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DNA methylation is a well-studied genetic modification crucial to regulate the functioning of the genome. 
Its alterations play an important role in tumorigenesis and tumor-suppression. Thus, studying DNA 
methylation data may help biomarker discovery in cancer. Since public data on DNA methylation become 
abundant – and considering the high number of methylated sites (features) present in the genome – 
it is important to have a method for efficiently processing such large datasets. Relying on big data 
technologies, we propose BIGBIOCL an algorithm that can apply supervised classification methods to 
datasets with hundreds of thousands of features. It is designed for the extraction of alternative and 
equivalent classification models through iterative deletion of selected features.
We run experiments on DNA methylation datasets extracted from The Cancer Genome Atlas, focusing on 
three tumor types: breast, kidney, and thyroid carcinomas. We perform classifications extracting several 
methylated sites and their associated genes with accurate performance (accuracy >97%). Results suggest 
that BIGBIOCL can perform hundreds of classification iterations on hundreds of thousands of features in 
few hours. Moreover, we compare the performance of our method with other state-of-the-art classifiers 
and with a wide-spread DNA methylation analysis method based on network analysis. Finally, we are 
able to efficiently compute multiple alternative classification models and extract – from DNA-methylation 
large datasets – a set of candidate genes to be further investigated to determine their active role in 
cancer. BIGBIOCL, results of experiments, and a guide to carry on new experiments are freely available 
on GitHub at https://github .com /fcproj /BIGBIOCL.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

Tumor, or neoplasm, is a mass of tissue originated from an 
abnormal and uncontrolled division of eukaryotic cells. When tu-
moral cells invade and destroy surrounding tissues, the tumor 
is malignant and it is called cancer. According to the World 
Health Organization (http://www.who .int /mediacentre /factsheets /
fs297 /en/), nearly one six of death are caused by cancer. Since 
cancer is one of the leading causes of mortality, it is worth not-
ing that research to fully understand its mechanisms and discover 
new ways to prevent and to treat this disease is fundamental to 
the human race. Transformation of healthy cells to tumoral ones is 
a complex process resulting from the interaction of genetic factors 
with external agents, like viruses, chemicals and physical muta-
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gens. In this context, the importance of DNA methylation in car-
cinogenesis is widely recognized [5,11,14,15,40].

DNA Methylation is one of the most intensely studied genetic 
modification in mammals involving reversible covalent alterations 
of DNA nucleotides [6]. In particular, the enzyme DNA methyl-
transferase catalyzes the conversion of the cytosine (typically in 
a CpG site) to 5-methylcytosine, by adding a methyl group (CH3) 
to cytosine residues in the sequence. In normal cells, this conver-
sion results in different interaction properties assuring the proper 
regulation of gene expression and of gene silencing [4]. In the 
haploid human genome there around 28 million of CpG sites in 
methylated or unmethylated state [28]. It is well-known that in-
activation of tumor-suppressor genes may occur as a consequence 
of hyper-methylation within the gene regions and a large range of 
cancer-related genes can be silenced by DNA methylation in differ-
ent types of tumors. Moreover, a global hypo-methylation, which 
induces genomic instability, also contributes to cell transformation 
[21]. Thus, methylation corresponds to inactivity, but inactivity of a 
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repressive factor means stimulation. This means that studying DNA 
methylation data to identify drivers in cancer is challenging.

Another challenge is given by the reduction of the cost of 
data generation that, especially after the employment of Next-
Generation Sequencing technologies [35], has made available an 
enormous amount of raw data. The availability of big datasets cre-
ates problems with the application of classical algorithms for data 
mining and analysis [16].

In this work, we focus on the adoption of big data technolo-
gies for the application of classification algorithms on large DNA 
methylation datasets. Even if there are many different definitions 
of big data, “Big data refers to datasets whose size is beyond the 
ability of typical database software tools to capture, store, manage 
and analyze” [22]. This definition does not focus on specific data 
size, but on the technology we adopt to manage those datasets.

We want to extract a set of genes that may play a role in a 
specific tumor by applying supervised learning methods to DNA 
methylation datasets with a large number of features (450 thou-
sand CpG positions). We aim to compute many classification mod-
els containing genes by applying optimized supervised learning 
algorithms, like Decision Trees [25] and Random Forests [7,29]. We 
rely on Apache Spark MLlib [23], running in standalone or cluster 
mode, in order to cope with performance. In fact, the largeness of 
the input dataset does not allow to analyze and process it in an 
acceptable time with non-big data technologies.

A previous classification study on DNA methylation [10] pro-
posed MethPed, a tool for the identification of pediatric tumors. 
Researchers built the classification model behind MethPed from 
DNA methylation datasets with 450 thousand of features. They 
firstly applied a large number of regression algorithms to select 
a subset of features with the highest predictive power; then, they 
adopted Random Forests to build the classification model. On the 
contrary, we want to apply classification algorithms to the entire 
dataset in order to obtain a large number of CpG sites and their as-
sociated genomic locations. Another study [1] described methylKit, 
an R package for the analysis of DNA methylation data. This pack-
age adopts an unsupervised machine learning approach, working 
on unlabeled data. methylKit works in-memory and, even if it is 
multi-threaded, its execution is limited to a single machine. On 
our side, we want to perform supervised machine learning on a 
cluster of computational nodes, in order to be able to scale with 
the increasing dimension of input data.

The algorithm proposed in our study is inspired by CAMUR for 
being applied to large input datasets. CAMUR (Classifier with alter-
native and multiple rule-based models) is a classification method 
that iteratively computes a rule-based classification model, elim-
inates from the input dataset combinations of extracted features, 
and repeats the classification until a stopping condition is verified 
[8]. The result of a CAMUR computation is a set of classification 
models. CAMUR worked on RNA sequencing cancer datasets with 
around 20 thousand features. In this work, we design and develop 
BIGBIOCL, a multiple tree-based classifier, to analyze DNA methyla-
tion datasets with more than 450 thousand features [24]. Our goal 
is to extract candidate methylated sites and their related genes in 
few hours.

2. Methods

In our experiments on the application of big data technologies 
to the classification of large DNA methylation datasets, we con-
sider three types of cancer: the Breast Invasive Carcinoma (BRCA), 
the Thyroid Carcinoma (THCA), and the Kidney Renal Papillary Cell 
Carcinoma (KIRP). We develop BIGBIOCL in order to run an iter-
ative classification algorithm in big data environments, to achieve 
efficient supervised learning, and to extract multiple classification 
Table 1
Datasets used in this study.

Dataset Number of samples Number of features

BRCA 897 485,512
THCA 571 485,512
KIRP 321 485,512

models. Then, we test our algorithm both in a single-machine and 
in a Hadoop YARN cluster.

2.1. Datasets

The Cancer Genome Atlas (TCGA) is a project started in 2005 
and maintained by the National Cancer Institute and National Hu-
man Genome Research Institute [34]. The TCGA is a 2.5 petabytes 
public dataset widely used in scientific research. Searching “The 
Cancer Genome Atlas” on PubMed reveals more than 2,500 articles 
in the last 5 years. The TCGA dataset contains the genomic charac-
terization of over 30 types of human cancer [31] from more than 
11,000 patients. The dataset includes cancer genome profiles ob-
tained from several NGS methods applied to patient tissues, like 
RNA sequencing, Array-based DNA methylation sequencing, mi-
croRNA sequencing, and many others [38,18,35,27].

In our work, we focus on DNA methylation data. In partic-
ular, we consider profiles obtained using the Illumina Infinium 
Human DNA Methylation 450 platform (HumanMethylation450), 
which provides quantitative methylation measurement at CpG site 
level [26]. HumanMethylation450 allows assessing the methylation 
status of more than 450 thousand CpG sites [13], producing large 
datasets to be analyzed and interpreted. Even if HumanMethyla-
tion450 datasets can be useful for large-scale DNA methylation 
profiling, they raise problems of efficient data processing. Conse-
quently, we decide to explore the adoption of big data technologies 
and infrastructures to enable the possibility of efficiently applying 
machine learning algorithms to such large datasets. We rely on the 
latest TCGA data release available at The Genomic Data Commons 
data sharing platform (https://gdc .nci .nih .gov/).

In our experiments, we use the beta value as an estimate of 
DNA methylation level. Beta value [12] is defined as the ratio of 
the methylated allele intensity and the overall intensity (i.e. the 
sum of methylated and unmethylated allele intensities):

βn = max(Methn,0)

max (Methn,0) + max (Unmethn,0) + ε
(1)

where Methn is the nth methylated allele intensity, Unmethn is 
the nth unmethylated allele intensity, and ε is a constant offset 
used to regulate the beta value where both intensities are low. 
It is worth noting that beta value is a continue variable in the 
range [0, 1], where 0 means no methylation and 1 full methyla-
tion.

We focus on three DNA methylation datasets extracted from 
TCGA: BRCA, THCA, and KIRP (Table 1). For each dataset, we filter 
the input data matrix to cope with missing values and to exclude 
control cases (this is important to reduce the classification task to 
binary classification, having only tumoral and normal cases). The 
final data matrix (Table 2) has the following structure:

• Rows represent samples, i.e. the profile of a patient tissue. The 
first row is the header, so it contains column names.

• The first column contains ID of samples. The last column is the 
category, specifying if the sample is “tumoral” or “normal”.

• All other columns represent CpG sites, and the corresponding 
cells contain the beta value for the CpG site. We use the Il-
lumina 450 k manifest to know where a CpG site is located 
and which gene corresponds to it. The manifest is available 

https://gdc.nci.nih.gov/
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Table 2
Structure of the DNA methylation data matrix extracted from TCGA.

Sample ID cg13869341 . . . cg00381604 Class

TCGA-A7-A0DC-11 0.971644 . . . 0.017485 Tumoral
TCGA-BH-A0BV-11A 0.925557 . . . ? Normal
TCGA-BH-A0DZ-11A 0.907020 . . . 0.019204 Tumoral

on Illumina website (https://support .illumina .com /array /array _
kits /infinium _humanmethylation450 _beadchip _kit /downloads .
html).

• Missing values are encoded with the question mark.

2.2. Supervised learning

The goal of our study is to develop an iterative algorithm that 
can efficiently extract a set of genes from large DNA methylation 
cancer datasets. The first step is the application of a supervised 
learning method [30,36]. This is possible because the datasets used 
in this study (Table 1) are labeled datasets, i.e., we know if each 
tissue belongs to the ‘normal’ or ‘tumoral’ category. Using a labeled 
dataset (or a part of it) as a training set, the supervised learning 
algorithm infers some hypothesis from the features and builds a 
classification model, which is simply a function that assigns a cat-
egory to a sample. We perform tests with both Decision Trees [25]
and Random Forests [7,29]. Then, we extract CpG sites (features) 
from the classification model and the corresponding genes. The list 
of genes extracted from a classification model is part of the out-
put of our algorithm. In fact, as we explain in the next section, our 
algorithm runs many iterations, and the overall result is the union 
of the results of each iteration. It is important to highlight that we 
are not interested in the decision model to classify new data (even 
if this would be possible), but to extract a list of candidate genes 
that may play a role in cancer.

Decision Trees are used for recursive binary partitioning of the 
feature space. Starting from the root, which contains the entire 
training dataset, Decision Trees are built by splitting the dataset 
into distinct nodes, where a node defines the probability of a point 
to be of a certain category. The final prediction is the label of the 
final leaf node reached during the decision process. Decision Trees 
are smooth to understand and they allow validating the model 
with statistical tests (like entropy or information gain). Unfortu-
nately, it is easy to create a tree that overfits the input data. In 
addition, since Decision Trees use a greedy algorithm, the optimal 
tree is sometimes not found.

Random Forests solve many problems of Decision Trees, espe-
cially when applied to very large datasets. Random Forests run 
many Decision Trees in parallel and they fit well with big data 
technologies and map-reduce algorithms, since data can be split 
on different machines. There are two points of randomness that 
reduce the possibility of overfitting and over generalization. First 
of all, each tree is created from a random selection of N data 
points from the training set. Then, during the decision process of 
a specific tree, there is a random selection of M features from the 
global set of features. For all those reasons, while both Decision 
Trees and Random Forests are explored, the final implementation 
of BIGBIOCL is based on Random Forests.

2.3. BIGBIOCL: a multiple tree-based classifier for big biological data

CAMUR [8] is a supervised method that can extract alterna-
tive and equivalent classification models from a labeled dataset 
[37]. CAMUR adopts an iterative feature elimination technique: it 
uses the supervised RIPPER algorithm [9] to compute a rule-based 
classification model, iteratively eliminates combinations of features 
that appear in the model from the input dataset, and performs 
again the classification until a stopping condition is verified. Once 
a feature is eliminated from the dataset, it can be reinserted in the 
next iteration (loose execution mode) or discarded forever (strict
execution mode). CAMUR has been successfully applied to RNA-
sequencing data [8] extracted from TCGA, and evaluated on Gene 
Expression Omnibus (GEO) datasets. Datasets used in CAMUR tasks 
contained at most 30 thousand of features and a thousand of sam-
ples. When trying to apply CAMUR to DNA methylation datasets, 
which contain hundreds of thousands of features, the algorithm 
suffers of memory and execution time problems.

In this work we propose BIGBIOCL, a JAVA command-line soft-
ware that is inspired by CAMUR to enable the efficient manage-
ment and classification of large datasets. BIGBIOCL adopts big data 
solutions and introduces many innovations to CAMUR:

• BIGBIOCL is based on MLlib, the Apache Spark’s scalable ma-
chine learning library. The adoption of Apache Spark allows 
executing the algorithm on Hadoop YARN [33] cluster, with 
the possibility to parallelize the machine learning task on sev-
eral machines.

• Even if both Decision Trees and Random Forests have been 
tested, the final implementation of BIGBIOCL is based on Ran-
dom Forests. One of the reasons is that, Random Forests natu-
rally fit with parallel computation, since each node of a cluster 
can compute a different tree of the forest and send the result 
back to a master node.

• BIGBIOCL, following the CAMUR method, iteratively computes 
a Random Forest model. After each iteration, BIGBIOCL per-
manently removes all features that appear in the computed 
model from the input dataset, and not only combinations of 
them. This approach is similar to the CAMUR loose execution 
mode, but removing all extracted features makes the entire 
process lighter since there is no more the need to compute 
the power set at each iteration. Obviously, having hundreds of 
thousands of features guarantees that a relevant number of al-
ternative classification models are still extracted, as we show 
in the next section.

BIGBIOCL iterative procedure stops when the reliability of the 
classification model is below a given threshold, or when a maxi-
mum number of iterations has been reached. Both stopping condi-
tions must be specified by the user as command-line parameters. 
We use the F -measure to evaluate the accuracy of classification 
models. The F -measure is defined as the weighted harmonic mean 
of precision (P ) and recall (R). We decide to equally weight preci-
sion and recall, obtaining the formula:

F -measure = 2P R

P + R
(2)

It is worth noting that F -measure is high when both precision 
and recall are high. Precision and recall are defined in terms of true 
positive TP (the number of samples that are assigned to a category 
and that belong to that category), false positives FP (the number 
of samples not belonging to a category but assigned to that cate-
gory), and false negatives FN (the number of samples belonging to 
a category but not assigned to that category):

P = TP

TP + FP
; R = TP

TP + FN
(3)

When the iterative algorithm stops, the software collects the 
list of features that appear in all computed classification models. 
Since features are CpG sites that are located in different genomic 
regions, we use a mapping file for discovering the gene where a 
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Table 3
Workstation used for experiments.

Parameter Value

Architecture x86
CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz
Number of CPUs 8
RAM 24 GB
OS CentOS Linux release 7.3.1611
Java version Oracle jdk1.8.0_131

CpG site is located (see section 2.1 for further details). The soft-
ware can therefore derive a list of candidate genes as final output 
of the computation, associating them to the tumor under study. 
Extracted genes can then be explored and evaluated by biologists 
to investigate their role in cancer. Obviously, BIGBIOCL can be ap-
plied also to different datasets. In fact, it is not limited to DNA 
methylation data, but it works on any input dataset having the 
structure illustrated in Table 2.

3. Results

In this section, we discuss the path that led to the Random 
Forests implementation of BIGBIOCL, providing statistics about ex-
periments and a discussion about results. All our experiments refer 
to the datasets listed in Table 1.

First of all, we tried to use CAMUR in strict mode to extract can-
didate genes from the BRCA dataset. As we have previously noted, 
CAMUR works properly with TGCA RNA-sequencing data, where 
the number of features is around 30 thousand. The BRCA dataset – 
stored in a 6.5 GB text file – includes more than 450 thousand of 
features and CAMUR cannot manage such amount of data. The ex-
periment was executed using the workstation described in Table 3, 
allocating 22 GB of RAM and 7 cores to the Java Virtual Machine 
(JVM). After 16 minutes, CAMUR ran out of memory.

Afterwards, we executed several experiments, relying on Apache 
Spark MLlib:

(1) Single iteration of Decision Trees. We ran Decision Trees in 
Spark local mode, in order to evaluate results and perfor-
mance.

(2) Single iteration of Random Forests. We ran Random Forests in 
Spark local mode, in order to compare results and performance 
with Decision Tree experiments.

(3) Execution of Linear Support Vector Machines (SVMs) and 
Naïve Bayes. We ran SVMs and Naïve Bayes in Spark local 
mode to compare the accuracy of Random Forests results with 
other classification methods.

(4) BIGBIOCL: this is the Random Forest iterative algorithm (with 
feature deletion) implemented with big data technologies. The 
algorithm was tested both in Spark local mode and on Apache 
Hadoop YARN multi-node cluster.

Apache Spark local mode is a non-distributed single-JVM con-
figuration that allows Spark to run all its execution components 
(i.e. driver, executor, scheduler, and master) in the same JVM. In 
local mode, the default parallelism is the number of threads spec-
ified as command line parameter. Table 4 and Table 5 show the 
configuration and results of experiments with a single iteration of 
Decision Trees in the same workstation used for testing CAMUR. In 
all our experiments we used 70% of randomly sampled input data 
to build the model (training set), and 30% of data for the evaluation 
(test set). Results show that BIGBIOCL can manage large datasets 
with hundreds of thousands of features.

Experiments with Decision Trees demonstrate that we were 
able to classify large datasets, even using only 5 GB of memory. 
The execution time decreases drastically if the parameter max bins
Table 4
Configuration of Decision Tree experiments – Spark local mode (dataset: BRCA).

ID Memory Threads Max depth Max bins Impurity

1 5 GB 4 5 16 Gini
2 5 GB 4 5 32 Gini
3 12 GB 7 5 32 Gini
4 12 GB 7 10 32 Gini
5 12 GB 7 5 8 Gini
6 18 GB 7 5 128 Gini

Table 5
Results of Decision Tree experiments described in Table 4.

ID Build time Evaluation time F-Measure #Features

1 37.7 min 17.5 min 98,51% 2
2 OOM – – –
3 66.23 min 1.96 min 98.76% 4
4 67.96 min 1.92 min 99.20% 4
5 9.6 min 1.92 min 98.03% 3
6 OOM – – –

This is Table shows the execution time and results of a single iteration of Decision 
Trees. The configuration adopted for each experiment is provided in Table 4. “ID” is 
the unique identifier for an experiment. “Build Time” is the time needed to build 
the classification model, while “Evaluation time” is the time for the evaluation of 
the model on test data (30% of input data). The accuracy of the model is given 
by the F -measure. The column “#Features” represents the number of features that 
appear in the classification model, i.e. the CpG loci that can be extracted. “OOM” 
means that the experiment ran out of memory.

Table 6
Configuration of Random Forest experiments – Spark local mode (dataset: BRCA).

ID Memory Threads Max depth Max bins #Trees Impurity

7 5 GB 7 5 16 5 Gini
8 12 GB 7 5 16 5 Gini
9 12 GB 7 5 16 10 Gini

Table 7
Results of Random Forest experiments described in Table 6.

ID Build time Evaluation time F-Measure #Features

7 1 h 35 min 20.37 min 98.92% 33
8 25.53 min 1.73 min 98.47% 40
9 28.87 min 1.97 min 98.83% 77

is reduced. Even if execution time seems to be acceptable (the al-
gorithm terminates at most in one hour), some observations led us 
to test (and then adopt) Random Forests:

• We could extract only few features from each execution of the 
algorithm. We are interested in identifying a set of candidate 
genes for a specific type of cancer, thus having more features 
would be preferable.

• Decision Trees offer few possibilities of parallelization. This 
is important especially in the context of multiple iterations, 
where parallelization can reduce the overall execution time. 
On the other hand, Random Forests allow splitting the data on 
many machines, reducing the execution time of each iteration.

Table 6 and Table 7 show results of some experiments with 
Random Forests. Overall, a single execution of Random Forests per-
forms definitely better than a single execution of Decision Trees. 
Even if experiment 7 produced a result in more than one hour 
and a half, experiment 8 shows that increasing the memory from 
5 GB to 12 GB dramatically improves the execution time. To build 
the model, experiment 8 required 38.5% of the time of the equiva-
lent experiment with Decision Trees (ID = 3). In addition, Random 
Forests produce more features, which is important to identify more 
genes that may play a role in cancer.
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Table 8
Configuration of SVM experiments – Spark local mode (dataset: BRCA).

ID Memory Threads Regularization 
method

Regularization 
parameter

#Iterations

SVM1 12 GB 7 L2 1.0 100
SVM2 12 GB 7 L2 1.0 200
SVM3 12 GB 7 L1 0.1 100
SVM4 12 GB 7 L1 0.1 200

Table 9
Results of SVM experiments described in Table 8.

ID Execution time F-Measure

SVM1 2 h 03 min 98.95%
SVM2 3 h 32 min 98.74%
SVM3 1 h 40 min 95.46%
SVM4 1 h 19 min 99.16%

Additional experiments with other methods for large-scale clas-
sification tasks, i.e. Support Vector Machines (SVMs) and Naïve 
Bayes, justify the adoption of Random Forests in the final imple-
mentation of BIGBIOCL. Comparing Tables 7 and 9, we observe that 
experiments with SVMs show greater execution times than exper-
iments with Random Forests. Even varying the amount of RAM 
(from 5 GB to 18 GB), execution time of SVMs does not change. 
In addition, while F-Measures of Tables 7 and 9 are comparable, 
SVMs do not provide a human interpretable model that we can use 
to create a list of candidate genes. We have also performed exper-
iments with multinomial Naïve Bayes, but F-Measures were much 
lower and we could not rely on a human interpretable model to 
extract relevant features.

For comparing the performance of our algorithm with a sequen-
tial implementation of Decision trees and Random Forest classi-
fiers, we decided to run the classification analyses by adopting the 
Weka software package [17]. The amount of memory we had to al-
locate was 24 GB in order to permit the execution of the sequential 
algorithms.

The running time of the sequential Random Forest on BRCA was 
15.5 minutes (model building and evaluation) setting the max bins 
to 2, the number of trees to 20, and the max depth to 5 obtain-
ing an F-Measure value of 98.33%. Conversely, the Random Forest 
Apache Spark single node implementation with the same settings 
took 8 minutes with an F-Measure value of 99.81%.

Moreover, when testing the sequential implementation of the 
Decision Tree results are even more noteworthy. A run of the se-
quential implementation with the same settings of experiment 5 
in Table 4 did not compute a solution even after 20 days of com-
putation, while the Apache Spark implementation terminated just 
in 10.5 minutes. Finally, it is worth noting that both Spark imple-
mentations need less memory (12 GB and 18 GB) to perform the 
classification analyses.

BIGBIOCL was tested both running Apache Spark in local mode 
and on Apache Hadoop YARN Cluster. Experiments with Hadoop 
Cluster were performed using PICO (http://www.hpc .cineca .it /
hardware /pico), the latest Cineca’s Italian Supercomputing infras-
tructure for big data. PICO allows allocating computational nodes 
and memory on demand when running Hadoop jobs (Table 10). 
Experiments with Spark in local mode were conducted in the 
workstation described in Table 3. In both cases, we used Apache 
Spark 2.1.1. BIGBIOCL implements the following iterative algorithm:

• At each iteration, Apache MLlib Random Forests model is com-
puted on the working dataset S . On a cluster, trees of the Ran-
dom Forests can be computed in parallel on different nodes.

• At iteration 0, S is equals to the input dataset.
Table 10
PICO’s hardware, used for experiments with Hadoop Cluster.

Parameter Value

Total nodes 66
CPU Intel Xeon E5 2670 v2 @2.5 GHz
Cores per node 20
RAM per node 128 GB

Table 11
Configuration of BIGBIOCL experiments – Spark local mode (dataset: BRCA).

ID Memory Threads Max depth Max Bins #Trees Stopping 
condition

10 18 GB 7 5 16 5 F -measure <98%
11 18 GB 7 5 16 10 F -measure <98%
12 18 GB 7 5 16 10 F -measure <97%
13 18 GB 7 5 16 20 F -measure <99%

Table 12
Results of BIGBIOCL experiments described in Table 11.

ID Overall time #Iterations #Features #Distinct genes

10 3 h 33 min 8 331 230
11 13 h 16 min 26 2345 1460
12 46 h 34 min 96 9780 5072
13 1 h 2 min 2 329 224

“Overall time” is the time to execute all iterations. For each iteration, execution time 
includes the time to build the model, the time to evaluate the model on test data, 
and the time to evaluate the model on training data.

• After each iteration, the set of features F that appear in the 
computed model is removed from S . Thus, next iteration runs 
on the dataset {S − F }.

• Once eliminated, features are never reintegrated in the work-
ing dataset S .

• The algorithm terminates when F -measure on test data is be-
low a threshold MF (parameter provided by the user) or the 
number of iterations is bigger than a threshold MI (in the rest 
of this article we consider M I = 1000).

Tables 11 and 12 show results of experiments running Spark in 
local mode. The input dataset is BRCA. As we can see, setting the 
F -measure threshold to 99%, BIGBIOCL ran 2 iterations in around 
one hour, extracting 224 candidate genes. Relaxing that constraint, 
we had more iterations and more candidate genes. When the 
F -measure threshold was set to 97%, BIGBIOCL executed 96 iter-
ations, computing 5072 genes in less than 2 days. Experiments on 
Hadoop YARN Cluster are summarized in Tables 13 and 14. They 
were useful to evaluate how performance improves with paral-
lelization on multiple computational nodes. Results are attractive. 
Experiment 16 (on Hadoop) corresponds to Experiment 12 (Spark 
local mode) and its execution time was 22% of Experiment 12. It 
is also interesting to note (Experiments 16 and 17) that increas-
ing the number of working nodes of the cluster (so also the total 
number of CPUs) we got more iterations and more genes.

We wish to highlight that all the extracted genes related to 
each tumor are available at supplementary data S1. Additionally, 
a comprehensive description of the experimentation is provided in 
the wiki of BIGBIOCL on GitHub.

Furthermore, if we compare Experiment 18 (on Hadoop) with 
Experiment 13 (Spark local mode), we can notice again how the 
execution on a cluster outperforms the Spark local mode, both in 
terms of execution time and of number of features extracted. On 
average, running BIGBIOCL in Spark local mode requires around 
1500 seconds to generate the classification model at each iteration, 
while using 3 PICO’s nodes on Hadoop YARN cluster the average 
time to build a classification model is 330 seconds.

http://www.hpc.cineca.it/hardware/pico
http://www.hpc.cineca.it/hardware/pico
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Table 13
Configuration of BIGBIOCL experiments – Hadoop YARN Cluster (dataset: BRCA).

ID #Nodes Mem per 
node

CPU per 
node

Max 
depth

Max 
bins

#Trees Stopping 
condition

14 2 96 GB 20 5 16 5 F -measure <98%
15 2 96 GB 20 5 16 10 F -measure <98%
16 2 96 GB 20 5 16 10 F -measure <97%
17 3 96 GB 20 5 16 20 F -measure <97%
18 3 96 GB 20 5 16 20 F -measure <99%

“#Nodes” is the number of PICO’s nodes allocated to the execution of the exper-
iment. For each working node, we specified an amount of memory (“Mem per 
node”) and the number of CPU (“CPU per node”).

Table 14
Results of BIGBIOCL experiments described in Table 13.

ID Overall time #Iterations #Features #Distinct genes

14 28.58 min 4 165 123
15 1 h 56 min 16 1352 907
16 10 h 36 min 88 8722 4607
17 13 h 30 min 116 24984 9539
18 22.15 min 3 507 352

Table 15
Configuration of BIGBIOCL experiments – Spark local mode (datasets: THCA and 
KIRP).

ID Memory Threads Max 
depth

Max 
bins

#Trees Stopping 
condition

THCA 19 18 GB 7 5 16 5 F -measure <97%
KIRP 20 18 GB 7 5 16 5 F -measure <97%

Table 16
Results of BIGBIOCL experiments described in Table 15.

ID Overall time #Iterations #Features #Distinct genes

THCA 19 2 h 13 min 7 541 398
KIRP 20 4 h 21 min 34 1215 852

Tables 15 and 16 show results of some experiments with THCA 
and KIRP datasets. Experiments refer to the execution of BIGBIOCL 
in Spark local mode, using the workstation described in Table 3. 
On average, the time to build a classification model for the KIRP 
dataset is 340 seconds, while for THCA this number increases to 
945 seconds. This result is quite obvious, since THCA contains 571 
samples, while KIRP only 321. What is interesting to note is that 
on THCA the algorithm stops after 7 iterations, while on KIRP after 
34 iterations, even if the KIRP dataset contains less samples. This 
depends on the different distribution of beta values in the two 
datasets.

For estimating the execution time of a sequential implemen-
tation of our algorithm, we can consider experiment number 17 
(Tables 13 and 14) whose execution time was 13 h 30 min. If we 
run the same number of iterations (i.e., 116) with the sequential 
implementation of Random Forest of the Weka software package, 
the execution time will be at least of 30 h (not taking into account 
potential overhead).

In order to compare our results with a wide-spread DNA methy-
lation analysis method, we followed the procedure described in 
[3]. We have computed all the pairwise Pearson correlation co-
efficients (PPCC) between all CpG islands in the three examined 
datasets (BRCA, KIRP, and THCA). The aim of this operation was to 
construct a correlation network for each tumor differentiating nor-
mal and tumoral tissues.

To achieve this goal, a cleaning of the dataset was required. In 
particular, for each tumor, we have replaced the unavailable mea-
surements in our datasets with the mean value computed on the 
known beta values. Additionally, because of the nature of this anal-
Table 17
Computational time and inferred nodes and edges with the DNA methylation net-
work correlation analysis [3] implemented in JAVA and executed on the Microsoft 
Azure Cloud Computing environment using a dual core virtual processor with 14 
GB RAM memory and Ubuntu Linux 17.04 operating system.

Disease Tissue Experiments Time Nodes Inferred edges

BRCA normal 97 3 d 20 h 20 m 5 5
tumoral 798 18 d 12 h 57‘m 49 34

KIRP normal 44 1 d 17 h 30 m 0 0
tumoral 275 8 d 7 h 34 m 37 73

THCA normal 55 2d 3h 44m 2 1
tumoral 514 11d 1h 4m 21 14

ysis, we have fixed a threshold at 0.9 on the correlation measure 
to identify the strong correlated CpG islands only. This means that, 
if the correlation between the island X and the island Y is greater 
than 0.9 (in module), an edge between X and Y will be inferred.

It is worth noting that this kind of analysis was extremely time 
consuming due to the dimension of our datasets and due to the 
non-parallel implementation of the method described in [3], as 
shown in Table 17.

Due to the small dimension of the inferred networks (Figs. 1, 
2, 3), any analytical method from network theory is useful, ex-
cept in the case of KIRP (tumoral tissue) in which a quasi-clique 
is emerged (see Fig. 2). For this reason, we have considered all the 
CpG islands in our networks as relevant features to compare with 
the novel feature extraction method proposed in this paper.

We mapped the extracted CpG islands to the genes and we in-
vestigated if they are equal to the ones computed by BIGBIOCL. In-
deed, when analyzing BRCA we found that seven out of eight genes 
appear also in the results of BIGBIOCL (AGRN, ISG15, SAMD11, 
SDF4, SPICE1, TNFRSF18, TNFRSF4). For KIRP two out of six genes 
appear also in BIGBIOCL (ZNF132, SAMD11), while for THCA no 
common genes have been identified. For further details the reader 
may refer to supplementary material S2. We wish to highlight that 
our method BIGBIOCL extracts many novel genes, which represent 
additional knowledge with respect to standard correlation analysis.

4. Discussion

Our experiments demonstrate that BIGBIOCL can compute mul-
tiple classification models for datasets with hundred thousands of 
features in few hours. In addition, thanks to the possibility to ex-
ecute the software on a Hadoop cluster, execution time can be 
reduced even by 75% compared to Spark local mode. Obviously, 
the possibility of the software to reach a high level of parallelism 
allows adding computational nodes to the cluster when the size 
of the input dataset explodes. The first parameter that can be 
tuned to improve the parallelism and performance is the number 
of trees of the Random Forests. This number should be increased 
only when there is an increment in the size of the input dataset. 
Increasing the number of trees causes an increase of the training 
time, which can be contained by adding more computational nodes 
to the cluster (in fact, trees can be computed in parallel in differ-
ent nodes).

We compared BIGBIOCL with standard DNA methylation net-
work analysis and other supervised machine learning methods (i.e., 
SVM and Naïve Bayes) obtaining new knowledge in terms of ex-
tracted CpG sites and related genes. In fact, BIGBIOCL represents 
a novel approach to DNA methylation data classification. BIGBIOCL 
performs classification using the entire set of features in the in-
put dataset, even when features are hundreds of thousands. This 
is made possible by the adoption of big data technologies for the 
computation of the classification model. Other tools work with a 
smaller set of features [8], or reduce the number of features ap-
plying regression algorithms [10].
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Fig. 1. Inferred correlation network for the BRCA tumor.

Datasets used in our experiments were extracted from TGCA 
and obtained using the HumanMethylation450 platform. This plat-
form provides beta values for more than 485,000 CpG loci. Even if 
there are more than 28 million of CpG loci in the human genome, 
Fig. 3. Inferred correlation network for the THCA tumor.

data from HumanMethylation450 cover 99% of RefSeq genes, so it 
is a good starting point to identify drivers for cancer.

In our work, we have provided a methodology and a soft-
ware tool to analyze HumanMethylation450 data and even bigger 
datasets. Then, genes extracted from the execution of BIGBIOCL 
(available at supplementary data S1) can be used by biologists to 
determine their relevance in a given type of cancer. If we consider 
that there are around 25 thousand of genes in human DNA, lim-
iting their number allows focusing the attention of the researcher. 
Analyzing results of experiments on BRCA data, we can find some 
genes that are well known in literature for their role in breast can-
cer. For example, mutations of the tumor suppressor gene TP53 
and of PIK3CA have been often associated with BRCA [19]. In ad-
dition, both inherited and de novo mutations of BRCA1 and BRCA2 
– which mainly cause inactivity of such genes – have been asso-
ciated to patients with breast cancer [20,2]. A recent study [32]
argues that up-regulation of the BDNF signaling pathway can be 
associated to triple negative breast cancer cells (i.e. cells that test 
negative for HER2, estrogen receptors, and progesterone receptors). 
We have obtained BDNF as result of several experiments (IDs 12, 
15, 16, and 17). Furthermore, other genes that are considered high-
Fig. 2. Inferred correlation network for the KIRP tumor.
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confidence oncogenic candidates [39] have been extracted with 
BIGBIOCL, as ALDH3A1, CLDN15, SFN, and ENDOD1.

5. Conclusion

In conclusion, BIGBIOCL can efficiently manage large datasets, 
iteratively building equivalent classification models, extracting fea-
tures (genes in our experiments where features are CpG loci, but 
the algorithm can potentially be used with other data), and scal-
ing up with the size of the input dataset. Then, results need to 
be further validated. The algorithm can be improved. It currently 
builds the classification model on 70% of input data, using 30% of 
data as test data (the F -measure on test data is used as stopping 
condition of the iterations). This choice was important during the 
development and the test of BIGBIOCL. In order to get more pre-
cise results and to avoid to loose information, the algorithm could 
build classification models on 100% of the input data. In addition, 
as already said, BIGBIOCL can be applied to other type of data, in-
cluding other NGS experiments and even bigger datasets. Lastly, 
BIGBIOCL can be used as a component of a pipeline to give sense 
to raw data, reducing the entropy and focusing the attention on a 
smaller set of dimensions.
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