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Current train delay prediction systems do not take advantage of state-of-the-art tools and techniques 
for handling and extracting useful and actionable information from the large amount of historical train 
movements data collected by the railway information systems. Instead, they rely on static rules built 
by experts of the railway infrastructure based on classical univariate statistic. The purpose of this paper 
is to build a data-driven Train Delay Prediction System (TDPS) for large-scale railway networks which 
exploits the most recent big data technologies, learning algorithms, and statistical tools. In particular, we 
propose a fast learning algorithm for Shallow and Deep Extreme Learning Machines that fully exploits the 
recent in-memory large-scale data processing technologies for predicting train delays. Proposal has been 
compared with the current state-of-the-art TDPSs. Results on real world data coming from the Italian 
railway network show that our proposal is able to improve over the current state-of-the-art TDPSs.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Big Data Analytics is one of the current trending research inter-
ests in the context of railway transportation systems. Indeed, many 
aspects of the railway world can greatly benefit from new tech-
nologies and methodologies able to collect, store, process, analyze 
and visualize large amounts of data [1,2] as well as new method-
ologies coming from machine learning, artificial intelligence, and 
computational intelligence to analyze that data in order to extract 
actionable information [3]. Examples are: condition based mainte-
nance of railway assets [4–6], automatic visual inspection systems 
[7,8], risk analysis [9], network capacity estimation [10], optimiza-
tion for energy-efficient railway operations [11], marketing analysis 
for rail freight transportation [12], usage of ontologies and linked 
data in railways [13], big data for rail inspection systems [14], 
complex event processing over train data streams [15], fault di-
agnosis of vehicle on-board equipment for high speed railways 
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[16–18] and for conventional ones [19], research on storage and 
retrieval of large amounts of data for high-speed trains [20], de-
velopment of an online geospatial safety risk model for railway 
networks [21], train marshaling optimization through genetic algo-
rithms [22], research on new technologies for the railway ticketing 
systems [23].

In particular, this paper focuses on building a Train Delay Pre-
diction System (TDPS) in order to provide useful information to 
traffic management and dispatching processes through the usage 
of state-of-the-art tools and techniques, able to extract useful and 
actionable information from the large amount of historical train 
movements data collected by the railway information systems.

Delays can be due to various causes: disruptions in the op-
erations flow, accidents, malfunctioning or damaged equipment, 
construction work, repair work, and severe weather conditions like 
snow and ice, floods, and landslides, to name just a few. Although 
trains should respect a fixed schedule called Nominal Timetable 
(NT), Train Delays (TDs) occur daily and can negatively affect rail-
way operations, causing service disruptions and losses in the worst 
cases. Rail Traffic Management Systems (TMSs) [24] have been de-
veloped to support the management of the inherent complexity of 
rail services and networks by providing an integrated and holistic 
view of operational performance, enabling high levels of rail op-
erations efficiency. By providing an accurate TDPS to TMSs, it is 
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possible to greatly improve traffic management and dispatching in 
terms of:

• Passenger information systems, increasing the perception of the 
reliability of railway passenger services and, in case of service 
disruptions, providing valid alternatives to passengers looking 
for the best train connections [25].

• Freight tracking systems, estimating goods’ time to arrival cor-
rectly in order to improve customers’ decision-making pro-
cesses.

• NT planning, providing the possibility of updating the train trip 
scheduling to cope with recurrent TDs [26].

• Delay management (rescheduling), allowing traffic managers to 
reroute trains in order to utilize the railway network in a bet-
ter way [27].

Due to its key role, a TMS stores the information about ev-
ery Train Movement (TM), i.e. every train arrival and departure 
timestamp at “checkpoints” monitored by signaling systems (e.g. a 
station or a switch). Datasets composed by TM records have been 
used as fundamental data sources for every work addressing the 
problem of building a TDPS.

For instance, Milinkovic et al. [28] developed a Fuzzy Petri Net 
model to estimate TD based both on expert knowledge and on his-
torical data. Berger et al. [29] presented a stochastic model for 
TD propagation and forecasts based on directed acyclic graphs. 
Pongnumkul et al. [30] worked on data-driven models for TD pre-
dictions, treating the problem as a time series forecast one. Their 
system was based on autoregressive integrated moving average and 
nearest neighbor models, although their work reports the applica-
tion of their models over a limited set of data from a few trains. Fi-
nally, Kecman et al. [31–34] developed an intensive research in the 
context of TD prediction and propagation by using process mining 
techniques based on innovative timed event graphs, on historical 
TM data, and on expert knowledge about railway infrastructure.

However, their models are based on classical univariate statis-
tics, while our solution integrates multivariate statistical concepts 
that allow our models to be extended in the future by includ-
ing other kind of data (e.g. weather forecasts or passenger flows). 
Moreover, these models are not especially developed for Big Data 
technologies, possibly limiting their adoption for large scale net-
works.

For these reasons, this paper investigates the problem of pre-
dicting train delays for large scale railway networks by treating 
it as a time series forecast problem where every train movement 
represents an event in time, and by exploiting Big Data Analyt-
ics methodologies. Delay profiles for each train are used to build a 
set of data-driven models that, working together, make possible to 
perform a regression analysis on the past delay profiles and conse-
quently to predict the future ones.

In the regression framework, and more in general in the su-
pervised learning framework, Extreme Learning Machines (ELM) 
represent a state of the art tool [35]. ELM [36] were introduced 
to overcome problems posed by back-propagation training algo-
rithm [36,37]: potentially slow convergence rates, critical tuning 
of optimization parameters, and presence of local minima that call 
for multi-start and re-training strategies. The original ELM are also 
called “Shallow” ELM (SELM) because they have been developed 
for the single-hidden-layer feedforward neural networks [36], and 
they have been generalized in order to cope with cases where ELM 
are not neuron alike. SELM were later improved to cope with prob-
lems intractable by shallow architectures [38] by proposing various 
Deep ELM (DELM) built upon a deep architecture [36,39], so to 
make possible to extract features by a multilayer feature represen-
tation framework. This work considers both SELM and DELM for 
predicting TDs, and proposes an adaptation of their typical learning 
Fig. 1. A railway network depicted as a graph, including a train itinerary from check-
point M to checkpoint Q.

strategies to exploit Big Data parallel architectures in order to meet 
the high-demanding requirements of Dynamic Large-Scale Railway 
Networks. In particular, the proposed implementations fully exploit 
the recent Apache Spark [40,41] in-memory large-scale data pro-
cessing technology upon a state-of-art Big Data architecture [42]
(Apache Spark on Apache YARN [43,44]) running on the Google 
Cloud infrastructure [45].

The described approach and the prediction system performance 
have been validated based on the real historical data provided by 
Rete Ferroviaria Italiana (RFI), the Italian Infrastructure Manager 
(IM) that controls all the traffic of the Italian railway network [46]. 
For this purpose, a set of novel Key Performance Indicators (KPIs) 
agreed with RFI and based on the requirements of their systems 
has been designed and used. Six months, from January 2016 to 
June 2016, of TM records from the entire Italian railway network 
have been exploited, showing that the new proposed methodology 
outperforms the current technique used by RFI, which is largely 
based on the state-of-the-art approach of [34], to predict TDs in 
terms of overall accuracy.

The paper is organized as follows. Section 2 presents the train 
delay prediction problem with particular reference to the Italian 
case. Section 3 describes the proposed train delay prediction sys-
tems based on shallow and deep Extreme Learning Machines. Sec-
tion 4 describes the available data for building and testing the 
models based on a series of custom key index of performance de-
veloped with RFI. Section 5 reports the results and finally Section 6
concludes the paper.

2. Train delay prediction problem: the Italian case

A railway network can be considered as a graph where nodes 
represent a series of checkpoints consecutively connected. Any 
train that runs over the network follows an itinerary composed 
of nc checkpoints C = {C1, C2, · · · , Cnc }, which is characterized by 
a station of origin, a station of destination, some stops and some 
transits at checkpoints in between (see Fig. 1). For any check-
point C , a train should arrive at time tC

A and should depart at 
time tC

D , defined in the NT. Usually time references included in the 
NT are approximated with a precision of 30 s or 1 min. The ac-
tual arrival and departure times of a train are defined as t̂C

A and 
t̂C

D . The difference between the time references included in the 
NT and the actual times, either of arrival (t̂C

A − tC
A) or of depar-

ture (t̂C
D − tC

D), is defined as TD. Note that, in Italy, the RFI service 
contract states that if the TD of a train which runs on the RFI net-
work is greater than 30 seconds or 1 minute (according to the 
commercial mission), then a train is considered as a delayed train. 
Note that, for the origin station there is no arrival time, while for 
the destination station there is no departure time. A dwell time is 
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Fig. 2. Data available for the TD prediction models for the network of Fig. 1.
defined as the difference between the departure time and the ar-
rival time for a fixed checkpoint (t̂C

D − t̂C
A), while a running time 

is defined as the amount of time needed to depart from the first 
of two subsequent checkpoints and to arrive to the second one 
(t̂C+1

A − t̂C
D).

In order to tackle the problem of building a TDPS, the follow-
ing solution is proposed. Taking into account the itinerary of a 
train, the goal is to be able to predict the TD that will affect that 
specific train for each subsequent checkpoint with respect to the 
last one on which the train has transited. To make it general, for 
each checkpoint Ci , where i ∈ {0, 1, · · · , nc}, the prediction system 
must be able to predict the TD for each subsequent checkpoint 
{Ci+1, Ci+2, · · · , Cnc }. Note that C0 is a virtual checkpoint that re-
produces the condition of a train that still has to depart from its 
origin. In this solution, the TD prediction problem is treated as 
a time series forecast problem, where a set of predictive models 
perform a regression analysis over the TD profiles for each train, 
for each checkpoint Ci of the itineraries of these trains, and for 
each subsequent checkpoint C j with j ∈ {i + 1, i + 2, · · · , nc}. Fig. 2
shows the data needed to build forecasting models based on the 
railway network depicted in Fig. 1. Basically, based on the state of 
the network between time t − δ− and time t , the proposed system 
must be able to predict TD occurring from time t and t + δ+ , and 
this is nothing but a classical regression problem.

Finally, it is worth noting that the intrinsic time varying nature 
of the delay phenomenon must be considered, which is due mainly 
to changes in the NT. This means that, in order to obtain good per-
formances, the models should take into account only the amount 
of historical data representative of the actual distribution of the 
TD. For these reasons, considering a model built at day d0 able to 
predict the TDs at day d0 +1, we have to rely on the historical data 
available between d0 − �− and d0. Since �− is a critical hyperpa-
rameter in the TD prediction problem, its value has been agreed 
with RFI experts, as it will be shown in Section 5. This choice was 
made based on many years of experience of the experts in RFI who 
deal with the problem of rescheduling the trains when a delay 
occurs. In particular, RFI experts observe that the delay behavior 
changes significantly only after a change in the nominal timetable 
(so �− is set based on the last nominal timetable change).

To sum up, for each train characterized by a specific itinerary of 
nc checkpoints, nc models have to be built for C0, (nc − 1) for C1, 
and so on. Consequently, the total number of models to be built 
for each train can be calculated as nc + (nc − 1) +· · ·+ 1 = nc(nc−1)

2 . 
These models work together in order to make possible to estimate 
the TD of a particular train during its entire itinerary.
Considering the case of the Italian railway network, every day 
RFI controls approximately 10 thousand trains traveling along 
the national railway network. Every train is characterized by an 
itinerary composed of approximately 12 checkpoints, which means 
that the number of TMs is greater than or equal to 120 thousands 
per day. This results in roughly one message per second and more 
than 10 GB of messages per day to be stored. Note that every time 
that a complete set of TM records describing the entire planned 
itinerary of a particular train for one day is retrieved, the predictive 
models associated with that train must be retrained. The retrain-
ing phases can be performed at night, when only a few trains are 
traveling through the railway network and all the data of the just 
passed day is available, in order not to load the systems at day-
time. Moreover, the continuous retraining of models allows both 
to cope with the intrinsic time dynamic nature of the system and 
to obtain the best possible performing model every new day. Since 
for each train at least nc(nc−1)

2 ≈ 60 models have to be built, the 
number of models that has to be retrained every day in the Italian 
case is greater than or equal to 600 thousands.

3. Train delay prediction systems

This section deals with the problem of building a data-driven 
TDPS. In particular, focusing on the prediction of the TD profile 
of a single train, there is a variable of interest (i.e. the TD profile 
of a train along with its itinerary) and other possible correlated 
variables (e.g. information about other trains traveling on the net-
work or the day of the week). The goal is to predict the TD of that 
train at a particular time in the future t = t + δ+ , i.e. at one of 
its following checkpoints. Due to the dynamic nature of the prob-
lem, only a part of the historical data have to be used (days in 
[d0 − �−, d0]), namely the most recent ones, which represent the 
distribution under exam. Given the previous observations, the TD 
prediction problem can be mapped into a classical time varying 
multivariate regression problem [47].

In the conventional regression framework [48] a set of data 
Dn = {(x1, y1), . . . , (xn, yn)}, with xi ∈ X ∈ R

d and yi ∈ Y ∈ R, is 
available from the automation system. The goal of the authors 
is to identify the unknown model S : X → Y through a model 
M : X → Y chosen by an algorithm AH defined by its set of hy-
perparameters H. The accuracy of the model M in representing 
the unknown system S can be evaluated with reference to differ-
ent measures of accuracy. In the case reported by this paper, they 
have been defined together with RFI experts, and have been re-
ported in Section 4.
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Fig. 3. Mapping of the TD prediction problem into a multivariate regression problem.
In order to map the TD prediction problem into a dynamic mul-
tivariate regression model, let us consider the train of interest Tk , 
which is at checkpoint C Tk

i with i ∈ {0, 1, · · · , nc} at time t0. The 
goal is to predict the TD at one of its subsequent checkpoints C Tk

j , 
with j ∈ {i + 1, i + 2, · · · , nc}. Consequently, the input space X will 
be composed by:

• the current day of the week (Monday, Tuesday, ...);
• a boolean value indicating whether the current day is a holi-

day or a working day;
• the TDs, the dwell times and the running times for Tk for t ∈

[t0 − δ−, t0];
• the TDs, the dwell times and the running times for all the 

other trains T w with w �= k which were running over the same 
section of the railway network during the day for t ∈ [t0 −
δ−, t0].

Concerning the output space Y , it is composed by C Tk
j with j ∈

{i + 1, i + 2, · · · , nc} where t0 + δ+ is equal to the NT of Tk for 
every C Tk

j .
Fig. 3 shows a graphical representation of the mapping of the 

TD prediction problem into a multivariate regression problem. For 
instance, in this representation, the variable of interest is repre-
sented by the delay profile of Tk . The other possible related vari-
ables are represented by the information regarding all the other 
trains traveling along the network simultaneously to Tk . An ex-
ample of x ∈ X is highlighted in red. Analogously, all the afore-
mentioned elements of the regression problem are depicted in the 
figure under examination.

Finally, Dn has to be built by exploiting the historical dataset 
composed of all the information collected during the days in [d0 −
�−, d0], so to cope with the dynamism of the problem.

3.1. Shallow extreme learning machines (SELM)

SELM were originally developed for the single-hidden-layer 
feedforward neural networks

f (x) =
h∑

i=1

wi gi(x), (1)

where gi : Rd → R, i ∈ {1, · · · , h} is the hidden-layer output cor-
responding to the input sample x ∈ R

d , and W ∈ R
h is the output 

weight vector between the hidden layer and the output layer.
In this case, the input layer has d neurons and connects to the 

hidden layer (having h neurons) through a set of weights W ∈
Fig. 4. SELM structure.

R
h×(0,··· ,d) and a nonlinear activation function, ϕ : R → R. Thus 

the i-th hidden neuron response to an input stimulus x is:

gi(x) = ϕ

⎛
⎝W i,0 +

d∑
j=1

W i, j x j

⎞
⎠ . (2)

Note that Eq. (2) can be further generalized to include a wider 
class of functions [35]; therefore, the response of a hidden neu-
ron to an input stimulus x can be generically represented by any 
nonlinear piecewise continuous function characterized by a set of 
parameters. In SELM, the parameters W are set randomly. A vec-
tor of weighted links, W ∈ R

h , connects the hidden neurons to the 
output neuron without any bias. The overall output function of the 
network (see Fig. 4) is:

f (x) =
h∑

i=1

wiϕ

⎛
⎝W i,0 +

d∑
j=1

W i, j x j

⎞
⎠ =

h∑
i=1

wiϕi(x). (3)

It is convenient to define an activation matrix, A ∈R
n×h , such that 

the entry Ai, j is the activation value of the j-th hidden neuron for 
the i-th input pattern. The A matrix is:

A =
⎡
⎢⎣

ϕ1(x1) · · · ϕh(x1)
...

. . .
...

ϕ1(xn) · · · ϕh(xn)

⎤
⎥⎦ . (4)
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In the SELM model the weights W are set randomly and are not 
subject to any adjustment, and the quantity W in Eq. (3) is the 
only degree of freedom. Hence, the training problem reduces to 
minimization of the convex cost:

W ∗ = arg min
W

‖AW − y‖2 . (5)

A matrix pseudo-inversion yields the unique L2 solution:

W ∗ = A+ y. (6)

The simple, efficient procedure to train a SELM therefore involves 
the following steps: (I) Randomly generate hidden node param-
eters (in this case W ); (II) Compute the activation matrix A
(Eq. (4)); (III) Compute the output weights (Eq. (6)).

Despite the apparent simplicity of the SELM approach, the cru-
cial result is that even random weights in the hidden layer endow 
a network with notable representation ability. Moreover, the the-
ory derived in [36] proves that regularization strategies can further 
improve the approach’s generalization performance. As a result, the 
cost function of Eq. (5) is augmented by a regularization factor 
[36]. A common approach is then to use the L2 regularizer

W ∗ = arg min
W

‖AW − y‖2 + λ‖W ‖2 , (7)

and consequently the vector of weights W ∗ is then obtained as 
follows:

W ∗ = (AT A + λI)−1 AT y, (8)

where I ∈ R
h×h is an identity matrix. Note that h, the number of 

hidden neurons, is a hyperparameter that needs to be tuned based 
on the problem under exam.

Based on these considerations, it is possible to detect two main 
problems that would limit the application of SELM for building a 
TDPS:

• the first issue is that finding the solution of Eq. (7) through 
the approach of Eq. (8) is not efficient if n or h are large;

• the second issue is that, based on the description reported in 
Section 3, we have to explore all the historical information 
about the TMs looking for the right portion of data in order 
to build Dn . Scanning all the data for extracting the right one 
depending on Tk , δ+ , δ− , and �− must be as most efficient as 
possible.

These two issues can be solved by adopting a parallel opti-
mization method for the solution of Eq. (7) and a state of the art 
technology for storing and processing large amount of data.

The first issue can be solved, by resorting to a Stochastic Gradi-
ent Descent (SGD) algorithm. The SGD algorithm is a very general 
optimization algorithm, which is able to solve a problem in the 
form of Eq. (8) efficiently [41]. Algorithm 1 reports the SGD algo-
rithm for solving Eq. (7), where τ and niter are parameters related 
with the speed of the optimization algorithms. Therefore, usually 
τ and niter are set based on the experience of the user. In any case 
τ and niter can be seen as other regularization terms as λ since 
they are connected with the early stopping regularization tech-
nique [49].

Note that Algorithm 1 it suitable for being implemented with 
the Apache Spark technology [41]. Apache Spark is designed to 
efficiently deal with iterative computational procedures that re-
cursively perform operations over the same data, such as in Algo-
rithm 1. Moreover, one of the main ideas behind the Apache Spark 
technology [41,40] is to reduce the accesses to the disk as much as 
possible and instead to operate in memory. For this reason, Apache 
Spark is also useful for solving the second issue related to the ap-
plication of SELM for building a DTDPS. Indeed, Spark allows to 
Algorithm 1: SGD for SELM.
Input: Dn , λ, τ , niter
Output: W

1 Read Dn ;
2 Compute A ;
3 W = 0 ;
4 for t ← 1 to niter do
5 W = W − τ√

t
∂

∂W

[‖AW − y‖2 + λ‖W ‖2]
;

6 return (W , b);

dramatically reduce the large number of disk accesses (necessary 
to build Dn) by keeping, based on the available volatile memory, 
as much data as possible in memory, consequently speeding up 
the creation of different datasets Dn for different values of Tk , δ+ , 
δ− , and �− .

Algorithm 1 is well-suited for implementation in Spark and 
many of these tools are already available in MLlib [41]. Basically, 
the implementation of Algorithm 1 reported in Algorithm 2 is an 
application of two functions: a map for the computation of the 
gradient and a reduction function for the sum of each single gra-
dient.

Algorithm 2: SGD for SELM on Spark (d ≥ h).
Input: Dn , λ, τ , niter
Output: W

1 Read Dn ;
2 Compute A /* Compute the projection φ */
3 W = 0;
4 for t ← 1 to niter do
5 g = (A, y).map(Gradient())

/* Compute the gradient for each sample */
6 .reduce(Sum())

/* Sum all the gradients of each sample */
7 W = W − τ√

t
g ;

8 return W ;

The main problem of Algorithm 2 is the computation and stor-
age of A. If h � d it means that A ∈ R

n×h will be much smaller 
than the dataset which belongs to Rn×d . In this case, it is more 
appropriate to compute it before the SGD algorithms starts the it-
erative process and keep it in memory (note that the computation 
of A is fully parallel). In this way all the data Rn×d projected by 
φ into to matrix A ∈ R

n×h can be largely kept in volatile memory 
(RAM) instead of reading from the disk. If instead h � d, employ-
ing Algorithm 2 we risk that A ∈ R

n×h does not fit into the RAM, 
consequently making too many accesses to the disk. For this rea-
son, we adopt two different strategies:

• if h is approximately the same magnitude or smaller than d, 
we use Algorithm 2 and we compute the matrix A at the be-
ginning;

• if h � d, we adopt Algorithm 3 where φ(xi) is computed on-
line in order to avoid to read the data from the disk.

Quite obviously, the limit is given by the size of the RAM of 
each node and the number of nodes. Until the algorithm is able to 
keep most of the data in memory, it is better to use Algorithm 2. 
Algorithm 3 allows us to partially reduce the effect of having to 
access the data on the disk by paying the price of computing φ(xi)

online. In fact, Algorithm 3 does not precompute A ∈ R
n×h at the 

beginning but it keeps the data Dn in memory and, at every itera-
tion of the SGD algorithm, it computes online both the projection 
induced by φ and the gradient. Consequently, there is no need to 
store A ∈ R

n×h .
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Algorithm 3: SGD for SELM on Spark (d ≤ h).
Input: Dn , λ, τ , niter
Output: W

1 Read Dn ;
2 W = 0;
3 for t ← 1 to niter do
4 g = Dn .map(φ&Gradient())

/* Compute both the projection φ and the gradient 
for each sample */

5 .reduce(Sum())
/* Sum all the gradients of each sample */

6 W = W − τ√
t

g;

7 return W ;

Fig. 5. DELM AE block.

3.2. Deep extreme learning machines (DELM)

Due to its shallow architecture, feature learning using SELM 
may not be effective even with a large number of hidden nodes. 
Since feature learning is often useful to improve the accuracy of 
the final model, multilayer (deep) solutions are usually needed. 
In [36] a multilayer learning architecture is developed using ELM-
based autoencoder (AE) as its building block, which results in a 
sort of “Deep” ELM (DELM). The original inputs are decomposed 
into multiple hidden layers l, each one composed of hi∈{1,···,l} hid-
den neurons, and the outputs of the previous layer are used as the 
inputs of the current one (see Fig. 5). Basically, instead of having 
just one output, we have a series of outputs x̂ j with j ∈ {1, · · ·, d}
such that

x̂ j = f j(x) =
h∑

i=1

w j,iϕ

⎛
⎝W i,0 +

d∑
j=1

W i, jx j

⎞
⎠ =

h∑
i=1

w j,iϕi(x),

(9)

where w j,i with j ∈ {1, · · ·, d} are found with the same approach 
of SELM. Before the supervised regularized least mean square op-
timization, the encoded outputs are directly fed into the last layer 
for decision making, without random feature mapping.

However, the approach developed in [36] does not fully exploit 
the potential of a multilayer implementation of ELM. Indeed, a new 
more powerful architecture that exploits the potential of a DELM 
is presented in [39], which considers multilayer as a whole with 
unsupervised initialization like in the classical Deep Learning ap-
proaches. After the unsupervised initialization, the entire network 
is trained by back propagation, and all the layers are hard coded 
together [38]. Note that, as for SELM, DELM do not require fine-
tuning for the entire system, and consequently the training speed 
can be faster than the traditional back propagation based Deep 
Learning. Nevertheless, when big data problems are faced, using 
distributed computing and multiple GPUs can improve the speed 
of the back propagation based training phase of conventional Deep 
Neural Networks [50].

Although the approach of [39] can be much more effective than 
the one of [36], it requires more complex and time consuming 
computations. Instead, the approach described in [36] can produce 
improved results over the simple SELM since the number of hidden 
layers increases, and its implementation for big data problems can 
directly exploit the results of the previous section. Consequently, 
with reasonably small modifications, we are able to take advan-
tage of a simple deep architecture by exploiting only the tools 
presented in Section 3.1.

3.3. Model selection

MS deals with the problem of tuning the performance of a 
learning procedure by tuning the hyperparameters of any learning 
algorithm [51]. Resampling techniques like hold out, cross valida-
tion and bootstrap [51] are often used by practitioners because 
they work well in many situations. Nevertheless other methods ex-
ist in literature. For example, [48] is the seminal work on Vapnik–
Chervonenkis Dimension, which states the conditions under which 
a set of hypothesis is learnable. Later these results have been im-
proved with the introduction of the Rademacher Complexity [51]. 
The theory of [52], was another step forward in the direction of 
understanding the learning properties of an algorithm by tightly 
connecting compression to learning. A breakthrough was made 
with the Algorithmic Stability [53], which states the properties that 
a learning algorithm should fulfill in order to achieve good gen-
eralization performance. The PAC-Bayes theory represents another 
fundamental brick [54] for MS, especially in the context of ensem-
ble methods. Indeed, although it is well known that combining the 
outputs of a set of different learning procedures gives much bet-
ter results than considering those learning procedures separately, it 
is hard to combine them appropriately in order to obtain satisfac-
tory performances and it is not trivial to assess the performance of 
the resulting learning procedure. Finally, Differential Privacy (DP) 
allowed to reach a milestone result by connecting the privacy 
preservation in data analysis and the generalization capability of 
a learning algorithm. From one hand, it proved that a learning al-
gorithm which shows DP properties also generalizes [55]. From the 
other hand, if an algorithm does not hold DP, it allows to state the 
conditions under which a hold out set can be reused without risk 
of false discovery through a DP procedure called Thresholdout [55].

In this paper we will use the 10-Fold Cross Validation [56,51]
method in order to tune the hyperparameters of SELM and DELM. 
In particular, for SELM we have that h ∈ {1, 2, · · ·}, λ ∈ [0, ∞), and 
�− ∈ {1, 2, · · ·} days must be tuned, while for DELM we have 
to find the optimal values of l ∈ {1, 2, · · ·}, hi∈{1,···,l} ∈ {1, 2, · · ·}, 
λ ∈ [0, ∞), and �− ∈ {1, 2, · · ·} days. Since it is not possible to 
fully explore all the combinations of hyperparameters, a search for 
the best set of hyperparameters over a finite grid of points is per-
formed. Since we are dealing with a large amount of data and a 
large number of models to train, this approach results computa-
tionally intractable. Consequently, the approach of [57] has been 
selected, which consists in performing a random search by trying 
nMC combinations of the hyperparameters. In [57] it is also shown 
that, both empirically and theoretically, randomly chosen trials are 
more efficient than trials on a grid.



JID:BDR AID:62 /FLA [m5G; v1.218; Prn:6/06/2017; 14:10] P.7 (1-11)

L. Oneto et al. / Big Data Research ••• (••••) •••–••• 7
4. Description of data and custom KPIs

In order to validate the proposed methodology and to assess 
the performance of the new prediction system, a large number of 
experiments have been performed on the real data provided by 
RFI. The Italian IM owns records of the TM from the entire Italian 
railway network over several years. For the purpose of this work, 
RFI gave access to six months of data related to the entire Italian 
railway network.

Each record refers to a single TM, and is composed by the 
following information: Date, Train ID, Checkpoint ID, Checkpoint 
Name, Arrival Time, Arrival Delay, Departure Time, Departure De-
lay and Event Type. The last field, namely “Event Type”, refers to 
the type of event that has been recorded with respect to the train 
itinerary. For instance, this field can assume four different values: 
Origin (O), Destination (D), Stop (F) and Transit (T). The Arrival 
(Departure) Time field reports the actual time of arrival (departure) 
of a train at a particular checkpoint. Combining this information 
with the value contained in the Arrival (Departure) Delay field, it is 
possible to retrieve the scheduled time of arrival (departure). Note 
that, although IMs usually own proprietary software solutions, this 
kind of data can be retrieved by any rail TMS, since systems of this 
kind store the same raw information but in different formats. For 
example, some systems provide the theoretical time and the TD 
of a train, while others provide the theoretical time and the ac-
tual time, making the two information sets exchangeable without 
any loss of information. Finally, note that the information has been 
anonymized for privacy and security concerns.

The approach used to perform the experiments consisted in (i) 
building the needed set of models based on SELM and DELM for 
each train in the dataset, (ii) simultaneously tuning the models’ 
hyperparameters through suitable models selection methodologies, 
(iii) applying the models to the current state of the trains, and fi-
nally (iv) validating the models in terms of performance based on 
what had really happened at a future instant. Consequently, sim-
ulations have been performed for all the trains included in the 
dataset adopting an online-approach that updates predictive mod-
els every day, in order to take advantage of new information as 
soon as it becomes available.

The results of the simulations have been compared with the 
results of the current TD prediction system used by RFI. The RFI 
system is quite similar to the one described in [34], although the 
latter includes process mining refinements which potentially in-
crease its performance.

In order to fairly assess the performance of the proposed pre-
diction system, a set of novel KPIs agreed with RFI has been de-
signed and used. Since the purpose of this work was to build 
predictive models able to forecast the TD, these KPIs represent dif-
ferent indicators of the quality of these predictive models. Note 
that the predictive models should be able to predict, for each train 
and at each checkpoint of its itinerary, the TD that the train will 
have in any of the successive checkpoints. Based on this consider-
ation, three different indicators of the quality of predictive models 
have been used, which are also proposed in Fig. 6 in a graphical 
fashion:

• Average Accuracy at the i-th following Checkpoint for train j (AAiCj):
for a particular train j, the absolute value of the difference be-
tween the predicted delay and its actual delay is averaged, at 
the i-th following Checkpoint with respect to the actual Check-
point.

• AAiC: is the average over the different trains j of AAiCj.
• Average Accuracy at Checkpoint-i for train j (AACij): for a particu-

lar train j, the average of the absolute value of the difference 
between the predicted delay and its actual delay, at the i-th 
checkpoint, is computed.
Fig. 6. KPIs for the train and the itinerary of Fig. 1.

• AACi: is the average over the different trains j of AACij.
• Total Average Accuracy for train j (TAAj): is the average over the 

different checkpoints i-th of AASij (or equivalently the average 
over the index i of AAiSj).

• TAA: is the average over the different trains j of TAAj.

5. Results

This section reports the results of the experiments exploiting 
the approaches described in Section 3, benchmarked with the data 
and KPIs described in Section 4.

The performance of different methods for building a TDPS have 
been compared:

• RFI: the RFI system has been implemented, which is quite sim-
ilar to the one described in [34]. Note that, the RFI method 
neither exploits weather information nor has hyperparameters 
to tune;

• SL: SELM has been exploited (see Section 3.1), where the set 
of possible configurations of hyperparameters is searched in 
h ∈ {1, 2, · · ·, 104} and λ ∈ [10−6, 104];

• DL: DELM has been exploited (see Section 3.2), where the set 
of possible configurations of hyperparameters has been de-
fined as l ∈ {1, 2, · · ·, 10}, hi∈{1,···,l} ∈ {1, 2, · · ·, 104}, and λ ∈
[10−6, 104];

Note that d0 −�− is set equal to the time of the last change in the 
NT, and t0 − δ− is set equal to the time, in the NT, of the origin of 
the train, as suggested by the RFI experts.

Finally, as described in Section 3.3, 10 Fold Cross Validation 
technique has been exploited in order to optimize the different 
hyperparameters of the learning algorithms. The random search 
in the space of the hyperparameters has been done by setting 
nMC = 300.

Tables 1, 2 and 3 report the KPIs of the different methods in 
the different scenarios. Note that the Tables are not complete due 
to space constraints, and that the train and station IDs have been 
anonymized because of privacy issues. In particular, it is possible 
to draw up the following comments:

• Table 1 reports the AAiCj and AAiC. From Table 1 it is possi-
ble to observe that the DELM method is the best performing 
method, and it improves up to ×2 the current RFI system. All 
the data-driven methods (both SELM and DELM) improve over 
the RFI system by a large amount. The effects of this difference 
on the operations can be noticed not only by the travelers, but 
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5th

LM RFI SELM DELM

± 0.6 2.7 ± 0.0 2.4 ± 1.1 2.3 ± 0.3

· · ·

± 0.3 4.6 ± 2.0 2.6 ± 0.9 2.5 ± 1.1
± 0.0 2.8 ± 1.5 2.0 ± 0.0 1.9 ± 1.4
± 0.9 3.4 ± 0.2 2.3 ± 0.1 2.1 ± 0.0
± 0.1 2.6 ± 0.3 1.6 ± 0.5 1.5 ± 0.4
± 0.5 2.6 ± 0.8 2.3 ± 1.0 2.1 ± 0.2
± 0.7 2.0 ± 0.5 1.6 ± 0.0 1.5 ± 0.1
± 0.3 2.3 ± 0.7 1.7 ± 0.2 1.7 ± 0.4
± 0.4 1.5 ± 0.8 1.2 ± 0.3 1.1 ± 0.1
± 0.1 2.4 ± 1.5 1.6 ± 1.2 1.5 ± 0.5
± 0.0 2.1 ± 0.5 1.7 ± 0.5 1.6 ± 0.9
± 0.0 3.8 ± 0.0 2.6 ± 1.3 2.4 ± 0.6
± 0.7 1.6 ± 0.8 1.4 ± 0.5 1.3 ± 0.2

− − −
± 0.9 1.6 ± 0.1 1.1 ± 0.1 1.1 ± 0.3

− − −
± 0.2 2.1 ± 0.3 1.4 ± 0.2 1.3 ± 0.3
± 0.8 3.7 ± 0.3 2.1 ± 0.5 1.9 ± 0.4
± 0.1 3.0 ± 0.5 1.8 ± 0.5 1.7 ± 0.8
± 0.2 3.3 ± 1.2 2.0 ± 0.3 1.8 ± 0.4
± 0.0 2.2 ± 0.6 0.7 ± 0.3 0.7 ± 0.3
± 0.4 2.2 ± 0.3 1.1 ± 0.3 1.0 ± 0.2
± 0.1 2.0 ± 0.2 0.7 ± 0.1 0.7 ± 0.1
± 0.1 1.3 ± 0.1 1.0 ± 0.3 0.9 ± 0.1
± 0.0 1.5 ± 0.6 0.9 ± 0.1 0.8 ± 0.3
± 0.5 3.1 ± 1.0 1.1 ± 0.0 1.0 ± 0.3
± 0.2 1.1 ± 0.1 0.8 ± 0.4 0.8 ± 0.1
± 0.0 1.2 ± 0.6 0.8 ± 0.2 0.7 ± 0.2
± 0.1 3.0 ± 2.0 1.0 ± 0.3 0.9 ± 0.0
± 0.1 1.2 ± 0.3 0.8 ± 0.1 0.7 ± 0.1

± 0.2 3.4 ± 0.1 2.4 ± 0.7 2.2 ± 0.3
Table 1
ELM based and RFI prediction systems KPIs (in minutes).

j i

1st 2nd 3rd 4th

AAiCj RFI SELM DELM RFI SELM DELM RFI SELM DELM RFI SELM DE

1 1.8 ± 0.5 1.6 ± 0.1 1.5 ± 0.2 2.1 ± 0.2 1.8 ± 1.3 1.7 ± 0.3 2.3 ± 0.5 2.1 ± 0.2 1.9 ± 0.6 2.5 ± 1.5 2.3 ± 1.3 2.1
2 3.2 ± 0.9 1.8 ± 0.6 1.7 ± 0.4 3.4 ± 0.7 1.9 ± 0.9 1.9 ± 0.7 3.8 ± 0.2 2.2 ± 0.3 2.1 ± 1.4 4.2 ± 1.8 2.4 ± 0.3 2.3
3 1.9 ± 0.2 1.4 ± 1.3 1.3 ± 0.4 2.0 ± 0.7 1.6 ± 0.1 1.4 ± 0.5 2.3 ± 0.7 1.8 ± 0.2 1.7 ± 0.3 2.6 ± 1.0 1.9 ± 0.2 1.8
4 2.0 ± 0.8 1.5 ± 0.2 1.3 ± 0.3 2.2 ± 0.9 1.6 ± 0.4 1.6 ± 0.1 2.6 ± 0.9 1.9 ± 0.7 1.8 ± 0.0 3.0 ± 1.1 2.1 ± 0.3 2.0
5 1.4 ± 0.2 0.9 ± 0.3 0.8 ± 0.2 1.7 ± 0.7 1.0 ± 0.5 1.0 ± 0.1 2.0 ± 1.2 1.2 ± 0.1 1.2 ± 0.5 2.3 ± 1.3 1.4 ± 0.7 1.3
6 1.4 ± 0.9 1.3 ± 0.1 1.2 ± 0.1 1.7 ± 0.2 1.5 ± 0.9 1.5 ± 0.1 2.0 ± 0.5 1.8 ± 0.6 1.7 ± 0.5 2.3 ± 1.5 2.1 ± 1.8 1.9
7 1.3 ± 0.4 1.0 ± 0.1 0.9 ± 0.5 1.4 ± 0.6 1.1 ± 0.3 1.0 ± 0.2 1.6 ± 0.2 1.3 ± 0.0 1.2 ± 0.3 1.8 ± 0.9 1.5 ± 0.8 1.4
8 1.3 ± 0.3 1.0 ± 0.0 0.9 ± 0.3 1.6 ± 0.3 1.3 ± 0.4 1.1 ± 0.4 1.9 ± 0.7 1.4 ± 0.1 1.3 ± 0.4 2.1 ± 0.3 1.6 ± 1.0 1.5
9 1.2 ± 0.6 0.8 ± 0.0 0.7 ± 0.1 1.2 ± 0.2 0.9 ± 0.2 0.8 ± 0.1 1.4 ± 0.1 1.0 ± 0.2 0.9 ± 0.4 1.5 ± 0.3 1.1 ± 0.2 1.1
10 1.5 ± 0.0 1.0 ± 0.3 0.9 ± 0.1 1.6 ± 0.4 1.1 ± 0.2 1.0 ± 0.1 2.0 ± 0.7 1.3 ± 0.2 1.2 ± 0.1 2.3 ± 1.3 1.5 ± 0.1 1.4
11 1.4 ± 0.1 1.2 ± 0.1 1.1 ± 0.7 1.5 ± 0.7 1.3 ± 0.1 1.3 ± 0.1 1.7 ± 0.4 1.5 ± 0.3 1.4 ± 0.7 1.9 ± 0.7 1.6 ± 0.1 1.4
12 2.1 ± 0.0 1.6 ± 0.8 1.4 ± 0.4 2.6 ± 0.0 1.9 ± 0.0 1.7 ± 0.2 3.1 ± 1.9 2.1 ± 0.1 2.0 ± 1.7 3.5 ± 1.0 2.3 ± 0.1 2.2
13 1.2 ± 0.3 0.9 ± 0.2 0.8 ± 0.0 1.3 ± 0.4 1.0 ± 0.4 0.9 ± 0.2 1.4 ± 1.1 1.1 ± 0.5 1.0 ± 0.1 1.6 ± 0.0 1.3 ± 0.1 1.2
14 3.1 ± 0.4 2.1 ± 0.3 1.9 ± 1.2 − − − − − − − − −
15 1.1 ± 0.3 0.8 ± 0.2 0.8 ± 0.3 1.2 ± 0.4 0.9 ± 0.1 0.8 ± 0.0 1.3 ± 0.1 1.0 ± 0.1 0.9 ± 0.3 1.5 ± 0.5 1.1 ± 0.1 1.0
16 3.9 ± 0.1 1.0 ± 0.2 0.9 ± 0.1 − − − − − − − − −
17 1.2 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 1.4 ± 0.3 1.0 ± 0.6 0.9 ± 0.2 1.7 ± 0.4 1.1 ± 0.2 1.0 ± 0.7 1.9 ± 0.4 1.3 ± 0.1 1.1
18 2.0 ± 0.1 1.3 ± 0.0 1.2 ± 0.7 2.4 ± 0.7 1.5 ± 0.6 1.4 ± 0.5 2.9 ± 2.0 1.7 ± 0.7 1.6 ± 0.1 3.4 ± 1.1 1.9 ± 0.3 1.7
19 1.7 ± 0.8 1.1 ± 0.2 1.1 ± 0.2 2.0 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 2.4 ± 1.1 1.5 ± 0.8 1.4 ± 0.8 2.8 ± 2.0 1.6 ± 0.1 1.5
20 1.9 ± 0.1 1.3 ± 0.2 1.2 ± 0.5 2.2 ± 0.1 1.4 ± 0.3 1.4 ± 0.3 2.7 ± 0.3 1.6 ± 0.5 1.5 ± 0.5 3.1 ± 1.6 1.8 ± 0.2 1.7
21 1.3 ± 0.2 0.4 ± 0.1 0.4 ± 0.0 1.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 1.5 ± 0.2 0.5 ± 0.1 0.5 ± 0.3 1.7 ± 0.1 0.6 ± 0.3 0.6
22 1.5 ± 0.0 0.7 ± 0.1 0.6 ± 0.1 1.6 ± 0.5 0.7 ± 0.1 0.6 ± 0.2 1.8 ± 0.3 0.8 ± 0.7 0.8 ± 0.0 1.9 ± 0.2 0.9 ± 0.0 0.9
23 1.5 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 1.7 ± 0.2 0.4 ± 0.1 0.4 ± 0.2 1.8 ± 0.3 0.5 ± 0.0 0.5 ± 0.1 1.8 ± 0.3 0.6 ± 0.1 0.5
24 1.1 ± 0.2 0.5 ± 0.2 0.5 ± 0.3 1.2 ± 0.1 0.6 ± 0.2 0.6 ± 0.1 1.2 ± 0.0 0.7 ± 0.3 0.6 ± 0.4 1.2 ± 0.1 0.8 ± 0.1 0.8
25 1.2 ± 0.7 0.4 ± 0.1 0.4 ± 0.2 1.2 ± 0.4 0.5 ± 0.0 0.4 ± 0.0 1.3 ± 0.3 0.6 ± 0.2 0.6 ± 0.1 1.3 ± 0.0 0.7 ± 0.1 0.7
26 1.9 ± 0.0 0.7 ± 0.0 0.6 ± 0.1 2.0 ± 0.5 0.8 ± 0.4 0.8 ± 0.4 2.4 ± 0.2 1.0 ± 0.0 0.9 ± 0.5 2.6 ± 0.5 1.1 ± 0.1 1.0
27 1.0 ± 0.8 0.4 ± 0.0 0.4 ± 0.0 1.1 ± 0.0 0.5 ± 0.2 0.5 ± 0.0 1.1 ± 0.7 0.6 ± 0.1 0.6 ± 0.2 1.1 ± 0.1 0.7 ± 0.1 0.7
28 1.0 ± 0.2 0.4 ± 0.1 0.3 ± 0.0 1.1 ± 0.2 0.4 ± 0.0 0.4 ± 0.1 1.2 ± 0.4 0.5 ± 0.3 0.5 ± 0.3 1.1 ± 0.7 0.6 ± 0.1 0.6
29 1.9 ± 0.5 0.7 ± 0.0 0.6 ± 0.1 2.0 ± 1.3 0.8 ± 0.1 0.7 ± 0.2 2.3 ± 1.0 0.9 ± 0.6 0.8 ± 0.3 2.6 ± 0.2 1.0 ± 0.3 0.9
30 1.0 ± 0.3 0.4 ± 0.2 0.3 ± 0.0 1.1 ± 0.1 0.4 ± 0.2 0.4 ± 0.0 1.2 ± 0.2 0.5 ± 0.1 0.5 ± 0.2 1.1 ± 0.1 0.7 ± 0.2 0.6

· · ·
AAiC 3.0 ± 0.4 1.6 ± 0.3 1.5 ± 0.1 2.9 ± 0.6 1.7 ± 0.1 1.6 ± 0.2 3.2 ± 0.6 2.0 ± 0.0 1.8 ± 0.2 3.4 ± 1.4 2.2 ± 0.5 2.1
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5

RFI SELM DELM

0.6 – – –

· · ·

0.4 – – –
0.7 – – –

– – –
– – –
– – –
– – –
– – –
– – –
– – –
– – –

0.1 – – –
0.5 – – –
0.6 – – –
0.0 – – –
0.2 – – –
0.0 – – –

1.6 ± 0.3 1.9 ± 0.9 1.8 ± 0.3
1.1 ± 0.3 1.1 ± 0.1 1.0 ± 0.3
2.5 ± 0.4 2.3 ± 0.8 2.1 ± 0.6
1.3 ± 0.2 1.3 ± 0.5 1.2 ± 0.3
2.5 ± 0.4 2.3 ± 1.2 2.2 ± 0.7
2.4 ± 0.4 2.2 ± 0.8 1.9 ± 0.3
– – –
– – –
– – –
– – –
– – –
– – –
– – –

0.3 6.2 ± 2.4 4.2 ± 1.6 3.9 ± 1.6
Table 2
ELM based and RFI prediction systems KPIs (in minutes).

j i

1 2 3 4

AACij RFI SELM DELM RFI SELM DELM RFI SELM DELM RFI SELM DELM

1 2.9 ± 1.6 2.3 ± 1.0 2.0 ± 0.1 – – – – – – 2.2 ± 0.1 2.2 ± 0.2 2.1 ±
2 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 – – – – – – 2.5 ± 0.9 1.7 ± 0.9 1.6 ±
3 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 – – – – – – 2.2 ± 0.2 1.6 ± 0.2 1.5 ±
4 1.7 ± 0.2 1.5 ± 0.1 1.4 ± 0.1 2.3 ± 0.5 1.8 ± 0.1 1.7 ± 0.0 2.9 ± 1.0 1.8 ± 0.6 1.7 ± 0.3 – – –
5 – – – 1.1 ± 0.2 1.1 ± 0.6 1.0 ± 0.1 1.1 ± 0.6 0.9 ± 0.3 0.8 ± 0.0 – – –
6 – – – 1.2 ± 0.5 1.4 ± 0.1 1.3 ± 0.3 1.8 ± 0.0 1.8 ± 0.4 1.7 ± 0.9 – – –
7 – – – 1.8 ± 0.4 1.3 ± 0.3 1.2 ± 0.1 1.7 ± 0.1 1.5 ± 0.1 1.5 ± 0.4 – – –
8 – – – 1.5 ± 0.4 1.4 ± 0.2 1.2 ± 0.4 3.0 ± 2.7 2.5 ± 0.5 2.3 ± 0.1 – – –
9 – – – 1.1 ± 1.1 1.0 ± 0.1 0.9 ± 0.1 1.2 ± 0.5 1.1 ± 0.4 1.1 ± 0.4 – – –
10 – – – 1.9 ± 0.0 1.2 ± 0.4 1.1 ± 0.4 1.8 ± 0.2 1.4 ± 0.5 1.2 ± 0.1 – – –
11 1.3 ± 0.0 1.1 ± 0.3 1.1 ± 0.4 1.8 ± 1.3 1.1 ± 0.2 1.0 ± 0.4 1.2 ± 0.1 1.1 ± 0.0 1.0 ± 0.0 – – –
12 – – – – – – – – – 3.9 ± 0.0 1.0 ± 0.3 0.9 ±
13 – – – – – – – – – 5.8 ± 2.9 2.7 ± 0.5 2.6 ±
14 – – – – – – – – – 6.7 ± 0.6 4.3 ± 0.6 4.1 ±
15 – – – – – – – – – 3.8 ± 0.3 1.0 ± 0.3 0.9 ±
16 – – – – – – – – – 3.7 ± 2.4 1.0 ± 0.1 0.9 ±
17 – – – – – – – – – 5.9 ± 2.6 2.4 ± 0.1 2.2 ±
18 – – – – – – – – – – – –
19 – – – – – – – – – – – –
20 – – – – – – – – – – – –
21 – – – – – – – – – – – –
22 – – – – – – – – – – – –
23 – – – – – – – – – – – –
24 – – – 1.3 ± 0.3 0.9 ± 0.1 0.9 ± 0.4 1.2 ± 0.0 0.8 ± 0.1 0.7 ± 0.2 – – –
25 – – – 2.5 ± 1.4 1.4 ± 0.5 1.3 ± 0.6 1.9 ± 0.5 0.9 ± 0.5 0.8 ± 0.1 – – –
26 – – – 1.6 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 1.6 ± 0.7 1.1 ± 0.2 1.0 ± 0.4 – – –
27 – – – 1.2 ± 0.6 0.9 ± 0.0 0.8 ± 0.1 1.3 ± 0.1 1.1 ± 0.1 1.0 ± 0.2 – – –
28 – – – 1.5 ± 0.3 1.1 ± 0.2 1.0 ± 0.1 1.7 ± 0.7 0.9 ± 0.0 0.8 ± 0.1 – – –
29 – – – 1.3 ± 0.4 1.1 ± 0.2 1.1 ± 0.8 1.4 ± 0.5 1.2 ± 0.2 1.1 ± 0.1 – – –
30 – – – 2.5 ± 0.5 2.1 ± 0.4 2.0 ± 0.4 2.1 ± 1.0 1.8 ± 0.5 1.7 ± 0.2 – – –

· · ·
AACi 3.3 ± 0.1 1.5 ± 0.3 1.4 ± 0.4 3.1 ± 1.6 1.5 ± 0.0 1.3 ± 0.3 3.3 ± 0.5 1.4 ± 0.0 1.3 ± 0.4 4.2 ± 0.6 2.2 ± 0.8 2.1 ±
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Table 3
ELM based and RFI prediction systems KPIs (in minutes).

j TAAj

RFI SELM DELM

1 2.2 ± 0.8 1.9 ± 0.9 1.7 ± 0.0
2 4.3 ± 0.2 2.1 ± 0.5 2.0 ± 1.7
3 2.3 ± 0.5 1.5 ± 0.5 1.4 ± 0.2
4 2.4 ± 0.5 1.7 ± 0.4 1.5 ± 0.5
5 1.7 ± 0.4 1.1 ± 0.3 1.0 ± 0.5
6 1.9 ± 0.3 1.6 ± 0.3 1.6 ± 0.1
7 1.5 ± 0.7 1.2 ± 0.2 1.1 ± 0.6
8 1.9 ± 0.5 1.4 ± 0.3 1.4 ± 0.3
9 1.4 ± 0.5 0.9 ± 0.2 0.8 ± 0.2
10 1.8 ± 0.1 1.1 ± 0.3 1.0 ± 0.8
11 1.8 ± 0.6 1.4 ± 1.0 1.3 ± 0.0
12 2.8 ± 2.2 1.9 ± 0.5 1.7 ± 0.5
13 1.4 ± 0.4 1.1 ± 0.1 1.0 ± 0.2
14 3.1 ± 0.6 2.0 ± 0.1 1.8 ± 0.9
15 1.2 ± 0.5 0.9 ± 0.3 0.8 ± 0.1
16 3.9 ± 0.5 0.9 ± 0.2 0.9 ± 0.3
17 5.8 ± 1.4 2.6 ± 0.6 2.5 ± 0.9
18 6.7 ± 2.5 4.1 ± 0.4 3.8 ± 0.7
19 3.8 ± 0.7 0.9 ± 0.1 0.9 ± 0.4
20 3.7 ± 1.1 0.9 ± 0.2 0.9 ± 0.1
21 5.9 ± 0.8 2.3 ± 1.3 2.1 ± 0.5
22 4.9 ± 0.7 2.1 ± 0.4 2.0 ± 0.2
23 6.5 ± 1.1 3.5 ± 2.1 3.2 ± 0.3
24 5.1 ± 0.9 2.1 ± 0.3 2.1 ± 0.2
25 4.6 ± 1.4 1.7 ± 0.0 1.6 ± 0.6
26 5.6 ± 1.8 2.7 ± 0.2 2.6 ± 1.0
27 6.2 ± 0.1 2.7 ± 0.6 2.4 ± 0.3
28 5.5 ± 3.6 2.6 ± 1.8 2.4 ± 0.7
29 4.2 ± 0.8 1.0 ± 0.4 1.0 ± 0.4
30 4.7 ± 1.0 1.7 ± 0.4 1.6 ± 0.8
· · ·
TAA 3.3 ± 1.8 1.9 ± 0.6 1.7 ± 0.8

particularly by the RFI operators, which can take better deci-
sions. For example, few minutes can change the point where a 
train has to overtake another one of many kilometers, because 
many line sections do not allow to perform this maneuver. Fi-
nally, note that the accuracy decreases as j increases, since 
the forecasts refer to events which are further into the fu-
ture. Moreover, since some trains have less checkpoints than 
the others, a symbol ‘–’ has been placed for those checkpoints 
that are not included in the itinerary of the considered trains 
(see for example train j = 14, which only passes through two 
checkpoints).

• Table 2 reports the AACij and the AACi. From Table 2 it is pos-
sible to derive the same observations derived from Table 1. 
In this case, it is also important to underline that not all the 
trains run over all the checkpoints, and this is the reason why 
for some combinations of train j and station i there is a sym-
bol ‘–’.

• Table 3 reports the TAAj and the TAA. The latter is more con-
cise and underlines better the advantage, from a final perfor-
mance perspective, of the DELM with respect to the actual RFI 
prediction system.

In Table 4 we report, both for SELM and DELM, the mean op-
timal values of the different hyperparameters, averaged over the 
different TDPS models. Table 4 suggests and gives insight over the 
optimal average TDPS model architecture. Note that, for DELM, a 
deep architecture with small amount of neurons in each layer is 
preferred with respect to the SELM architecture which needs much 
more hidden neurons. Moreover, it is possible to observe that the 
DELM architecture tries, on average, to distill the information lay-
erwise since hi decreases with i.

Finally, we compared the performance of a Matlab and Apache 
Spark implementations of the training phase of SELM and DELM. 
Table 4
SELM and DELM average optimal values of the different hyperparameters.

Architecture Hyperparameter Average value

SELM h 5145 ± 3233

DELM l 6 ± 3
h1 685 ± 986
h2 589 ± 822
h3 545 ± 856
h4 451 ± 743
h5 412 ± 732
h6 402 ± 644
h7 421 ± 640
h8 367 ± 439
h9 234 ± 139
h10 112 ± 56

The first implementation run on a PC with 4 Intel Xeon CPU 
E5-4620@2.20 GHz, 128 GB of RAM, 500 GB of SSD running Win-
dows Server 2012 R2 and Matlab R2016a. The second one, instead, 
run over four n1-standard-16 machines of the Google Compute En-
gine, which include 60 GB of ram, 16 cores and 500 GB SSD disk 
each, allowing the deployment of a cluster with Spark 1.6.2 and 
Hadoop 2.6.4, check our previous paper [42] for more details. In 
order to perform the experiments reported in the paper, the Mat-
lab implementation did not finished either 1% of the experiments 
after 1 month, while our spark implementation took approximately 
one day.

6. Conclusions

This paper deals with the problem of building a TDPS based 
on state-of-the-art tools and techniques able to rapidly grasp the 
knowledge hidden in historical data about TM. In particular, the 
proposed solution improves the state-of-the-art methodologies ac-
tually exploited from the IM like RFI. Results on real world TM 
data provided by RFI show that advanced analytics approaches can 
perform up to twice better than current state-of-the-art method-
ologies. In particular, exploiting historical data about TM gives ro-
bust models with high performance with respect to the actual TD 
prediction system of RFI. We have also shown how to efficiently 
and effectively tune the hyperparameters involved in the learn-
ing algorithms. Finally, by exploiting the Apache Spark in memory 
technology, we have been able to build a system with high perfor-
mance, also in terms of the required training time for building all 
the models needed for dealing with a large-scale Railway Network. 
Future works will take into account also exogenous information 
available from external sources, such as weather information, infor-
mation about passenger flows by using touristic databases, about 
railway assets conditions, or any other source of data which may 
affect railway dispatching operations.
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