screening-based SA 
methods are often considered useful for qualitative identification of design variables to which the 
model output variability is most sensitive, whereas more advanced GSA methods, such as a 
variance-based method, must be applied if a quantitative ranking of parameters is desirable. The 
screening method initially described by Morris [3], and since refined and expanded by different 
authors [4-5], seems to be widely used for BEM-based analysis; see Table 1 for an overview of 
BEM-based studies featuring the Morris method. A compelling argument for applying the Morris 
method, instead of a more comprehensive variance-based GSA method, is that it is a 
computational efficient alternative if only a rough ranking of the parameters is desired [6]. 
However, the analysis provided by Kristensen and Petersen [7] suggested that the Morris method 
is able to come up with an identical ranking of the input parameters most sensitive to the output 
of simplified BEMs, as the variance-based GSA method of Sobol’ [8] using less computational 
time, but only when the probability density functions (PDF) of the input parameters are 
uniformly distributed. The Morris method could therefore be a computational efficient 
alternative to a global SA method e.g. in the early design stage. However, there are still issues to 
be investigated to fully understand the possibilities and limitations of the Morris method when 
used for SA of BEM. To explain these issues, the following sections provides a short description of 
the Morris method (section 1.1), a literature review on the use of the Morris method for BEM-
based analysis (section 1.2), before finally outlining the specific contribution of this paper to the 
existing knowledge base (section 1.3). 

1.1. The Morris method 

This section provides a short description of the Morris method, which is intended to serve as 
background for the motivation of the investigation presented in this paper; see ref. [3-5] for more 
detailed descriptions of the method.   
The user of the Morris method needs to define a model input space (Ω) of interest to be explored 
by the SA. This k-dimensional input space Ω is comprised by user-defined input parameters    for 
         , where k is the number of chosen input parameters to be investigated. For each 
parameter   , the user must define a range of possible values, i.e. a minimum value (  

 ) and a 
maximum value (  

 ), to be explored by the SA. The ranges are subdivided in a user-defined p 
number of points, denoted levels, with a distance Δ between them. Using uniform input 
distributions, Δ is obtained by dividing the interval in which each input parameter varies (i.e. 
from   

 to   
 ) into equally large parts. However, the user can also let input parameters follow 

non-uniform distributions by manually selecting the levels e.g. as the quantiles of the distribution 
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[9]. Once the user has defined Ω, the Morris method employs a random one-at-a-time (OAT) 
sampling procedure to generate trajectories through Ω with each trajectory comprising k+1 
random model realisations from Ω. This sampling procedure is repeated r times, each with 
randomly dispersed starting points for the trajectories, creating a global set of r·(k+1) building 
energy models to be simulated. The so-called elementary effect (EEi) for each input parameter    
is then calculated from the BEM output for every r set of k+1 models consequently providing r 
independent and identically distributed estimates of the EEs for each input parameter (Eq. 1).  

   ( )  
 (                        )  (       )

 
        (1) 

 
A central assumption in the Morris method is that the distribution of EEs is Gaussian for each 
input parameter independently,      (     

 ). The model output sensitivity to the input 
parameters can be assessed using the mean of the absolute value of the elementary effects, µ*

i, for 
an r set of trajectories (indexed t=1,2,…,r) is used for ranking the parameters in order of 
importance (Eq. 2)2, while the standard deviation σi is used as a measure of the interactions with 
other parameters and any non-linear effects that the parameter takes part in (Eq. 3). 

  
  

 

 
∑ |     |
 
            (2) 

   √
 

(   )
∑ (        )

  
          (3) 

1.2. Literature review 

As described in the previous section, the Morris method relies on the ranking of µ* and σ as 
measures of input parameter sensitivity. This immediately raised the question: what is the 
sensitivity of the value of µ* and σ to the user-defined number of levels (p) and trajectories (r)? A 
review of the literature where the Morris method has been applied for BEM-based analysis 
indicated that this concern seems to be rare in existing studies using the Morris method for BEM-
based analysis. Table 1 indicates that only very few have arguments for choosing values for p and 
r; in fact, some authors do not even state the value for p and r used in their analysis. Especially 
information about p is absent. Heiselberg et al. [10] state that literature recommends a minimum 
value of r=4 to make sure that the region of variation is reasonably covered for all input 
parameters, while a value of r=10 is recommended to obtain very reliable results. No 
considerations regarding the choice of p are provided. More recent studies includes much larger 
values of r (>100) to a fixed value of p arguing that this is necessary to gain a consistent 
parameter ranking [7,11-12]. Nguyen and Reiter [13] was the only study found that investigated 
the sensitivity of their results to different values for p and r. They found that different sets of p 
and r could result in different parameter rankings, possibly because the random sampling 
sometimes led to an uneven distribution of input vectors on the designed levels of input 
parameters. A similar issue related to the random sampling was reported by Menberg et al. [11] 
who found that the parameter ranking can be biased by the occurrence (or absence) of outliers in 
individual Morris method runs as a consequence of the low number of r in combination with a 
comparably large parameter space (number of p is unknown). The findings of Nguyen and Reiter 

                                                        
2 Eq. 2 is a revision of the original expressions by Morris [3], see Saltelli et al. [9] for details. 
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[13] and Menberg et al. [11] is aligned with Saltelli et al. [9] who from a general point of view 
note that the choice of p is strictly linked to the choice of r. More specifically, Saltelli et al. [9] 
state that an increase of r increases the probability that all levels are explored at least once, and 
that while a high value of p only appears to augment the accuracy of the sampling, it must be 
coupled with the choice of a high value of r; otherwise, many possible levels will remain 
unexplored. They indirectly suggests the use of p=4 and r=10 as it has produced good results in 
previous experiments involving chemical and environmental models [2,14-15]. BEM-based 
studies like Heiselberg et al. [10] and Kim et al. [16] refers to the experiences of such studies as 
argument for choosing p and r for BEM-based analysis. However, the study by Kristensen and 
Petersen [7] indicates that the ranking of input parameters using the Morris method can be 
influenced by the choice of BEM. This suggests that the appropriate choice of p and r may also 
depend on the model to which the Morris method is applied. 

1.3. Scope of this paper 

Based on the findings from the review of current literature, we found it necessary to conduct a 
study on how the choice of p and r affects the outcome of a SA using the Morris method on a high 
fidelity BEM3. The intention of the study is to provide a guideline for future studies to select the 
minimum values of r for a certain p needed for the Morris method to consistently rank input 
parameters according to their influence on the model output variability of a high fidelity BEM. 

                                                        
3 The term ‘high fidelity BEM’ is used to differentiate tools that attempts to model physical behavior with a high level 
of detail (e.g. EnergyPlus and TRNSYS) from tools relying on more simplified representations of the physics (e.g. 
linearized hourly models and monthly quasi-steady state models). 
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Table 1. List of studies reported in literature using the Morris method for BEM-based analysis. Year: year of publication, 
Purpose: the purpose of using the Morris method, BEM: the building energy model(s) used, Levels and Trajectories: the 
reported settings used, Arguments: the arguments used for choosing p and r (respectively). N/A means “no argument”. 
Reference Year Purpose Building Energy 

Model (BEM) 
Levels  
(p) 

Trajectories  
(r) 

Arguments  

de Wit and 
Augenbroe [17] 

2002 

Ranking 
input 
parameters 

ESP-r and BFEP N/A 5 p: N/A, r:  A crude 
uncertainty analysis was 
desired. 

Corrado and 
Mechri [18] 

2009 ISO 13790  (quasi-
steady state) 

N/A N/A p: N/A, r: N/A 

Heiselberg et al. 
[10] 

2009 ISO 13790 (quasi-
steady state)  

4 4 p: N/A, r: Minimum 
according to literature 
[31]. 

Sanchez et al. [19] 2014 ESP-r 10 10 p: N/A, r: N/A 
Hemsath and  
Bandhosseini [20] 

2015 N/A 4 16 p: To enable building 
orientation in steps of 45° 
in the sampling, r: N/A 

Østergaard et al. 
[21] 

2015 ISO 13790 (quasi-
steady state) 

8 10 (100)* p: N/A, r: N/A 

Yang et al. [22] 2016 EnergyPlus N/A 5 p: N/A, r: N/A 
Faggianelli et al. 
[29] 

2017 EnergyPlus 4 20 (200)* Greater than the 
recommendations by 
Saltelli et al. [9] 

de Wit [23] 1997 

Identifying 
influential 
input 
parameters 
for more 
detailed  
analysis 

BFEP 2 3 p: N/A, r: N/A 
Brohus et al. [24] 2009 ISO 13790 (quasi-

steady state) 
N/A N/A p: N/A, r: N/A 

Booth et al. [25] 2012 ISO 13790 (quasi-
steady state) 

N/A N/A p: N/A, r: N/A 

Kim et al. [16] 2013 ISO 13790 (quasi-
steady state) and 
EnergyPlus 

4 4 p and r: Minimum values 
according to literature 
[14[16]. 

Le Drau and 
Heiselberg [26] 

2014 Bottom-up heat 
balance 

8 90 p: N/A, r: N/A 

Yang and Becerik-
Gerber [27] 

2015 EnergyPlus N/A 5 p: N/A, r: To make the 
analysis efficient. 

Østergaard et al. 
[28] 

2015 ISO 13790 (hourly, 
but simplified) 

8 500 p: N/A, r: To obtain 
consistent ranking. 

Nguyen and Reiter 
[13] 

2015 

How ranking  
of input 
parameters is 
affected by 
SA method 

EnergyPlus 4/6/8  49/70 Investigates the effect of 
combinations of level and 
samples on BEM outcome. 

Kristensen and 
Petersen [7] 

2016 ISO 13790 (quasi-
steady state) 
ISO 13790 
(hourly) 

5 250 p: N/A, r: To obtain 
consistent ranking 

Menberg et al. [11] 2016 TRNSYS N/A 150 p: N/A, r: To obtain 
consistent ranking 

Kristensen and 
Petersen [30] 

2018 ISO 13790 (quasi-
steady state) 
ISO 13790 
(hourly) 

4 300 p: N/A, r: N/A 

*This study used the modified sampling method proposed by Campolongo et al. [5] where an initial set of trajectories is reduced prior to 
simulation. 

2. Method 

A one-storey office building illustrated in Figure 1 was modelled as one thermal zone in 
EnergyPlus (EP) [32] using the inputs listed in Table 2. This model was then subject to a SA using 
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the Sobol’ method [8], the Morris method [3], and a One-At-the-Time (OAT) method [33], 
respectively. The quantities of interest for the SA was the energy use per year (kWh/year) for 
heating, cooling and mechanical ventilation, respectively. The annual simulations were 
performed using the Danish design reference year [37] and with a simulation time step of two 
minutes. Execution of the multiple model evaluations in EP needed for the SA analyses was 
handled using the ‘multidirrun’ file provided in the EP program folder. The following sections 
provides further details on these methods and why they are applied in the study. 
 

 
Figure 1. Internal dimensions and boundary conditions for the office building zone. Left: Vertical section of the zone. Right: 

Front elevation of the façade. The walls facing neighbour rooms are assumed adiabatic. 

 
Table 2. Description of input data to the EP model. Model parameters are defined by fixed and/or variable inputs where 
variable inputs are subject to SA. The numeric values of the variable inputs are provided in Table 3. The far right column 
explains the EP modelling assumptions for the model parameter. The heat transfer algorithm used in all simulations is 
“conduction transfer functions” and a time step of 2 minutes. 

 Model parameter  Fixed input Variable input Modelling assumptions 

Building  North axis - Orientation - 
 

Windows Area - Window-to-façade 
area ratio  

- 

 Frame - U-value; area 
fraction of window 
hole 

“Simpleglazing” is used in favour of a 
more detailed option. It is noted that this 
method can lead to a minor error in 
absolute energy use compared to the full 
spectral method [34]. The total U-value of 
windows is calculated according to EN ISO 
10077-1 [35]. 

 Glazing LT is assumed to be a function of 
glazing SHGC; LT=0.5*SHGC+0.45 
 

U-value; glazing 
SHGC; frame 
width; Ψ-value of 
spacer profile 

 Overhang -  Length 
perpendicular out 
from the facade 

The overhang always has the same width 
as the window, and is always flush with 
the top of the window. 
 

Constructions External façade Bricks: 0.108 m; λ=0.034 W/(mK); 
ρ=1600 kg/m3; c=840 J/(kg K)  

- - 

  Mineral wool: λ=0.037 W/(mK); 
ρ=200 kg/m3; c=700 J/(kg K) 

Thickness of 
insulation layer 

- 

  Concrete: 0.1 m Heat conduction 
(λ); density (ρ); 
specific heat 
capacity (c) 

Density ρ is a variable; λ=0.0015ρ-1.5 and 
c=0.043ρ+830 (derived from DS 418 
[36]). 

 Floor 
construction 

Mineral wool: λ=0.034 W/(m K); 
ρ=200 kg/m3; c=700 J/(kg K) 

Thickness of 
insulation layer 

Ground modelled as ground-coupled slab 
model (GroundDomain).  

  Concrete: 0.1 m; λ=2.1 W/(m K); 
ρ=2400 kg/m3; c=1000 J/(kg K) 

- - 
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  Wood floor: 0.02 m; λ=0.12 W/(m 
K); ρ=850 kg/m3; c=800 J/(kg K) 

- - 

 Roof Mineral wool: λ=0.034 W/(m K); 
ρ=200 kg/m3; c=700 J/(kg K) 

Thickness of 
insulation layer 

- 

  Concrete: 0.1 m; λ=2.1 W/(m K); 
ρ=2400 kg/m3; c=1000 J/(kg K) 

- - 

  Air gap: R=0.17 (m2 K)/K  - - 

  Gypsum: 0.013 m; λ=0.16 W/(m 
K); ρ=800 kg/m3; c=1090 J/(kg K) 

- - 

 Internal walls Concrete: 0.1 m Heat conduction 
(λ); density (ρ); 
specific heat 
capacity (c) 
 

Density ρ is a variable; λ=0.0015ρ-1.5 and 
c=0.043ρ+830 (derived from DS418 [36]). 

Ventilation Infiltration Coefficients: A=0.606; B=0.03636; 
C=0.117; D=0 

Infiltration rate Infiltration rate is set to vary with air 
velocity in the meteorological data, and 
temperature difference between inside 
and outside. 

 Ventilation rate, 
in-use 

- Ventilation rate 
(m3/s) 

Constant air volume with a constant inlet 
air temperature of 18 °C. 

 Ventilation rate, 
out-of-use 

 - Ventilation rate 
(m3/s) 

Only available in the months Jun-Aug 
(summer).  

 Heat recovery 
rate 

- Sensible heat 
recovery 
effectiveness 

- 

 Heating set point, 
in-use 

- Set point Added directly to the zone air (radiator). 

 Cooling set point, 
in-use 

- Set point Removed directly from the zone air 
(chilled beam). 

 Heating set point, 
out-of-use 

- Set point Added directly to the zone air (radiator). 

 Cooling set point, 
out-of-use 

- - Cooling not available in out-of-use 
periods.  

 

Specific fan 
power, ventilation 

Motor efficiency=0.9; Motor in air 
stream fraction=0; Fan total 
efficiency=0.7 

Pressure rise (Pa) The pressure rise is varied to express how 
different SFP (kJ/m3) affects inlet 
temperature and thereby heating and 
cooling load. We derive the pressure rise 
from the sampled SFP (see Table 3); SFP 
is fan total efficiency (-) divided by 
pressure rise (Pa).  

 COP, mechanical 
cooling 
 

- COP (-) - 

Schedule In-use, out-of-use 
periods 

In-use: 8:00-17:00, weekdays 
Out-of-use: remaining hours 

- - 

 
Weather data 
 

  
Danish Design reference year [37] 

 
- 

 
- 

Internal loads People load Six persons  - Auto-calculated sensible heat fraction 

 Heat load from 
appliances, time-
in-use 

- W/m2 - 

 Standby heat load 
from appliances, 
out-of-use 

- W/m2 - 

 Lighting (daylight 
controlled) 

- - The heat load from daylight controlled 
lighting systems is omitted from the 
analysis. However, a fraction of the ‘heat 
load from appliances’ could be regarded 
as a simple representation of this heat 
load. 
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2.1. Sobol’ analysis 

The purpose of conducting an SA using Sobol’ method was to establish a benchmark for assessing 
the minimum values of trajectories r for a certain level p needed for the Morris method to 
consistently rank input parameters according to their sensitivity to the model output variability. 
The SA method by Sobol’ [8] is a global variance-based method which is able to attribute the total 
model variance to individual input parameters. The contribution of each parameter in explaining 
total model variance is often assessed using the so-called first-order effects (Si) that describe the 
immediate effect of variations of the parameters independently, and so-called total-order effects 
(STi) that take into account all possible interactions and non-linear effects that the parameters 
take part in. In this study, the Sobol’ sensitivity indices Si and STi was obtained the same way as 
described by Kristensen and Petersen [7]. We used STi to rank input parameters because SA 
methods which includes higher order interactions in complex models is known to alter 
parameter rankings based on Si or µ*

i [38]. It therefore also seems reasonable to use ranking 
according to STi as benchmark for the performance of the Morris method.  
A significant benefit from using Sobol’ method for SA is its ability to take into account non-
uniform distributions – a feature that the standard Morris method is incapable of by definition. 
We therefore make use of uniformly distributed PDFs in the Sobol’ method to make a fair 
benchmark for the Morris method. The PDFs for the input parameters are listed in Table 3. A 
total of N·(k+2) model evaluations in EP needs to be calculated where N is the number of samples 
and k being the number of input parameters. The appropriate number of N relies on user-defined 
convergence criteria for Si and STi. We found it difficult to formulate a suitable convergence 
criteria for the quantities of interest in this study (energy use), which is why we decided to 
generate an immediate large quantity of models using N = 10,000 Latin hypercube samples from 
the PDFs of the k=24 input parameter listed in Table 3 resulting in 260,000 model evaluations, 
and then make a qualitative assessment of the convergence issue. The 95% confidence bounds of 
STi were derived using 2,000 bootstrapping samples. 

2.2. Morris analysis 

The principle of the Morris method has been described in section 1.1; this section describes the 
assumptions used for the Morris analysis in this study. The model input space Ω for the Morris 
method was defined by the uniformly distributed PDFs of the 24 input parameters listed in Table 
3. The original Morris sampling method [3] was applied using r=1,000 for six different values of p 
(2;4;6;8;10;12), resulting in 25,000 building zone models per level (150,000 simulations in total) 
for evaluation in EP. This way we are able to assess how an incrementally increasing number of r 
affects parameter ranking (i.e. µ*

i listed in descending order) and, consequently, determine the 
minimum number of r needed for a consistent parameter ranking for different p. The reason 
repeating the Morris SA for various p is to investigate whether the choice of p affects the outcome 
of a Morris SA; the chosen p adds p=12 to the range of typical values of p applied in previous 
studies (see Table 1). It is noted that µ*

i cannot be used for quantification of the magnitude of 
parameter influence as one can do based on the STi obtained in the Sobol’ method. 
 
Table 3. The PDFs of the 24 variable input parameters in the EP model. 

Input parameters Unit 
Uniform PDF 

[Min;Max] 
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Building orientation degrees [0;360] 
Room height  m [2.5;3.5] 
Insulation thickness, external walls  m [0.1;0.35] 
Insulation thickness, roof  m [0.1;0.45] 

Insulation thickness, floor m [0.1;0.35] 

Window-to-façade area ratio - [0.15;0.95] 
Glazing U-value W/(m2 K) [0.5;1.0] 
Glazing SHGC - [0.15;0.6] 
Glazing linear loss (Ψ) W/(m K) [0.03;0.2] 
Window frame U-value W/(m2 K) [0.8;2.0] 
Window frame fraction  - [0.05;0.25] 
Overhang* m [0;1] 
Ventilation rate, in-use l/s/person [4;10] 
Infiltration rate l/s/m2 @50 Pa [0.5;1.5] 
Heat recovery rate - [0.65;0.9] 
Heat load from appliances, in-use W/m2 [2;10] 
Standby heat load from appliances, out-of-use* - [0.05;1] 
Thermal capacity, inner layer of walls KJ/m2 K [1200;2400] 
Heating set point, in-use ˚C [20;24] 
Cooling set point, in-use ˚C [25;27] 
Heating set point, out-of-use ˚C [16;20] 
Night ventilation rate, summer l/s m2 [0;2] 
Specific fan power (ventilation) kJ/m3 [0.5;2] 
COP (mechanical cooling) - [1;5] 

*Fraction of ‘Heat load from appliances, in-use’. 

2.3. One-At-the-Time method 

The purpose of conducting an OAT analysis was to investigate whether this much less 
computationally demanding method compared to Sobol’ and Morris is able to come up with the 
same ranking. If so, the use of OAT analysis for SA would be preferable as it is much more 
computationally efficient; only 49 simulations are required for the case used in this paper. The 
OAT method used for the analysis reported in this paper was based on partial derivatives where 
parameters are ranked according to a dimensionless sensitivity index SIi; see e.g. ref.  [7,32] for 
further details regarding this OAT method. 

3. Results 

For the Sobol’ method, Figure 2-Figure 4 depicts the normalised STi for the total energy use, 
heating only, and cooling only, respectively, as a function of model evaluations in steps of 13,000 
(see Appendix A for further details). The figures shows no clear sign of convergence even after 
260,000 model evaluations. The reason is that the absolute difference between normalised STi of 
some parameters is marginal (e.g. between the input parameters “Insulation, roof” and 
“Appliances heat load, in-use” in Figure 2) leading to many shifts in relative ranking as a function 
of model evaluations.  
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Figure 2. Normalised total-order effects (STi) of the total energy use as a function of model evaluations in steps of 13,000. 
The order of the legend corresponds to the order of the lines in the graph. 

 

 
Figure 3. Normalised total-order effects (STi) of the heating energy use only as a function of model evaluations in steps of 
13,000. The order of the legend corresponds to the order of the lines in the graph. 
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Figure 4. Normalised total-order effects (STi) of the cooling energy use only as a function of model evaluations in steps of 
13,000. The order of the legend corresponds to the order of the lines in the graph. 

 
For the Morris method, Figure 5-Figure 7 shows the ranking of the 24 input parameters 
according to their µ*

i after r=1,000 for all investigated p alongside the ranking obtained using the 
Sobol’ method for the total energy use, heating only and cooling only, respectively (see Appendix 
B for further details). From these figures it is evident that no matter the value of p, the Morris 
method using r=1,000 was never able to rank the parameters according to the ranking based on 
STi from the Sobol’ method. However, it seems like the Morris method at some point during 
increasing r was able to consistently identify similar clusters of input parameters most influential 
to the variability of the model output as the Sobol’ method. Our definition of such a ‘cluster’ is 
when the Morris method has identified the same group of input parameters as most influential to 
the variability of the model output as the Sobol’ method but not ranked them in the same order. It 
is also noted that there seems to be a significant rearrangement of the parameter ranking when 
going from p=2 to p≥4.  
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Figure 5. Values of µ*

i and relative ranking of the 24 input parameters according to their µ*
i with respect to the total energy 

use after r=1,000 for all investigated p alongside the ranking obtained using STi from the Sobol’ method after 260,000 

model evaluations. The order of the legend corresponds to the order of the lines in the graph. 

 

 
Figure 6. Values of µ*

i and relative ranking of the 24 input parameters according to their µ*
i with respect to the heating 

energy use only after r=1,000 for all investigated p alongside the ranking obtained using STi from the Sobol’ method after 

260,000 model evaluations. The order of the legend corresponds to the order of the lines in the graph. 
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Figure 7. Values of µ*

i and relative ranking of the 24 input parameters according to their µ*
i with respect to the cooling 

energy use only after r=1,000 for all investigated p alongside the ranking obtained using STi from the Sobol’ method after 

260,000 model evaluations. The order of the legend corresponds to the order of the lines in the graph. 
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Table 4 shows the minimum values of trajectories r for all levels p needed for the Morris method 
to identify the same cluster of xi that the Sobol’ method identified as most influential to the 
variability of the model output. The influence of p on the number of r needed for a consistent 
identification varies depending on the type of energy consumption (total, heating, or cooling), 
and the number parameters included in the cluster of parameters most influential to the 
variability of the model output (top 1-11). Special for p=2 is that µ*

i of the parameter ‘orientation’ 
was always zero, and consequently never appeared in the top 11 parameters. The reason is that 
p=2 leads to no actual variation of the orientation as the two levels are the minimum and 
maximum parameter values, 0° or 360°, respectively, which is both due south by definition. All 
calculations with p=2 are therefore ignored in further interpretations of the results in Table 4. 
There is no clear tendency that the number of p has any effect on the needed number of r for a 
consistent identification of clusters of parameters most sensitive to the output variability in 
terms of the total energy use. For heating energy only, there is a tendency that the identification 
of top 3 input parameters became better with increasing number of p. For cooling energy only, 
there seems to be a slight benefit from choosing p>4. This is probably because the cooling system 
has non-linear behavior. For all three energy consumptions, the number of r needed to 
consistently identify top 1-11 input parameters for each p depends on the absolute difference 
between µ*

i for all xi. For example, the reason that the number of r for p=4 for total energy use 
(see Table 4) increases from nine to 476 when screening for top 6 and top 7, respectively, is that 
the value of µ*

i of the seventh and eighth parameter in top 8 are only marginally different up until 
approx. r=476. Prior to r=476, the two parameters changes ranking position several times, and 
thereby the content of the top 7 cluster (see appendix B).  
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Table 4. The number of trajectories needed for the Morris method to consistently identify the same top 1-11 of xi that the 
Sobol’ method identified as most influential to the variability of the model output. The term ‘never’ means that the 
Morris method was not able to identify the parameters after r=1,000 trajectories. The number in brackets in the heading 
of the columns is the cumulative sum of normalised STi according to the Sobol’ method. The OAT rows indicate whether 
the OAT method was able to identify the same top 1-11 as the Sobol’ method (Yes/No).  

Total 
energy use 

Top 1 
(14.1 %) 

Top 2 
(27.5 %) 

Top 3  
(38.4 %) 

Top 4 
(49.2 %) 

Top 5 
(59.8 %) 

Top 6 
(69.0 %) 

Top 7 
(75.7 %) 

Top 8 
(80.8 %) 

Top 9 
(84.2 %) 

Top 10 
(86.9 %) 

Top 11 
(89.4 %) 

p=2 21 never never never never never never never never never never 

p=4 108 never 283 137 never 9 476 5 44 15 46 

p=6 22 never never 301 never 27 155 33 97 24 26 

p=8 27 286 never 379 never 20 29 44 72 11 11 

p=10 29 46 373 634 never 39 113 16 13 572 68 

p=12 70 458 never 71 never 56 14 13 9 907 226 

OAT No No Yes No No No No No Yes No No 
            

Heating 
energy use 

Top 1 
(16.9 %) 

Top 2 
(32.6 %) 

Top 3  
(47.8 %) 

Top 4 
(59.7 %) 

Top 5 
(68.9 %) 

Top 6 
(74.8 %) 

Top 7 
(80.6 %) 

Top 8 
(86.0 %) 

Top 9 
(90.0 %) 

Top 10 
(93.1 %) 

Top 11 
(94.4 %) 

p=2 Never Never Never Never Never Never Never Never Never Never Never 

p=4 Never Never Never 11 60 Never 8 5 4 6 69 

p=6 Never Never Never 12 25 881 25 Never 48 5 11 

p=8 Never Never 12 91 43 538 6 334 91 10 6 

p=10 Never Never 113 28 5 31 76 Never 86 6 29 

p=12 Never 417 128 19 17 13 307 Never 3 4 46 

OAT No No No No No No No No Yes No No 
            

Cooling 
energy use 

Top 1 
(26.9%) 

Top 2 
(43.9 %) 

Top 3 
(59.5 %) 

Top 4 
(74.0 %) 

Top 5 
(83.4 %) 

Top 6 
(88.9 %) 

Top 7 
(91.5 %) 

Top 8 
(93.6 %) 

Top 9 
(95.7 %) 

Top 10 
(97.4 %) 

Top 11 
(98.7 %) 

p=2 Never Never Never Never Never Never Never Never Never Never Never 

p=4 1 726 Never Never Never Never Never Never Never 100 21 

p=6 42 Never Never Never 11 34 Never 33 Never 57 12 

p=8 30 25 Never Never 18 Never 308 Never Never 30 64 

p=10 12 101 Never Never 5 32 Never Never Never Never Never 

p=12 21 93 Never Never 24 5 Never Never Never Never Never 

OAT Yes No No No No No No No No No No 

 
The result of the OAT analysis is also listed in Table 4 and shows that the OAT method was rarely 
able to identify the same cluster of input parameters to which the model output variability was 
most sensitive as the Sobol’ method (the full outcome of the OAT method is shown in appendix 
C). 

4. Discussion 

As stated in the introduction, the aim of this study was to provide a guideline for future studies to 
select the minimum values of r for a certain p needed for the Morris method to consistently rank 
input parameters that has most influence on the model output variability. This aim was partly 
based on the findings by Kristensen and Petersen [7], which suggested that the Morris method is 
able to identify the same ranking of the input parameters most sensitive to the output of 
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simplified BEMs as the Sobol’ method provided that the PDFs of the input parameters are 
uniformly distributed. However, results of this study suggests that this is not true for high fidelity 
BEMs, but it seems to be able to identify clusters of input parameters to which the model output 
variability is most sensitive. Some overall guidelines for applying the Morris method to identify 
clusters of input parameters are provided in the following4.  
 
First of all, choosing p≥4 seems to lead the analysis towards a more truthful ranking and, 
consequently, a more reliable identification of most important parameter clusters – especially if 
orientation of window areas is included in the same way as in this paper. Note that an even 
higher value of p (closer to p=12) seems to be beneficial if only cooling energy is of interest.  
It is difficult to provide an exact recommendation of the number of r needed for an outcome of 
the Morris analysis similar to the Sobol’ method. The reason is that any marginal differences in 
values of µ*

i between two parameters means that an excessive number of r is needed for the 
ranking to converge (see result section). This reason also makes it difficult to predetermine the 
appropriate size of the cluster of most influential parameters. For example, for total energy use 
(Table 4) no matter the choice of p>2, it would make sense to have top 6, 8 or 9 in the cluster 
containing the most important parameters – but e.g. not top 5 as µ*i of the sixth parameter is 
always close to the fifth, and not top 7 as it is difficult to determine which parameters are actually 
belonging to this cluster. It is noted that this is not only an issue for the Morris method; the 
ranking according to the Sobol’ method is also sensitive to the absolute difference between 
indices (STi). The value of the individual STi should therefore also be listed to enable a qualitative 
assessment on how many of the ranked input parameters that would be appropriate to highlight 
as most sensitive to the model output variability according to the Sobol’ method.  
The uncertainty of parameter ranking from the Sobol’ method seem to defeat the whole purpose 
of using the Sobol’ method to benchmark the ranking from Morris method. This is why it seems 
more reasonable to use the Morris method – and even the Sobol’ method – to identify a certain 
clusters of most influential input parameters rather than attempting to obtain a true ranking of 
the input parameters. Based on the results of this study, the recommended approach for the 
identification of a cluster of most influential input parameters using the Morris method is to1) 
generate models for r=1,000 (or more) but start by simulating only a fraction of the models, e.g. 
for the first r=100 models, 2) calculate and plot µ*

i for the quantity of interest for all xi as a 
function of r like in appendix B, and 3) make a qualitative (visual) assessment of whether the 
values of µ*

i have converged to a degree where it seems possible to determine a cluster for the 
most influential parameters. It is noted that one should not have a predetermined cluster size for 
the most influential parameters prior to this qualitative assessment but decide how many 
parameters to include during the qualitative assessment. If µ*

i seems not to be converged, then 
simulate the performance of the next e.g. r=100 models, update the plot of µ*

i for the quantity of 
interest for all xi as a function of r, and make a new qualitative assessment. Repeat this process 
until µ*

i seems converged. A similar approach could also be used for the Sobol’ method to 
investigate convergence of STi and appropriate cluster size. 
 

                                                        
4 The guidelines are only considered valid for a Morris analysis using uniform PDFs and sophisticated BEMs. 
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The above recommendation for the Morris method suggests a step of r=100 in the attempt to 
obtain convergence of µ*

i.  This is far from what is commonly used for similar analyses using high 
fidelity BEMs (see Table 1); here r between five and ten is often used, which corresponds to the 
recommendations provided in the fundamental literature describing the Morris method [2,14-
15]. This may change the notion of Morris being a computationally efficient method for 
parameter screening. One model evaluation of the EP model used in this study takes approx. 1 
minute, which leads to a total calculation time of approx. 42 hours for a model with 24 variable 
input parameters and r=100 (2,500 model evaluations). It is therefore of practical interest to 
reduce the number of r needed for a reliable Morris SA as this also would reduce computational 
time. One option that could be investigated in future studies is to rank the input parameters 
according to the median value of EEs, as findings by Menberg et al. [11] indicated that ranking 
based on median values converges after fewer numbers of r compared to ranking based on mean 
values. Another option could be to use the modified sampling method suggested by Campolongo 
et al. [5] who claims that this method is always to be preferred over the original Morris sampling 
method as it reduces the number of model executions needed for a reliable analysis.  
 
We acknowledge that the use of different weather data, a different set of input parameters 
and/or different PDF ranges may lead to different rankings than the ones observed in this study, 
but the above recommendations is in this regard considered to be on the safe side. Furthermore, 
this study made use of EnergyPlus for model evaluations but it seems like many prefer to use 
more simplified BEMs (Table 1). A future study could be to repeat the study of this paper using 
simplified BEMs for model evaluations. In this relation, it would also be relevant to analyse the 
consequence of different BEM approaches on input parameter ranking as the study by Kristensen 
and Petersen [7] indicates that it can be influenced by the choice of BEM. 

5. Conclusion 

The intention of this study was to provide a guideline for future studies to select the minimum 
values of trajectories (r) for a certain level (p) needed for the Morris method to consistently rank 
input parameters according to their influence on the model output variability of a high fidelity 
BEM when compared to parameter ranking using the Sobol’ method. Results indicates that the 
Morris method is not able to replicate the ranking from Sobol’ method no matter the choice of r 
and p. The reason is that ranking according to the Morris method as well as the Sobol’ method is 
quite sensitive to marginal absolute differences in the metric used for ranking. Consequently, it is 
not possible to provide guidelines for future studies with precise values for r and p as intended. 
However, the study enables us to provide some guidance on how to produce a reliable SA using 
the Morris method.  
The Morris method may not be able to generate a reliable ranking of input parameters but it is 
able to identify the same cluster of input parameters – i.e. groups of unranked input parameters – 
most sensitive to the model output variability as the Sobol’ method. However, reliable 
identification of such clusters seems to require significantly more r than usually applied in 
studies featuring the Morris method. Furthermore, users must not be predetermined on the size 
of the parameter cluster prior to the analysis; instead, one must make a visual assessment of the 
convergence of the parameter ranking to qualitatively determine the size of parameter cluster. 
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The need for more r may question the general notion that the Morris method is a computationally 
efficient screening method in terms of absolute time use, but it is still much more computational 
efficient than a Sobol’-based analysis. A simple one-at-the-time method, which can be regarded 
the best sensitivity analysis method in terms of computational efficiency, was also tested; 
however, it did not produce clusters comparable to the outcome of the Sobol’ or Morris method.  
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Appendix A. Sobol’ method 

The figures A.1-A.3 below depicts the outcome of the Sobol’ analysis, i.e. the total-order effects 
(STi) for each input parameter for the total energy need (heating+cooling+ventilation), heating 
energy only, and cooling energy only, respectively. STi for energy for ventilation only is not 
displayed because it only is linearly affected by the input parameter ‘Ventilation, in-use’, 
‘Ventilation, out-of-use’, and ‘Specific fan power’. 

 
Figure A.1. Total-order effects (STi) for each input parameter for the total energy need (heating+cooling+ventilation) 
after 260,000 model evaluations. Boxes indicate the 95% confidence intervals around the mean value (black line). 
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Figure A.2. Total-order effects (STi) for each input parameter for the heating energy only after 260,000 model 
evaluations. Boxes indicate the 95% confidence intervals around the mean value (black line). 

 

Figure A.3. Total-order effects (STi) for each input parameter for the cooling energy only after 260,000 model 
evaluations. Boxes indicate the 95% confidence intervals around the mean value (black line). 

 
Appendix B. Morris method 

Figure B.1-B.3 illustrates for every p the evolution of µi on the total energy need 
(heating+cooling+ventilation), heating only, and cooling only, respectively, for all xi as a function 
of r. The evolution of µ*

i on ventilation is not displayed because the value of µ*
i for all of the 24 

input parameters is not affected by r>1.  
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Figure B.1. The evolution of mean elementary effect (µ*

i) on the total energy need (heating+cooling+ventilation) for all 

measures (xi) as a function of the number of trajectories (r) for six different levels (p). The order of the legend corresponds 

to the order of the lines in the graph. 
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Figure B.2. The evolution of mean elementary effect (µ*

i) on the heating energy need for all measures (xi) as a function of 

the number of trajectories (r) for six different levels (p). The order of the legend corresponds to the order of the lines in the 
graph. 
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Figure B.3. The evolution of mean elementary effect (µ*

i) on the cooling energy need for all measures (xi) as a function of 

the number of trajectories (r) for six different levels (p). The order of the legend corresponds to the order of the lines in the 
graph. 
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Appendix C. Local method 

Table C.1 lists all input parameters ranked according to the sensitivity index, SIi, calculated OAT 
based on the partial derivative of the model output for total energy use 
(heating+cooling+ventilation), heating only, and cooling only. 
 
Table C.1. Ranked sensitivity indexes (SIi) for all input parameters calculated OAT based on the partial derivative of the 
model output. 

Total energy 
  

Heating energy only 
  

Cooling energy only 
 

Input Parameter SIi 

 
Input Parameter SIi 

 
Input Parameter SIi 

Window area 1.064 
 

Window area 0.932 
 

Window area 4.127 

Roof insulation 0.622 
 

Roof insulation 0.858 
 

Cooling set point, in-use 1.607 

Heating set point, in-use 0.553 
 

Heating set point, in-use 0.765 
 

SHGC 1.364 

Equipment, out-of-use 0.388 
 

Equipment, out-of-use 0.614 
 

COP, mech. cooling 1.333 

Infiltration 0.300 
 

Infiltration 0.428 
 

Ventilation rate, out-of-use 1.333 

Specific fan power 0.290 
 

Building orientation 0.413 
 

Overhang 0.628 

Building orientation 0.262 
 

Equipment, in-use 0.375 
 

Specific fan power 0.597 

Ventilation rate, in-use 0.244 
 

Ventilation rate, in-use 0.238 
 

Equipment, in-use 0.488 

Equipment, in-use 0.216 
 

SHGC 0.238 
 

Equipment, out-of-use 0.483 

Wall insulation 0.160 
 

Linear loss, glazing 0.226 
 

Building orientation 0.324 

Linear loss, glazing 0.152 
 

Wall insulation 0.224 
 

Window frame width 0.315 

Cooling set point, in-use 0.136 
 

Glazing U-value 0.191 
 

Floor insulation 0.299 

Glazing U-value 0.128 
 

Floor insulation 0.180 
 

Thermal mass 0.228 

Floor insulation 0.096 
 

Ventilation heat recovery 0.127 
 

Roof insulation 0.129 

Ventilation heat recovery 0.092 
 

Room height 0.119 
 

Linear loss, glazing 0.080 

COP, mech. cooling 0.085 
 

Heating set point, out-of-use 0.116 
 

Glazing U-value 0.071 

Heating set point, out-of-use 0.084 
 

Window frame width 0.096 
 

Infiltration 0.059 

Room height 0.079 
 

Window frame U-value 0.080 
 

Ventilation rate, in-use 0.048 

Window frame U-value 0.054 
 

Overhang 0.045 
 

Room height 0.046 

Ventilation rate, out-of-use 0.036 
 

Thermal mass 0.026 
 

Window frame U-value 0.030 

Window frame width 0.035 
 

Specific fan power 0.020 
 

Wall insulation 0.019 

Overhang 0.031 
 

Ventilation rate, out-of-use 0.009 
 

Ventilation heat recovery 0.006 

SHGC 0.028 
 

Cooling set point, in-use 0.000 
 

Heating set point, in-use 0.003 

Thermal mass 0.002 
 

COP, mech. cooling 0.000 
 

Heating set point, out-of-use 0.000 
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