
Big Data Research 13 (2018) 76–94
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Selective and Recurring Re-computation of Big Data Analytics Tasks:

Insights from a Genomics Case Study ✩

Jacek Cała ∗, Paolo Missier

School of Computing, Newcastle University, Newcastle upon Tyne, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 November 2017
Received in revised form 7 June 2018
Accepted 20 June 2018
Available online 14 August 2018

Keywords:
Re-computation
Knowledge decay
Big data analysis
Genomics

The value of knowledge assets generated by analytics processes using Data Science techniques tends to
decay over time, as a consequence of changes in the elements the process depends on: external data
sources, libraries, and system dependencies. For large-scale problems, refreshing those outcomes through
greedy re-computation is both expensive and inefficient, as some changes have limited impact. In this
paper we address the problem of refreshing past process outcomes selectively, that is, by trying to identify
the subset of outcomes that will have been affected by a change, and by only re-executing fragments of
the original process. We propose a technical approach to address the selective re-computation problem
by combining multiple techniques, and present an extensive experimental study in Genomics, namely
variant calling and their clinical interpretation, to show its effectiveness. In this case study, we are able
to decrease the number of required re-computations on a cohort of individuals from 495 (blind) down
to 71, and that we can reduce runtime by at least 60% relative to the naïve blind approach, and in some
cases by 90%. Starting from this experience, we then propose a blueprint for a generic re-computation
meta-process that makes use of process history metadata to make informed decisions about selective
re-computations in reaction to a variety of changes in the data.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

In Data Science applications, the insights generated by resource-
intensive data analytics processes may become outdated as a
consequence of changes in any of the elements involved in the
process. Changes that cause instability include updates to refer-
ence data sources, to software libraries, and changes to system
dependencies, as well as to the structure of the process itself. We
address the problem of efficiently restoring the currency of analyt-
ics outcomes in the presence of instability. This involves a trade-off
between the recurring cost of process update and re-execution in
the presence of changes on one side, and the diminishing value
of its obsolete outcomes, on the other. Addressing the problem
therefore requires knowledge of the impact of a change, that is, to
which extent the change invalidates the analysis, as well as of the
cost involved in upgrading the process and running the analysis
again. Additionally, it may be possible to optimise the re-analysis
given prior outcomes and detailed knowledge of, and control over,
the analysis process.

✩ This article belongs to Special Issue: Medical Data Analytics.

* Corresponding author.
E-mail addresses: Jacek.Cala@ncl.ac.uk (J. Cała), Paolo.Missier@ncl.ac.uk

(P. Missier).
https://doi.org/10.1016/j.bdr.2018.06.001
2214-5796/© 2018 Elsevier Inc. All rights reserved.
1.1. Motivation: genomics data processing

In this paper we focus specifically on Genomics data processing,
as it is a relevant and paradigmatic case study for experimenting
with general re-computation strategies. Next Generation Sequenc-
ing (NGS) pipelines are increasingly employed to analyse individu-
als’ exomes (the coding region of genes, representing about 1% of
the genome), and more recently whole genomes, to extract insight
into suspected genetic diseases, or to establish genetic risk factors
associated with some of the most severe human diseases [1–3].
NGS pipelines provide an ideal testbed to study the re-computation
problem, as they are relatively unstable and are used to process
large cohorts of individual cases. They are also resource-intensive:
exome files are of the order of 10 GB each, and a batch of 20–40
exomes is required for the results to be significant. Each 1TB+
input batch requires over 100 CPU-hours to process. Specific per-
formance figures for our own pipeline implementation, which runs
on the Azure cloud, can be found in [4].

While the cost and execution time associated to a single exe-
cution of these pipelines is decreasing over time [5,4], recent ad-
vances in preventive and personalised medicine [6] translate into
ambitious plans to deploy genomics analysis at population scale. At
the same time, although relatively stable best practices are available

https://doi.org/10.1016/j.bdr.2018.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:Jacek.Cala@ncl.ac.uk
mailto:Paolo.Missier@ncl.ac.uk
https://doi.org/10.1016/j.bdr.2018.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2018.06.001&domain=pdf

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 77
Fig. 1. The Next Generation Sequencing pipeline; highlighted is the variant classification step.
to describe the general structure of the analysis process,1 their im-
plementations make use of algorithms and tools that are subject
to frequent new releases, as well as of reference databases that
undergo regular revisions.

In this setting, failing to react to important changes results in
missed opportunities to improve on an individual’s genetic diagno-
sis. On the other hand, over-reacting to each and every change is
impractical and inefficient, as in many cases the benefits of refresh
may be marginal. Using genomics data processing as a case study,
we are therefore motivated to explore techniques for selective and
incremental re-computation that optimise the use of the available
computing resources vis-à-vis the expected benefit of knowledge
refresh on a population of prior outcomes.

1.2. Reacting to changes: a meta-process

To clarify the meaning of selectivity and incremental re-compu-
tation in this context, consider: a collection C of cases, e.g., a co-
hort of individuals’ genomes; an analysis process P , e.g. an NGS
pipeline; a collection of executions of P on each input xi ∈ C ,
which generate corresponding outcomes yi with processing cost
ci ; and a set D = {d1 . . .dm} of versioned dependencies, i.e., soft-
ware libraries or reference databases. When a new version D ′

j of
a dependency D j ∈ D becomes available, we expect the change
D j → D ′

j to have different impact on different outputs yi com-
puted at some earlier time: some of these outputs will be unaf-
fected, while others will be partially or completely invalidated, as
we will show in examples later.

We are going to define impact in terms of a change on a spe-
cific output yi in terms of some type-specific diff functions that
compute the differences between two versions yi , y′

i of an output.
Assuming that expected impact can be estimated, we define the
scope of the change as the subset of C ′ ⊆ C of inputs xi such that
the change will have non-zero impact on the corresponding output
yi , and the selectivity of the change as 1 − |C ′|

|C | . Those xi ∈ C that are
within the scope of a change are candidates for re-computation,
and it may be possible to prioritise them using knowledge of the
cost ci of their earlier processing, the quantified extent of impact,
along with domain-specific knowledge of their relative importance
(for instance, more severe genetic diagnoses). Such considerations,
however, are beyond the scope of this paper.

Instead, here we study techniques to (i) estimate the scope of
a change, without having to recompute each output, and (ii) per-
form incremental re-computation: given a white box specification
of P , for instance as a script or as a workflow, we want to effi-
ciently identify the minimal fragment of P that is affected by the
change, in order to optimise the re-computation of the xi that are
within the scope of the change. We define such techniques within
the framework of the ReComp meta-process. ReComp takes as in-
put a history of prior analysis and a change event, as indicated
above, and controls the incremental re-execution of the underly-

1 https://software .broadinstitute .org /gatk /best -practices.
ing process P on selected inputs that are within the scope of the
change.

Not all scenarios involving C , P , and changes in P ’s dependen-
cies are equally suitable for optimisation using ReComp, however.
Specifically, ReComp is most effective when changes have high se-
lectivity (only few of the cases are affected), when process P is a
white box; and when the change affects only a few of P ’s compo-
nents, providing scope for incremental re-computation. In the next
section we select our target case study following these three re-
quirements, by analysing three scenarios involving different refer-
ence data and software tool changes within the realm of Genomics.
Firstly, however, we must briefly describe NGS pipelines.

1.3. Variant calling and interpretation

Fig. 1 depicts the anatomy of the NGS pipeline implementation
available from our lab. It consists of two main phases: (i) exome
analysis and variant calling and annotation [4], and (ii) variant
interpretation [7]. The first phase closely follows the guidelines is-
sued by the Broad Institute.2 It takes a batch of raw input exomes
and, for each of them, produces a corresponding list of variants, or
mutations, defined relative to the current reference human genome
(in the order of tens of thousands). Particularly critical in this
phase are the choices of reference genome, currently at version
h19, and the choice and version of the variant caller. Currently we
use FreeBayes [8], one of several such algorithms [9]. At the end of
this phase, each variant will have been annotated using a variety of
statistical predictors of the likelihood that the variant contributes
to a specific genetic disease.

Only a very small fraction of these variants are deleterious,
however. The second phase, which we have called Simple Variant
Interpretation (SVI in the figure), aims to identify those the few
tens of variants that may be responsible for an individual’s phe-
notype, i.e., the manifestation of a suspected genetic disease. In
addition to using the predictors, SVI also makes use of databases
that associate phenotype descriptions with sets of genes that are
known to be broadly implicated in the phenotypes, such as OMIM
GeneMap.3 It also uses databases of known variants and their dele-
teriousness such as NCBI ClinVar,4 HGMD,5 and possibly others.6

In more detail, the SVI portion of the pipeline consists of three
main steps (Fig. 2): (1) mapping the user-provided clinical terms
that describe a patient’s phenotype to a set of relevant genes
(genes-in-scope), (2) selection of those variants that are in scope,
that is, the subset of the patient’s variants that are located on
the genes-in-scope, and (3) annotation and classification of the
variants-in-scope according to their expected pathogenicity. Clas-
sification consists of a simple traffic-light system {red, green, and
amber} to denote pathogenic, benign and variants of unknown or
uncertain pathogenicity, respectively. In this process, the class of a

2 https://software .broadinstitute .org /gatk /best -practices.
3 http://data .omim .org.
4 https://www.ncbi .nlm .nih .gov /clinvar.
5 http://www.hgmd .cf .ac .uk.
6 http://grenada .lumc .nl /LSDB _list /lsdbs.

https://software.broadinstitute.org/gatk/best-practices
https://software.broadinstitute.org/gatk/best-practices
http://data.omim.org
https://www.ncbi.nlm.nih.gov/clinvar
http://www.hgmd.cf.ac.uk
http://grenada.lumc.nl/LSDB_list/lsdbs

78 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
Fig. 2. The high-level architecture of the SVI process.
variant is determined simply by its pathogenicity status as reported
in ClinVar. Importantly, if any of the patient variants is marked as
red, the phenotype hypothesis is deemed to be confirmed, with
more red variants interpreted as stronger confirmation.

1.4. Candidate re-computation scenarios

We now present three real scenarios for changes to the pro-
cessing pipeline just described, as candidates for our in-depth ex-
perimentation: (i) a step change in the reference genome assembly,
(ii) version upgrade to the variant caller, and (iii) updates to one
of the SVI reference databases, ClinVar.

1.4.1. Step change in reference genome assembly
The reference genome is currently undergoing major changes

within the bioinformatics community. The history of how the
Genome Reference Consortium (GRC) managed the progression of
the human genome assembly since 2007 is summarised for in-
stance in [10]. While this provides detailed insight for the inter-
ested reader, for our purposes it suffices to note that the Global
Alliance for Global Health7 is working on a new reference genome,
h38, that is so drastically different from its predecessors, to re-
quire a re-design of most tools and of the entire pipeline. There
are two main reasons why h38 will be disruptive. Firstly, it will
be graph-structured, taking into account multiple possible tran-
scriptions of the same gene (i.e., during protein synthesis), and
secondly, it is the first coordinate-changing assembly update since
2009 [11]. Such disruptive step-changes are rare, however, as the
current genome assembly, h19, has been stable for a number of
years and is likely to remain in use for quite some time. From the
ReComp perspective, this change is likely to have very low selec-
tivity, i.e., every case in C (every genome ever processed) will be
affected, while not leaving much space for fine-grained selection
of sub-processed with the established pipeline P , because most of
its elements will be disrupted.

1.4.2. Variant caller version change
Complementary to updates in reference datasets, new releases

for one of the tools that make up the pipeline also represent
notable change events that may trigger re-computation. The Free-
bayes caller we use in our pipeline, for instance, has seen multiple
releases between 12/2013 (v0.9.10) and 04/2018 (v1.2.0, current at
the time of writing). To assess the broad impact of these changes,
we have compared the output variant sets for 16 patients using
three versions of the caller, namely v0.9.10, v1.0.2 (12/2015), and
v1.1 (11/2016). The results, shown in Fig. 3, are consistent with
other, more extensive comparative studies like [12]. In particular,
we can see that over 50,000 of the variants that appear in the
v0.9.x output are no longer identified as such in v1.0.2, represent-
ing a substantial 10.3% false positive detection over the previous

7 http://genomicsandhealth .org/.
Fig. 3. Variations in variants produced by different versions of the FreeBayes caller.

version. Conversely, the minor version upgrades are much more
consistent with each other. This provides empirical evidence of in-
stability of analysis outcomes especially in the early releases of
new critical algorithms as part of established pipelines.

1.4.3. Updates to the SVI reference databases
Our third candidate change scenario involves version changes

in ClinVar, one of the reference databases used in the SVI por-
tion of the pipeline. We analysed the variants for a cohort of 33
patients for three distinct phenotypes: Alzheimer’s disease, Fron-
totemporal Dementia-Amyotrophic Lateral Sclerosis (FTD-ALS) and the
CADASIL syndrome. For each patient we ran SVI using consecutive
monthly versions of ClinVar, from 07/2015 to 10/2016, for a total
of 16 re-runs per patient, and recorded whether the new version
would have modified a diagnosis that had been obtained using the
previous version. A change in diagnosis occurs when new variants
are added to the selection, others are removed, or existing vari-
ants change their classification because their status in ClinVar has
changed.

Table 1 summarises the results. We recorded four types of out-
comes. Firstly, confirming the current diagnosis (�), which hap-
pens when additional variants are added to the red class. Sec-
ondly, retracting the diagnosis, which may happen (rarely) when
all red variants are retracted, denoted ❖. Thirdly, changes in the
amber class which do not alter the diagnosis (�), and finally, no
change at all ().

These results, however limited in scope, suggest good selectiv-
ity for this type of change. Indeed, the majority of the changes
reported here are ultimately of low interest to clinicians, and so
greedy re-computation would be highly inefficient. This comes as
little surprise because some human genetic diseases tend to be un-

http://genomicsandhealth.org/

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 79
Table 1
Changes observed in the output of the SVI tool for a cohort of 33 patients following updates in the NCBI ClinVar reference database
between July 2015 and October 2016; � and ❖ – significant (positive and negative) changes in the SVI output, � – insignificant change
in the output, ‘ ’ – no change at all.

Table 2
Comparison between of changes and expected ReComp effectiveness.

Change ReComp effectiveness

Scenario Type Rate Granularity Selectivity Optimisation opportunities

h19 → h38 Data Low (years) Coarse Low: high impact over entire cohort Low: entire process disrupted

Variant caller
version change

Algorithm Every few months N/A High: most cases only marginally
affected

High but straightforward: always
restart from variant calling

SVI Data Monthly Fine (individual records) High: most cases unaffected, many
not significantly affected, very few
changes in diagnosis

High: partial, differential re-run
possible
derpinned by a very few rare variants [13], whilst those associated
with common diseases (as above) are widely studied. Therefore,
the knowledge about them is quite stable, especially when consid-
ered on a monthly time scale. This also suggests that rare diseases
may provide a more compelling case for selective re-computation,
as knowledge about them is more likely to evolve over time. Fi-
nally, we note that some updates have a higher impact than others,
for instance the 08/2016 release of ClnVar.

1.4.4. Choice of target experimental study
The characteristics of the changes just presented are sum-

marised in Table 2. As noted above, a reference genome change
results in low sensitivity and little chance for optimisation of pro-
cess re-run, limiting the effectiveness of ReComp in this case.
In contrast, both the variant caller version change and the SVI
reference data changes are good candidates, providing poten-
tially good selectivity. Compared to a change in software, how-
ever, changes in reference data have the additional advantage
that we can apply techniques based on fine-grained differencing
of the dataset versions, such as those presented in Sec. 5, mak-
ing this the case study of choice to illustrate ReComp’s capabil-
ities. Noting that the changes only affect the SVI portion of the
pipeline, our experiments are focused on this final part of the
pipeline.
1.5. Paper contributions

Our main and novel contribution is the specification of a generic
selective re-computation meta-process, which harnesses an underly-
ing Big Data process and seeks to optimise the extent of its re-
executions in reaction to each data change, relative to a blind re-
computation baseline. Importantly, we ensure that re-computation
is lossless, i.e. each outcome on which the change has non-zero
impact is indeed updated. The meta-process combines four ba-
sic steps that we describe semi-formally. Within this context we
propose an algorithm to address one of the steps, scope identifi-
cation, and also observe that processes distributive over set union
and difference can effectively perform differential execution. Our
second contribution is an extensive experimental study, conducted
using the SVI process as testbed, to determine the effectiveness of
the meta-process and assess its limitations. Finally, the third con-
tribution is the outline of the remaining challenges in addressing
re-computation and a discussion about the ideas for a more com-
prehensive technical approach.

2. A generic meta-process for selective re-computation

As mentioned, the meta-process includes four macro steps: (S1)
computing differences between old and new datasets that con-
tribute to the underlying process, (S2) determination of the scope

80 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
Fig. 4. Overall design of the generic selective re-computation meta-process.
of affected past executions, (S3) identification of the fragment of
the underlying process that is affected by the change and (S4) dif-
ferential execution (Fig. 4).

S1: Data difference Data differences are computed in reaction to
any data change event observed in the environment, and consist
of three sets of records: added, removed and updated. Here the
main challenge is to define domain-specific, semantically-rich dif-
ferencing functions that capture only most relevant changes.

S2: Scope of change Scope is defined relative to the population of
outcomes from past executions, for instance a large cohort of pa-
tients. Here the challenge is to accurately identify all of the past
outcomes (patient diagnoses) that are affected by the change. In
the example presented in Table 1 a perfect oracle would recognise
that only 14 instances of past outcomes need to be considered,
namely one instance for each ClinVar release 08/15, 10/15, 11/15
and eleven instances for ClinVar 08/16. In reality, however, it is
not always possible to accurately predict which occurrences are
affected by the change as the analytics process may implement a
complex algorithm (e.g. a simulation of a physical model) or the
change itself does not provide enough context to understand its
impact. But often the scope can be split into the set of clearly af-
fected and clearly unaffected instances, and so we can use it to
reduce the re-computation effort. To address the scope challenge,
we rely on process- and data-specific impact functions that take
data difference and past outcomes, and help eliminate executions
not affected by the change.

S3: Partial re-execution If we have insight into the structure and
semantics of analytics process P , we may be able to reduce the re-
computation of P to only those parts that are located downstream
from the point where the changed dataset is first used. For this,
we are inspired by techniques for smart rerun of workflow-based
applications [14,15].

The basic requirement to support partial re-execution is that
intermediate data of every past execution be cached, so it can be
re-used in lieu of re-executing part of a process that is known to
have not been affected by the changes. For example, if the up-
dated data is used only in the middle of the process we may be
able to skip processing of its initial part and use previously com-
puted intermediate data instead. This is much easier to achieve
in the case of scientific workflows (dataflows) such as our NGS
pipeline, where the data dependencies are explicit. In this scenario,
the main difficulty is to find a good balance between how much
intermediate data should be cached, versus how much we should
re-generate in order to minimise the overall re-computation cost
(monetary, runtime and/or storage). Some guidance on this topic
has been presented e.g. in [16,17]. We present extensive experi-
ments in Sec. 7.
S4: Differential execution Finally, the last step to optimising re-
computation involves the use of differences between versions of
input and reference data. That is especially important in the Big
Data analyses, when changes often affect only a small part of large
input data. However, whether or not it makes sense to execute a
process using a difference rather than complete input data depends
on the function it implements.

Differential dataflows [18] is a promising approach to realise
differential execution. Depending on the amount of change in the
input data, the differential dataflows framework8 can offer very
high performance gains and reduce runtime up to three orders
of magnitude. However, to exploit the full potential of differen-
tial dataflows in the NGS pipeline all the algorithms used in the
pipeline would need to be rewritten following that approach – a
non-trivial task, in general. In Sec. 6 we present our experiments
and observations involving re-computation of SVI using difference
sets.

2.1. Notation

Here we provide a simple reference framework for expressing
steps S1–S4 and introduce the technical elements that underpin
our experiments. Consider an instance Pi of a deterministic analyt-
ics process P , which takes input xi and produces output yi , using
reference datasets D = {D1 . . . Dm}. D is typically the same dataset
across a population x1 . . . xn of inputs. For SVI, D = {OM, CV} con-
sists of the two reference databases, OMIM GeneMap and NCBI
ClinVar as mentioned earlier.

The xi and yi may be tuple-valued: xi = 〈xi1 . . . xin〉, yi =
〈yi1 . . . yim〉. We denote the types of xij (resp yij) in each instance
xi (resp yi) with Xij (resp Yij). For instance, in SVI, patient i is
represented by input xi = 〈xi1, xi2〉 where xi1 is the list of patient
variants and xi2 is a set of phenotype terms.9 The patient’s diagnosis
is the single output yi = 〈yi1〉 = {(v, c)}, a set of variants v along
with their class label c, i.e., Green, Amber, or Red. For simplicity
of notation, and without loss of generality, in the following we are
going to refer to inputs and outputs simply as xi , yi , and to their
types as X, Y .

Data versions and change notation. Each of the xi and D j ∈ D
may have multiple versions, which change over time. We denote
the version of xi at time t as xt

i , and the state of D j at t as Dt
j .

We write xt
i → xt′

i to denote that a new version of xi has become
available at time t′ , replacing the version xt

i that was current at t .
Similarly, Dt

j → Dt′
j denotes a new release of D j at time t′ .

8 https://github .com /frankmcsherry /differential -dataflow.
9 Phenotype is a description of patient’s disease or condition expressed using

terms from a formal vocabulary, such as OMIM or the Human Phenotype Ontol-
ogy.

https://github.com/frankmcsherry/differential-dataflow

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 81
Executions. We denote the execution Pi of P that takes place
at time t by:

〈yt
i , ct

i 〉 = exec(P , xt
i , Dt) (1)

where Dt = {Dt
1 . . . Dt

m}. ct
i denotes the cost of the execution, for

example a time or monetary expression that summarises the cost
of cloud resources. We also assume for simplicity that P remains
constant.

Current outcomes. Finally, by slight abuse of notation, with
Y t = {yt

1, y
t
2 . . . yt

N } we denote a set of N outcomes that are current

at time t , i.e., each yt
i is the latest in a series of values yt1

i . . . ytk
i

with tk ≤ t .

Impact of a change. We say that change Dt
j → Dt′

j (resp. xt
i →

xt′
i) has non-zero impact on outcome yt iff diff Y (yt , yt′)
= ∅, where

yt′ is the new outcome computed using Dt′
j (resp. xt′

i) in (1).

2.2. Selective re-computation steps

Using this notation, we formulate steps S1–S4 as follows. Firstly,
blind re-computation following a change in a data dependency D j :
Dt

j → Dt′
j is simply the complete re-execution of (1) for each yt in

Y t , by replacing Dt
j with Dt′

j .10

S1: Diff functions We assume one can define a family of type-
specific data diff functions, which quantify the extent of changes
that occur over time in either x, D j , or y. Specifically:

diff X (xt
i , xt′

i) diff Y (yt
i , yt′

i) (2)

compute the differences between two versions of xi of type X , and
two versions of yi of type Y . Similarly, for each source D j ,

diff D j
(Dt

j, Dt′
j) (3)

quantifies the differences between two versions of D j . The values
computed by each of these functions are type-specific data struc-
tures, and will also depend on how changes are made available. For
instance, Dt

j, D
t′
j may represent successive transactional updates to

a relational database. More realistically in our analytics setting, and
on a longer time frame, these will be two releases of D j , which
occur periodically. In both cases, diff D j

(Dt
j, D

t′
j) will contain three

sets of added, removed, or updated records. The only assumption
we make on these functions is that they should all report the
empty difference when their inputs are identical: diff T (v, v) = ∅

for any type T .

S2: Identifying the scope of change Suppose an outcome yt is pro-
duced a Dt

j which is later updated: Dt
j → Dt′

j . Intuitively, if
exec(P , xt

i , D
t) has not used any of the data in diff D j

(Dt
j, D

t′
j), then

yt′ = exec(P , xt
i , D

t′) = yt , as we have assumed that P is determin-
istic.

Thus, we may be able to determine with certainty, required in
our lossless re-computation setting, that some of the outcomes yt

do not need re-computing, provided we maintain a detailed ac-
count of exactly which data each execution of P has used, from
each of its external data resources. Following this intuition, we
address the problem to identify the elements from a population
of outcomes Y t that are out of scope, that is, those for which
re-execution is certainly going to produce identical results given
changes in any of its data dependencies.

10 Note that if the change is xt
i → xt′

i , then trivially only the executions on input
xt

i are performed.
S3: Partial re-execution Suppose P is specified as a workflow,
described as a directed acyclic graph of k processing elements
P1 . . . Pk , connected through data dependencies. Given an execu-
tion of P as in (1) and changes of the form Dt

j → Dt′
j and/or

xt → xt′ , we want to identify the minimal subset P ′ of h ≤ k pro-
cessing elements in P , such that executing P ′ using xt′ and Dt′

j
yields the same result as executing P entirely. Past research [14,
15] outlines conditions under which effective partial execution is
viable, specifically when P has a dataflow structure.

S4: Differential execution Given an execution of P as in (1) and
changes as above, in some cases it may be possible to refresh an
outcome yt by re-computing P using only the differences between
old and new versions of the inputs or of the data resources. As dif-
ference sets are much smaller than the entire inputs or reference
data resources, especially in the case of Big Data problems, this
may result in significant savings in computation time.

2.3. Requirements for selective re-computation

The architectural pattern we adopt is that of a meta-process
(the ReComp process) that can provide at least two minimal capa-
bilities relative to an underlying process P :

• to monitor changes in the inputs, dependencies, and outputs of
P , and to quantify them, e.g. by accepting type-specific diff X (),
diff D(), and diff Y () functions, and

• to control the partial or entire re-execution of P .

Underpinning these capabilities are a number of technical re-
quirements regarding collecting and storing various kinds of meta-
data during execution, and performing analytics on it. We specif-
ically make use of provenance metadata, which the W3C defines
as “information about entities, activities, and people involved in
producing a piece of data or thing, which can be used to form as-
sessments about its quality, reliability or trustworthiness” [19].

Specific requirements include:

• Transparency of the process structure. Ideally, P should be a
white box process, that is, it should be possible to inspect its
internal structure to support partial and differential execution;

• Observability of process execution and provenance collection.
It must be possible to observe data production and consump-
tion events that occur during execution, and use those to re-
construct the provenance of the outcomes;

• Cost monitoring. Similarly, it must be possible to assess the
detailed cost (execution time, storage volume) of each execu-
tion, as this is required to learn estimates of the future cost of
re-execution;

• Process Reproducibility Finally, it must be possible to enact a
new execution of P on demand.

Not all computational models are friendly to our metadata an-
alytics approach and satisfy all of the requirements above, either
because provenance collection is available but not at the level of
detail that is usable (the NoWorkflow system [20], for instance, is
very good at monitoring any Python process but its provenance is
too low-level to be used here), or is not provided at all. In partic-
ular, black box processes that do not reveal their internal structure,
cost, or execution provenance, such as third party web services, are
particularly hostile to our analysis.

Our experiments, however, are carried out on a platform that
provides ideal support for these requirements: SVI is implemented
as a workflow, providing both full transparency and coarse-grained
provenance collection and cost monitoring capabilities. Further-
more, the workflow is deployed on the Azure cloud, which pro-

82 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
vides an additional mapping of resources to price, through their
cost model. Exploring the extent to which our results deteriorate as
the requirements above are not met is currently out of our scope.

Finally, regarding reproducibility, we note that actual re-
computation of older processes P under slightly different condi-
tions is not straightforward, as it may require redeploying P on a
new infrastructure and ensuring that the system and software de-
pendencies are maintained correctly, or that the results obtained
using new versions of third party libraries remain valid. Address-
ing these architectural issues is a research area of growing interest
[21–23], but not a completely solved problem.

3. Related work

To the best of our knowledge a comprehensive solution to re-
computation of generic analytics processes in reaction to changes
in their input data has not been discussed previously, and so
the proposed meta-process is unique. There exist, however, a
large amount of work related to particular steps which our re-
computation meta-process combines. We perceive this as a chance
to build our system out of existing components or at least inform
our implementation of them. Note, however, that the first step,
computing data difference, is rather technical and so we focus on
the other three steps of our meta-process.

The scope of re-computation. Depending on how much insight
we can have into the data analytics modules and their exact se-
mantics, one way to partially identify scope of re-computation is
to rely on fine-grained data provenance. Known techniques of anno-
tating data tuples help explain why-, how- and where-provenance
(see [24] for a recent survey) and can inform why the output data
contain specific tuple and which input tuples contributed to pro-
duce it. While this is not enough to understand how new tuples
would affect the output, it may still be useful to determine impact
of changed and removed records. Specifically, provenance enables
us to discover the subset of all input records involved in produc-
ing the output, and so a change in any of these records directly
indicates impact.

Despite this being a generic and application-independent mech-
anism, however, two issues make it hard to use data provenance to
implement impact functions. Firstly, in general we consider black-
box analytics modules which not necessarily follow well under-
stood semantics of the select, project and join operators. Secondly,
our experience with genomics databases shows that changes usu-
ally involve all three types of added, removed and changed records,
which limits the use of the existing data provenance techniques
and makes impact analysis more difficult.

For these reasons, we have chosen to use difference functions
and the coarse-grained provenance information to determine the
scope of re-computation. Note that this a technical aspect is novel
and not well covered in the literature.

Partial process re-execution has been studied extensively in
the past. Perhaps the best known tool for automated re-execution
of programs in reaction to any changes in their dependencies is
Make.11 The tool helps control the build process of a program
from the program’s source code. Its key feature is the ability to
generate a dependency graph between source files, intermediate
artifacts and outputs such that a change in one source file results
in a partial rather than complete rebuild of program sources. To
drive partial rebuild, Make simply uses the file modification date.
Whenever any of the prerequisite files has a date newer than the
target file, the relevant rule is fired off and the target file is rebuilt.

Two techniques for smart rerun, SRM, and partial process re-
execution, in SPADE, are closely related to our work. Smart Rerun

11 http://www.gnu .org /software /make.
Manager (SRM) [14] is part of the Kepler WFMS. The idea of smart
rerun of a workflow, previously explored by the same group [25],
is to react to changes in one or more parameters in a workflow
actor by only executing those parts of the workflow that are af-
fected by the changes, taking data dependencies into account. The
approach relies on coarse-grain provenance traces and intermedi-
ate data collected and stored during workflow execution, and is
derived from a similar approach implemented in VisTrails [26]. In
principle, the intermediate results of workflow execution are ex-
tracted from a cache instead of being recreated by re-enacting the
workflow.

Each intermediate data product is assigned a unique ID in the
cache. The provenance trace is traversed from the end of the exe-
cution back to the start. For each actor found during the traversal,
SRM checks whether the data products generated by this actor are
still valid, i.e. are found in the cache. If that is the case, then the
entire subgraph that ends with that actor does not require re-
execution. In this case, the cached data is used from that point
onwards.

SPADE recently implemented partial process re-execution [15].
The framework can capture fine-grained system-level provenance
information and can later use it to improve effectiveness of pro-
cess re-execution. By intercepting the low-level system calls, SPADE
can recreate a DAG structure of the process even without explicit
workflow specification. The basis of building the acyclic data de-
pendency graph is versioning of the data artifacts. If a task within
the process reads and writes to a file, every write generates a
new version of the file which can potentially be reused during re-
execution and rollback.

Our approach to partial re-execution is similar to both SRM and
SPADE. We collect provenance of workflow-based applications like
SRM does, whilst to calculate the minimal re-computation sub-
graph we use the data versioning mechanism provided by e-SC,
which is closer to file versioning in SPADE. Also similar is that
to store provenance information we use the PROV and ProvONE
models, which are successors of the OPM model used by SPADE.
Although the idea is not new, ours is the first implementation to
operate off the e-SC workflow model, and it plays only a partial
role in a more ambitious picture, where we seek to prioritise re-
execution within a large collection of prior outcomes.

Techniques for differential execution such as incremental com-
putation [27,28] address the problem of reacting effectively to in-
cremental changes in the program’s input data. Briefly, these tech-
niques are based on dependency graphs, memoisation and partial
evaluation – concepts similar to what we use to re-compute our
process, yet applied on the scale of a single algorithm or pro-
gram. A number of incremental computation solutions has also
been applied to Big Data problems. Most notable are DryadInc [29],
Haloop [30] and Incoop [31] and more recently iiHadoop [32].
Again, the main difference between these and our approach is that
we consider re-computation in broader sense, not limited to only
a single algorithm or execution for which input data has been up-
dated. Instead, by combining all four steps we can address the
problem of selective re-computation in a comprehensive way and
across many separate executions. The problem we address is to
effectively reduce the number of past executions which need re-
computation and also the amount of processing a single data up-
date requires. This does not prevent the use of other incremental
techniques, e.g. differential dataflows [18], iiHadoop or parallel in-
cremental computation implemented in iThreads [33], as the basis
for re-execution.

4. Experimental setting and blind re-computation baseline

Our experiments are based on the SVI tool, which is a natu-
ral continuation of the more complex variant calling NGS pipeline.

http://www.gnu.org/software/make

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 83
Fig. 5. The SVI tool implemented as an e-Science Central workflow.
SVI is much less resource-intensive and thus easier to work with
than the complete pipeline. At the same time, it exhibits many
features of the larger process: its reference databases are updated
frequently and it may be run over a cohort of patients, thus it
provides a very realistic example how evolving input data may in-
fluence patient’s diagnosis.

4.1. The SVI workflow

SVI is implemented using the same workflow technology,
namely the e-Science Central (e-SC) platform [34], a cloud-based
Workflow Management System designed for scientific data man-
agement and analysis. A screenshot of the SVI implementation in
e-SC is shown in Fig. 5. To recall, e-SC supports a simple dataflow
programming model where processing blocks are connected to
each other using data links, in a DAG topology. Our performance
analysis of the variant calling workflow is described in detail else-
where [4].

The choice of using e-SC as a platform for our experiments sat-
isfies all of the requirements listed above. Firstly, workflows are
white box processes, where the partial re-execution problem trans-
lates into a problem of selecting a suitable sub-graph from the
whole workflow DAG structure.

Secondly, e-SC automatically records the derivation history of
every workflow output from the inputs, i.e. their provenance. The
provenance traces are described using the ProvONE data model
[35], which extends the standard PROV data model [19]. For the
purpose of human-readable description, in this paper we use
the PROV-N notation [36] to present relevant provenance frag-
ments. This includes details required for re-execution, such as
the parameter settings for the processing blocks, and the ver-
sion of each library and data dependency at the time of execu-
tion.

Thirdly, detailed execution costs at the level of the single pro-
cessing block, as well as data storage costs, are available either
through e-SC or the underlying cloud deployment (Azure, in this
instance). Finally, the dependency manager that oversees the ex-
ecution of e-SC workflows provides the required levels of repro-
ducibility, i.e. the ability to re-run old workflows on demand. This
rich corpus of metadata enables the kind of analysis required by
our techniques, for instance estimating the cost of selecting a par-
ticular sub-graph for partial workflow re-execution.
4.2. Data changes considered in the experiments

As mentioned in the introduction, for each patient SVI uses
two kinds of data: the case-specific patient variant file and phe-
notype, and two external reference databases: OMIM GeneMap to
find genes relevant to the given phenotype hypothesis, and NCBI
ClinVar used to interpret the pathogenicity of patient variants.

Changes to the reference databases are very relevant because
they often affect a large number of patients and are the pri-
mary cause of knowledge decay. Furthermore, the SVI reference
databases change frequently, providing a good time granularity for
experiments: GeneMap updates are published every day, whereas
new ClinVar versions are announced every month.

In contrast, changes to patient phenotype are not considered
because those represent a change, initiated by a clinician, in the
actual disease hypothesis, and this automatically triggers a new
investigation for the patient. Similarly, we do not consider updates
to the patient variants, because those change infrequently and not
enough data points would have been available in our test dataset.

4.3. Experimental setup

For the purpose of this study, SVI was run on a small-scale
deployment of the e-Science Central system in Microsoft Azure,
consisting of the e-SC server running on a Basic A2 VM (2 CPU-
cores, 3.5 GB RAM) and of a single workflow engine, hosted on a
Basic A3 VM (4 CPU-cores, 7 GB RAM). Both ran Ubuntu 16.04 OS.

We used patient variants files with three phenotypes:
Alzheimer’s disease, Frontotemporal dementia – Amyotrophic lat-
eral sclerosis and CADASIL syndrome. On average they included 24
thousand records, around 39 MB in size. The OMIM GeneMap ref-
erence database was accessed on 31/Oct/2016 (unless stated other-
wise) and a range of versions of NCBI ClinVar database were used,
from July 2015 to October 2016. For more details about the patient
variant files and reference databases please refer to Table A.6 and
A.7 in Appendix A.

4.4. Baseline: blind re-computation

As mentioned in the introduction, blind re-computation refers to
the baseline case where any change at all in any of the reference
databases triggers a full re-computation of the entire population of
prior outcomes. Table 1 shows the effects of reacting to new ver-
sions of ClinVar regardless of the extent of the changes between

84 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
Table 3
The number of records and reduction percentage of the generic and SVI-based difference sets calculated for selected versions of OMIM GeneMap. Highlighted is less favourable
size reduction of the sets.

GeneMap versions
Dold → Dnew

|Dnew | |AD D E D| + 2 · |C H ANG E D| + |R E M O V E D| Reduction (%)

Generic δ SVI-specific δ 1 − |δgen |
|Dnew | 1 − |δS V I ||Dnew |

16-04-28 → 16-06-01 15897 27 + 196 + 1 = 224 27 + 142 + 1 = 170 98.6 98.9

16-06-01 → 16-06-02 15897 0 + 8 + 0 = 8 0 + 4 + 0 = 4 99.95 99.97

16-06-02 → 16-06-07 15910 13 + 76 + 0 = 89 13 + 52 + 0 = 65 99.4 99.6

16-06-07 → 16-10-30 16031 128 + 11944 + 7 = 12079 128 + 636 + 7 = 771 24.7 95.2

16-10-30 → 16-10-31 16031 0 + 10 + 0 = 10 0 + 8 + 0 = 8 99.94 99.95

16-10-31 → 16-11-01 16031 0 + 42 + 0 = 42 0 + 0 + 0 = 0 99.7 100.0

16-11-01 → 16-11-02 16031 0 + 4 + 0 = 4 0 + 0 + 0 = 0 99.98 100.0

16-11-02 → 16-11-30 16063 34 + 186 + 2 = 222 34 + 138 + 2 = 174 98.6 98.9
any two versions. The Table reports results from nearly 500 exe-
cutions, concerning a cohort of 33 patients, for a total runtime of
about 58.7 hours. As merely 14 relevant output changes were de-
tected, this is about 4.2 hours of computation per change: a steep
cost, considering that the actual execution time of SVI takes a little
over seven minutes.

Furthermore, the table only portrays a partial picture, as it only
includes reactions to monthly changes in Clinvar. A really blind ap-
proach would also react to daily changes to GeneMap, which are
shown to have very little effect on the outcomes. For instance,
comparing outputs generated using the same version of ClinVar
and four consecutive versions of GeneMap: 16-10-30, 16-10-31,
16-11-01 and 16-11-02 shows that none of the patient variants
was affected at all by these small changes.

The sparsity of the table should come as no surprise, as changes
in the reference databases are dispersed across the whole human
genome and so the chance that they may affect a particular patient
are relatively small. Further details on these experiments can be
found in supplementary material sheet CV-blind.

In the next sections we discuss in detail the re-computation
meta-process applied to our model analytics process SVI. We start
from computing data differences (S1) and then grow the amount of
processing going backwards from experimenting with differential
execution (S4), to applying partial re-execution (S3), up to identifi-
cation of the scope of change (S2). As a result, our final experiment
includes a realisation of the re-computation meta-process for the
SVI tool with steps S1–S3 applied.

5. Data differences

The reference databases that SVI uses are in the “well-behaved”
category of simple relational tables, making it easy to express dif-
ferences in terms of set operations. Specifically, the added and re-
moved subsets are just set difference between two versions, while
the changed subsets are an intersection followed by a selection.
The following SQL-like pseudocode specifies these operations more
formally on two versions D1, D2 of a data table:

ADDEDD1→2 = select * from D2
where not exists (

select 1 from D1
where D1.KEY = D2.KEY

)

REMOVEDD1→2 = select * from D1
where not exists (

select 1 from D2
where D1.KEY = D2.KEY

)

CHANGEDD1→2 = select D2.* from
D1 inner join D2 on D1.KEY = D2.KEY

where D1.NON-KEYc1 <> D2.NON-KEYc1 or
D1.NON-KEYc2 <> D2.NON-KEYc2 or ...

These operators assume that we have selected key attributes
(possibly compound) for D . Also, CHANGEDD1→2 denotes the new
version of the updated records, whereas analogous CHANGEDD2→1

is used to compute the old version of the updated records. In ef-
fect:

δ+ = ADDEDD1→2 ∪ CHANGEDD1→2

δ− = REMOVEDD1→2 ∪ CHANGEDD2→1

Note that the CHANGED operator captures all changes in any
of the non-key attributes for each record. While this is generic, it
ignores the meaning of the attributes relative to the specific pro-
cessing and is likely to result in a large number of changes irrele-
vant to the process. For example, two GeneMap records that differ
only in the Comments attribute would be flagged as different, al-
though the comments are not used anywhere in SVI. Similarly, the
only changes in ClinVar records that are relevant to SVI are those
in the ClinicalSignificance attribute, which drive the clas-
sification of variants in the SVI output.

Thus, with the knowledge of the specific use of a relational
dataset that the process makes, we partition the attributes into
the KEY, USED, and UNUSED datasets. The CHANGED operator can
then be rewritten as:

CHANGEDD1→2 = select D2.* from
D1 inner join D2 on D1.KEY = D2.KEY

where D1.U1 <> D2.U1 or
D1.U2 <> D2.U2 or ...

where Ui ∈ USED.
There is an obvious benefit in efficiency resulting from this

more aggressive filtering of the difference sets, as illustrated in Ta-
bles 3 and 4. The tables report on the number of records of the
complete GeneMap and ClinVar datasets and the difference sets
calculated using the generic and SVI-specific diff operators. Using
the SVI-specific operators the reduction in size is almost always
about 90% or over. The only exceptions are the differences between
version Jul→Aug 2015 of ClinVar which faced a significant change
at the time. Then, the SVI-specific operator yielded a reduction of
49.6%.

More limited gain is achieved when using the generic diff oper-
ators. In three cases the total size of the difference sets was larger
than the new version of the ClinVar database. Similarly, the differ-
ences between GeneMap 16-06-07 and 16-10-30 computed by the

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 85
Table 4
The number of records and reduction percentage of the generic and SVI-based difference sets calculated for 16 versions of ClinVar. Highlighted are less favourable size
reductions of the sets.

ClinVar versions
Dold → Dnew

|Dnew | |AD D E D| + 2 · |C H ANG E D| + |R E M O V E D| Reduction (%)

Generic δ SVI-specific δ 1 − |δgen |
|Dnew | 1 − |δS V I ||Dnew |

15-07 → 15-08 252656 35087 + 425794 + 85987 = 546868 35087 + 6302 + 85987 = 127376 −116.4 49.6

15-08 → 15-09 259714 7273 + 16952 + 215 = 24440 7273 + 1342 + 215 = 8830 90.6 96.6

15-09 → 15-10 262498 2832 + 11888 + 53 = 14773 2832 + 1174 + 53 = 4059 94.4 98.5

15-10 → 15-11 277902 15550 + 108588 + 146 = 124284 15550 + 4300 + 146 = 19996 55.3 92.8

15-11 → 15-12 279174 1376 + 489530 + 104 = 491010 1376 + 472 + 104 = 1952 −75.9 99.3

15-12 → 16-01 280379 1523 + 23740 + 318 = 25581 1523 + 2224 + 318 = 4065 90.9 98.6

16-01 → 16-02 285041 4710 + 26304 + 48 = 31062 4710 + 1490 + 48 = 6248 89.1 97.8

16-02 → 16-03 286684 2477 + 235330 + 453 = 238260 2477 + 2510 + 453 = 5440 16.9 98.1

16-03 → 16-04 290432 3855 + 27088 + 107 = 31050 3855 + 1282 + 107 = 5244 89.3 98.2

16-04 → 16-05 290815 858 + 15732 + 475 = 17065 858 + 1158 + 475 = 2491 94.1 99.1

16-05 → 16-06 306503 18004 + 81738 + 2298 = 102040 18004 + 7174 + 2298 = 27476 66.7 91.0

16-06 → 16-07 320469 14496 + 56692 + 530 = 71718 14496 + 6696 + 530 = 21722 77.6 93.2

16-07 → 16-08 326856 6558 + 58238 + 174 = 64970 6558 + 31356 + 174 = 38088 80.1 88.3

16-08 → 16-09 327632 1020 + 18838 + 244 = 20102 1020 + 1104 + 244 = 2368 93.9 99.3

16-09 → 16-10 349074 22758 + 654486 + 630 = 677874 22758 + 13228 + 630 = 36616 −94.2 89.5
generic operators were only 24.7% smaller than the new version of
the database. Clearly, in such cases it is more effective to ignore
the difference sets and use only the new version of the data.

Another important aspect of calculating the difference sets is
the changing set of attributes. For example, the ClinVar attributes
have changed three times since February 2015. These changes in
the schema disrupt our difference operators because the three sets
KEY, USED, UNUSED change, and also they are no longer perfectly
aligned across versions. Therefore, in our implementation of Clin-
Var diff we assumed that we would compare only columns com-
mon in both versions and ignore the added and removed columns.
Currently, our SVI re-computation supports any version of ClinVar
since Feb 2015.

6. Differential execution

Given the difference sets of the changed inputs we can look
at re-execution of P using merely diff D(dt , dt′) – the differences
between two versions of (one or more) reference dataset D . Some
of these ideas are grounded in prior research on the incremental
computation and differential computation domains [37,18].

Using SVI as our testbed, we show that under some conditions
this is feasible to do and results in substantial savings. However, in
the general case P requires modifications in order to yield a valid
result.

6.1. Computing on data versions differences

To make the idea precise consider our baseline execution (1):

〈yt, ct〉 = exec(P , xt, Dt) (4)

We are now going to focus on changes to D , thus we assume xt

is constant over time: xt′ = xt = x (in SVI, this means we consider
one patient at a time). For simplicity of exposition, initially we also
assume a single D with states Dt , Dt′ . In the common case where
D is a relation and Dt consists of a set of records, such as a CSV-
formatted file (the case for ClinVar), we can express diff D(Dt , Dt′)
in terms of set differences:

diff D(Dt, Dt′) = 〈δ+, δ−〉
where:

Dt′ = Dt \ δ− ∪ δ+ (5)

and δ+ denotes the added records and new version of updated
records whilst δ− are records removed from Dt and the old version
of the records that are going to be updated. Note that in the case
of ClinVar and most bioinformatics databases, δ− include retrac-
tions, which are much less frequent than additions of new records.

Our contention is that the computation of new outcome

〈yt′ , ct′ 〉 = exec(P , x, Dt′) (6)

can be broken down into two smaller computations that only use
δ+ , δ− and produce partial outcomes yt′+, yt′− , which can then be
combined with yt to yield yt′ . This may require an additional
merge(·) function that is process-specific. More precisely, we break
(6) down into:

〈yt′+, ct′+〉 = exec(P , x, δ+) (7)

〈yt′−, ct′−〉 = exec(P , x, δ−) (8)

〈yt′ , ct′
m〉 = merge(yt, yt′+, yt′−) (9)

This breakdown is beneficial if the resulting total cost is less than
ct′ :

ct′+ + ct′− + ct′
m < ct′

Firstly, let us consider the case in which P implements a “well-
behaved” function that is distributive over set union and differ-
ence. Using (5) and (6) and ignoring cost for the time being, we
can write:

yt′ = exec(P , x, Dt′)

= exec(P , x, Dt \ δ− ∪ δ+)

= exec(P , x, Dt) \ exec(P , x, δ−) ∪ exec(P , x, δ+)

= yt \ yt′− ∪ yt′+

(10)

Thus, in this case, yt′+, yt′− can be automatically combined
into yt′ . However, distributivity is a strong assumption, which does

86 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
not hold for many practical cases. For example, SVI as a whole dis-
tributes only over set difference and union of selected inputs. But
in the general case, P may need to be modified in order to com-
bine the partial results using an ad hoc merge function.

To illustrate this situation note that SVI essentially consists of
four steps (cf. Fig. 2):

a) SELECTION operation that selects from GeneMap only genes
relevant to user-defined phenotype ph, producing genes in
scope GS:

GS = σph(GeneMap)

b) INNER JOIN operation between the input variants, x, and the
result of the previous query GS, producing variants in scope
VS:

VS = x � GS

c) RIGHT OUTER JOIN to combine pathogenicity annotations from
ClinVar with corresponding VS yielding VSp :

VSp = ClinVar �
 VS

d) final classification into the traffic light system, which adds new
classification column to VSp :

classify(VSp)

Given these steps, SVI is specified by the following expression:

SVI(x, ph,GeneMap,ClinVar)

= classi f y(ClinVar �
 (x � σph(GeneMap)))

Note, however, that (a), (b) and (d) are all distributive over set
union and difference, whereas (c), the right outer join, distributes
only for the right-hand side argument. Therefore, we can automat-
ically combine partial outcomes when δ+ and δ− are computed for
GeneMap, GS, x, VS, or VSp , whilst differences in ClinVar require a
custom merge function.

Regarding GeneMap, the computation steps are as follows. Let

yt = SVI(x, ph,GMt,CV)

be the original computation, and

GMt′ = GMt \ δ− ∪ δ+

be a new version of GeneMap, expressed in terms of version dif-
ferences. The new yt′ can be computed as:

yt′ = SVI(x, ph,GMt′ ,CV)

= classi f y(CV �
 (x � σph(GMt′)))

= classi f y(CV �
 (x � σph(GMt \ δ− ∪ δ+)))

= classi f y(CV �
 (x � (σph(GMt) \ σph(δ
−)

∪ σph(δ
+))))

= classi f y(CV �
 ((x � σph(GMt))

\ (x � σph(δ
−)) ∪ (x � σph(δ

+))))

= classi f y(CV �
 (x � σph(GMt)))

\ classi f y(CV �
 (x � σph(δ
−)))

∪ classi f y(CV �
 (x � σph(δ
+)))

= SVI(x, ph,GMt,CV)

\ SVI(x, ph, δ−,CV) ∪ SVI(x, ph, δ+,CV)

= yt \ yt′− ∪ yt′+

(11)
Although the same approach does not work for changes in Clin-
Var, we can still adapt SVI and define a bespoke merge() function
to combine partial results in a way that is semantically meaning-
ful for the specific data and process. An implementation of such
a function would filter the results from the right outer join yt′−
and yt′+ by removing rows with null in ClinVar columns, essentially
turning right outer join into inner join:

zt′− = f ilter(yt′−) zt′+ = f ilter(yt′+) (12)

Then, using the filtered products it performs specialised set op-
erations:

yt′ = yt ∪
amb

zt′− ∪
wrt

zt′+ (13)

where a ∪
amb

b sets the classification to amber for all rows in a that
match b, whereas a ∪

wrt
b overwrites the classification for all rows

in a that match b on non-ClinVar columns; both operations leave
non-matching rows intact. Given definitions (12) and (13), we can
define the specialised merge function as:

mergeSVI(yt, yt′+, yt′−)

= yt ∪
amb

f ilter(yt′−) ∪
wrt

f ilter(yt′+)
(14)

As we can see, this approach may need a substantial amount
of process refactoring and makes the definition of merge encode
some of the process semantics to operate on data differences. Nev-
ertheless, in the rest of this section we are going to illustrate the
practical steps in computing the differences δ+ , δ− and the par-
tial outputs yt′+ and yt′− on SVI, which will be useful to address the
scope analysis.

6.2. Re-computation using the difference sets

To see the effect of using the difference sets on runtime we
executed SVI with the range of GeneMap and ClinVar difference
sets shown in Table 3 and 4. Note that in the case of ClinVar dif-
ferences we did not include the merge function defined earlier in
(14). However, doing so would not affect the runtime significantly
as the SVI outputs contain only about a dozen rows. Fig. 6 shows
the execution times.

Interestingly, the results indicate two very distinct cases. First,
using the difference sets to calculate the output yields clear run-
time savings for changes in ClinVar. Re-computation time oscil-
lated around 100 seconds with the only exception for the con-
siderable changes between the July and August 2015 versions of
the database (cf. Table 4). However, using the GeneMap differ-
ence sets we observed loss in the execution time in most cases.
Even if the changes were minimal (e.g. 16-06-01→16-06-02 and
16-06-02→16-06-07) and the difference sets contained only a few
records, re-execution took about 400 seconds for δ+ and δ− sep-
arately; over 800 seconds altogether. In two cases we could skip
re-execution because the difference sets were empty.

That problem with GeneMap differences stems from the fact
that this database is nearly two orders of magnitude smaller than
ClinVar. Therefore, the majority of runtime is spent on tasks pro-
cessing ClinVar whilst the smaller GeneMap file does not affect
overall execution time that much. We observed some savings only
for two blocks: the WHERE and JOIN located at the front of the
pipeline. But the remainder of the pipeline used the complete Clin-
Var database. Conversely, when ClinVar undergoes changes, the
data is used by SVI at the tail of the pipeline where the longest
running JOIN block is located (cf. Fig. 8). Thus, using the differ-
ence sets rather than the complete version of ClinVar, we could
lower the runtime of that block significantly and reduce the total
execution time of the relevant workflow subgraph.

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 87
Fig. 6. The re-computation time of the SVI workflow using the difference sets following changes in GeneMap (left; ClinVar version 16-08) and ClinVar (right; GeneMap version
16-10-31).

Fig. 7. The illustration how retrospective provenance trace of a complete execution can be used to calculate the cost of partial execution; the black arrow at the top-left
corner indicates the starting block; the red circle indicates the required intermediate data; red numbers in the workflow blocks denote execution time in seconds. (For
interpretation of the colours, the reader is referred to the web version of this article.)
Overall, even if the use of difference sets can reduce runtime
of a single execution to some extent, the savings depend on the
structure of the process and may not be enough to compensate for
the fact that two executions are needed – one for δ+ and one for
the δ− difference set.

7. Partial re-execution

The third step in our re-computation model is partial re-
execution. As shown earlier in Fig. 4, to implement it we do not
require the actual difference data but only information about the
data dependencies. In Sec. 4.1 we mentioned that e-SC generates
one ProvONE-compliant provenance trace for each workflow run.
We exploit these traces to identify the minimal sub-workflow that
is affected by the change [14,15].

Suppose we record a change of the form dt → dt′ in reference
data, and let I be a past invocation of our workflow. The source
blocks for any sub-workflow that is affected by the change are
those activities A that were executed as part of I and that used
dt directly. These can be obtained from the query:

:- wasPartOf(A, I), used(A, dt)

Note that the change event itself can be recorded using a prove-
nance assertion:

wasDerivedFrom(dt′ , dt)
In this case, the query becomes:

:- wasDerivedFrom(dt′ , D), wasPartOf(A, I), used(A, D)

where D is now a variable that represents the previous version
of dt′ .

Having determined the source blocks, we expand the workflow
recursively, by traversing the provenance graph for invocation I ,
downstream. At each step we seek two possible patterns:

1. execution(A1), execution(A2), wasInformedBy(A2, A1): given A1,
find all activities A2 that have been triggered by A1. This
pattern represents a connection from A1 to A2, where the in-
termediate data that flows over the link during execution is
implicit;

2. execution(A1), execution(A2), wasGeneratedBy(D, A1), used(A2,
D): Here the dependency between A1 and A2 is represented
explicitly by the intermediate data product, D .

Fig. 7 shows the sub-workflows related to a change in GeneMap
(blue area) and ClinVar (red area). The black arrows on the left
indicate the starting blocks for the sub-workflows. The overlapping
area between the two sub-workflows contains the blocks that are
affected by either of the two changes. Clearly, a partial execution
following a change in only one of the databases requires that the

88 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
Fig. 8. One of the possible schedules of the SVI workflow tasks; wider arrows denote more data flowing between tasks; numbers in boxes represent task execution time in
seconds (ClinVar v = 16–09, GeneMap v = 16–10–31, PV = B_0201).
intermediate data at the boundary of the blue and red areas be
cached.

To provide a measure of the trade-off between additional space
requirements and the savings in execution time, we have anno-
tated the figure with the execution time (in seconds) for each of
the blocks, and with the size of the cached intermediate data. For
example, for a GeneMap change, the corresponding partial exe-
cution took about 325 seconds (or 5 m:25 s), whereas a ClinVar
change required 287 seconds (or 4 m:47 s) to re-execute. Recall-
ing that the cost of a complete execution was 455 seconds (or
7 m:35 s), these are savings of 28.5% and 37%, respectively. The
corresponding additional storage costs are 156 MB and just 37 KB,
resp. The complete results of the partial re-computation following
changes in the reference databases are included in supplementary
material sheets CV-subgraph and GM-subgraph.

We note that these figures are obtained from the provenance
traces, namely using the standard prov:startTime and prov:endTime
properties of activity, along with an additional recomp:dataSize
property, which we added to record the size of the entities trans-
ferred between blocks.

Fig. 8 provides an alternative view of a possible schedule for the
same workflow, which shows the parts of the workflow affected
by each of the changes, along with the rendering of the execution
times and amount of data involved. We can see that a change in
ClinVar affects only a sub-workflow starting in the middle of the
workflow, whereas a change in GeneMap affects almost all of the
blocks. However, both sub-workflows include the longest running
block, which limits the amount of savings that can be achieved.

8. Identifying the scope of change

We now can address the second step (S2) from Sec. 2, namely
how to identify the scope of a change in reference data D that is
used to produce a large population, Y , of outcomes [3]. As men-
tioned, SVI is once again a good case study for this problem as
the same process is executed over a possibly large cohort of pa-
tients (thousands). Whilst these executions are all independent of
one another, they all depend on the same reference datasets. The
scope of a change in any of these dependencies D is subset Ys ⊆ Y
of outcomes affected by change Dt → Dt′ .

Provided that diff D(Dt , Dt′) includes only changed and removed
records and the process consist of a set of known transformations,
fine-grained provenance solutions such as [38–40] can help iden-
tify whether or not y ∈ Ys . Briefly, fine-grained data provenance
enables both forward and backward queries. A forward query φ(i)
retrieves the output records that are associated by derivation to an
input record i, while a backwards query traces the input records
that contributed to a given output. Thus, given δ− and assuming
that ADDEDDt→Dt′ = ∅, the problem of finding whether y ∈ Ys can
be formulated using the forward query φ as follows:

y ∈ Ys ⇐⇒ ∃i ∈ δ− : φ(i) ∩ y
= ∅ (15)

Effectively, the forward query φ plays the role of an index-
ing mechanism that maps input records to the outputs they con-
tributed to. There are two main limitations of this approach, how-
ever. Firstly, the fine-grained data provenance is unable to handle
newly added records, because there is simply no provenance trace
about these records until the process runs and produces the out-
put. Secondly, while fine-grained provenance can capture a rich set
of transformations used in practice (see, e.g. [41,40]), it will not be
available for black-box analytics processes that do not reveal their
internal sub-processes. In this case, provenance will naively report
that all input records contributed to produce each output record,
with a trivial scope that includes all outputs.

A possible statistical approach to establishing whether y ∈ Ys

with some confidence is to sample a number of prior y from Y ,
compute the corresponding y′ , and use the differences diff Y (y, y′)
to try and learn an estimator for the differences on the unobserved
new outcomes. This approach, however, is likely to be sensitive to
the specific types of data and process involved and may not always
yield robust estimators.

8.1. The basic scoping algorithm

Instead, we propose a scope determination algorithm that re-
lies on the coarse-grained provenance associated with past runs to
determine which outcomes y have used a version of D . Coarse-
grained provenance, however, only indicates whether or not a de-
pendency on D existed, but not which specific data from version
Dt of D was used. It is, therefore, possible that an outcome y that
depended on D is not really in the scope of change Dt → Dt′ ,
for instance because the process used data from Dt that has not
changed in Dt′ . These are candidate invocations which must be fur-
ther analysed to determine the actual impact of change on each of
them.

To carry out this analysis further, we propose to re-execute P
one task at a time using the difference sets (δ− and δ+). We first
consider the case in which the tasks of P are distributive over set
union and difference, as described in (10) and (11). Then, we can
execute the tasks one at a time until either we observe an empty
result or we reach the end of the process. In the former case we
know that the invocation was out of scope and no full re-execution
is needed. In the latter case we can combine the original output
with the final δ− and δ+ to obtain the updated result of P (Dt′).
Clearly, this approach is beneficial if computing P on the difference
sets is faster than computing P using the entire Dt′ . Algorithm 1
formalises this approach.

Procedure SelectiveExec takes process P and two versions of its
input data together with the coarse-grained provenance informa-
tion represented by history database H . First, difference sets δ+
and δ− are computed between the two versions of the input data
(line 2). H is then queried in line 3 to find occurrences of state-
ments of form:

used(a, Dt),wasPartOf(a, I), wasAssociatedWith(I, _, P)

indicating that Dt was used by a specific activity a that was part
of execution I of process P , or

used(I, Dt),wasAssociatedWith(I, _, P)

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 89
Algorithm 1 Simple selective re-computation of a population of
invocations of the process that is distributive over set union and
difference.
1: procedure SelectiveExec(P , Dt , Dt′ , H)
2: 〈δ+, δ−〉 = diff D (Dt , Dt′)
3: I ← ListInvocations(H , P , Dt)
4: for all I ∈ I do
5: G ← MinimalSubgraph(I , Dt)
6: while G
= ∅ and (δ+ ∪ δ−)
= ∅ do
7: task ← Pop(G)
8: δ+ ← task(δ+)

9: δ− ← task(δ−)

10: end while

11: if G = ∅ then
12: y ← GetOutput(task)
13: SetOutput(P , Dt′) ← y \ δ− ∪ δ+
14: else
15: y ← GetOutput(P , Dt)
16: SetOutput(P , Dt′) ← y
17: end if
18: end for
19: end procedure

indicating, more broadly, that Dt was used at some unspecified
point during I . In both cases the provenance traces identify the set
of candidate invocations.

Each of these candidate invocations is then re-executed us-
ing the difference sets (loop in lines 4–14). To do it efficiently
the algorithm computes the minimal subgraph of I that needs re-
computation (line 5), as discussed earlier in Sect. 7; for SVI it is
one of the subgraphs shown in Fig. 7. The inner loop in lines
6–10 walks through each task of the minimal downstream graph
(in topological order) and re-executes the task using the difference
sets until either both partial outputs are empty or all tasks have
been visited. Assuming that the tasks are distributive under set
union and difference, the latter case allows us to generate output
of P (Dt′) using the previous output and partial outcomes of the
last task of P (lines 12–13).

For simplicity of presentation the presented algorithm can only
work for a linear graph of tasks. Nonetheless, making it work for
an arbitrary directed acyclic graph with multiple entry points for
Dt is a straightforward extension.

8.2. Practical realisation of scoping

The main limitation of Algorithm 1 is that it may only be ap-
plied across tasks that distribute over set union and difference.
That is a strong assumption which is challenging even for a sim-
ple example like SVI. Likewise, it is challenging in the much more
complex case of NGS pipelines in which the alignment tools (e.g.
bwa, samtools) need access to the complete human reference
genome. They cannot perform sequence realignment if given only
a difference between two versions of the reference genome. Thus,
to benefit from this algorithm in practice we extended it to allow
more diverse process tasks.

Algorithm 2 presents the inner while loop which includes a set
of additional checks to make sure that only tasks which can use
difference sets properly are considered. Lines 9–11 handle the case
from Algorithm 1 – distributive tasks. Then, in lines 12–15, the
algorithm tries to use the incrementalised version of a task if one
is available. That might handle the non-distributive right outer join
in SVI following an approach proposed e.g. by [42]. However, as
implementing an incremental version of a task is known to be a
difficult problem in general, our algorithm includes one more case
which we explore in more detail below.
Algorithm 2 An extension of the selective re-computation over the
executions dimension to handle various types of computing tasks.
The while loop in Algorithm 1 may be changed as follows.
6: . . .

7: while G
= ∅ and (δ+ ∪ δ−)
= ∅ do
8: task ← Pop(G)
9: if IsDistributive(task) then

10: δ+ ← task(δ+)

11: δ− ← task(δ−)

12: else if IsIncrementalized(task) then
13: incTask ← GetIncremental(task)
14: δ+ ← incT ask(δ+)

15: δ− ← incT ask(δ−)

16: else
17: impTask ← GetImpactFunction(task)
18: y ← GetOutput(task)
19: if impT ask(δ+, δ−, y) = true then
20: Push(G , task)
21: tmp_d ← GetInput(task)
22: ExecuteWorkflow(G , tmp_d)
23: return
24: else
25: Push(G , task)
26: break
27: end if
28: end if
29: end while
30: . . .

Lines 17–27 handle all other tasks for which we first obtain an
impact function. The impact function cannot compute the actual
output of the task given its partial input δ− and δ+ . It can, how-
ever, determine whether the partial input is likely to affect output
y of the task. Briefly, the impT function returns true to denote
that the partial input has non-zero impact on the output, and false
otherwise. Given that, if the function returns true, the algorithm
returns the current task back to the front of G and re-executes
the subworkflow using the complete past input of the task (lines
20–23). Afterwards the algorithm is completed and we can return
from the procedure.

In the case there is no impact of partial input on the task out-
put we make sure G is non-empty and break the inner loop (lines
25–26). Consequently, the procedure can set the output of P (Dt′)
using the previous workflow output (Algorithm 1, lines 14–16).

Although for all tasks that cannot work with partial inputs the
proposed algorithm forces us to use an impact function, in the sim-
plest default implementation it may always return true to indicate
that any change in the input affects the output. That is likely to
result in more re-computation than needed but allows any arbi-
trary task to be handled correctly while giving chance to provide
impact functions whenever possible. For example for SVI and the
problematic right outer join we were able to use inner join as an
accurate impact function.

8.3. Scoping effectiveness

Regarding the effectiveness of this algorithm, note that the ex-
tended version of our algorithm can reduce the amount of work by
making the following assumptions. First, the use of difference sets
to calculate task output (lines 10–11 and 14–15) is much faster
than when using the complete input data. Second, the output of
these re-executions is likely to return an empty response, and so
the inner while loop can terminate early with G
= ∅. Third, the
number of non-distributive and non-incrementalized tasks is small
or, alternatively, the provided impact functions are fast, accurate
and more effective than the default ‘return true’ implementa-
tion.

90 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
Table 5
Changes observed in the output of the SVI tool when executed with the difference sets computed for NCBI ClinVar reference database
using the SVI specific δ function; � denotes the need for re-execution with the complete new version of ClinVar (Dac
= ∅ or Dr
= ∅),
‘ ’ denotes only task re-execution with the difference sets (Dac = ∅ and Dr = ∅).
Fig. 9. Minimum, average and maximum execution time of the SVI workflow per
patient variant file in four approaches to re-computation.

Noting that all these assumptions are valid for SVI, we tested
the hypothesis that the approach is indeed beneficial. We show
in Table 5 that running the process using the proposed algorithm
and the SVI-specific diff function we were able to avoid the ma-
jority of re-computations which used the complete new ClinVar
version. We reduced the number of complete re-executions of the
workflow from 495 down to 71. In Table A.8 in the appendix we
show also the re-computation matrix for the algorithm which used
the generic diff function. In that case the reduction was less sig-
nificant and required 302 complete re-executions. That is because
the generic diff searched for changes in every single column of the
ClinVar data, most of which were irrelevant to SVI.

Figs. 9 and 10 show the effect of running our algorithm on
the re-computation time. The former presents the average time re-
quired to re-compute a single patient variant file. For the majority
of cases running SVI with the difference sets was much quicker
than with complete ClinVar data. In a few cases, e.g. when using
the difference between the versions from September and Octo-
ber 2016, some re-executions were slightly slower than the partial
re-computation. That was due to extensive changes in the Clin-
Var database at the time and so almost all rows were reported as
changed. This did not occur, however, when using the SVI-specific
diff function. Then, the total time was significantly lower than the
Fig. 10. Total time of the SVI workflow for a cohort of 33 patients depending on the
approach taken to re-computation.

partial re-computation in all cases as there were not many changes
in the columns relevant to SVI.

Fig. 10 shows the total re-computation time for the whole pa-
tient cohort including the time required to re-execute tasks with
the difference sets and to run the partial re-computation with the
complete new data when the impact function produced true. This
figure emphasises the penalty for running the algorithm when the
difference sets were large compared to actual new data. It also
highlights the importance of the diff and impact functions. Clearly,
the more accurate the functions are the higher runtime savings
may be, which stems from two facts. Firstly, more accurate diff
function tends to produce smaller difference sets which reduces
time of task re-execution (cf. CV selective δ-gen and δ-SVI lines
in Fig. 9). Secondly, more accurate impact function tends to pro-
duce false more frequently, and so the algorithm can more often
avoid re-computation with the complete new version of the data
(cf. the number of black squares vs the total number of patients
affected by a change in Table 5).

9. A blueprint for a generic and automated re-computation
framework – challenges

So far we have presented techniques that can be applied to
reduce the cost of recurring re-computation, with reference to a

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 91
Fig. 11. The main loop in the ReComp framework that handles selective re-
computation of the user process; thin black arrows denote the flow of control, thick
arrows represent the flow of data.

single case study and without concern for the relative cost and
benefits associated with the re-computation. Our long term goal is
to generalise the approach into a reusable framework, which we
call ReComp, that is able not only to carry out re-computations
by automating a combination of the techniques we just illustrated,
but also to help decision makers carry out a cost/benefit analysis
to determine when selective re-computation is beneficial.

For this, ReComp must support a number of capabilities, above
and beyond those just illustrated in Fig. 4. With reference to our
execution model:

〈yt′ , ct′ 〉 = exec(P , xt′ , Dt′) (16)

these are:

1. Detect and quantify changes in input and reference data, i.e.
by accepting data-specific diff X () and diff D() functions;

2. Estimate the impact of those changes on each member yt ∈ Y
in a population Y of prior outcomes, i.e. learn estimates of
diff Y (yt , yt′) without having to compute yt′ , as well as esti-
mates of the corresponding re-computation cost ct′ ;

3. Use the estimates to prioritise prior outcomes for re-
computation, subject to a limited budget, and

4. Perform the re-computation of the corresponding instances
of P , entirely or partially, as we have seen in this paper.

Note that, at this stage, we do not consider changes in P itself
or any of its software dependencies (as opposed to the data de-
pendencies). For simplicity we focus on changes in the data only
and do not consider changes in the underlying processes. These
are also relevant but require a separate formalisation, beyond the
scope of this paper.

In practice, ReComp is configured as a meta-process that is able
to (i) monitor instances of an underlying process P and record its
provenance as well as details of its cost, (ii) detect and quantify
changes in the data used by P , and (iii) control the re-execution
of instances of P , on demand. These capabilities are summarised
in the loop depicted in Fig. 11.

Central to ReComp is the idea that decisions about future re-
executions are informed by analytics on the history of past exe-
cutions. To make this possible, each execution of the form (16)
(including re-executions) is controlled by ReComp, and generates
metadata records that include:
• outcomes that are subject to revision;
• provenance of the outcome, either coarse-grained or fine-

grained, depending on the underlying provenance recording
facilities associated with the process runtime;

• execution cost, typically expressed as running time and data
storage volume, again as detailed as allowed by the underlying
system. For instance, our own WFMS, e-SC, provides block-
level time recording and per-data-item storage, while other
systems may only provide cumulative times.

Our long-term research hypothesis is that metadata analyt-
ics performed on such history database may yield viable mod-
els to estimate change impact and thus be able to prioritise re-
computations vis-à-vis a limited budget. In the rest of this section
we discuss a number of challenges that underpin the implementa-
tion of the ReComp framework.

9.1. Monitoring data changes

Managing multiple versions of large datasets is challenging.
Firstly, observing changes in data usually requires source-specific
solutions, as each resource is likely to expose a different version
release mechanism – a version number being the simplest case.
Secondly, the volume of data to be stored, multiplied by all the
versions that might be needed for future re-computation, leads to
prohibitively large storage requirements. Providers’ limitations in
the versions they make available also translate into a challenge for
ReComp, with some providers not offering access to different ver-
sions of their data at all.

A further issue is whether multiple changes to different data
sources should be considered together or separately: in some cases
it may be beneficial to group multiple changes to one resource in-
stead of reacting immediately. For example, GeneMap updates are
published daily, often with only a few rows changed. Thus, taking
into account the cost of running the ReComp loop, it may be more
effective to delay the loop and collect a number of updates, e.g.
over a week.

9.2. Calculating and quantifying changes

Suppose two processes managed by ReComp retrieve different
attributes from the same relational database D . Clearly, for each
of these processes only changes to the relevant attributes matter.
Thus, the diff () functions, such as those defined in Sec. 5, are not
only type-specific but also query-specific. For n processes and m
resources, this may potentially require n ·m specialised diff () func-
tions. Whether we can find more effective ways to compute and
measure data changes is an open question. Additionally, some in-
put data may be unstructured or semi-structured and thus calcu-
lating the difference between two versions that is useful in the
estimation of their impact may be challenging in itself.

9.3. Estimation impact and cost of refresh

We define the re-computation problem as finding the optimal
selection of past invocation that can maximise the benefit of re-
computation given changes in the input data and a budget con-
straint. Addressing this problem requires that we first learn impact
estimators that can take into account the history of past execu-
tions, their cost and the changes in the input data, and can feed
into the optimisation problem. This is a hard problem, however,
which in particular involves estimating the difference between two
outputs of process P given changes to some of its inputs. Clearly,
some knowledge of the function that P implements is required,
but that is also process-specific and so difficult to generalise into a
reusable re-computation framework.

92 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
Recalling our example with SVI and ClinVar, we would like to
predict whether or not a new variant added to the database will
change patient diagnosis. The technique showed earlier allowed us
to do so to some extent, as we were able to reduce the number of
affected invocations from 495 to 71, yet more work is needed to
find more accurate and more generic techniques.

The problem of learning cost estimators has been addressed in
the recent past, but mainly for specific scenarios that are relevant
to data analytics, namely workflow-based programming on clouds
and grid [43,44]. But for instance [45] showed that runtime, espe-
cially in the case of machine learning algorithms, may depend on
features that are specific to the input, and thus not easy to learn.
That leaves the impact and cost estimation as an open challenge.

9.4. Optimising the selection of past executions

Given a limited re-computation budget, and a measure of ben-
efit of outcome refresh, we can address the further problem to
select the past executions that are expected to maximise the ben-
efit given the budget. Using the impact and cost estimators, we
can formulate it as the 0–1 knapsack problem in which we want
to find vector a = [a1 . . .an] ∈ {0, 1}n that achieves:

max
n∑

i=1

viai subject to
n∑

i=1

wiai ≤ C (17)

where n is the number of past executions, vi is the estimated
change impact for execution i, and wi is the estimated cost of
its re-execution. Importantly, each data change event triggers an
instance of (17) to be solved but due to expected high cost of re-
computation it may be worth grouping a number of change events
together. That adds complexity to the optimisation problem.

9.5. Black box processes

Running the SVI example in the previous sections, we assumed
that we have insight into the structure and semantics of process P
managed by ReComp. That enabled us to effectively apply tech-
niques for partial process re-execution. When P is a black box
process, however, this is not possible and other techniques such
as incremental computation [27,31,18] may be required. Regardless
of the transparency of P , a common challenge is that for Big Data
analytics intermediate data produced by the process (or memoised
during incremental computation) often outgrow the actual inputs
by orders of magnitude, and thus the cost of persisting all inter-
mediate results may be prohibitive. An open problem, with some
contribution from Woodman et al. [17], is to find techniques that
could balance the choice of intermediate data to retain in view of
a potential future re-computation, with its cost.

A separate challenge is that the actual re-execution of process
P used in the past may not be straightforward. It may require re-
deploying P on a new infrastructure and ensuring that the system
and software dependencies are maintained correctly, or that the
results obtained using new versions of third party libraries remain
valid. Addressing these architectural and reproducibility issues is a
research area of growing interest [23,21,22,46].

9.6. History database

As mentioned, ReComp needs to collect and store both prove-
nance and cost metadata. Recording cost requires the definition
of a new format which, to the best of our knowledge, does not
currently exist. Provenance, on the other hand, has been recorded
using a number of formats, which are system-specific. Even when
the PROV provenance model [19] is adopted, it can be used in dif-
ferent ways despite being designed to encourage interoperability.
Our recent study [47] shows that the ProvONE,12 an extension to
PROV, is a step forward to collect interoperable provenance traces,
but is still limited as it assumes that the traced processes are sim-
ilar and implemented as a workflow.

10. Conclusions and future work

Knowledge decay over time is an important issue that affects
the value proposition of Big Data analytics. It is especially im-
portant for the next generation sequencing pipelines, in which
algorithms and reference data continuously improve. As these
pipelines require processing that can easily exceed hundreds of
CPU-hours per patient cohort and as they become used on a wider
scale,13 relevant techniques to address knowledge decay and re-
fresh pipeline results are required.

In this paper we presented our investigation into how selective
re-computation can help address the knowledge decay issue. Using
a case study in the area of clinical interpretation of genetic variants
in humans, with a cohort of patients from the Institute of Genetic
Medicine (IGM) at Newcastle University, we described three ap-
proaches to selective re-computation: at the process level (partial
re-execution), data level (differential execution), and whole-cohort
level (identification of scope of change).

Regarding partial re-execution, a special role is played by prove-
nance, which we used to build the minimal process subgraph that
requires re-execution. For differential execution, we used diff ()
functions to calculate difference sets between two versions of the
input data and then, using these sets, to reduce the amount of pro-
cessing needed. Finally, at the whole-cohort level we showed a sig-
nificant reduction in the number of patient samples that required
refresh. Overall, we were able to lower the cost of re-computation
to about 10% of the total time needed for update the previous re-
sults. In the immediate future, our plan is to extend the study to
a much larger cohort of over 1,500 patients [3], which will provide
better figures on actual savings closer to real population scale.

Worth noting is that in this paper we discussed only the loss-
less approach to re-computation. Lossless re-computation is con-
servative in that any outcome on which the impact cannot be
proved to be zero, regardless of how small, will be refreshed. In
contrast, lossy re-computation also seeks to reduce the amount of
work performed on previously computed outcome. However, lossy
re-computation would try to quantitatively estimate the extent of
the impact, and use the estimates to decide whether and when to
refresh the outcomes. We view this as a more general re-computa-
tion decision problem which involves a cost/benefit analysis.

This study on variant interpretation informs the more ambitious
ReComp project.14 Our immediate next step is to apply the tech-
niques presented in this paper to other parts of the variant calling
pipeline. We are now developing a generic meta-process that can
observe changes and control re-computation for a variety of un-
derlying, resource-intensive analytics processes, as well as support
business-level re-computation decisions vis-à-vis a resource bud-
get. In Sec. 9 we outlined a number of the research and technical
challenges associated with this vision.

Acknowledgements

Funding: This work has been supported by EPSRC in the UK
[grant number EP/N01426X/1]; and a grant from the Microsoft
Azure for Research programme.

12 https://purl .dataone .org /provone -v1 -dev.
13 https://www.genomicsengland .co .uk /the -100000 -genomes -project/.
14 http://recomp .org .uk.

https://purl.dataone.org/provone-v1-dev
https://www.genomicsengland.co.uk/the-100000-genomes-project/
http://recomp.org.uk

J. Cała, P. Missier / Big Data Research 13 (2018) 76–94 93
Appendix A. Input data

Table A.6
Basic properties of a set of patient variant files used in the experiments.

Phenotype
hypothesis

Variant
file

Record
count

File size
[MB]

Alzheimer’s disease B_0198 23,803 38.5
B_0201 24,809 39.9
B_0202 24,442 39.4
B_0203 24,654 39.8
B_0208 24,264 39.1
B_0209 24,166 39.1
B_0214 23,370 37.9
B_0229 24,133 39.0
B_0331 23,897 38.8
B_0338 24,243 39.2
B_0358 24,181 39.1
B_0365 24,070 38.9
B_0370 23,798 38.4
B_0384 24,905 40.2
B_0396 23,886 38.8
C_0065 23,469 38.0
C_0068 24,098 39.0
C_0071 23,741 38.4
C_0072 22,946 37.3
C_1457 23,649 38.3

CADASIL D_1136 24,511 39.6

Frontotemporal dementia –
Amyotrophic lateral
sclerosis

B_0307 24,052 39.0
C_0051 23,921 38.7
C_0053 23,980 38.8
C_0056 23,805 38.6
C_0098 22,948 37.4
C_0171 24,387 39.6
D_0830 24,132 39.1
D_0854 24,133 39.0
D_0899 24,034 38.8
D_1041 24,463 39.5
D_1049 24,473 39.5
D_1071 24,102 39.0
Table A.7
Basic properties of the OMIM GeneMap and ClinVar reference databases used in the
experiments.

Database Version Record count File size
[MB]

OMIM GeneMap 16-04-28 15,871 2.65
16-06-01 15,897 2.66
16-06-02 15,897 2.66
16-06-07 15,910 2.66
16-10-30 16,031 2.69
16-10-31 16,031 2.69
16-11-01 16,031 2.69
16-11-02 16,031 2.69
16-11-30 16,063 2.70

NCBI ClinVar 15-07 304,207 95.0
15-08 252,656 81.6
15-09 259,714 87.1
15-10 262,498 88.1
15-11 277,902 93.5
15-12 279,174 94.5
16-01 280,379 94.8
16-02 285,041 96.6
16-03 286,684 94.7
16-04 290,432 96.1
16-05 290,815 96.1
16-06 306,503 101.4
16-07 320,469 106.7
16-08 326,856 109.2
16-09 327,632 109.5
16-10 349,074 121.3

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .bdr.2018 .06 .001.
Table A.8
Changes observed in the output of the SVI tool when executed with the difference sets computed for NCBI ClinVar reference database using
the generic δ function; � denotes the need for re-execution with the complete new version of ClinVar (Dac
= ∅ or Dr
= ∅), ‘ ’ denotes only
task re-execution with the difference sets (Dac = ∅ and Dr = ∅).

https://doi.org/10.1016/j.bdr.2018.06.001

94 J. Cała, P. Missier / Big Data Research 13 (2018) 76–94
References

[1] R. Do, S. Kathiresan, G.R. Abecasis, Exome sequencing and complex disease:
practical aspects of rare variant association studies, Hum. Mol. Genet. 21 (R1)
(2012) R1–R9, https://doi .org /10 .1093 /hmg /dds387.

[2] H. Buermans, J. den Dunnen, Next generation sequencing technology: advances
and applications, Biochim. Biophys. Acta, Mol. Basis Dis. 1842 (10) (2014)
1932–1941, https://doi .org /10 .1016 /j .bbadis .2014 .06 .015.

[3] M.J. Keogh, W. Wei, I. Wilson, J. Coxhead, S. Ryan, S. Rollinson, H. Griffin, M.
Kurzawa-Akanbi, M. Santibanez-Koref, K. Talbot, M.R. Turner, C.-A. McKenzie, C.
Troakes, J. Attems, C. Smith, S. Al Sarraj, C.M. Morris, O. Ansorge, S. Pickering-
Brown, J.W. Ironside, P.F. Chinnery, Genetic compendium of 1511 human brains
available through the UK Medical Research Council Brain Banks Network Re-
source, Genome Res. 27 (1) (2017) 165–173, https://doi .org /10 .1101 /gr.210609 .
116.

[4] J. Cała, E. Marei, Y. Xu, K. Takeda, P. Missier, Scalable and efficient whole-exome
data processing using workflows on the cloud, Future Gener. Comput. Syst. 65
(2016) 153–168, https://doi .org /10 .1016 /j .future .2016 .01.001, special Issue on
Big Data in the Cloud.

[5] Y. Qin, H.K. Yalamanchili, J. Qin, B. Yan, J. Wang, The current status and chal-
lenges in computational analysis of genomic big data, Big Data Res. 2 (1) (2015)
12–18, https://doi .org /10 .1016 /j .bdr.2015 .02 .005.

[6] L. Hood, S.H. Friend, Predictive, personalized, preventive, participatory (P4) can-
cer medicine, Nat. Rev. Clin. Oncol. 8 (3) (2011) 184, https://doi .org /10 .1038 /
nrclinonc .2010 .227.

[7] P. Missier, E. Wijaya, R. Kirby, M. Keogh, SVI: a simple single-nucleotide human
variant interpretation tool for clinical use, in: N. Ashish, J.-L. Ambite (Eds.),
Data Integration in the Life Sciences, Springer International Publishing, 2015,
pp. 180–194.

[8] E. Garrison, G. Marth, Haplotype-based variant detection from short-read se-
quencing, arXiv:1207.3907.

[9] S. Sandmann, A.O. de Graaf, M. Karimi, B.A. van der Reijden, E. Hellström-
Lindberg, J.H. Jansen, M. Dugas, Evaluating variant calling tools for non-
matched next-generation sequencing data, Sci. Rep. 7 (2017) 43169, https://
doi .org /10 .1038 /srep43169, EP.

[10] D.M. Church, V.A. Schneider, K.M. Steinberg, M.C. Schatz, A.R. Quinlan, C.-S.
Chin, P.A. Kitts, B. Aken, G.T. Marth, M.M. Hoffman, J. Herrero, M.L.Z. Mendoza,
R. Durbin, P. Flicek, Extending reference assembly models, Genome Biol. 16 (1)
(2015) 13, https://doi .org /10 .1186 /s13059 -015 -0587 -3.

[11] V.A. Schneider, T. Graves-Lindsay, K. Howe, N. Bouk, H.-C. Chen, P.A. Kitts, T.D.
Murphy, K.D. Pruitt, F. Thibaud-Nissen, D. Albracht, R.S. Fulton, M. Kremitzki, V.
Magrini, C. Markovic, S. McGrath, K.M. Steinberg, K. Auger, W. Chow, J. Collins,
G. Harden, T. Hubbard, S. Pelan, J.T. Simpson, G. Threadgold, J. Torrance, J.M.
Wood, L. Clarke, S. Koren, M. Boitano, P. Peluso, H. Li, C.-S. Chin, A.M. Phillippy,
R. Durbin, R.K. Wilson, P. Flicek, E.E. Eichler, D.M. Church, Evaluation of grch38
and de novo haploid genome assemblies demonstrates the enduring quality of
the reference assembly, Genome Res. 27 (5) (2017) 849–864, https://doi .org /
10 .1101 /gr.213611.116, http://genome .cshlp .org /content /27 /5 /849 .full .pdf +html,
http://genome .cshlp .org /content /27 /5 /849 .abstract.

[12] S. Hwang, E. Kim, I. Lee, E.M. Marcotte, Systematic comparison of variant call-
ing pipelines using gold standard personal exome variants, Sci. Rep. 5 (Decem-
ber) (2015) 17875, https://doi .org /10 .1038 /srep17875.

[13] E.T. Cirulli, D.B. Goldstein, Uncovering the roles of rare variants in common
disease through whole-genome sequencing. Nature reviews, Genetics 11 (6)
(2010) 415–425, https://doi .org /10 .1038 /nrg2779.

[14] I. Altintas, O. Barney, E. Jaeger-Frank, Provenance collection support in the Ke-
pler Scientific Workflow System, Work 4145 (2006) 118–132, https://doi .org /
10 .1007 /11890850 _14.

[15] H. Lakhani, R. Tahir, A. Aqil, F. Zaffar, D. Tariq, A. Gehani, Optimized rollback
and re-computation, in: 2013 46th Hawaii International Conference on System
Sciences, IEEE, 2013, pp. 4930–4937.

[16] Yaxiong Zhao, Jie Wu, Cong Liu, Dache: a data aware caching for big-data appli-
cations using the MapReduce framework, Tsinghua Sci. Technol. 19 (1) (2014)
39–50, https://doi .org /10 .1109 /TST.2014 .6733207.

[17] S. Woodman, H. Hiden, P. Watson, Workflow provenance: an analysis of long
term storage costs, in: Proceedings of the 10th Workshop on Workflows in
Support of Large-Scale Science, 2015, pp. 9:1–9:9.

[18] F.D. McSherry, D.G. Murray, R. Isaacs, M. Isard, Differential dataflow, in: 6th Bi-
ennial Conference on Innovative Data Systems Research, CIDR ’13, 2013, http://
cidrdb .org /cidr2013 /Papers /CIDR13 _Paper111.pdf.

[19] PROV-DM: The PROV Data Model, Technical Report, World Wide Web Consor-
tium, Apr. 2013, https://www.w3 .org /TR /prov-dm/.

[20] J.F. Pimentel, J. Freire, V. Braganholo, L. Murta, Tracking and analyzing the
evolution of provenance from scripts, in: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9672, Springer International Publishing, 2016, pp. 16–28.

[21] J. Freire, N. Fuhr, A. Rauber, Reproducibility of data-oriented experiments in
e-science, in: Dagstuhl Seminar 16041, vol. 6, 2016.

[22] L.C. Burgess, D. Crotty, D. de Roure, J. Gibbons, C. Goble, P. Missier, R. Mortier,
T.E. Nichols, R. O’Beirne, Alan Turing Institute Symposium on Reproducibility
for Data-Intensive Research – Final Report, Tech. Rep, 2016.
[23] V. Stodden, F. Leisch, R.D. Peng, Implementing Reproducible Research, Chapman
& Hall/CRC The R Series, CRC Press, 2014.

[24] M. Herschel, R. Diestelkämper, H. Ben Lahmar, A survey on provenance: what
for? What form? What from?, VLDB J. 26 (6) (2017) 1–26, https://doi .org /10 .
1007 /s00778 -017 -0486 -1.

[25] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee,
J. Tao, Y. Zhao, Scientific workflow management and the Kepler system, Con-
curr. Comput., Pract. Exp. 18 (10) (2005) 1039–1065, https://doi .org /10 .1002 /
cpe .994.

[26] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, H. Vo, Vis-
Trails: enabling interactive multiple-view visualizations, in: IEEE Visualization,
2005., no. Dx, VIS 05, IEEE, 2005, pp. 135–142.

[27] U.A. Acar, G.E. Blelloch, M. Blume, R. Harper, K. Tangwongsan, An experimental
analysis of self-adjusting computation, ACM Trans. Program. Lang. Syst. 32 (1)
(2009) 1–53, https://doi .org /10 .1145 /1596527.1596530.

[28] G. Ramalingam, T. Reps, A categorized bibliography on incremental computa-
tion, in: Proceedings of the 20th ACM SIGPLAN–SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’93, 1993, pp. 502–510.

[29] L. Popa, M. Budiu, Y. Yu, M. Isard, DryadInc: reusing work in large-scale com-
putations, in: HotCloud’09 Workshop on Hot Topics in Cloud Computing, 2009,
pp. 2–6, http://static .usenix .org /events /hotcloud09 /tech /full _papers /popa .pdf.

[30] Y. Bu, B. Howe, M. Balazinska, M.D. Ernst HaLoop, Proc. VLDB Endow. 3 (1–2)
(2010) 285–296, https://doi .org /10 .14778 /1920841.1920881.

[31] P. Bhatotia, A. Wieder, R. Rodrigues, U.A. Acar, R. Pasquin, Incoop: MapReduce
for incremental computations, in: Proceedings of the 2nd ACM Symposium on
Cloud Computing, SOCC ’11, 2011, pp. 1–14.

[32] A.G. Bin Saadon, H.M.O. Mokhtar, IiHadoop: an asynchronous distributed
framework for incremental iterative computations, J. Big Data 4 (1) (2017) 24,
https://doi .org /10 .1186 /s40537 -017 -0086 -3.

[33] P. Bhatotia, P. Fonseca, U.A. Acar, B.B. Brandenburg, R. Rodrigues iThreads, ACM
SIGARCH Comput. Archit. News 43 (1) (2015) 645–659, https://doi .org /10 .1145 /
2786763 .2694371.

[34] H. Hiden, S. Woodman, P. Watson, J. Cała, Developing cloud applications using
the e-science central platform, Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 371
(1983), https://doi .org /10 .1098 /rsta .2012 .0085.

[35] V. Cuevas-Vicenttín, B. Ludäscher, P. Missier, K. Belhajjame, F. Chirigati, Y. Wei,
S. Dey, P. Kianmajd, D. Koop, S. Bowers, I. Altintas, C. Jones, M.B. Jones, L.
Walker, P. Slaughter, B. Leinfelder, Y. Cao, ProvONE: a PROV Extension Data
Model for Scientific Workflow Provenance, Technical Report, DataONE Cy-
berinfrastructure Working Group, May 2016, http://jenkins -1.dataone .org/
jenkins /view/DocumentationProjects/job /ProvONE -Documentation -trunk /ws/
provenance/ProvONE /v1 /provone .html.

[36] L. Moreau, P. Missier, J. Cheney, S. Soiland-Reyes, PROV-n: The Provenance No-
tation, Tech. Rep., 2012, http://www.w3 .org /TR /prov-n/.

[37] Y. Chen, U.A. Acar, K. Tangwongsan, Functional programming for dynamic and
large data with self-adjusting computation, in: Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’14, 2014,
pp. 227–240.

[38] Y. Cui, J. Widom, Lineage tracing for general data warehouse transformations,
VLDB J. 12 (1) (2003) 41–58, https://doi .org /10 .1007 /s00778 -002 -0083 -8.

[39] P. Missier, N.W. Paton, K. Belhajjame, Fine-grained and efficient lineage query-
ing of collection-based workflow provenance, in: Proceedings of the 13th Inter-
national Conference on Extending Database Technology, EDBT ’10, 2010, p. 299.

[40] Z. Zhang, E.R. Sparks, M.J. Franklin, Diagnosing machine learning pipelines with
fine-grained lineage, in: Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’17, ACM Press,
New York, USA, 2017, pp. 143–153.

[41] Y. Cui, J. Widom, Practical lineage tracing in data warehouses, in: Proceedingsof
the 16th International Conference on Data Engineering, 2000, pp. 367–378.

[42] P.-A. Larson, J. Zhou, Efficient maintenance of materialized outer-join views,
in: 2007 IEEE 23rd International Conference on Data Engineering, IEEE, 2007,
pp. 56–65.

[43] I. Pietri, G. Juve, E. Deelman, R. Sakellariou, A performance model to estimate
execution time of scientific workflows on the cloud, in: 2014 9th Workshop on
Workflows in Support of Large-Scale Science, IEEE, 2014, pp. 11–19.

[44] M.J. Malik, T. Fahringer, R. Prodan, Execution time prediction for grid infrastruc-
tures based on runtime provenance data, in: Proceedings of the 8th Workshop
on Workflows in Support of Large-Scale Science, WORKS ’13, ACM Press, New
York, New York, USA, 2013, pp. 48–57.

[45] T. Miu, P. Missier, Predicting the execution time of workflow activities based on
their input features, in: Proceedings – 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, SCC 2012, 2012, pp. 64–72.

[46] R. Qasha, J. Cała, P. Watson, A framework for scientific workflow reproducibil-
ity in the cloud, in: 2016 IEEE 12th International Conference on e-Science,
e-Science, IEEE, 2016, pp. 81–90.

[47] W. Oliveira, P. Missier, K. Ocaña, D. de Oliveira, V. Braganholo, Analyzing prove-
nance across heterogeneous provenance graphs, in: Ipaw, vol. 5272, 2016,
pp. 57–70.

https://doi.org/10.1093/hmg/dds387
https://doi.org/10.1016/j.bbadis.2014.06.015
https://doi.org/10.1101/gr.210609.116
https://doi.org/10.1016/j.future.2016.01.001
https://doi.org/10.1016/j.bdr.2015.02.005
https://doi.org/10.1038/nrclinonc.2010.227
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D69737369657232303135s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D69737369657232303135s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D69737369657232303135s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D69737369657232303135s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib323031326172586976313230372E3339303747s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib323031326172586976313230372E3339303747s1
https://doi.org/10.1038/srep43169
https://doi.org/10.1186/s13059-015-0587-3
https://doi.org/10.1101/gr.213611.116
http://genome.cshlp.org/content/27/5/849.full.pdf+html
http://genome.cshlp.org/content/27/5/849.abstract
https://doi.org/10.1038/srep17875
https://doi.org/10.1038/nrg2779
https://doi.org/10.1007/11890850_14
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4C616B68616E6932303133s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4C616B68616E6932303133s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4C616B68616E6932303133s1
https://doi.org/10.1109/TST.2014.6733207
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib576F6F646D616E32303135s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib576F6F646D616E32303135s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib576F6F646D616E32303135s1
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://www.w3.org/TR/prov-dm/
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib50696D656E74656C32303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib50696D656E74656C32303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib50696D656E74656C32303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib50696D656E74656C32303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib46726569726532303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib46726569726532303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4275726765737332303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4275726765737332303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4275726765737332303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib53746F6464656E32303134s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib53746F6464656E32303134s1
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1002/cpe.994
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4261766F696C32303035s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4261766F696C32303035s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4261766F696C32303035s1
https://doi.org/10.1145/1596527.1596530
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib52616D616C696E67616D31393933s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib52616D616C696E67616D31393933s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib52616D616C696E67616D31393933s1
http://static.usenix.org/events/hotcloud09/tech/full_papers/popa.pdf
https://doi.org/10.14778/1920841.1920881
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib426861746F7469613230313161s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib426861746F7469613230313161s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib426861746F7469613230313161s1
https://doi.org/10.1186/s40537-017-0086-3
https://doi.org/10.1145/2786763.2694371
https://doi.org/10.1098/rsta.2012.0085
http://jenkins-1.dataone.org/jenkins/view/DocumentationProjects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/DocumentationProjects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/DocumentationProjects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://www.w3.org/TR/prov-n/
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4368656E3230313461s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4368656E3230313461s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4368656E3230313461s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4368656E3230313461s1
https://doi.org/10.1007/s00778-002-0083-8
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D69737369657232303130s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D69737369657232303130s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D69737369657232303130s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib5A68616E6732303137s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib5A68616E6732303137s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib5A68616E6732303137s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib5A68616E6732303137s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib43756932303030s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib43756932303030s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4C6172736F6E32303037s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4C6172736F6E32303037s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4C6172736F6E32303037s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib50696574726932303134s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib50696574726932303134s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib50696574726932303134s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D616C696B32303133s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D616C696B32303133s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D616C696B32303133s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D616C696B32303133s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D697532303132s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D697532303132s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4D697532303132s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib516173686132303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib516173686132303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib516173686132303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4F6C69766569726132303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4F6C69766569726132303136s1
http://refhub.elsevier.com/S2214-5796(17)30352-0/bib4F6C69766569726132303136s1
https://doi.org/10.1101/gr.210609.116
https://doi.org/10.1038/nrclinonc.2010.227
https://doi.org/10.1038/srep43169
https://doi.org/10.1101/gr.213611.116
https://doi.org/10.1007/11890850_14
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.1007/s00778-017-0486-1
https://doi.org/10.1002/cpe.994
https://doi.org/10.1145/2786763.2694371

	Selective and Recurring Re-computation of Big Data Analytics Tasks: Insights from a Genomics Case Study
	1 Introduction
	1.1 Motivation: genomics data processing
	1.2 Reacting to changes: a meta-process
	1.3 Variant calling and interpretation
	1.4 Candidate re-computation scenarios
	1.4.1 Step change in reference genome assembly
	1.4.2 Variant caller version change
	1.4.3 Updates to the SVI reference databases
	1.4.4 Choice of target experimental study

	1.5 Paper contributions

	2 A generic meta-process for selective re-computation
	2.1 Notation
	2.2 Selective re-computation steps
	2.3 Requirements for selective re-computation

	3 Related work
	4 Experimental setting and blind re-computation baseline
	4.1 The SVI workﬂow
	4.2 Data changes considered in the experiments
	4.3 Experimental setup
	4.4 Baseline: blind re-computation

	5 Data differences
	6 Differential execution
	6.1 Computing on data versions differences
	6.2 Re-computation using the difference sets

	7 Partial re-execution
	8 Identifying the scope of change
	8.1 The basic scoping algorithm
	8.2 Practical realisation of scoping
	8.3 Scoping effectiveness

	9 A blueprint for a generic and automated re-computation framework - challenges
	9.1 Monitoring data changes
	9.2 Calculating and quantifying changes
	9.3 Estimation impact and cost of refresh
	9.4 Optimising the selection of past executions
	9.5 Black box processes
	9.6 History database

	10 Conclusions and future work
	Acknowledgements
	Appendix A Input data
	Appendix B Supplementary material
	References

