
Egyptian Informatics Journal xxx (2018) xxx–xxx
Contents lists available at ScienceDirect

Egyptian Informatics Journal

journal homepage: www.sciencedirect .com
Full length article
Chaotic based differential evolution algorithm for optimization of
baker’s yeast drying process
https://doi.org/10.1016/j.eij.2018.02.001
1110-8665/� 2018 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: ugur.yuzgec@bilecik.edu.tr (U. Yüzgeç).

Peer review under responsibility of Faculty of Computers and Information, Cairo
University.

Production and hosting by Elsevier

Please cite this article in press as: Yüzgeç U, Eser M. Chaotic based differential evolution algorithm for optimization of baker’s yeast drying process
tian Informatics J (2018), https://doi.org/10.1016/j.eij.2018.02.001
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Chaotic based Differential Evolution (CDE) algorithm is presented to determine the optimal control vari-
ables for the optimization of Baker’s Yeast drying process. The chaotic system is proposed to determine
the initial population, to select the trial individuals from the population in the mutation operation instead
of the random number generator. The random values produced by the random number generator are
likely to be similar or same values with each other. In this study, four different chaotic systems, such
as Lorenz attractor, Rössler attractor, Chua circuit and Mackey-Glass equation, are solved by
Runge-Kutta method to produce the random values of the initial individuals. To demonstrate the perfor-
mance of the CDE algorithms, ten optimization problems are taken from the literature. Furthermore, the
performances of the proposed CDE algorithms are compared with the classic Differential Evolution (DE)
algorithm, Particle Swarm Optimization (PSO) algorithm, Artificial Bee Colony (ABC) algorithm, Simulated
Annealing (SA) algorithm, Touring Ant Colony Optimization (TACO) algorithm in terms of the mean best
solution, the number of function evaluations (NFE) and CPU-time metrics. At the same time, the proposed
CDE algorithms are implemented for numerical optimization problems based on the IEEE Congress on
Evolutionary Computation (CEC) 2014 test suite. For the optimization of baker’s yeast drying process,
there are four significant parameters, such as product quality, drying total time, energy cost of air and
the final moisture content. The proposed CDE algorithms and classic DE algorithm are applied for the
same optimization problem that is taken from a baker’s yeast producer in Turkey. The experimental
results prove that the proposed CDE algorithms are able to provide very competitive results.
� 2018 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Differential Evolution (DE) algorithm is a powerful heuristic
method for global optimization problems, was introduced by Storn
and Price [31,32,37]. This population based heuristic optimization
algorithm has drawn the interest of researchers in many scientific
fields. The DE algorithm has happened to more popular step by
step and it has been used in a lot of useful cases due to ease and
the good convergence in the optimization problems [4].
The principle of DE algorithm is basically based on adding the
difference between two individuals to a third individual in popula-
tion. It differs from other heuristic algorithms in the mutation,
crossover and selection stages. Unlike the procedures based on
random number generator in evolutionary algorithms such as
genetic algorithms, DE algorithm uses the differences between
individuals in the population to form the next generation [10]. Fur-
thermore, DE algorithm has got few control parameters, such as
scaling factor, crossover probability constant and population size,
which are used during the optimization process like the other
evolutionary algorithms. These control parameters have to be
determined carefully to increase the solution quality and the
algorithm efficiency. The robustness and effectiveness of DE
algorithm are based on the suitable settings of the control
parameters [44].

In addition to these parameters, the other important thing is
determining the initial population by random number generator.
In DE algorithm, the individuals’ initial values in the population
which are produced by the random number generator are likely
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to be similar or same values with each other. This is an undesirable
situation because of reducing the diversity in the population. In
this paper, the new methods based on the chaotic functions were
proposed instead of the classic random procedure. Chaos functions
have got applications, such as observing the weather in meteorol-
ogy area [38], cryptography in computer science area [43], predict-
ing gas solubility in chemical engineering [39], finance modeling in
economics area [14] and hydrology in biology area [40]. Chaotic
functions have the behavior of dynamic systems which are highly
sensitive to initial conditions. Each point in a chaotic system is
arbitrarily close to other points with different future trajectories.
As a result, an small change in the existing trajectory can lead to
considerably different behavior [11,12].

In the literature, there have been a large number of publications
regarding improvements and applications of the DE algorithm in
many fields, such as chemical optimization [44], image segmenta-
tion [27], human detection [5], economic dispatch optimization
[37], shape matching problem [1], object detection [42], among
the others [48]. Babu and Angira [2] proposed the modified selec-
tion procedure that was used for a single array, for the optimiza-
tion of non-linear chemical processes. The proposed modified DE
algorithm was compared to classic DE algorithm for optimization
problems of benchmark test functions and selected non-linear
chemical processes. Babu and Munawar [3] introduced DE algo-
rithm’s ten different strategies for the optimal design of shell-
and-tube heat exchangers. In [6], the ranking-based mutation
operator was integrated into the original DE algorithm to acceler-
ate the convergence rate for multi objective optimization prob-
lems. Draa et al. [10] presented the idea that is about the tuning
of the DE’s parameters using sinusoidal function. There were six
different configurations of this sinusoidal function based parame-
ter adjustment for both scale factor and crossover constant
between the upper and lower bounds of these parameters. The
application of this proposed strategies is very hard for the real time
microcontroller based implementations. Gong et al. [13] proposed
two different adaptive strategy selection, namely probability
matching and adaptive pursuit to select the most suitable strategy
during the optimization process. Although the proposed selection
methods brought some advantages, time complexity of the DE
algorithm including these methods increases. In [26], a new muta-
tion strategy that is based on the weighted difference vector
between the best and the worst individuals was introduced. The
authors presented the performance and the comparison results in
their paper. A concept which is called opposition-based differential
evolution (ODE) to accelerate the convergence rate of DE algorithm
was presented by Rahnamayan et al. [34,35]. ODE uses the oppo-
site numbers during the population initialization and also during
generation jumping. The proposed algorithm considers an individ-
ual in population and its corresponding opposite individual is cal-
culated to accomplish a better solution at each generation
according to the jumping rate [34,35]. Zhang and Yuen [50] intro-
duced the new method about the mutation operator to accelerate
the convergence rate. In the study by Poikolainen et al. [29], a soft-
ware module consists of three stages was presented to determine
the most interesting areas of the search domain. But there was
no discussion about the run times of the proposed algorithms. Qi
et al. [33] proposed the a hybrid immunemulti-objective optimiza-
tion algorithm with differential evolution inspired recombination.
In the proposed recombination operator, two types of search direc-
tions were determined according to the other two neighboring
individuals in the current population. Mohamed [52] introduced
a new triangular mutation rule for DE algorithm. In [53] and
[55], the DE algorithm based on a newmutation rule was proposed.
It utilizes the information of good and bad vectors in the popula-
tion. Mohamed and Suganthan [54] presented a new triangular
Please cite this article in press as: Yüzgeç U, Eser M. Chaotic based differential e
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mutation operator for solving global numerical optimization
problems.

In the studies regarding combination with chaotic dynamic
systems and DE algorithm, a logistic map based DE algorithm
was presented by Zhang et al. [49] for short-term scheduling and
a self-adaptive chaotic DE algorithm using gamma distribution
was introduced by Coelho et al. [9]. Both of these papers include
the logistic map as the chaos function. The logistic map is a poly-
nomial mapping of second degree in discrete time. In terms of ease
solution, the authors generally prefer the chaotic maps, such as
logistic map, baker’s map, Henon map, etc., instead of chaotic sys-
tems in continuous time.

In this study, the new random number generator based on the
solution of the chaotic functions was proposed for selection of
the candidates from population at the mutation, crossover opera-
tions and for the initialization of the population in DE algorithm.
There are four chaotic systems, such as Lorenz attractor [11,12],
Rössler attractor [45], Chua circuit and Mackey-Glass system to
use in the random number generator procedure. To evaluate the
performances of the proposed CDE algorithms, ten benchmark
functions are taken from the literature and the popular heuristic
algorithms, such as DE, PSO, ABC, SA and TACO algorithms, are
compared with the proposed CDE algorithms. Besides, we used
the CEC 2014 test suite benchmark problems to evaluate the per-
formance of proposed CDE algorithms. For the CDE algorithms
and classic DE algorithm, the results obtained during baker’s yeast
drying optimization process are compared with each others.

The paper is organized as follows. The differential evolution
algorithm is briefly presented in Section 2. Section 3 gives informa-
tion about the four different chaotic system definition being used
to generate random number in the proposed CDE algorithm. The
concept of the proposed CDE algorithms is presented in Section 4.
The next section includes the information about the benchmark
functions used to evaluate the performances of the CDE algorithms.
In Section 6, there is short information regarding the optimization
problem in the baker’s yeast drying process. In Section 7, the per-
formances of the CDE algorithms for optimization problems are
discussed according to the mean best solution, the number of func-
tion evaluations (NFE) and CPU-time metrics. Besides, the compar-
ison between the proposed CDE algorithms and the classic DE
algorithm is presented for optimization of the baker’s yeast drying
process. Finally, the paper is concluded in Section 8.

2. Differential evolution algorithm

Differential evolution (DE) algorithm is a simple powerful and
influential evolutionary algorithm for solution of the global opti-
mization, introduced by Price and Storn [32]. On the contrary sim-
ple genetic algorithm which uses binary coding to represent the
individuals in the population, DE algorithm uses floating point cod-
ing to stand for each individuals. The important idea of DE algo-
rithm is based on generating trial parameter vectors. These
vectors are obtained by adding the difference between two individ-
uals to a third individual in population. Mutation and crossover
operators are used to generate new individuals, and then selection
operator determines which of the vectors will carry on into the
next generation [31].

The structure of the DE algorithm resembles the structures of
other population-based optimization algorithms. DE consists of
three important parameters, such as scaling factor (SF), crossover
constant (CR) and population size (PS). A population includes the
PS individuals, each of which comprises the value of the variable
in the feasible region of the optimization problem [44]. At the
beginning of DE algorithm, PS is determined as depend on opti-
mization parameters and it is not changed during the optimization
volution algorithm for optimization of baker’s yeast drying process. Egyp-
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process. The initial population can be chosen randomly. DE algo-
rithms have got three genetic operators, such as mutation, cross-
over and selection [31,41].

Mutation and crossover operators generate new trial individu-
als and selection operator determines suitable individuals which
have got maximum/minimum fitness values and in this way pop-
ulation consists of the better individuals in that generation [44].
For mutation procedure, there are ten strategies that used in the
different DE algorithms. A strategy that works out to be the best
for a given problemmay not work well when applied for a different
problem. The strategy to be adopted for each problem is to be
determined separately by trial and error. Five DE strategies used
for mutation process are given below:

v i;gþ1 ¼ xi;g þ Fðxb;g � xi;gÞ þ Fðxr1;g � xr2;gÞ ð1Þ
v i;gþ1 ¼ xr3;g þ Fðxr1;g � xr2;gÞ ð2Þ
v i;gþ1 ¼ xb;g þ Fðxr1;g � xr2;gÞ ð3Þ
v i;gþ1 ¼ xb;g þ Fðxr1;g � xr2;gÞ þ Fðxr3;g � xr4;gÞ ð4Þ
v i;gþ1 ¼ xr1;g þ Fðxr2;g � xr3;gÞ þ Fðxr4;g � xr5;gÞ ð5Þ
In this equations, v i;gþ1 denotes the mutant individuals for the

next generation, xi;g is the individual with the running index (i),
xb;g is the individual which has got the best fitness value in the pop-
ulation, xr1;g , xr2;g ,. . ., xr5;g represent the individuals that chosen ran-
domly from the population. The scale factor (F) is a constant value
that is in the range from 0 to 2.

In the crossover procedure, according to the comparison of the
random number and crossover constant (CR), the trial individual
ui;gþ1 is selected from the current individual or the mutant individ-
ual. The crossover equation is given by Eq. (6),

ui;gþ1 ¼ v i;gþ1; if r 6 CR

xi;g ; if r > CR

�
ð6Þ

where r denotes a random number which is in range [0 1]. At the
end of mutation and crossover procedures, individuals of next gen-
eration are selected from current population by the selection proce-
dure. Selection procedure for the minimization problem is given
below:

xi;gþ1 ¼ ui;gþ1; if f ðui;gþ1Þ < f ðxi;gÞ
xi;g ; otherwise

�
ð7Þ

where xi;gþ1 denotes the individual with the running index (i) at the
next generation and f represents the fitness value. According to the
comparison between the fitness value of the trial individual ui;gþ1

and the target individual with the running index (i) xi;g , the individ-
ual with the minimum fitness value is selected for the next
generation.

According to Storn and Price [41], the selection of scaling fac-
tor SF is more sensitive than that of crossover probability con-
stant CR for DE algorithms. In the optimization process, DE
algorithm repeats the above three operators until a stop criterion
is reached.
3. Chaotic systems

This section consists of the four different chaotic system defini-
tion that are used for random number generator in the DE algo-
rithm and the mathematical formulations of these systems. In
this study, Lorenz attractor, Rössler attractor, Chua circuit and
Mackey-Glass equation were selected among the chaotic systems.
Please cite this article in press as: Yüzgeç U, Eser M. Chaotic based differential e
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3.1. Lorenz attractor

The Lorenz attractor studied by Edward Lorenz is a chaotic sys-
tem that includes ordinary differential equations [24]. This attrac-
tor presents chaotic attributes for certain parameter values and
initial conditions. The model is a chaotic system with three ordi-
nary differential equations known as the Lorenz equations:

_x ¼ s � ðy� xÞ
_y ¼ x � ðr � zÞ � y
_z ¼ x � y� b � z

ð8Þ

where x; y; z represent the system states and s; r; b denote the sys-
tem parameters. In this study, these system parameters were deter-
mined such as s ¼ 11; r ¼ 25; b ¼ 8=3. These equations were
obtained from simplified mathematical model developed for atmo-
spheric convection [24].

3.2. Rössler attractor

Rössler attractor is formed by three differential equations that
are useful in modeling equilibrium in chemical reactions. The
Rössler attractor behaves similarly to the Lorenz attractor, but also
be easier to analyze [36]. The equations of the Rössler attractor are
given below:

_x ¼ �y� z
_y ¼ xþ a � y
_z ¼ bþ z � ðx� cÞ

ð9Þ

where x; y; z denote the system states and a; b; c are the system
parameters. In this study, these parameters were selected as
a ¼ 0:2; b ¼ 0:2; c ¼ 5.

3.3. Chua circuit

Chua’s circuit is a electronic circuit known as nonperiodic oscil-
lator. This circuit produces an oscillating waveform that exhibits
classic chaos behavior [7,8]. Chua circuit consists of two capacitors,
one inductance, one resistance and one Chua diode. As the results
of analyzing the Chua circuit, three ordinary differential equations
are found as below:

_x ¼ a½y� x� f ðxÞ�
_y ¼ x� yþ z
_z ¼ �by

ð10Þ

where z denotes inductance current, x and y represent the voltage
of the C1 and C2 capacities. a and b are the parameters determined
by the particular values of the circuit components. The function f(x)
defines the response of the nonlinear resistance and it’s equation is
given below

fðxÞ ¼ m0 � Vc1 þ
1
2
� ðm1 �m0ÞðjVR þ BP j � jVR � BPjÞ ð11Þ

In Chua circuit, the parameters were determined as a ¼ 15:6,
b ¼ 28, m0 ¼ �1:143, m1 ¼ �0:714.

3.4. Mackey-glass system

Mackey-Glass system exhibits the chaotic behaviors based on
the complex rhythms observed in physiology control systems
[25]. Mackey-Glass system has got one nonlinear delay-
differential equation given below.

_x ¼ axðt � sÞ
1þ xcðt � sÞ � bxðtÞ ð12Þ
volution algorithm for optimization of baker’s yeast drying process. Egyp-
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If (individual  min limit value) 
 individual  min limit value 
Else If (individual  max limit value)
 individual  max limit value 
End 

Fig. 2. The boundary strategy of chaotic DE algorithm.
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a, b, c are real numbers and s denotes the time delay in the
Eq.12. In this study, these coefficients are used as
a ¼ 0:2; b ¼ 0:1; c ¼ 10 and s ¼ 17.

4. Chaotic based differential evolution algorithm

In this study, the chaotic systems such as Lorenz, Rössler attrac-
tors were proposed to generate the individuals in the initial popu-
lation and the random values (Eq. 1–6) in the mutation and
crossover procedures instead of the random number generator.
In the optimization process, the initial values produced by the ran-
dom number generator can be similar or same values with each
other. This is undesirable condition because of reducing the diver-
sity in the initial population. In chaotic based differential evolution
algorithm, chaotic systems are solved for different initial seed val-
ues to obtain different number series at each runs [11,12]. These
initial values are the differences between the running/compiling
times and the predefined default time. Fig. 1 shows the pseudo
code of chaotic DE algorithm.

5. Benchmark functions

Ten benchmark functions from literature [15] were used to test
the performance of the proposed chaotic DE algorithm. The infor-
mation regarding the selected benchmark functions are given in
Table 1. These functions have different characteristic. Ackley func-
tion is characterized by a nearly flat outer region, and a large hole
Fig. 1. The pseudo code of

Table 1
Benchmark Functions.

Function name Problem

Ackley (FN1)
f ðxÞ ¼ �a exp �b

ffiffiffi
1
d

q�

Holder table (FN2)
f ðxÞ ¼ � sinðx1Þcosðx2

����
Rastrigin (FN3) f ðxÞ ¼ 10dþPd

i¼1 x2i
	

Rosenbrock (FN4) f ðxÞ ¼ Pd�1
i¼1 100ðxiþ1

h
Giunta (FN5) f ðxÞ ¼ 0:6þPd

i¼1 sin2
h

Penholder (FN6)
f ðxÞ ¼ �exp exp �

p����
�����

Himmelblau (FN7) f ðxÞ ¼ ðx21 þ x2 � 11Þ2
Schweffel (FN8) f ðxÞ ¼ 418:9829d�P
Six-hump Camel (FN9) f ðxÞ ¼ 4� 2:1x21 þ

x41
3

� �
Testtubeholder (FN10) f ðxÞ ¼ �4 exp cos 1

20

������
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at the center, Holder table function has many local minimal points
and four global minimal points at the corners. Rastrigin is highly
multimodal function, but locations of the minimal points are dis-
tributed. Rosenbrock is unimodal function, and the global mini-
mum lies in a narrow, parabolic valley. Guinta and Himmelblau
functions have not local minimal points and are characterized by
almost flat area. Pen holder and Test tube holder functions have
many local minimal points. Schweffel is complex function with
many local minimal points. Six-hump camel function has got
smooth surface and two global minimal points.
6. Optimization of baker’s yeast drying process

The fluidized-bed drying technique plays an important role
among modern drying methods. It is used mainly for granular
materials; on the other hand it is applicable also in the drying of
solutions, pastes and liquid sprayed onto the fluidized inert bed
[46,47]. The drying method is based on passing hot air through
chaotic DE algorithm.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i¼1x

2
i

�
� exp 1

d

Pd
i¼1cosðcxiÞ

� �
þ aþ expð1Þ

Þexp 1�
ffiffiffiffiffiffiffiffiffiffi
x21þx22

p
p

����
����

� �����
� 10cosð2pxiÞ



� x2i Þ

2 þ ðxi � 1Þ2
i

1� 16
15 xi

� �� 1
50 sin 4� 64

15 xi
� �� sin 1� 16

15 xi
� �i

ffiffiffiffiffiffiffiffiffiffi
x21þx22
p þ 1

����
�
cosðx1Þcosðx2Þ

����
�1

þ ðx1 þ x22 � 7Þ2
d
i¼1xisin

ffiffiffiffiffiffiffijxij
p

x21 þ x1x2 þ ð�4þ 4x22Þx22
0 x

2
1 þ 1

200 x
2
2

����sinðx1Þcosðx2Þ��
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Table 2
Experimental results (Mean Best & Std Dev.) with 50 independent runs of Chaotic based DE algorithms (CDE1, CDE2, CDE3, CDE4), DE, PSO, ABC, SA and TACO algorithms. CDE1: Lorenz, CDE2: Rossler CDE3: Chua CDE4: Mackey-Glass.

FN Mean Best (Std Dev)

No DE PSO ABC SA TACO CDE1 CDE2 CDE3 CDE4

FN1 8.49e�8 (6.03e�8) 2.59e�1 (5.85e�1) 1.90e�9 (7.68e�9) 2.7630 (1.8368) 8.69e�1 (1.066) 1.02e�7 (7.11e�8) 6.92e�1 (3.42) 9.81e�8 (6.77e�8) 7.99e�1 (3.95)
FN2 �19.208 (6.83e�9) �15.659 (4.336) �19.208 (5.89e�4) �19.168 (6.69e�2) �18.887 (6.33e�1) �19.208 (9.89e�9) �18.197 (4.045) �11.777 (7.451) �19.208 (2.61e�9)
FN3 1.99e�2 (1.41e�1) 9.79e�1 (8.17e�1) 9.29e�5 (4.57e�4) 8.97e�1 (6.26e�1) 4.39e�1 (5.37e�1) 3.98e�2 (1.97e�1) 5.57e�1 (1.919) 9.95e�1 (1.463) 1.035 (4.919)
FN4 2.15e�7 (7.10e�7) 9.36e�3 (1.68e�2) 1.09e�2 (1.06e�2) 2.97e�2 (4.32e�2) 3.35e�2 (5.47e�2) 1.00e�8 (1.12e�8) 1.27e�8 (1.32e�8) 1.09e�8 (1.02e�8) 3.99e�2 (1.14e�1)
FN5 6.44e�2 (8.14e�9) 6.45e�2 (1.01e�5) 6.45e�2 (3.07e�10) 6.48e�2 (6.37e�4) 6.45e�2 (3.34e�5) 6.44e�2 (1.39e�8) 6.44e�2 (1.47e�8) 6.44e�2 (1.39e�8) 6.73e�2 (2.03e�2)
FN6 �9.64e�1 (1.35e�8) �9.53e�1 (1.93e�2) �9.64e�1 (2.51e�7) �9.63e-1 (5.69e�4) �9.53e�1 (1.82e�2) �9.64e�1 (9.18e�9) �9.21e�1 (1.31e�1) �8.35e�1 (1.73e�1) �9.55e�1 (6.08e�2)
FN7 9.83e�6 (6.36e�5) 1.85e�2 (1.18e�1) 3.14e�4 (7.29e�4) 6.94e�2 (1.33e�1) 8.98e�3 (1.22e�2) 1.28e�8 (1.33e�8) 1.03e�8 (1.24e�8) 1.43e�8 (2.38e�8) 8.00e�4 (2.38e�3)
FN8 �8.37e+2 (8.45e�9) �6.98e+2 (9.95e+1) �8.38e+2 (5.93e�1) �8.04+2 (5.16e+1) �7.05e+2 (9.21e+1) �7.59e+2 (9.75e+1) �6.95e+2 (1.82e+2) �4.18e+2 (2.6e+2) �7.82e+2 (1.17e+2)
FN9 �1.0316 (1.38e�8) �1.0151 (1.15e�1) �1.0316 (6.34e�8) �1.0151 (2.76e�2) �5.50e�1 (3.73e�1) �1.0316 (1.39e�8) �1.0316 (1.13e�8) �1.0316 (9.61e�9) �1.0316 (1.01e�5)
FN10 �1.087e+1 (3.92e�3) �1.081e+1 (9.11e�2) �1.087e+1 (1.03e�3) �1.082e+1 (6.04e�2) �1.076e+1 (1.39e�1) �1.087e+1 (6.94e�3) �1.087e+1 (3.92e�3) �1.083e+1 (4.78e�2) �1.063e+1 (1.09)

Table 3
Experimental results (NFE50 & CPU-time50) with 50 independent runs of Chaotic based DE algorithms (CDE1, CDE2, CDE3, CDE4), DE, PSO, ABC, SA and TACO algorithms. CDE1: Lorenz, CDE2: Rossler CDE3: Chua CDE4: Mackey-Glass.

FN NFE50 (CPU-time50 sec)a

No DE PSO ABC SA TACO CDE1 CDE2 CDE3 CDE4

FN1 2968 (0.1682) 2780 (0.1797) 4056 (0.3147) 4000 (0.3305) 4000 (3.6866) 2380 (0.1262) 2124 (0.1085) 3156 (0.1825) 3980 (0.1833)
FN2 2760 (0.1466) 2272 (0.1272) 4193 (0.2731) 4000 (0.2687) 3184 (2.2134) 2132 (0.1029) 1320 (0.0881) 1508 (0.1077) 2780 (0.1474)
FN3 2144 (0.1139) 2356 (0.1372) 4200 (0.2679) 4000 (0.2674) 1972 (2.4539) 2124 (0.0951) 1676 (0.0782) 1920 (0.1015) 2104 (0.1308)
FN4 3912 (0.1969) 2276 (0.1149) 4198 (0.2686) 4000 (0.2698) 3708 (2.1505) 2056 (0.0907) 1892 (0.0726) 2208 (0.1225) 4000 (0.2064)
FN5 1152 (0.0649) 1476 (0.0867) 1692 (0.1347) 4000 (0.2900) 4000 (2.6088) 964 (0.0486) 876 (0.0483) 1560 (0.0571) 2308 (0.0687)
FN6 2156 (0.1089) 1700 (0.0923) 4194 (0.2609) 4000 (0.2685) 596 (0.6770) 1912 (0.0824) 1792 (0.0579) 1460 (0.0824) 2152 (0.0972)
FN7 3456 (0.1472) 2336 (0.1087) 4193 (0.2369) 4000 (0.2544) 3728 (3.0529) 1896 (0.0792) 1580 (0.0754) 1884 (0.0904) 4000 (0.1682)
FN8 2240 (0.1266) 2680 (0.1526) 4205 (0.2856) 4000 (0.2880) 2936 (2.6051) 1620 (0.0969) 1440 (0.0884) 1996 (0.1040) 2004 (0.1306)
FN9 2544 (0.1348) 2152 (0.0986) 4224 (0.2432) 4000 (0.2548) 904 (1.2308) 1580 (0.0988) 1348 (0.0851) 1860 (0.1153) 4000 (0.2279)
FN10 2684 (0.1570) 2116 (0.1089) 4211 (0.2571) 4000 (0.2557) 3792 (2.0574) 2644 (0.1372) 2012 (0.1209) 2244 (0.1159) 2708 (0.1540)

a NFEn: Number of function evaluations, CPU-timen: time taken by CPU per execution (average of ’n’ executions).
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the fluidized bed. The fluid bed consists of centrifugal fan to supply
air flow from ambient air. There are two essential output parame-
ters known as the moisture content and the product temperature
in drying process [21]. In general, the drying process has got three
phases. In the first phase is loaded with granulated material to be
dried. Then drying temperature is increased to initiate constant
drying phase. Third is reduced drying phase or called falling rate
period. Finally dried material discharged from the dryer when
the desired end dry matter was reached [22].

The main target of the drying process optimization is to
improve the efficiency in the fluidized bed dryer in terms of energy
consumption and quality loss. In order to do this, the production
has to be performed minimum energy consumption and maximum
quality together [23]. A multi-objective function can be described
by total energy, product quality and moisture content. This objec-
tive function is given as Eq. (13),

J ¼ auaTaðcp;a þ cp;wvYaÞ þ bð�X � XdÞ þ cðQd � QÞ ð13Þ
where a;b; c denote the weighting factor in the objective function,
ua is the air flow rate (kg/s), Ta represents the air temperature (K),
cp;a and cp;w represent air heat capacity and water vapor (J/kg K)
respectively, Ya is humidity of air (kg water vapor/kg dry air), �X is
average moisture content (kg water/kg dry solid), Xd is desired
moisture content, Q represents product quality or the loss of pro-
duct activity, Qd is desired quality value (%100).
7. Results and discussion

In this section, the chaotic based DE algorithms were firstly run
for different optimization problems to evaluate their perfor-
mances. In addition to these simulations, for optimization of the
baker’s yeast drying process, the proposed chaotic based DE
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algorithms were compared with classic DE algorithm, PSO algo-
rithm [19,30], ABC algorithm [16–18], SA algorithm [20], TACO
algorithm [28].
7.1. Benchmark tests

All chaotic based DE algorithms were coded on PC with Intel(R)
Core(TM) i5-3230 M CPU 2.60 GHz/8 GB RAM. The DE strategy
used in these algorithms was selected as DE/rand/1/bin and the
DE parameters were used as CR = 0.5, F = 0.8. For PSO algorithm,
the learning factors (c1,c2) were selected as 2.05 and the evapora-
tion coefficient for TACO algorithm was used as 0.1 according to
the studies from literature. In all algorithms, population size was
determined as 20. The termination criterion was determined as
iteration or generation reaches the maximum number of iteration
or generation and jfitnessðbestÞ � fitnessðworstÞj ¼ VTR. VTR repre-
sents the value to reach and it was used as 1� 10�6. The maximum
number of iteration was used as 200 for all optimization problems.
All bound violation were repaired by holding at the boundary strat-
egy given in Fig. 2. Table 2 summarizes the average results of 50
independent runs of the proposed chaotic based DE algorithms
and DE, PSO, ABC, SA, TACO algorithms consecutively.

In Table 2, mean best indicates the average of minimum values
obtained by the proposed chaotic DE algorithms and the other
heuristic algorithms. This indicator represents with the standard
deviation (std dev) to evaluate the performances of the algorithms.
As can be seen from this table, Lorenz based DE algorithm (CDE1)
that reaches the best minimum values in 60% of all test functions.
Rossler based DE algorithm (CDE2) found the best global values in
40% of all the test functions. Chua based DE algorithm (CDE3) has
got the performance with the best minimum values in 20% of all
test functions. Mackey-Glass based DE algorithm (CDE4) is
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Fig. 5. Average best fitness curves of CDE Algorithms and Differential Evolution Algorithm for selected benchmark functions. All experimental results are means of 50
independent runs. (a) Test function FN1. (b) Test function FN5. (c) Test function FN7. (d) Test function FN10.
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Fig. 6. The fitness curves for test function FN10. (a) DE Algorithm. (b) Lorenz based DE Algorithm. (c) Rossler based DE Algorithm. (d) Chua based DE Algorithm. (e) Mackey-
Glass based DE Algorithm.
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successful for only two functions. Finally, ABC algorithm is the best
algorithm in terms of the mean value/standard deviation results.
This table result shows that Lorenz based DE algorithm (CDE1)
and Rossler based DE algorithm (CDE2) provide very competitive
results.

In terms of the number of function evaluations (NFE) and CPU-
time, Table 3 summarizes the results obtained by CDE algorithms
and DE, PSO, ABC, SA, TACO algorithms. In Table 3, NFE indicator
represents with the CPU-time (second) to compare the perfor-
mances of all algorithms. Lorenz and Rossler based DE algorithms
(CDE1 and CDE2) have the most minimum values among the NFE
and CPU-time indicators. Both of CDE algorithms are faster than
other heuristic algorithms. Chua based DE algorithm (CDE3) has
got the performance with the best NFE and CPU-time values in
50% of all test functions. The comparison shows that the chaotic
based DE algorithms give better results than DE algorithm accord-
ing to the CPU-time and NFE indicators. The CDE2 algorithm has
the best performance according to the NFE and CPU values.

Fig. 3 shows average best fitness curves for the chaotic based DE
algorithms and PSO, ABC, SA and TACO algorithms for the test func-
tion FN9. For the function FN1, the average best fitness curves with
50 independent runs are plotted in Fig. 4 for each CDE algorithms
with the other heuristic algorithms. As can be seen from these fig-
ures, it can be said that the proposed CDE algorithms are successful
for the both test functions. Fig. 5 shows the average best fitness
curves for the CDE algorithms and DE algorithm with 50 indepen-
dent runs for the benchmark functions FN1, FN5, FN7, FN10. For
Please cite this article in press as: Yüzgeç U, Eser M. Chaotic based differential e
tian Informatics J (2018), https://doi.org/10.1016/j.eij.2018.02.001
the function FN10, the fitness curves with 50 independent runs
are plotted in Fig. 6.
7.2. CEC 2014 benchmark tests

In the CEC 2014 tests, there are 30 numerical minimization
problems. They consist of the four groups: unimodal functions
(F1–F3), simple multimodal functions (F4–F16), hybrid function
(F17–F22) and composition functions (F23–F30). The detailed
information about the CEC 2014 test functions can be found in [51].

Table 4 gives the experimental results of DE algorithm and pro-
posed CDE algorithms for 10D CEC 2014 all test functions. This
table presents the best, worst, mean, median and standard vari-
ance values of function error values for the 51 runs. In Fig. 7, the
boxplots are shown for mean values of function error of the pro-
posed CDE algorithms and DE algorithm on 10D. According to this
figure, especially CDE1 and CDE2 algorithms present competitive
results for all test functions. The performance of the other chaotic
algorithms (CDE3 and CDE4) are worse than those of DE, CDE1 and
CDE2 algorithms.

We used a non-parametric Wilcoxon ranksum test to determine
if all sets of solutions are different statistically significant or not.
This statistical test returns a value that is called p-value. In this
study, CDE algorithms and DE algorithm are statistically tested.
Table 5 shows the p-values of the Wilcoxon ranksum test over
10D CEC 2014 functions. If the algorithm’s p-value is less than
volution algorithm for optimization of baker’s yeast drying process. Egyp-
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Table 4
Experimental results of DE algorithm and proposed Chaotic based DE algorithms in for 10D CEC 2014 test functions.

DE CDE1 CDE2 CDE3 CDE4

Fn Best Worst Median Mean Std Best Worst Median Mean Std Best Worst Median Mean Std Best Worst Median Mean Std Best Worst Median Mean Std

1 440.5 2804.1 1543.1 1530.8 474.8 0.0 9934.8 119.5 1285.0 2447.2 0.0 4412.3 545.7 948.2 1193.6 30649.5 245376.2 77282.7 83482.1 38742.0 57707.8 1532580.2 294622.3 342183.3 243587.2
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.8 365211.5 439.0 15266.0 58769.7
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.8 3601.3 746.9 990.6 796.5 0.0 1889.7 79.4 226.4 330.0
4 0.0 34.8 0.0 1.0 4.9 0.0 34.8 0.0 2.2 8.3 0.0 34.8 0.0 0.7 4.9 0.0 34.8 0.4 5.0 11.1 0.2 56.2 0.6 3.3 8.5
5 17.5 20.2 20.1 20.0 0.5 19.5 20.3 20.3 20.2 0.1 0.0 20.4 20.3 18.9 4.9 19.4 20.3 20.1 20.1 0.1 18.2 20.2 20.1 20.0 0.3
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.3 0.5 0.0 3.8 0.2 0.7 1.0
7 0.1 0.3 0.2 0.2 0.0 0.1 0.5 0.4 0.4 0.1 0.0 0.6 0.4 0.4 0.1 0.2 0.4 0.3 0.3 0.0 0.1 0.9 0.2 0.2 0.1
8 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 0.9 1.8 0.0 34.8 5.8 7.4 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 7.3 13.3 10.7 10.5 1.7 10.6 25.9 20.0 19.8 3.0 4.0 35.7 19.8 19.4 7.3 11.6 25.5 19.0 18.6 3.1 6.6 25.2 12.4 12.9 3.6
10 0.0 0.1 0.0 0.0 0.0 44.9 236.7 115.2 116.2 44.6 0.2 770.6 141.3 172.1 153.8 0.0 7.5 0.1 0.6 1.3 0.0 0.2 0.0 0.0 0.0
11 279.9 645.3 457.7 469.0 77.4 569.0 1021.6 800.9 809.6 114.0 10.4 1201.1 823.2 748.0 284.7 218.9 670.1 460.4 463.5 112.7 290.2 827.0 624.9 621.1 128.1
12 0.2 0.5 0.4 0.4 0.1 0.3 1.0 0.7 0.7 0.1 0.0 1.3 0.9 0.8 0.3 0.5 1.0 0.8 0.8 0.1 0.2 0.5 0.3 0.4 0.1
13 0.1 0.2 0.2 0.1 0.0 0.1 0.2 0.2 0.2 0.0 0.0 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.0 0.1 0.4 0.2 0.2 0.0
14 0.0 0.1 0.1 0.1 0.0 0.1 0.2 0.1 0.1 0.0 0.0 0.3 0.1 0.1 0.0 0.1 0.2 0.1 0.1 0.0 0.0 0.3 0.1 0.1 0.0
15 0.9 1.8 1.3 1.4 0.2 1.4 2.5 2.0 2.0 0.3 0.4 3.2 2.1 2.0 0.6 1.2 2.3 1.8 1.8 0.3 0.9 5.3 1.5 1.7 0.8
16 1.6 2.6 2.2 2.2 0.2 1.9 2.9 2.5 2.5 0.2 0.9 2.8 2.5 2.4 0.4 1.7 2.7 2.4 2.4 0.2 1.6 2.7 2.3 2.3 0.2
17 10.9 31.2 19.7 19.9 4.8 2.7 65.4 14.2 16.5 12.3 0.0 26.6 3.8 5.4 6.3 491.4 4874.1 1164.0 1292.4 659.2 416.4 16065.1 2168.1 3084.1 2897.9
18 0.6 1.9 1.2 1.2 0.4 0.1 4.9 1.5 1.9 1.5 0.0 4.8 0.6 1.6 1.7 2.0 8.4 4.1 4.3 1.1 4.7 342.7 40.7 62.1 67.2
19 0.1 0.4 0.2 0.2 0.1 0.3 1.0 0.6 0.6 0.2 0.0 1.0 0.6 0.5 0.3 0.6 1.9 1.7 1.6 0.2 0.7 1.6 1.1 1.2 0.2
20 0.0 0.1 0.0 0.0 0.0 0.0 0.6 0.0 0.1 0.1 0.0 0.6 0.0 0.1 0.1 0.8 64.4 14.9 17.2 16.1 1.8 33.6 6.9 9.8 7.4
21 0.0 0.4 0.1 0.1 0.1 0.0 1.2 0.2 0.3 0.2 0.0 0.7 0.1 0.1 0.2 1.3 62.3 2.4 4.8 9.0 23.6 1955.7 164.3 265.7 342.1
22 0.0 0.3 0.0 0.0 0.0 0.0 1.3 0.2 0.3 0.3 0.0 1.2 0.1 0.2 0.3 0.1 1.0 0.4 0.4 0.2 0.2 15.2 2.5 3.8 3.9
23 329.5 329.5 329.5 329.5 0.0 329.5 329.5 329.5 329.5 0.0 200.0 329.5 200.0 248.2 63.2 218.8 329.5 329.5 317.8 30.1 246.1 330.9 329.5 325.7 16.1
24 113.9 123.4 119.0 118.8 2.1 120.6 134.7 127.4 127.7 3.1 110.6 200.5 127.3 132.2 20.9 115.6 128.7 122.4 122.2 2.7 114.2 131.8 122.4 122.7 3.8
25 122.7 201.4 132.5 137.1 17.8 114.7 201.2 132.1 151.5 32.1 100.0 199.6 128.3 125.7 16.6 127.8 147.1 135.9 136.5 4.3 122.2 157.2 142.2 143.0 5.7
26 100.1 100.2 100.2 100.2 0.0 100.1 100.2 100.2 100.2 0.0 100.0 100.3 100.2 100.2 0.0 100.1 100.2 100.2 100.2 0.0 100.1 100.3 100.2 100.2 0.0
27 1.5 300.0 2.2 43.0 103.5 1.4 400.1 2.4 78.2 139.8 1.2 400.1 2.5 57.0 119.6 1.7 338.9 300.3 177.4 145.0 2.8 400.8 8.1 108.3 154.3
28 356.8 362.2 356.8 356.9 0.8 356.8 455.7 356.8 372.3 36.3 100.0 478.0 455.7 398.5 116.2 114.6 390.0 356.9 347.8 47.0 358.5 452.2 376.5 382.1 18.3
29 228.3 239.7 232.3 233.0 2.4 100.1 246.9 223.3 207.2 41.8 100.0 223.4 221.8 187.7 52.4 343.2 775.1 512.6 506.5 101.1 263.9 543.1 382.4 389.1 65.0
30 476.2 527.5 497.7 498.3 8.8 463.3 508.0 469.4 473.4 10.7 462.3 546.3 466.4 479.2 21.9 630.4 1123.1 760.6 778.8 121.3 525.6 955.3 624.0 658.4 100.3
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Fig. 7. Boxplot of comparative convergence for all CEC 2014 test functions (a) Func. No. 1–6, (b) Func. No. 7–12, (c) Func. No. 13–18, (d) Func. No. 19–24, (e) Func. No. 25–30.
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Table 5
p-Values of the Wilcoxon ranksum test over 10D CEC 2014 functions.

FN DE CDE1 CDE2 CDE3 CDE4

1 5.145E-10 5.145E-10 4.004E-10 5.145E-10 5.145E-10
2 9.237E-13 2.317E-11 9.237E-13 9.237E-13 5.145E-10
3 9.237E-13 9.237E-13 9.237E-13 5.145E-10 5.145E-10
4 5.141E-10 5.140E-10 2.877E-10 5.134E-10 5.145E-10
5 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
6 9.237E-13 9.237E-13 9.237E-13 4.659E-10 5.145E-10
7 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
8 9.237E-13 3.475E-10 5.139E-10 9.237E-13 9.237E-13
9 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
10 2.244E-11 5.145E-10 5.145E-10 5.039E-10 2.321E-11
11 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
12 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
13 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
14 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
15 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
16 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
17 5.145E-10 5.145E-10 4.963E-10 5.145E-10 5.145E-10
18 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
19 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
20 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
21 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
22 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
23 9.237E-13 9.237E-13 3.756E-10 1.783E-11 4.747E-10
24 5.145E-10 5.145E-10 5.144E-10 5.145E-10 5.145E-10
25 5.145E-10 5.134E-10 5.141E-10 5.145E-10 5.145E-10
26 5.140E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
27 5.145E-10 5.082E-10 5.052E-10 5.145E-10 5.145E-10
28 5.144E-10 5.072E-10 4.433E-10 5.145E-10 5.145E-10
29 5.145E-10 5.145E-10 5.111E-10 5.145E-10 5.145E-10
30 5.145E-10 5.145E-10 5.145E-10 5.145E-10 5.145E-10
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Fig. 8. The moisture content, temperature and product quality during optimization proce
based DE algorithm, CDE3: Chua based DE algorithm, CDE4: Mackey-Glass based DE algo
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0.05 then it is statistically significant. The statistical tests show
that the results are statistically significant for all CDE algorithms.

7.3. Optimization of baker’s yeast drying process

The optimization problem of baker’s yeast drying process is
given below

min
Ta ;Ya

JðTa;YaÞ ð14Þ
293 K 6 Ta 6 373 K; 0 6 Ya

6 5:10�3 kg water vapor= kg dry air ð15Þ
The air temperature (Ta) and the humidity of air (Ya) are the

manipulated variables regarding optimization process. The param-
eters of drying process of the baker’s yeast were determined as ini-
tial moisture content equals 1.563 kg water/kg dry solid, the air
flow rate equals 12000 kg air h�1 for cylindrical granule. Fig. 8
shows the optimization results obtained by chaotic based DE algo-
rithms and DE algorithm. The trends of the moisture content, tem-
perature and product quality during drying process can be seen
from these figures.

According to the final moisture content value at the end of the
drying process, all chaotic based DE algorithms have got the same
performances approximately, but DE algorithm is better than the
proposed chaotic based DE algorithms. The shortest drying time
(25 min) belongs to the Mackey-Glass based DE algorithm and all
chaotic based DE algorithms have better drying time than classic
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Table 6
Optimization results of chaotic based differential evolution algorithms.

DE CDE1 CDE2 CDE3 CDE4

Q (%) 96.133 98.685 98.320 97.964 97.037
Xf (kg/kg) 0.04148 0.07820 0.06192 0.077676 0.074227
Ja (kJ) 2.353.000 1.965.700 2.098.900 1.991.900 1.877.100
t (sec) 1983 1594 1747 1592 1495
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Fig. 9. The optimization results (air temperature and humidity of air) solved by Chaotic based DE algorithms. CDE1: Lorenz based DE algorithm, CDE2: Rossler based DE
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DE algorithm. The product quality is the important parameter in
the biomass drying process especially. The result obtained by
Lorenz based DE algorithm is the best final value in terms of the
product quality. As can be seen from the temperature profiles
found by all chaotic based DE and classic DE algorithms, the flu-
idized bed temperature value increases at the beginning of the pro-
cess, then it follows to the fixed stable value, it has rising trend at
the end of the process. The profiles of air temperature (Ta) and the
humidity of air (Ya) obtained by the proposed algorithms are
shown in Fig. 9. The product quality (Q), the energy cost of air
(Ja), the final moisture content (Xf) and the total drying period (t)
at the end of the drying process are given in Table 6. The energy
cost of air was given as Ja ¼ auaTaðcp;a þ cp;wvYaÞ in Eq. (13). Accord-
ing to the product quality, the best value was observed by Lorenz
based DE algorithm (CDE1) as%98.685. All of the chaotic based DE
algorithms have better drying time than the time of classic DE
algorithm.

As can be seen from the energy cost values, Mackey-Glass based
DE algorithm (CDE4) has got the best minimum cost at the end of
the process and the performance of the classic DE algorithm is
worse than the performances of the chaotic based DE algorithms.
The baker yeast, the microorganism Saccharomyces cerevisiae was
used for experimental data of the drying process in this study. In
the experimental data for cylindrical granules, the total drying
time was measured as 27 min without loading period, the product
quality was obtained as%89.6, the moisture content was measured
as 0.069 kg/kg and the energy cost of air in drying process was cal-
culated as 1.944.500 kJ respectively. The product quality value at
the end of the drying process was held on the higher level than
the value taken from experimental data. In this way, the dry bio-
mass product that has more quality has been obtained by both
DE algorithm and chaotic based DE algorithms. Besides, total dry-
ing time has been decreased by the chaotic based DE algorithms
without CDE2. It is clear that no algorithm’s perform shows
Please cite this article in press as: Yüzgeç U, Eser M. Chaotic based differential e
tian Informatics J (2018), https://doi.org/10.1016/j.eij.2018.02.001
superiorly than the experimental data in terms of moisture content
and energy cost of air.
8. Conclusion

In this paper, Chaotic based Differential Evolution (CDE) algo-
rithm has been introduced and compared to classic Differential
Evolution (DE) for optimization of benchmark test functions and
optimization of baker’s yeast drying process. The chaotic based
structure were proposed to generate the individuals in the popula-
tion instead of the random number generator. CDE includes four
different chaotic systems such as Lorenz, Rossler, Chua and
Mackey-Glass functions. The proposed CDE algorithms has been
implemented and tested on benchmark optimization problems
taken from the literature. The popular heuristic algorithms (DE,
PSO, ABC, SA and TACO) have been used for the performance eval-
uation works with the proposed CDE algorithms. The comparison
results with 50 independent runs show that the performances of
the proposed CDE1 and CDE2 algorithms are better than the other
heuristic algorithms in terms of the mean best value and standard
deviation. According to the CEC 2014 test results, the CDE1 and
CDE2 algorithms provide the competitive results.

In this paper, applying DE and CDE algorithms to the optimiza-
tion of baker’s yeast drying process was focused. In biomass drying
process, there are four important parameters, such as product
quality, drying total time, energy cost of used hot air and final
moisture content. In comparison with the data taken from a baker’s
yeast producer in Turkey, especially the improvement on the pro-
duct quality has been provided by CDE algorithms. Besides, it is
obvious that the results of CDE algorithms were better than the
results of DE algorithm in terms of the process output values
except for only moisture content. In the future works, the proposed
CDE algorithms will be implemented for different processes and
their performances will be evaluated and compared with the other
heuristic methods.
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