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Recently, we have been witnessing huge advancements in the scale of data we routinely generate and 
collect in pretty much everything we do, as well as our ability to exploit modern technologies to process, 
analyze and understand this data. The intersection of these trends is what is, nowadays, called Big Data 
Science. Big Data Science requires scalable architectures for storing and processing data. Cloud computing 
represents a practical and cost-effective solution for supporting Big Data storage, processing and for 
sophisticated analytics applications. We analyze in details the building blocks of the software stack for 
supporting Big Data Science as a commodity service for data scientists. In addition, we analyze and 
classify the state-of-the-art of big data analytics frameworks, available today mostly on Clouds, based 
on their supported service models. Furthermore, we provide various insights about the latest ongoing 
developments and open challenges in this domain.

© 2018 Elsevier Inc. All rights reserved.
1. Big Data science

The continuous growth and integration of data storage, com-
putation, digital devices and networking empowered a rich envi-
ronment for the explosive growth of Big Data as well as the tools 
through which data is produced, shared, cured and analyzed [43].

In addition to the 4Vs (Volume, Velocity, Variety and Verac-
ity), it is vital to consider an additional feature of Big Data that 
is Value. Value is obtained by analyzing Big Data and extracting 
from them hidden patterns, trends and knowledge models by us-
ing smart data analysis algorithms and techniques. Data science 
methods must be able to analyze Big Data and extract features 
we don’t know. Those learned features improve the value of data 
that will make it possible to better understand phenomena and 
behaviors, optimizing processes, and improving machine, business 
and scientific discovery. Therefore, we cannot look at Big Data Sci-
ence without considering data analysis and machine learning as 
key steps for including value as a Big Data Science strategy.

In practice, big data analytics tools enable data scientists to dis-
cover correlations and patterns via analyzing massive amounts of 
data from various sources that are of different types. Recently, Big 
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Data science [3] has emerged as a modern and important data 
analysis discipline. It is considered as an amalgamation of classi-
cal disciplines such as statistics, artificial intelligence, mathematics 
and computer science with its sub-disciplines including database 
systems, machine learning and distributed systems. It combines 
existing approaches with the aim of turning abundantly available 
data into value for individuals, organizations, and society. The ulti-
mate goal of data science techniques is to convert data into mean-
ingful information. Both in business and in science, data science 
methods have shown to facilitate more robust decision making 
capabilities. In the last few years, we have witnessed a huge emer-
gence of Big Data Science in various real-world applications such 
as business optimization, financial trading, healthcare data analyt-
ics and social network analysis, just to name but a few [43]. In 
particular, we can think of the relationship between Big Data and 
data science as being like the relationship between crude oil and 
an oil refinery.

A McKinsey global report described Big Data as “Data whose 
scale, distribution, diversity, and/or timeliness require the use of new 
technical architectures and analytics to enable insights that unlock the 
new sources of business value” [36]. The Big Data phenomenon has 
spurred the scientific communities to reconsider their research 
methods and processes [55] by reorienting them towards insights 
obtained by learning from data. In 2007, Jim Gray, the Turing 
Award winner, separated data-intensive science from computa-

https://doi.org/10.1016/j.bdr.2018.04.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:rmelshawi@pnu.edu.sa
mailto:sakrs@ksau-hs.edu.sa
mailto:talia@dimes.unical.it
mailto:paolo.trunfio@unical.it
https://doi.org/10.1016/j.bdr.2018.04.004


JID:BDR AID:95 /REV [m5G; v1.236; Prn:17/05/2018; 13:59] P.2 (1-11)

2 R. Elshawi et al. / Big Data Research ••• (••••) •••–•••
tional science. He called for a paradigm shift in the computing ar-
chitecture and large scale data processing platforms known as the 
Fourth Paradigm [23]. Experiments, study of theorems and laws, 
and simulation were in a chronological way the previous three 
paradigms. Gray argued that this new paradigm does not only rep-
resent a shift in the methods of scientific research, but also a shift 
in the way that people think. He declared that the only way to deal 
with the challenges of this new paradigm is to build a new gener-
ation of computing systems to manage, analyze and visualize the 
data deluge. Spurred by continuous and dramatic advancements in 
processing power, memory, storage, and an unprecedented wealth 
of data, Big Data processing platforms have been developed to 
tackle the increasingly complex data science jobs. Lead by the
Hadoop framework [52] and its ecosystem, Big Data process-
ing systems are showing remarkable success in several business 
and research domains [43]. In particular, for about a decade, the 
Hadoop platform represented the defacto standard of the Big Data 
analytics world. However, we have recently been witnessing a new 
wave of Big Data 2.0 processing platforms [43] that are dedicated 
to specific verticals such as structured SQL data processing (e.g.,
Hive [49], Impala [26], Presto1), large scale graph process-
ing (e.g., Giraph [44], Graphlab [33], GraphX [19]), large scale 
stream processing data (e.g., Storm,2 Heron [29], Flink [14],
Samza [40], Kafka [28]) and machine learning and data analysis 
(Pig [18], Mahout [41], Spark MLib [38], Azure ML [48]).

The techniques and technologies of Big Data Science have been 
able to penetrate all facets of the business and research domains. 
From the modern business enterprise to the lifestyle choices of 
today’s digital citizen, the insights of Big Data analytics are driv-
ing changes and improvements in every arena [37]. Several big 
data surveys have been presented in the literature [66–74]. In this 
paper, we are taking a different perspective from the previous sur-
veys. In particular, we are comprehensively covering the systems
and frameworks perspective for the different layers of the data 
analytics techniques (e.g., machine learning, deep learning). We 
summarize the main contributions of this paper as follows:

– We analyze the main features and the building blocks of the 
software stack for supporting Big Data science on Clouds as a 
commodity service for data scientists.

– We identify a set of main requirements for effectively achiev-
ing the vision of providing Big Data analytics as a service.

– We analyze and classify the state-of-the-art of Big Data ana-
lytics frameworks based on their supported service models.

– We provide various insights about the latest ongoing develop-
ments and open challenges in this domain.

The reminder of this paper is organized as follows. Section 2 pro-
vides an overview of the role of cloud computing and its service 
models as a main component for supporting the implementation 
of software stacks of Big Data science as a service. Section 3 dis-
cusses the main requirements of deploying Big Data analysis jobs 
on cloud environments. Section 4 analyzes the state-of-the-art of 
Big Data analytics frameworks based on their supported service 
model. Section 5 discusses and provides insights on some of the 
open challenges towards achieving the goals and the vision of pro-
viding Big Data Science as a Service.

2. Cloud computing for Big Data

Cloud computing represents a paradigm shift in the process of 
provisioning computing infrastructures. This paradigm shifts the 

1 https://prestodb .io/.
2 http://storm .apache .org/.
location of infrastructure to more centralized and larger scale dat-
acenters in order to reduce the costs associated with the man-
agement of software and hardware resources [54]. Clouds provide 
users with the perception of accessing (virtually) unlimited com-
puting resources where scalability is secured by elastically adding 
computing resources as the requirement of the workload increases. 
They revolutionized the information technology industry by pro-
viding the flexibility in the way that computing resources are 
consumed by supporting the philosophy of the pay-as-you-go pric-
ing model for the resources and services used by the consumers. 
Therefore, cloud computing represented a crucial step towards re-
alizing the long-held dream of envisioning computing as a utility 
where the economy of scale principles help to effectively drive 
down the cost of computing infrastructure. In practice, big tech-
nology companies (e.g., Amazon, Google, Microsoft) have dedicated 
a lot of resources and investments in establishing their own data 
centers and cloud-based services across the world to provide assur-
ances on reliability by providing redundancy for their supporting 
infrastructure, platforms and applications to their cloud consumers. 
These cloud services can be provided according to the Infrastruc-
ture as a Service (IaaS) model (e.g. Amazon Elastic Compute 
Cloud (EC2)3 and Google Compute Engine4), the Platform 
as a Service(PaaS) model (e.g. Microsoft Azure5 and Google 
App Engine6), or the Software as a Service (SaaS) model (e.g.,
Salesforce.com7 and Zoho.8 Big Data analysis applications 
can be implemented within each of the three cloud service mod-
els: with the IaaS model, a set of virtualized resources can be pro-
vided to developers as a computing infrastructure to run their Big 
Data analysis applications or to implement their Big Data analysis 
systems from scratch; with the PaaS model, a supporting platform 
can be provided to developers that have to build their own Big 
Data applications or extend existing ones; finally, with the SaaS 
model, a well-defined Big Data analysis process or a ready-to-use 
data analysis tool can be provided as an Internet service to end-
users, who may directly use it through a Web browser.

As a matter of fact, Big Data and cloud computing technolo-
gies have been combined in a way that has made it easier and 
more flexible than ever for everyone to step into the world of 
Big Data processing [61]. In particular, this technology combi-
nation has enabled even small companies and individual data 
scientists to collect and analyze terabytes of data. For instance,
Amazon EC2 is provided as a commodity service which can be 
purchased and exploited merely by using a credit card to pay for 
the service. In addition, several cloud-based data storage solution 
(e.g., Amazon Simple Storage Service (S3),9 Amazon 
RDS,10 Amazon DynamoDB,11 Google Cloud Data Store,12

Google Cloud SQL13), for different data forms, have been pro-
vided enabling hosting massive amounts of data at very low cost 
and on demand. Furthermore, various Big Data processing frame-
works have been made available via cloud-based solutions [42]. For 
example, Amazon has also released Amazon Elastic MapRe-
duce (EMR)14 as a cloud service that allows its users to easily 
and cost-effectively analyze massive sizes of data without the need 

3 https://aws .amazon .com /ec2/.
4 https://cloud .google .com /compute/.
5 https://azure .microsoft .com/.
6 https://cloud .google .com /appengine/.
7 https://www.salesforce .com/.
8 https://www.zoho .com/.
9 https://aws .amazon .com /s3/.

10 https://aws .amazon .com /rds/.
11 https://aws .amazon .com /dynamodb/.
12 https://cloud .google .com /datastore/.
13 https://cloud .google .com /sql/.
14 http://aws .amazon .com /elasticmapreduce/.
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to get involved in the challenging and time-consuming aspects 
of running a Big Data analytics job such as setup, configura-
tion, management and performance tuning of complex computing 
clusters. Other cloud-based Big Data processing services include
Databricks Spark,15 Amazon Redshift,16 Google Big-
Query17 and Azure HDInsight.18

In practice, these cloud-based services allow third-parties to ex-
ecute Big Data analysis tasks over a huge amount of data with 
minimum effort and cost by abstracting the complexity entailed 
in developing and maintaining complex computing clusters. There-
fore, they paved the way and provided the fundamental elements 
of the software stack of providing Big Data Science as a service in a 
way that follows the cloud-based trend of providing everything-as-
a-service (XaaS) [5].

3. Main requirements of Big Data analysis on Clouds

In general, it has been well-recognized that Clouds can effec-
tively support Big Data science applications since they provide 
scalable storage and computing services, as well as software plat-
forms for developing and running large-scale data analysis on top 
of such services [56]. However, in order to achieve this goal, we 
envision a list of main requirements that should be met by cloud-
based data analysis systems to be used in Data Science solutions. 
In particular, from the infrastructure point of view, the following 
requirements should be met:

– Standardized access: The infrastructure should expose its ser-
vices using standard technologies (e.g., Web services, microser-
vices) making them usable as building blocks for higher level 
services and applications.

– Heterogeneous/distributed data support: The infrastructure
should be able to cope with very large and high dimensional 
datasets that are stored in different formats in a single data 
center or geographically distributed across many sites.

– Scalability: The infrastructure should be able to handle a grow-
ing workload (deriving from larger data to process or heavier 
algorithms to execute) by dynamically allocating the needed 
resources (processors, storage, network). Moreover, as soon as 
the workload decreases, the infrastructure should release the 
unrequired resources.

– Efficiency: The infrastructure should minimize resource con-
sumption for a given task to execute. In the case of parallel 
tasks, efficient allocation of processing nodes should be as-
sured.

– Security: The infrastructure should provide effective security 
mechanisms to ensure data protection, identity management, 
and privacy.

Among the requirements at the architectural level, the main 
two are:

– Service-orientation: The infrastructure should be designed as 
a set of network-enabled software components (services) im-
plementing the different operations of the system to facilitate 
their effective reuse, composition, and interoperability.

– Openness and extensibility: A Big Data science architecture 
should be open to the integration of new tools and services. 
Moreover, existing services should be open for extension, but 
closed for modification, according to the open-closed principle.

15 https://databricks .com /product /databricks.
16 https://aws .amazon .com /redshift/.
17 https://cloud .google .com /bigquery/.
18 https://azure .microsoft .com /en -us /services /hdinsight/.
In practice, the main resources in Big Data analysis applications 
are data sources, analysis tools and results. For managing these 
resources, some main requirements are needed as follows:

– Data management: Data sources and data output (results) can 
be represented in different formats, such as files, relational 
databases, NoSQL tables, or semi-structured docs. A system 
should provide mechanisms to store and access such data 
sources independently from their specific format. In addition, 
metadata formalisms should be defined and used to describe 
the relevant information associated with data sources (e.g., 
location, type, format), for enabling their access, use and ma-
nipulation.

– Tool management: Data analysis tools include algorithms and 
services for data selection, preprocessing, transformation, data 
mining, and output evaluation. Systems should provide mech-
anisms to access and use such tools independently from their 
specific implementation. Metadata can be used to describe the 
most important features of tools (e.g., functions, results, use).

Finally, a Big Data analysis system must provide efficient mech-
anisms for designing analysis tasks in Big Data science applications 
(design management) and controlling their execution (execution 
management).

– Design management: Big Data analysis applications involve 
complex data mining patterns generally expressed as trees, 
graphs or workflows. In all those cases, complex data anal-
ysis computations are designed as structured patterns that 
link together data sources, data transformation/analysis al-
gorithms, and output management tools. A general system 
should provide environments to effectively design all the 
above-mentioned classes of data analysis tasks.

– Execution management: Systems have to provide a parallel/dis-
tributed execution environment that supports the efficient ex-
ecution of a large number of data processing tasks. The execu-
tion environment should cope with a variety of applications. In 
particular, the execution environment should provide function-
alities that are related to the different phases of data science 
application execution, such as: parallel data access, compute 
resource allocation; running application based on user specifi-
cations, results presentation. Additionally, systems must allow 
users to monitor application execution.

4. Big Data science frameworks

The Big Data phenomenon has created ever-increasing pressure 
for scalable data processing solutions. Several data management 
and processing systems have been recently implemented. In par-
ticular, the NoSQL database approach became popular in the last 
years as an alternative or as a complement to relational databases, 
to ensure horizontal scalability of simple read/write database op-
erations distributed over many servers [12,60]. NoSQL systems like
HBase,19 Cassandra,20 MongoDB,21 Couchbase22 and Dy-
namoDB23 are today efficiently used to support the implemen-
tation of Big Data analysis frameworks and applications. Indeed, 
NoSQL databases provide efficient mechanisms and techniques to 
store and access scalar values, binary objects, and more complex 
data.

19 https://hbase .apache .org/.
20 http://cassandra .apache .org/.
21 https://www.mongodb .com/.
22 https://www.couchbase .com/.
23 https://aws .amazon .com /dynamodb/.
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Fig. 1. Big Data Science as a Service software stack.

The increasing data analysis requirements of almost all applica-
tion domains have created a crucial need for designing and build-
ing a new generation of Big Data science tools that can efficiently 
and effectively analyze massive amounts of data in order to elicit 
worthy information, detect interesting insights and discover mean-
ingful patterns and knowledge [47]. According to the three main 
cloud service models (Section 2), Big Data Science tools supporting 
analysis and learning from data can be classified either as Paas
or as SaaS. This classification is illustrated in Fig. 1 that summa-
rizes the Big Data Science as a Service software stack. Typically, 
the PaaS layer covers cloud-based data analysis frameworks that 
are used to implement data science software as a service while 
the SaaS layer covers cloud-based machine learning software or 
libraries that have been developed for extracting knowledge mod-
els, learning from data and making predictions. In the following 
sub-sections, we classify the data analysis frameworks according 
to these two main services models: PaaS and SaaS.

4.1. PaaS data analysis frameworks

PaaS frameworks allow users to focus on creating and running 
applications rather than building and maintaining the underlying 
infrastructure and services. Data analysis PaaS frameworks offer 
compute and storage services as well as data analysis and ma-
chine learning services that help developers in creating applica-
tions more quickly and efficiently. We will discuss some of the 
most used frameworks in the following.

MapReduce [59] is a programming model developed by Google 
for large-scale data processing to cope efficiently with the chal-
lenge of processing enormous amounts of data generated by 
Internet-based applications. Since its introduction, MapReduce has 
proven to be applicable to a wide range of domains, includ-
ing machine learning and data mining and social data analysis. 
Today, MapReduce is widely recognized as one of the most im-
portant programming models for Cloud computing environments 
and it is supported by Google and other leading Cloud providers 
such as Amazon, with its Elastic MapReduce service, and 
Microsoft, with its HDInsight or on top of private Cloud infras-
tructures such as OpenStack,24 with its Sahara25 service. The
Hadoop26 project is well-recognized as the most popular open 
source MapReduce implementation for developing parallel appli-
cations that analyze big amounts of data. It can be adopted for 
developing distributed and parallel applications using various pro-
gramming languages (e.g., Java, Ruby, Python, C++). Hadoop 
relieves developers from having to deal with classical distributed 
computing issues, such as load balancing, fault tolerance, data lo-
cality, and network bandwidth saving. As a result, Hadoop became 

24 https://www.openstack.org/.
25 https://wiki .openstack.org /wiki /Sahara.
26 http://hadoop .apache .org/.
a reference for several other frameworks, such as: Giraph for 
graph analysis; Storm for streaming data analysis; Hive, which 
is a data warehouse software for querying and managing large 
datasets; Pig, which is a dataflow language for exploring large 
datasets; Tez27 for executing complex directed-acyclic graph of 
data processing tasks; Oozie,28 which is a workflow scheduler 
system for managing Hadoop jobs.

Apache Spark [57] is a software platform for Big Data anal-
ysis based on the in-memory processing model. A key difference 
from Hadoop and its approach of always storing intermediate data 
in distributed file systems, Spark stores its data in RAM and queries 
it repeatedly so as to obtain better performance for some class of 
applications (e.g., iterative machine learning algorithms). For many 
years, Hadoop has been considered the leading open source Big 
Data framework, but recently Spark has become the more popular 
framework so that it is supported by every major Hadoop ven-
dors. In fact, for particular tasks, Spark is up to 100 times faster 
than Hadoop in memory and 10 times faster on disk. Several other 
libraries have been built on top of Spark: Spark SQL [58] for 
dealing with SQL and DataFrames, MLib [38] for machine learn-
ing, GraphX [19] for graphs and graph-parallel computation, and 
Spark Streaming to build scalable fault-tolerant streaming applica-
tions. For these reasons, Spark is becoming the primary execution 
engine for data processing and, in general, a must-have for Big 
Data applications. But even though in some applications Spark can 
be considered a better alternative to Hadoop, in many other ap-
plications it has some limitations that make it complementary to 
Hadoop. The main limitation of Spark is that it does not provide its 
own distributed and scalable storage system which is a fundamen-
tal requirement for Big Data applications that use huge and contin-
ually increasing volume of data stored across a very large number 
of nodes. To overcome this limit, Spark has been designed to run 
on top of several data sources, such as Cloud object storage (e.g.,
Amazon S3 Storage, Swift Object Storage), distributed 
filesystem (e.g., HDFS), NoSQL databases (e.g., HBase, Cassan-
dra), and others.

Sector/Sphere29 is a Cloud framework designed to imple-
ment data analysis applications involving large, geographically dis-
tributed datasets in which the data can be naturally processed in 
parallel [21]. The framework includes two components: a storage 
service called Sector, which manages the large distributed datasets 
with high reliability, high performance IO, and with uniform ac-
cess, and a compute service called Sphere, which makes use of 
the Sector service to simplify data access, increase data IO band-
width, and exploit wide area high performance networks. Both of 
them are available as open source software. Sphere is a compute 
service built on top of Sector and provides a set of programming 
interfaces to write distributed data analysis applications. Sphere 
takes streams as inputs and produces streams as outputs. A stream 
consists of multiple data segments that are processed by Sphere 
Processing Engines (SPEs) using slave nodes. Usually there are 
many more segments than SPEs. Each SPE takes a segment from a 
stream as an input and produces a segment of a stream as output. 
These output segments can in turn be the input segments of an-
other Sphere process. Developers can use the Sphere client APIs to 
initialize input streams, upload processing function libraries, start 
Sphere processes, and read the processing results.

H2O30 is an open source framework that provides a paral-
lel processing engine which is equipped with math and machine 
learning libraries. It offers support for various programming lan-

27 https://tez .apache .org/.
28 http://oozie .apache .org/.
29 http://sector.sourceforge .net/.
30 http://www.h2o .ai.
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guages including Java, R, Python, and Scala. The machine learn-
ing algorithms are implemented on top of the H2O’s distributed 
MapReduce framework and exploit the Java Fork/Join framework 
for implementing multi-threading. H2O implements many machine 
learning algorithms, such as generalized linear modeling (e.g., lin-
ear regression, logistic regression), Naïve Bayes, principal compo-
nents analysis (PCA), time series, K-means clustering, neural net-
works, and others. H2O also implements complex data mining 
strategies such as Random Forest, Gradient Boosting, and Deep 
Learning. Users on H2O can build thousands of models and com-
pare them to get the best prediction results. H2O runs on a sev-
eral cloud platforms, including Amazon EC2 and S3 Storage, Mi-
crosoft Azure and IBM DSX.31

Microsoft introduced AzureML [48] as a machine learning 
framework solution which provides a cloud-based visual environ-
ment for constructing data analytics workflows. Azure ML is often 
described as a SaaS, however it can be seen also a PaaS since it can 
be used develop SaaS solutions on top of it. It is provided as a fully 
managed service by Microsoft where users neither need to buy 
any hardware/software nor manually manage any virtual machines. 
AzureML provides data scientists with a Web-based machine learn-
ing IDE for creating and automating machine learning workflows. 
In addition, it provides scalable and parallel implementations of 
popular machine learning techniques as well as data processing 
capabilities using a drag-and-drop interface. AzureML can read and 
import data from various sources including HTTP URL, Azure Blob 
Storage, Azure Table and Azure SQL Database. It also allows data 
scientists to import their own custom data analysis scripts (e.g., in 
R or Python). Cumulon [24] has been present as a system which 
is designed to help users rapidly develop and deploy matrix-based 
big-data analysis programs in the cloud. It provides an abstraction 
for distributed storage of matrices on top of HDFS. In particular, 
matrices are stored and accessed by tiles. A Cumulon program ex-
ecutes as a workflow of jobs. Each job reads a number of input ma-
trices and writes a number of output matrices; input and output 
matrices must be disjoint. Dependencies among jobs are implied 
by dependent accesses to the same matrices. Dependent jobs exe-
cute in serial order. Each job executes multiple independent tasks 
that do not communicate with each other. Hadoop-based Cumu-
lon inherits important features of Hadoop such as failure handling, 
and is able to leverage the vibrant Hadoop ecosystem. While tar-
geting matrix operations, Cumulon can support programs that also 
contain traditional, non-matrix Hadoop jobs.

SciDB [11] has been introduced as an analytical database 
which is oriented toward the data management needs of scien-
tific workflows. In particular, it mixes statistical and linear alge-
bra operations with data management operations using a multi-
dimensional array data model. SciDB supports both a functional 
(AFL) and a SQL-like query language (AQL) where AQL is compiled 
into AFL.

MADlib [22] provided a suite of SQL-based implementation for 
data mining and machine learning algorithms that are designed to 
get installed and run at scale within any relational database engine 
that supports extensible SQL, with no need for data import/ex-
port to other external tools. The analytics methods in MADlib 
are designed both for in- or out-of-core execution, and for the 
shared-nothing scale-out parallelism provided by modern parallel 
database engines, ensuring that computation is done near to the 
data. The core functionality of MADlib is written in declarative SQL 
statements, which orchestrate data movement to and from disk, 
and across networked computers.

MLog [32] has been presented as a high-level language that 
integrates machine learning into data management systems. It ex-

31 https://datascience .ibm .com/.
tends the query language over the SciDB data model [11] to allow 
users to specify machine learning models in a way similar to tra-
ditional relational views and relational queries. It is designed to 
manage all data movement, data persistence, and machine-learning 
related optimizations automatically. The data model of MLog is 
based on tensors instead of relations. In fact, all data in MLog are 
tensors and all operations are a subset of linear algebra over ten-
sors.

4.2. SaaS data analysis frameworks

With the increasing need for data analysis requirements in sev-
eral domains, a set of frameworks have been implemented to sim-
plify and accelerate the process of developing Big Data analytics 
jobs by the end users. Those programming frameworks are tailored 
for implementing data analysis and machine learning applications 
as compositions of high-level services with the goal of reducing 
the programming burden and complexity.

High-level development environments Taking into account high-
level frameworks that abstract from processing architecture, we 
must present the R system. R32 is currently considered as the de-
facto standard in statistical and data analytics research. It is the 
most popular open source and cross platform software which has 
very wide community support. It is flexible, extensible and com-
prehensive for productivity. R provides a programming language 
which is used by statisticians and data scientists to conduct data 
analytics tasks and discover new insights from data by exploit-
ing techniques such as clustering, regression, classification and text 
analysis. It is equipped with very rich and powerful library of pack-
ages. In particular, R provides a rich set of built-in as well as 
extended functions for data extraction, data cleaning, data loading, 
data transformation, statistical analysis, machine learning and visu-
alization. In addition, it provides the ability to connect with other 
languages and systems (e.g., Python). In practice, a main draw-
back with R is that most of its packages were developed primarily 
for in-memory and interactive usage, i.e., for scenarios in which 
the data fit in memory. With the aim of tackling this challenge and 
providing the ability to handle massive datasets, several systems 
have been developed to support the execution of R programs on 
top of the distributed and scalable Big Data processing platforms 
such as Hadoop (e.g., Ricardo [17], RHadoop33 and RHIPE,34

Segue35) and Spark [53] (e.g., SparkR [51]). For example,
RHIPE is an R package that brings the MapReduce framework to R 
users and enables them to access the Hadoop cluster from within 
the R environment. In particular, by using specific R functions, 
users are able to launch MapReduce jobs on the Hadoop clus-
ter where the results can be easily retrieved from HDFS. Segue
enables users to execute MapReduce jobs from within the R en-
vironment on Amazon Elastic MapReduce platforms. SparkR has 
become a popular R package that supports a light-weight frontend 
to execute R programs on top of the Apache Spark [53] dis-
tributed computation engine and allows executing large scale data 
analysis tasks from the R shell. Pydoop [31] is a Python pack-
age that provides an API for both the Hadoop framework and the 
HDFS. Torch7 [16] has been presented as a mathematical envi-
ronment and versatile numeric computing framework for building 
machine learning algorithms. Theano [6] has been presented as a 
linear algebra compiler that optimizes mathematical computations 
and produces efficient low-level implementations.

32 https://www.r-project .org/.
33 https://github .com /RevolutionAnalytics /RHadoop.
34 https://github .com /tesseradata /RHIPE.
35 https://code .google .com /archive /p /segue/.
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Toolkits and libraries Among different toolkits, Apache Ma-
hout [41] is an open-source toolkit which is designed to solve 
very practical and scalable machine learning problems on top of 
the Hadoop platform. Thus, Mahout is primarily meant for dis-
tributed and batch processing of massive sizes of data on a cluster. 
In particular, Mahout is essentially a set of Java libraries which is 
well integrated with Apache Hadoop and is designed to make ma-
chine learning applications easier to build. Recently, Mahout has 
been extended to provide support for machine learning algorithms 
for collaborative filtering and classification on top of Spark and 
H2O platforms. MLib [38] has been presented as the Spark’s [53]
distributed machine learning library that is well-suited for itera-
tive machine learning tasks. It provides scalable implementations 
of standard learning algorithms for common learning settings in-
cluding classification, regression, collaborative filtering, clustering, 
and dimensionality reduction. MLlib supports several languages 
(e.g., Java, Scala and Python) and provides a high-level API 
that leverages Spark’s rich ecosystem to simplify the development 
of end-to-end machine learning pipelines.

Declarative interfaces/languages Several declarative machine
learning implementations have been implemented on top of Big 
Data processing systems [8]. For example, Samsara [45], has been 
introduced as a mathematical environment that supports declara-
tive implementation for general linear algebra and statistical op-
erations as part of the Apache Mahout library. It allows its users 
to specify programs in R-like style using a set of common matrix 
abstractions and linear algebraic operations. Samsara compiles, op-
timizes and executes its programs on distributed dataflow systems 
(e.g., Apache Spark, Apache Flink, H2O). MLbase [27] has 
been implemented to provides a general-purpose machine learning 
library with a similar goal to Mahout’s goal which is to provide a 
viable solution for dealing with large-scale machine learning tasks 
on top of the Spark framework. It supports a Pig Latin-like [18]
declarative language to specify machine learning tasks and imple-
ments and provides a set of high-level operators that enable its 
users to implement a wide range of machine learning methods 
without deep systems knowledge. In addition, it implements an 
optimizer to select and dynamically adapt the choice of learning 
algorithm.

Apache SystemML [7] provides a declarative machine learn-
ing framework which is developed to run on top of Apache Spark. 
It supports R and Python-like syntax that includes statistical func-
tions, linear algebra primitives and ML-specific constructs. It ap-
plies cost-based compilation techniques to generate efficient, low-
level execution plans with in-memory single-node and large-scale 
distributed operations.

ScalOps [10] has been presented as a domain-specific lan-
guage (DSL) that moves beyond single pass data analytics (i.e., 
MapReduce) to include multi-pass workloads, supporting iteration 
over algorithms expressed as relational queries on the training and 
model data. The physical execution plans of ScalOps consists of 
dataflow operators which are executed using the Hyracks data-
intensive computing engine [9].

Mxnet [15] is a library that has been designed to ease the de-
velopment of machine learning algorithms. It blends declarative 
symbolic expression with imperative tensor computation and of-
fers auto differentiation to derive gradients. MXNet is designed to 
run on various heterogeneous systems, ranging from mobile de-
vices to distributed GPU clusters.

Cloud machine learning services In general, one of the main ad-
vantage of working with cloud-based SaaS tools is that users do 
not have to worry about scaling their solution. Instead, ideally, the 
provided service should be able to automatically scale if the con-
sumption of computing resources for the defined analytical models 
has increased and according to the user defined configurations and 
requirements. Google has provided a cloud-based SaaS machine 
learning platform36 which is equipped with pre-trained models in 
addition to a platform to generate users’ models. The service is 
integrated with other Google services such as Google Cloud Stor-
age and Google Cloud Dataflow. It encapsulates powerful machine 
learning models that support different analytics applications (e.g. 
image analysis, speech recognition, text analysis and automatic 
translation) through REST API calls. Similarly, Amazon provides its 
machine learning as a service solution37 (AML) which guides its 
users through the process of creating data analytics models with-
out the need to learn complex algorithms or technologies. Once 
the models are created, the service makes it easy to perform pre-
dictions via simple APIs without the need to write any user code or 
manage any hardware or software infrastructure. AML works with 
data stored in Amazon S3, RDS or Redshift. It provides an 
API set for connecting with and manipulating other data sources. 
AML relies on Amazon SageMaker platform that allows the user to 
build, train, and deploy their machine learning models. IBM Wat-
son Analytics38 is another SaaS predictive analytic framework 
that allows its user to express their analytics job using natural 
English language. The service attempts to automatically spot in-
teresting correlations and exceptions within the input data. It also 
provides suggestions on the various data cleaning steps and the 
adequate data visualization technique to use for various analysis 
scenarios.

The BigML39 SaaS framework supports discovering predictive 
models from the input data using data classification and regression 
algorithms. In BigML, predictive models are presented to the users 
as an interactive decision tree which is dynamically visualized and 
explored within the BigML interface. BigML also provides a PaaS 
solution, BigML PredictServer,40 which can be integrated 
with applications, services, and other data analysis tools. Hunk41

is a commercial data analysis platform developed for rapidly ex-
ploring, analyzing and visualizing data in Hadoop and NoSQL data 
stores. Hunk uses a set of high-level user and programming inter-
faces to improve the speed and simplicity of getting insights from 
large unstructured and structured data sets. One of the key com-
ponents of the Hunk architecture is the Splunk Virtual Index. This 
system decouples the storage tier from the data access and ana-
lytics tiers, so enabling Hunk to route requests to different data 
stores. The analytics tier is based on Splunks Search Processing 
Language (SPL) that is designed for data exploration across large, 
different data sets. The Hunk web framework allows building ap-
plications on top of the Hadoop Distributed File System (HDFS) 
and/or the NoSQL data store. Developers can use Hunk to build 
their Big Data applications on top of the data in Hadoop using a 
set of well known languages and frameworks. Indeed, the frame-
work enables developers to integrate data and functionality from 
Hunk into enterprise Big Data applications using a web framework, 
documented REST API and software development kits for C#, Java, 
JavaScript, PHP and Ruby.

Kognitio Analytical Platform42 has been designed as 
a Cloud service or supplied as a pre-integrated appliance that al-
lows users to pull very large amounts of data from existing data 
storage systems into high-speed computer memory, allowing com-
plex analytical questions to be answered interactively. Although 
Kognitio has its own internal disk subsystem, it is primarily used 
as an analytical layer on top of existing storage/data processing 

36 https://cloud .google .com /products /machine -learning/.
37 https://aws .amazon .com /machine -learning/.
38 https://www.ibm .com /analytics /watson -analytics/.
39 https://bigml .com.
40 https://bigml .com /predictserver.
41 http://www.splunk.com /en _us /products /hunk.html.
42 www.kognitio .com.

https://cloud.google.com/products/machine-learning/
https://aws.amazon.com/machine-learning/
https://www.ibm.com/analytics/watson-analytics/
https://bigml.com
https://bigml.com/predictserver
http://www.splunk.com/en_us/products/hunk.html
http://www.kognitio.com


JID:BDR AID:95 /REV [m5G; v1.236; Prn:17/05/2018; 13:59] P.7 (1-11)

R. Elshawi et al. / Big Data Research ••• (••••) •••–••• 7
systems, e.g., Hadoop clusters and/or existing traditional disk-based 
data warehouse products, Cloud storage, etc. A feature called Exter-
nal Tables allows persistent data to reside on external systems. Us-
ing this feature the system administrator, or a privileged user, can 
easily setup access to data that resides in another environment, 
typically a disk store such as the above-mentioned Hadoop clusters 
and data warehouse systems. To a final user, the Kognitio Analyt-
ical Platform looks like a relational database management system 
(RDBMS) that is similar to many commercial databases. However, 
unlike these databases, Kognitio has been designed specifically to 
handle analytical query workload, as opposed to the more tradi-
tional on-line transaction processing (OLTP) workload.

Nubytics is a Software-as-a-Service (SaaS) system that ex-
ploits Cloud facilities to provide efficient services for analyzing 
large datasets [13]. The system allows users to import their data 
to the Cloud, extract knowledge models using high performance 
data mining services, and exploit the inferred knowledge to predict 
new data and behaviors. In particular, Nubytics provides data clas-
sification and regression services that can be used in a variety of 
scientific and business applications. Scalability is ensured by a par-
allel computing approach that fully exploits the resources available 
on a Cloud. Nubytics differs from general purpose data analysis 
frameworks like Azure ML, Hadoop and Sparks, or data-oriented 
workflow management systems like DMCF, as it provides special-
ized services for data classification and prediction. These services 
are provided by a Web interface that allows data analysts to fo-
cus on the data analysis process without worrying on low level 
programming details. This approach is similar to that adopted by 
BigML. However, Nubytics also focuses on scalability, by imple-
menting an ad hoc parallel computing approach that fully exploits 
the distributed resources of a Cloud computing platform.

Workflow environments In principle, workflows are used as an 
effective paradigm for data analysis programming. Several frame-
works use this paradigm for integrating data analysis methods. 
They are mainly focusing on simplifying the process of orches-
trating different component and reducing the time to production. 
Here, we discuss just a few systems that are representative of this 
class of frameworks.

Tensorflow [1] provides an interface for designing machine 
learning algorithms, and an implementation for executing such al-
gorithms. In particular, Tensorflow takes computations described 
using a dataflow-like model and compiles them onto several hard-
ware platforms, ranging from running inference on mobile device 
platforms (e.g., Android and iOS) to large-scale distributed systems 
of hundreds of machines and thousands of computational devices 
such as GPU cards. The main focus of Tensorflow is to simplify 
the real-world use of machine learning system and significantly re-
ducing the maintenance burdens. TFX [64] has been presented by 
Google as a TensorFlow-based general-purpose machine learning 
platform that integrates different components including a learner 
for generating models based on training data, modules for an-
alyzing and validating both data as well as models in addition 
to infrastructure for serving models in production. Keras43 is a 
Python deep learning library which is capable of running on top 
of TensorFlow or Theano. It allows for easy and fast prototyp-
ing through user friendliness, modularity and extensibility. Böse 
et al. [65] presented a platform for large-scale machine learning 
(ML) approaches that enables the training and application of prob-
abilistic demand forecasting models. The platform comprises of an 
end-to-end machine learning system, built on Apache Spark, that 
includes data preprocessing, feature engineering, distributed learn-
ing, evaluation, experimentation and ensembling.

43 https://keras .io/.
The F2 analytics framework [20] has been designed to separate 
execution from data management and handles compute and data 
as equal first-class citizens. In particular, in this framework, data is 
managed separately while decisions to determine how data is par-
titioned or when it is to be processed are taken at runtime. The 
computation that processes the data can have lost semantics and 
run any of the available operations on whatever data is ready. One 
of the main advantages of this framework design is that it provides 
more flexibility in expressing analytics jobs by removing concerns 
regarding data partitioning, routing and what logic to specify dur-
ing the runtime.

The Data Mining Cloud Framework (DMCF) [34] is a 
software system implemented for designing and executing data 
analysis workflows on Clouds. A Web-based user interface allows 
users to compose their applications and submit them for execu-
tion over Cloud resources, according to a Software-as-a-Service 
(SaaS) approach. The DMCF architecture has been designed to 
be deployed on different Cloud settings. Currently, there are two 
different deployments of DMCF: i) on top of a Platform-as-a-
Service (PaaS) cloud, i.e., using storage, compute, and network APIs 
that hide the underlying infrastructure layer; ii) on top of an 
Infrastructure-as-a-Service (IaaS) cloud, i.e., using virtual machine 
images (VMs) that are deployed on the infrastructure layer. In both 
deployment scenarios, DMCF uses Microsoft Azure44 as the cloud 
provider. The DMCF software modules can be grouped into web 
components and compute components. DMCF allows users to com-
pose, check, and run data analysis workflows through a HTML5 
web editor. The workflows can be defined using two languages: 
VL4Cloud (Visual Language for Cloud) [34] and JS4Cloud (JavaScript 
for Cloud) [35]. Both languages use three key abstractions: Data el-
ements, representing input files (e.g., a dataset to be analyzed) or 
output files (e.g., a data mining model); Tool elements, represent-
ing software tools used to perform operations on data elements 
(partitioning, filtering, mining, etc.); and Tasks, which represent the 
execution of Tool elements on given input Data elements to pro-
duce some output Data elements.

Keystoneml framework [46] has been designed to support 
building complex and multi-stage pipelines that include feature ex-
traction, dimensionality reduction, data transformations and train-
ing supervised learning models. It provides a high-level, type-safe 
API that is built around logical operators to capture end-to-end 
machine learning applications. To optimize the machine learning 
pipelines, Keystoneml applies techniques to do both per-operator 
optimization and end-to-end pipeline optimization. It uses a cost-
based optimizer that accounts for both computation and com-
munication costs. The optimizer is also able to determine which 
intermediate states should be materialized in the main memory 
during the iterative execution over the raw data. MBDAaaS [75]
has been proposed as a framework for Model-based Big Data 
Analytics-as-a-Service that supports users with limited Big Data 
expertise in deploying data analytics pipelines. It provides a declar-
ative model for specifying the goals of a given analytics in the 
form of pairs indicators/objectives which are then used to incre-
mentally refine a platform-independent procedural model for spec-
ifying how analytics should be carried out in terms of an abstract 
workflow. The procedural models are then compiled in a ready-to-
be-executed deployment model that semi-automatically suggests 
platform-dependent component configurations and supporting au-
tomatic provisioning of computational components and resources. 
To complete our discussion and offer a look of comparison, Table 1
summarizes the main features of the Big Data analysis frameworks 
we presented.

44 http://azure .microsoft .com.
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Table 1
Summary of the main feature of Big Data Analysis Frameworks.

Framework Model Abstraction Supported languages Underlying engine Availability

Hadoop PaaS MapReduce Java, Python Hadoop Open source
Spark PaaS RDD Scala, Python, Java, R Spark, Yarn Open source
H2O PaaS Procedural + Library REST, R, Python H2O Open source
SciDB PaaS Declarative SQL SciDB Open source
AzureML SaaS/PaaS Visual User Interface REST Microsoft Azure Proprietary/Microsoft
R SaaS/PaaS Procedural R R Open source
SparkR SaaS/PaaS Procedural R Spark Open source
Mahout SaaS/PaaS Toolkit Java, Scala Hadoop, Spark Open source
Spark MLib SaaS/PaaS Library Scala, Python Spark Open Source
Samsara SaaS/PaaS Declarative Java, Scala Spark, Flink, H2O Open Source
Apache SystemML SaaS/PaaS Declarative R, Python Spark Open Source
Google ML SaaS Visual User Interface Python Google Cloud Dataflow Proprietary/Google
Amazon ML SaaS Visual User Interface N/A Apache MXNet, TensorFlow, PyTorch Proprietary/Amazon
BigML SaaS/Paas Visual User Interface Python BigML PredictServer Proprietary/BigML
Tensorflow SaaS Visual User Interface/Library Python, Haskell, Java, Go Julia, R, Scala CUDA, TPU Open Source
KeystoneML SaaS/PaaS Procedural + Library Scala Spark Open Source
5. Discussion and open challenges

The world is progressively moving towards being populated 
by a data-driven society where data are the most valuable asset. 
The proliferation of Big Data and big computing have boosted the 
adoption of machine learning and data science across several ap-
plication domains. For example, image recognition systems have 
reached and sometimes outperformed human quality,45 voice-
driven personal assistants (e.g., Amazon Alexa46) are now avail-
able and the dream of autonomous vehicles is currently becoming 
a reality.47 In practice, efficient and effective analysis and exploita-
tion of Big Data have become essential requirements for enhancing 
the competitiveness of enterprises and maintaining sustained so-
cial and economic growth of societies and countries. Therefore, Big 
Data Science has become a very active research domain with cru-
cial impact on various scientific and business domains where it 
is significant to analyze massive and complex amounts of data. 
In practice, in many cases, the data to be analyzed can be stored 
in cloud-based data servers and elastic computing cloud resources 
can be exploited to facilitate the speeding up and scaling out of 
the data science tasks.

In spite of the high expectations on the promises and poten-
tial benefits of Big Data Science, there are still many challenges to 
overcome so that we are able to fully harness its full power. Ex-
amples of these open challenges and research directions include:

– Data availability and data sharing: In practice, Big Data science 
lives and dies by the data. It mainly rests on the availabil-
ity of massive datasets, of that there can be no doubt. The 
more data that is available, the richer the insights and the re-
sults that Big Data science can produce. The bigger and more 
diverse the data set, the better the analysis can model the 
real world. Therefore, any successful Big Data science pro-
cess has attempted to incorporate as many data sets from 
internal and public sources as possible. In reality, data is seg-
mented, siloed and under the control of different individu-
als, departments or organizations. It is crucially required to 
motivate all parties to work collaboratively and share useful 
data/insights for the public. Recently, there has been an in-
creasing trend for open data initiatives which supports the 

45 http://theconversation .com /digital -diagnosis -intelligent -machines -do -a -better-
job -than -humans -53116.
46 https://developer.amazon .com /alexa.
47 https://www.technologyreview.com /s /609450 /autonomous -vehicles -are -you -

ready-for-the -new-ride/.
idea of making data publicly available to everyone to use and 
republish as they wish, without restrictions from copyright, 
patents or other mechanisms of control [25]. Online data mar-
kets [4] are emerging cloud-based services (e.g., Azure Data 
Market,48 Kaggle,49 Connect,50 Socrata51). For exam-
ple, Kaggle is a platform where companies can provide data 
to a community of data scientists so that they can analyze the 
data with the aim of discovering predictive, actionable insights 
and win incentive awards. In particular, such platforms follow 
a model where data and rewards are traded for innovation. 
More research, effort and development is still required in this 
direction.

– Interoperability: With the increasing number of platforms and 
services, interoperability is arising as a main issue. Standard 
formats and models are required to enable interoperability 
and ease cooperation among the various platforms and ser-
vices. In addition, the service-oriented paradigm can play 
an effective role in supporting the execution of large-scale 
distributed analytics on heterogeneous platforms along with 
software components developed using various programming 
languages or tools. Furthermore, in practice, the majority 
of existing big-data-processing platforms (e.g., Hadoop and
Spark) are designed based on the single-cluster setup with 
the assumptions of centralized management and homoge-
neous connectivity which makes them sub-optimal and some-
times infeasible to apply for scenarios that require implement-
ing data analytics jobs on highly distributed data sets (e.g., 
across racks, clusters, data centers or multi-organizations). 
Some scenarios can also require distributing data analy-
sis tasks in a hybrid mode among local processing of lo-
cal data sources and model exchange and fusion mecha-
nisms to compose the results produced in the distributed 
nodes.

– Efficient distributed execution mechanisms: In practice, the de-
sign of most of the statistical computation (e.g., R) and sci-
entific computing tools (e.g. Python) is memory-bounded 
where data analysis algorithms rely on the in-memory data 
processing mechanism. While this approach may bring many 
benefits in terms of speeding up the processing and thus sub-
sequently resulting in faster decisions being made, with Big 
Data sizes there could be scalability risks due to performance 

48 http://datamarket .azure .com /browse /data.
49 https://www.kaggle .com/.
50 https://connect .data .com/.
51 https://socrata .com/.

http://theconversation.com/digital-diagnosis-intelligent-machines-do-a-better-job-than-humans-53116
https://developer.amazon.com/alexa
https://www.technologyreview.com/s/609450/autonomous-vehicles-are-you-ready-for-the-new-ride/
http://datamarket.azure.com/browse/data
https://www.kaggle.com/
https://connect.data.com/
https://socrata.com/
http://theconversation.com/digital-diagnosis-intelligent-machines-do-a-better-job-than-humans-53116
https://www.technologyreview.com/s/609450/autonomous-vehicles-are-you-ready-for-the-new-ride/


JID:BDR AID:95 /REV [m5G; v1.236; Prn:17/05/2018; 13:59] P.9 (1-11)

R. Elshawi et al. / Big Data Research ••• (••••) •••–••• 9
issues if the processed data do not fit in the available main 
memory or it can be very costly if the required memory can 
be allocated in a cloud platform. Efficient and optimized dis-
tributed and parallel disk-based execution platforms for com-
plex data analysis jobs (e.g., SparkR) are crucially required to 
tackle this challenge.

– Iterative and explorative natures of data analytics process: In gen-
eral, a major obstacle for supporting Big Data analytics ap-
plications is the challenging and time consuming process of 
identifying and training an adequate predictive model. There-
fore, data science is a highly iterative exploratory process 
where most scientists work hard to find the best model or 
algorithm that meets their data challenge. In practice, there 
is no one-model-fits-all solutions, thus, there is no single 
model or algorithm that can handle all data set varieties 
and changes in data that may occur over time. All machine 
learning algorithms require user defined inputs to achieve 
a balance between accuracy and generalizability. This task 
is referred to as parameter tuning. The tuning parameters 
impact the way the algorithm searches for the optimal so-
lution. This iterative and explorative nature of the model 
building process is prohibitively expensive with very large 
datasets. Thus, recent research efforts (e.g., Auto-WEKA52) 
have been attempting to automate this process [62]. However, 
they have mainly focused on single node implementations and 
have assumed that model training itself is a black box, lim-
iting their usefulness for applications driven by large-scale 
datasets [30].

– Model management: With the increasing usage of machine 
learning and the increasing number of models, the issues 
of model management, model sharing, model versioning and 
lifecycle management have become significantly important. 
For example, it is important to keep track of the mod-
els developed and understand the differences between them 
by recording their metadata (e.g., training sample, hyperpa-
rameters). ModelHub [39] has been proposed to provide 
a model versioning system to store and query the models 
and their versions, a domain specific language that serves 
as an abstraction layer for searching through model space 
in addition to a hosted service to store developed mod-
els, explore existing models, enumerate new models and 
share models with others. ModelDB [50] is another sys-
tem for managing machine learning models that automat-
ically tracks the models in their native environments (e.g.
Mahout, SparkML), indexes them and allows flexible ex-
ploration of models using either SQL or a visual web-based 
interface. Along with models and pipelines, ModelDB stores 
several metadata (e.g., parameters of pre-processing steps, hy-
perparameters for models etc.) and quality metrics (e.g. AUC, 
accuracy). In addition, it can store the training and test data 
for each model.

– Programming abstractions: Despite the availability of several 
programming approaches that have been developed for im-
plementing data analysis applications, new programming ab-
stractions for Big Data analysis are still needed to sim-
plify the task of programmers, reduce the code develop-
ment time and close the gap between the data analysis al-
gorithms and the scalable computing platforms on which 
they are executed [63]. Big Data analytics programming 
languages require novel complex abstract structures that 
must be close to data format and organization. Data ex-
change and transformation, data locality and near-data pro-
cessing constructs are welcome to analize Big Data reposito-

52 https://www.cs .ubc .ca /labs /beta /Projects /autoweka/.
ries and large streams. More research activities are needed 
to develop scalable higher-level models and paradigms that 
must be driven by data mining and machine learning tech-
niques.

– Usability: In practice, building machine learning applications 
is a highly time-consuming process that requires substantial 
effort even from best-trained data scientists to deploy, oper-
ate and monitor. One of the main reasons behind this chal-
lenge is the lack of tools for supporting end-to-end machine 
learning application development that can ease and acceler-
ate the job for end users. The DAWN project at Stanford [2]
has recently announced its vision for the next five years with 
the aim of making the machine learning (ML) process usable
for small teams of non-ML experts so that they can eas-
ily apply ML to their problems, achieve high-quality results 
and deploy production systems that can be used in criti-
cal applications. The main design philosophy of the DAWN 
project is to target the management of end-to-end ML work-
flows, empower domain experts to easily develop and de-
ploy their models and perform effective optimization of the 
workflow execution pipelines using simple interfaces. Another 
important usability aspect is the explainability of the devel-
oped models. In general, explainability is very useful for ma-
chine learning models used and trained as blackboxes where 
the output models are not easy or intuitive to explain (e.g., 
SVM, neural networks, deep learning). For example, in the 
healthcare domain, the physicians should be able to under-
stand and interpret why the developed models are meaning-
ful and applicable. We believe that additional research ef-
forts are crucially required to ease and accelerate the life 
cycle and the data science process and make it more us-
able.

Providing new solutions in all those research fields will pro-
mote innovative Big Data science and will allow new applications 
and procedures to be implemented by scientists and professions 
in research centers and companies where exploitation of machine 
intelligence and data analysis is greatly important for solving com-
plex and challenging problems.
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