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Abstract

Sensors are present in various forms all around the world such as mobile phones, surveillance cameras, smart tele-

visions, intelligent refrigerators and blood pressure monitors. Usually, most of the sensors are a part of some other

system with similar sensors that compose a network. One of such networks is composed of millions of sensors connect

to the Internet which is called Internet of things (IoT). With the advances in wireless communication technologies,

multimedia sensors and their networks are expected to be major components in IoT. Many studies have already been

done on wireless multimedia sensor networks in diverse domains like fire detection, city surveillance, early warning

systems, etc. All those applications position sensor nodes and collect their data for a long time period with real-time

data flow, which is considered as big data. Big data may be structured or unstructured and needs to be stored for fur-

ther processing and analyzing. Analyzing multimedia big data is a challenging task requiring a high-level modeling to

efficiently extract valuable information/knowledge from data. In this study, we propose a big database model based on

graph database model for handling data generated by wireless multimedia sensor networks. We introduce a simulator

to generate synthetic data and store and query big data using graph model as a big database. For this purpose, we

evaluate the well-known graph-based NoSQL databases, Neo4j and OrientDB, and a relational database, MySQL. We

have run a number of query experiments on our implemented simulator to show that which database system(s) for

surveillance in wireless multimedia sensor networks is efficient and scalable.

Keywords: Internet of things (IoT), big graph databases, NoSQL databases, wireless multimedia sensor networks,

simulator

1. Introduction

A wireless multimedia sensor network (WMSN) is a

distributed wireless network that consists of a set of mul-

timedia sensor nodes, which are connected to each other

or connected to leading gateways. Nowadays, smart de-

vices such as mobile phones, smart televisions, and smart

watches are equipped with sensors and network connec-

tions. Hence, with the advances in wireless communi-

cation technologies, multimedia sensor networks are ex-
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pected to be one of the major components in the Internet

of things (IoT).

A typical application for a WMSN is a surveillance

system or a monitoring system. Smart city surveillance

cameras with 7/24 recording, or one million sensor nodes

reporting meteorological data produce data in various for-

mats as video, audio, and text [1]. All that huge structured

or unstructured data is considered as big data, which is

defined by a number of Vs; Volume, Velocity, Variety, Ve-
racity, and Value. Min et al. [2] present a comprehen-

sive survey of big data and they identify that “defining

the structural model of big data” is a fundamental prob-

lem. Fusing and analyzing big data are challenging tasks

and there are many research studies that are related to big
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data from different points of view in recent years. As

pointed out by many researchers, relational database man-

agement systems (RDBMS) are inadequate for efficiently

handling big data; therefore NoSQL database systems are

mostly utilized [3, 4, 5]. There are four main types of

NoSQL databases, which are key-value store (e.g. Ama-

zon’s Simple DB), big table (e.g. Apache Cassandra),

document store (e.g. MongoDB) and graph-based model

(e.g. Neo4j) [6].

Graph databases consist of nodes and edges (rela-

tions between nodes) which store data as properties.

Graph databases are very efficient and convenient to han-

dle social networks, fraud detection, graph-based oper-

ations, real-time recommendations and hierarchical re-

lations. While storage of the big data is an important

task, processing the streaming data and taking action for

mission-critical applications are crucial. Arkady et al. [7]

state that analyzing and extracting the valuable data from

dirty raw data is an important research topic. In order to

process that kind of data, we need to identify the data flow.

In this paper, we propose to use a graph-based model

for handling big data generated from surveillance appli-

cations in wireless multimedia sensor networks. For this

reason, we propose a graph-based model as a generic

model to be used for different surveillance applications.

Big sensor data is stored in a graph database for the pur-

pose of advanced analytics, such as data mining, predic-

tion, and statistics. Our graph model represents both the

data flow among the nodes and wireless multimedia sen-

sor network topology. The applicability of our solution

is illustrated with a prototype implementation including

simulation of synthetic data. A case study in the military

surveillance domain is simulated and several experiments

are done to measure the efficiency of our solution. Simu-

lation results show that our proposed multimedia wireless

sensor network model is applicable in large-scale real-life

application scenarios.

The contribution of our study is to store the multime-

dia sensor network data in a well-defined graph-based big

database model. The big data stored in an open-source

graph database can be used for analyzing, filtering, aggre-

gating and correlating big data. A simulation infrastruc-

ture is implemented for simulating multimedia wireless

sensor networks to run a number of complex experimen-

tal queries. Although there have been some related studies

in literature about the surveillance systems in the big data

context, to the best of our knowledge, there has not been

any applicable graph-based big data model for WMSNs

based on a graph database yet.

This article is organized as follows: next two sections

provide background information and related work. Then

we introduce our real WSN system to give technical de-

tails of our deployment. Section 5 is the proposed graph-

based big model explanation and Section 6 presents the

prototype implementation of our model. Simulation in-

frastructure of wireless multimedia sensor networks is

given in Section 7. Section 8 illustrates a case study in

the military surveillance domain and Section 9 presents

the experimental results and evaluations. Finally, conclu-

sions are drawn in Section 10.

2. Background

2.1. Internet of Things
The Internet of Things (IoT) is used by Kevin Ashton

in 1999 [8] and it roughly means that the Things use the

Internet instead of Humans. The sensors, RFIDs, and nan-

otechnology help this mission to be accomplished by tak-

ing away the need for human-entered data.

Pankesh et al.[9] propose a domain model for IoT to

make a common understanding. To define the model, they

reference to the real world applications and summarize

under three headings; Intermittent Sensing, Regular Data

Collection, and Sense-Compute-Actuate loops.

As parallel to Sense-Compute-Actuate cycle, Sensor-

as-a-Service (Senaas) notion is defined by Sarfraz et al.

[10]. They virtualized the sensors as services by an ab-

straction on technical details of sensors. They trigger ser-

vices with an event in the sensor and compute it to reply

an action. Their IoT virtualization framework is validated

by a case study.

Atzori et al. [11] prepare a comprehensive survey about

IoT. They identify the enabling technologies as sens-

ing, identification and communication systems like RFID,

WiFi, and sensors. In addition, middleware applications

using Service Oriented Architecture (SOA) are important

for data distribution. In the end, they list open issues such

as privacy, addressing of things and non-standardized ap-

plications for the future.

IoT is fully connected to sensor technology and the re-

searches about sensor networks directly or indirectly im-

prove the IoT. Hong et al. [12] propose an approach to
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IoT using IP-based wireless sensor networks. They real-

ize that IoT probably has the same problems that Internet

itself had in the past. So, they identify problems like IPv6

adaptation, mobility, web enablement, global time syn-

chronization, and security. They also share evaluation re-

sults of an implementation of their proposed SNAIL (Sen-

sor Networks for an All-IP World) platform.

2.2. Sensor Networks

A set of sensors called sensor nodes connected to each

other or connected to leading gateways is simply called

a sensor network (SN). If sensors have capability of col-

lecting multimedia data and have a communication infras-

tructure among the sensors, it is called multimedia sensor

network (MSN). If sensors are connected to each other

using wireless technology then it is a wireless multimedia

sensor network (WMSN).

Akyıldız et al. [13] discuss the state of the art of re-

search on WMSNs as well as the challenges. The chal-

lenges related to WSN deployment configurations are

summarized by Perera et al. [14] in their research. An-

other survey paper [15] enlists the challenging issues to

design middleware systems for WSN. Some of the iden-

tified challenges are as follows: data fusion, resource

management, scalability and network topology, security,

Quality of Service and limited power.

Peng et al. [16] propose a wireless sensor network in

which sink node is replaced by a cloud. They called sink

point instead of gateway. Their simulation results show

that cloud based architecture increases the WSN perfor-

mance.

Arati et al. focus on the information retrieval from

sensor networks and propose a hybrid protocol which is

called APTEEN [17]. They make experiments by exe-

cuting queries to show that proposed protocol performs

better.

From the database point of view, Ramesh et al. [18]

define a database layer on top of sensor network so that

a database query is mapped to traversing sensor nodes in

the WSN.

2.3. Big Data

The buzz word of the recent years, Big Data, defined

by a number of Vs; Volume, Velocity, Variety, Value and

Veracity as shown in Figure 1.

Volume is the quantity of stored data. Velocity is the

speed of data generation or processing. Variety is the type

and structure of the data. Value is the importance of in-

formation that data provides. Veracity is the variation in

quality of data and inconsistency and uncertainty of data.

The survey paper [2] points the relation between IoT

and big data. For example, jet aircraft engines pro-

duce one terabyte of data per flight using various sen-

sors. Think about a huge number of flights in a day all

around the world and then you can have really big data.

HP prepared a business-value white paper related to big

data. According to the paper, one trillion sensors, roughly

150 sensors for every person will be existed by 2030. The

generated data will be mostly unstructured data and the

value of it depends on how the information is extracted

from the data. As the number of sensors increases,much

more storage and processing will be required. And all of

these create some new challenging issues.

Many papers [6, 4], state that the relational database

management systems (RDBMS) are inadequate for big

data and NoSQL database systems are a solution at least

for time being.

2.4. NoSQL Graph Databases
Moniruzzaman et al. [3] evaluate NoSQL databases in

the aspect of big data analytics. In their survey, they en-

list different types of NoSQL databases according to char-

acteristics (features and benefits of NoSQL databases),

classification (key-value, document, column-based and

graph); and evaluation with a matrix on the basis of few

attributes like design, integrity, indexing, distribution, and

system.

There are four types of NoSQL databases which are

key-value store (e.g. Amazon’s Simple DB), big table

databases (e.g. Apache Cassandra), document-oriented

(e.g. MongoDB) and graph databases (e.g. Neo4j). Graph

databases [19] consist of nodes and edges (relations be-

tween nodes) which store data as properties. Most of

graph databases provide the capability to label nodes and

edges. NoSQL Graph databases provide many ways to

query data;

• User interface via SQL-like query language (Cypher

for Neo4j, SQL for OrientDB)

• User interface via Graph visualization to interact

with the nodes and edges
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Figure 1: 5 Vs of Big Data

• Application program interface (API) to programmat-

ically connect to database

Unfortunately, there is not any standardized way of query-

ing, so that you have to write database specific queries

every time. There is an open-source framework Apache

TinkerPop to provide graph computing capabilities for

graph databases. Gremlin is a part of the TinkerPop to

traverse the graphs. And by the support of most of the

graph databases, any gremlin query can be written once

and works on every graph database.

Graph databases are generally preferred to handle so-

cial networks, fraud detection, graph-based operations,

real-time recommendations and hierarchical relations.

3. Related Work

Over the years, various methods have been used for

wireless sensor networks data representation and manage-

ment ([20, 21]). Our approach is different basically by

the aspects of big data, graph database storage, and our

unique graph data model.

Yang et al. [22] present a service platform which is

called Wiki-Health. They have designed platform in three

layers; application, query and analysis, and data storage.

In data storage layer, they used a NoSQL database as we

do. But they use HBase which is a column-oriented key-

value store, we use graph database which is better for re-

lational analytics.

Christine et al. [23] discuss big data with spatial data

received from wireless sensors using real life scenarios.

One of the scenarios is related to smart cities which is

similar to surveillance domain. They propose a scalable

solution using Hadoop and HBase NoSQL database to

prototype a platform for storage and processing wireless

data. We also design and implement a simulation proto-

type from storage layer to analytics layer and more im-

portantly, we propose a grah based data model on top of

that architecture.

Renzo et al. [24] present a survey paper on graph

database models. They compare graph database models

with the other database models, i.e. a relational model. In

this paper, we also compare well-known graph database

models with the relational database model. Furthmore

we perform queries to benchmark the performance of

databases.

Another survey paper is a written by Felemban [25]

which is about border surveillance. His research en-
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lists the literature for experimenting work done in border

surveillance and intrusion detection using the technology

of WSN. Our research differs from the existing works by

employing a graph based approach for surveillance do-

main and focusing on the simulation of the big data.

PipeNet [26] is a multi-layered wireless sensor net-

works application focused on pipeline monitoring. Sys-

tem aims to detect the leaks and other anomalies in water

pipelines. They have used various types of sensors like

pressure, pH and ultrasonic sensors on top of Intel Moto

platform. Our sensor nodes are built on Rasberry Pi plat-

form and have seismic, acoustic, and PIR sensors but also

a multimedia camera. A camera needs further analysis

like image processing and feature extraction. Their multi-

layer architecture is similar to our prototype but in another

domain with different sensors and different analytical ap-

proaches. They try to analyze the collected multi-modal

data for detection of the leaks. But we try to identify ob-

jects and track their movement. On the other hand, we

approach our sensor data as big data.

Suvendu Kumar et al. [27] propose an analytic archi-

tecture for big data to detect intruders using camera sen-

sors. Our work differs by using additional scalar sensors

like acoustic and seismic sensors but also proposed graph

based data model.

4. Real WSN System

Our reference WMSN system is composed of wireless

multimedia sensors and some scalar sensors. The system

is designed as a multi-tier automated surveillance system.

The first layer is the sensing layer with scalar sensors in-

cluding acoustic, seismic, and PIR. The second layer is

triggered by first layer. Multimedia sensors like camera

and microphone are used capture video and audio. After

applying the fusion, object type and location of the sen-

sor is extracted to be provided to the next layer, which is

called the sink layer. The sink layer provides the capabil-

ity to do analytics on all collected and generated informa-

tion in the network.

The overall architecture is given in Figure 2. Sen-

sor nodes are connected to the gateway nodes via Zig-

Bee (IEEE 802.15.4) interfaces. A special thread for se-

rial messaging is developed to send the events from sen-

sor nodes to the gateway. The gateway prepares XMPP

messages using the gathered events coming from leading

nodes via broadcast messages. Those XMPP messages

are transferred to the sink node. The XMPP messages and

multimedia data is transfered over IP based (IEEE 802.11)

connection.

The hardware of our sensor node is based on a Rasp-

berry Pi (RPi) 512-MB Model B board and includes the

Figure 2: Real WMSN System Architecture
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following hardware components:

• ARM1176 700MHz processor,

• Graphical processing unit (GPU),

• 512 MB SDRAM shared with GPU,

• SD card slot for on board storage,

• On board 10/100 Mb Ethernet port,

• 2x USB 2.0 ports,

• 1 CSI input connector for the camera module,

• Video and audio outputs,

• GPIO ports,

• 5V 700-mA microUSB power requirement.

The following list is the components installed on a node

in our WSN system to fulfill its functions:

• Motion sensor (PIR),

• Acoustic sensor (AS),

• Vibration sensor (VS),

• Raspicam camera module,

• Xbee ZigBee (IEEE 802.15.4) adapter,

• 4400-mAh 5V 1A power bank,

• Microphone,

• Wi-Fi (IEEE 802.11) dongle,

• XMPP client software

Sensor to sensor communication, as well as gateway

to sink communication, is completed via ZigBee inter-

faces. Nodes are equipped with low-bandwidth radio de-

vices using IEEE 802.15.4 (ZigBee) standard and ZigBee

provides a line of sight up to of 1500 m. at outdoor con-

ditions and 250 Kbps at most.

In our real WSN system, sensor node and gateway roles

are all predefined, there is not any dynamic gateway selec-

tion. Because different roles may need different kinds of

hardware components.

5. The Graph-Based Big Data Model

Our graph-based big data model is built on the multi-

media sensor networks topology. There is a sink node in

the base station and there are a number of clusters con-

nected to the sink. Each cluster consists of a gateway,

which can be called the cluster head, and a set of sensor

nodes.

The data flow occurs from the sensor nodes to gateways

and from gateways to the other gateways (multi hop) and

finally to the sink node. Each sensor node holds a set of

data sensed by the sensors and camera of the node. Sen-

sor nodes include embedded programs for handling cor-

relation, transformation, and aggregation on the raw data,

which is called first level fusion. The sensor fused data

are reported to the leading gateway by all of its connected

sensor nodes.

The gateway waits for all sensor nodes to report. When

all reports are ready, the gateway applies an aggregation

or filtering on the received data. The second-level fu-

sion is done at this point and the output of the fusion is

a summary of that cluster. The gateway fused data are

forwarded to the sink node for a final decision.

Similar to the second-level fusion, the sink waits for

all gateways’ fused data. By applying some patterns to

detect anomalies or other kinds of analysis are done at the

third level fusion. The output of the last level fusion is an

action like triggering an alarm or a notification message

to another system.

Figure 3 shows the first level fusion graph model from

raw data collection to fusion. The sensor node is respon-

sible for fusion at this level. The input is the raw data and

Figure 3: First Level Fusion model (SN:Sensor Node, SRD:Sensor Raw

Data, SFD:Sensor Fused Data)
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Figure 4: Second Level Fusion model (GW:Gateway, SN:Sensor Node,

SRD:Sensor Raw Data, SFD: Sensor Fused Data, GFD:Gateway Fused

Data)

the output is sensor fused data. Last collected raw data

and last fused fusion data are explicitly pointed for the

purpose of the direct link.

Figure 4 shows the second level fusion graph model to

identify the relations between sensor nodes and the gate-

way. The gateway is responsible for the fusion at this

level. The input is all sensor fused data coming from sen-

sor nodes and the output is gateway fused data which can

be filtered, aggregated or transformed data.

Figure 5 shows the third level fusion graph model

which is executed at the sink to aggregate all data fused

from gateways. The input is the all fused data coming

from gateways and the output is sink fused data which

cause actions like triggering an alarm or notifying the op-

erators.

6. Prototype Implementation for Proposed Model

We have already implemented the proposed graph

model using OrientDB Graph Database and developed a

simulator to generate synthetic data. In the following sub-

section, we describe why OrientDB graph database is cho-

Figure 5: Third Level Fusion model (GW:Gateway, GFD:Gateway

Fused Data, SINKFD:Sink Fused Data)

sen as default storage system. Other subsections show the

implementation of the data model with the detailed design

of generic infrastructure and simulation infrastructure.

6.1. Graph Database Selection

Our research includes applying the currently available

databases to our graph-based big data model. Salem et

al. [28] compare a set of databases like Cougar and

TinyDB. Li-Yung Ho et al. [29] propose a distributed

graph database based on an open-source graph database

which is called Neo4j. The options are limited if you are

looking for a graph database. Neo4j, Titan, and OrientDB

are featured open-source graph databases.

Neo4j is a well-known graph database and used by

many researchers. In addition, Neo4j is relatively eas-

ier to be used rapidly by developing some small pieces of

code. Spring Framework support is really helpful to put

things together very fast.

Titan is another open-source option for a graph

database but its development is stopped and discontinued

in early 2015. Therefore we did not prefer to utilize Titan.
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Table 1: Compare OrientDB and Neo4j Community Editions

Feature OrientDB Neo4j

Graph Database Yes Yes

TinkerPop Standard Compliance Yes Yes

ACID Transaction Yes Yes

Unique Constraints Yes Yes

Fulltext Support Yes Yes

Spatial Support Yes Yes

Java Hooks Yes Yes

Record Level Security Yes No

User and Role Security Yes No

SQL Yes No

Dynamic Triggers Yes No

Custom Data Types Yes No

Additional Constraint Types Yes No

Indexes on Multiple Properties Yes No

Different Schema Modes Yes No

Multi-Master Replication Yes No

Sharding Yes No

Elastic Scalability Yes No

Server-Side Functions Yes No

Embeddable with No Restrictions Yes No

Sequences Yes No

OrientDB is another open-source graph database which

is not as popular as Neo4j for now but has many advan-

tages over it. Table 1 shows the comparison of OrientDB

and Neo4j Community Editions which is provided by the

official website of OrientDB. From all those compared

features, ”Multi-Master Replication”, ”SQL” and ”Elastic

Scalability with Zero Configuration” are the most impor-

tant features for us to choose OrientDB.

6.2. Data Model Implementation

Nodes (vertices) and relations (edges) are defined in

graph databases to store data. Compared to the traditional

RDBMS approach, every row in a table is replaced with

a node and its properties. There are edges to represent

cross-table references.

At the first step, we define the node and edge types.

Node types are; Sink, Gateway, SensorNode, SensorRaw-

Data, SnFusedData (SensorFusedData), GwFusedData

(GatewayFusedData) and SinkFusedData. Edge types

are; Lead, Collect, LastCollected, Next, Fusion, FusedBy,

LastFusion, Reported and Forwarded. The edge types are

defined for the usage between specific nodes. Table 2 lists

the edge types in our graph database.

Each sensor node has the capability to hold temporar-

ily a set of data which are sensed by sensors like PIR,

seismic, acoustic and camera. That capability is provided

by an in-memory database. For the fusion at the sensor

node level, this in-memory database is used as a cache to

analyze the changes in scalar sensors and provide some

additional data to the first level fusion. The algorithm of

the first level fusion is shown in Algorithm 1. The fu-

sion result is stored in the fusedData including the video,

silhouette, foreground and low level features.

Algorithm 1: Sample first level fusion algorithm exe-

cuted on sensor nodes

1 Function firstLF(PIR,seismic,acoustic, threshold)
Input : Boolean PIR identifies if there is a

movement or not, two integers seismic
and acoustic values are scalar data

sensed by the node, threshold is used to

identify that there is an object with

enough sound and vibration on sensor

node

Output: f usedData is the fusion data involving

the multimedia data

2 initialize f usedData
3 if PIR = true and seismic ≥ T HRESHOLD and

acoustic ≥ threshold then
4 f usedData.video = startVideoRecording() ;

5 f usedData. f rame =

selectFrame( f usedData.video);

6 f usedData. f rmFeatures =

findLowLevelFeatures( f usedData. f rame);

7 f usedData. f oreground =

selectForeground( f usedData. f rame);

8 f usedData. f gndFeatures =

findLowLevelFeatures( f usedData. f oreground)

9 f usedData.silhouette =

extractSilhouette( f usedData. f oreground);

10 return f usedData;
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Table 2: Node and Edge Types

Edge Type From Node To Node

Lead Gateway SensorNode

Lead Gateway Gateway

Lead Sink Gateway

Collect SensorNode SensorRawData

LastCollected SensorNode SensorRawData

LastFusion SensorNode SnFusedData

LastFusion Gateway GwFusedData

Next SensorRawData SensorRawData

Next SnFusedData SnFusedData

Fusion SensorRawData SnFusedData

Fusion SnFusedData GwFusedData

Fusion GwFusedData SinkFusedData

FusedBy SnFusedData SensorNode

FusedBy GwFusedData Gateway

FusedBy SinkFusedData Sink

Reported SnFusedData Gateway

Forwarded GwFusedData Gateway

Forwarded GwFusedData Sink

Sensor nodes apply the first level fusion and reports the

output fusedData to leading gateway. The gateway ap-

plies the second level fusion as in Algorithm 2. The pur-

pose of fusion at the gateway is a refinement of the sensor

fused data before sending to the sink node. As a sample

refinement algorithm, removing the duplications and nor-

malizing the data according to scalar data can be written.

The output of the second level fusion is reported to the

sink node. As the final decision maker, the sink correlates

the concepts forwarded by gateways and decides that if an

action is necessary or not. If an action is required, notifi-

cation of the operator is triggered as given in Algorithm 3.

All those three fusion algorithms are sample algorithms to

provide the proof of concept execution of all phases of the

simulated environment.

All those three fusion algorithms are sample algorithms

to provide the proof of concept execution of all phases of

the simulated environment.

6.3. Generic Infrastructure
We have developed the whole system by using Java

1.8 as maven projects to use Apache Maven as the de-

Algorithm 2: Sample second level fusion algorithm

executed on gateways

1 Function secondLF( f usedDataList, threshold)
Input : The list of f usedData reported by

leading sensor nodes, threshold is used

to identify the difference between two

scalar value

Output: Filtered list of f usedData by

duplication removal

2 initialize an empty array f ilteredDataList
3 for i = 0 to f usedDataList.size do
4 current = f usedDataList[i];
5 previous = previous element of current;
6 di f f = current.acoustic - previous.acoustic;

7 di f f Rate = current.acoustic *

threshold/100;

8 if di f f < di f f Rate then
9 mark current as duplicate and drop

10 else
11 add current to f ilteredDataList

12 return f ilteredDataList

Algorithm 3: Sample third level fusion algorithm ex-

ecuted on the sink

1 Function thirdLF( f ilteredDataList, threshold)
Input : The list of f usedData reported by

reporting gateways, threshold is used to

identify the difference between two

scalar value

Output: Actions generated by reported

f usedData list

2 initialize an empty array actionList
3 for i = 0 to f ilteredDataList.size do
4 current = f usedDataList[i];
5 previous = previous element of current;
6 if current.acoustic > threshold and

previous.acoustic > threshold then
7 action = createAction(current);
8 add action to actionList;
9 notify operator using action;

10 return actionList

9



Table 3: Defined Message Queues

Queue Name Process Queue Element

Scalar Data Collected Raw Data SensorRawData

Fused Level 1 and 2 Fusion SnFusedData

Forward Forwarding to Sink GwFusedData

Action Level 3 Fusion SinkFusedData

pendency management framework. To develop the ap-

plication of our research project beyond OrientDB, we

have designed a generic infrastructure which can be eas-

ily adopted to other database systems. To achieve that, we

have developed business logic without any dependency to

OrientDB.

There are two managers called DataManager and Net-

workManager. DataManager defines the necessary inter-

faces to populate data for the underlying database. Net-

workManager has the business logic to construct network

topology and defines the necessary interfaces to create

network entities for the underlying database.

As there is a data flow between sensor nodes and gate-

ways and sink, in order to cope with the bottleneck of

high throughput of streaming data, we position Apache

ActiveMQ message queues between each process. We

define message queues as seen on Table 3 below. Fusion

logic is developed on top of messaging queues and there

are 3 business logic handlers; Level1and2Fusion, Gate-

wayForward and Level3Fusion.

7. Simulation

To develop and experiment the graph data model, we

have developed a simulator which is mainly focused on

data simulation but also supports network topology simu-

lation.

7.1. Network Topology Simulation

For our network topology, we assume that nodes are

distributed with a grid layout to the simulation area which

is assumed to be square. Figure 6 shows a visualization

of 16 sensor nodes in each cluster with a gateway in the

middle and 9 gateways in total with Sink in the center.

Between two sensor nodes, the distance is 10 units. Each

cluster has 4 sensor nodes at one side and there are 3 clus-

ters in an edge of the total area. So, we have 120x120

sized grid layout for our simulation.

7.2. Data Flow Simulation
Data flow simulation is started with Raw Data Gen-

erator which produces synthetic data with position, PIR,

seismic and acoustic information. These data are sensed

by sensor nodes which are close to the position. A sen-

sor raw data object is created for each sensor node with

the calculated sensor data according to the distance to the

position of the raw data created by Raw Data Generator.

Then the generic infrastructure explained in the previous

section is used to simulate all processes of the data flow.

7.3. Simulator
Currently, we adopt our simulation infrastructure on

OrientDB, Neo4j which is the main rival of OrientDB and

MySQL for the relational to graph database comparison.

Every simulation is replicated to all three databases simul-

taneously so that the same test environment is provided.

Figure 8 is the screenshot of our data simulator to

generate the network topology in Figure 6. “(Re)Create

Database” button cleans the database and generates sink,

gateways and sensor nodes according to the given param-

eter related to node count and cluster count.

“Start simulation” button starts simulation by sending

an entity from one of the edges of the area. Then, the

Figure 6: Simulated Network Topology
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Figure 7: Data Flow Simulation

Figure 8: Data Simulator

entity moves randomly according to its speed and simula-

tion ends when the entity moves out of the area. Possible

moves are going to north, south, east, or west and don’t

move.

It is possible to run parallel simulations by clicking the

button at any time. And if “Repeat Simulation” check-

box is checked, a new simulation is automatically started

when current simulation ends.

There are several Entity types to simulate. Each en-

tity has its own speed, acoustic and seismic values. Ta-

ble 4 show each type and its simulation values. “En-

tity Speed” selection combobox decreases or increases the

speed value of the simulating entity. Acoustic and seismic

values are defined by the selection of ”Entity Type” com-

bobox and according to entity’s distance from the sensor

node, those values are recalculated to degrade its effect on

the sensor node.

Assume that simulation put an “Animal” entity at

(37,120) position. The entity is between the sensor nodes

at (30,120) and (40,120). Table 5 and Table 6 show the

sensed values between those two nodes for Animal Type.

Another important capability of the simulation tool is

Event generation. We can identify event types and gener-

ate it at any time while the simulation is running. At first

stage, we have 2 types of events.

• Attack: As seen in Figure 6, operational base is lo-

cated at north. If something comes from south and

directly moves toward the base, this movement is an

Attack event for us.

• Smuggling: If a group of human is moving together

with a group of animal and they are coming from

west and going in the direction of south-east, this

movement is smuggling event for us.

When “Start Event” button is pressed, selected event is

Table 4: Simulated Entity Types

Entity Type Speed Acoustic Seismic

Human 1 20 10

Animal 2 40 20

Vehicle 4 70 80

GroupOfHuman 1 60 30

GroupOfAnimal 2 80 60
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Table 5: Sensed Values at Node(30,10)

ANIMAL 30,10 31,10 32,10 33,10 34,10 35,10 36,10 37,10 38,10 39,10 40,10

Acoustic 20 18 16 14 12 10 8 6 4 2 0

Seismic 40 36 32 28 24 20 16 12 8 4 0

Table 6: Sensed Values at Node(40,10)

ANIMAL 30,10 31,10 32,10 33,10 34,10 35,10 36,10 37,10 38,10 39,10 40,10

Acoustic 0 2 4 6 8 10 12 14 16 18 20

Seismic 0 4 8 12 16 20 24 28 32 36 40

started to be simulated. Additional event types can be

added for further analysis.

8. A Case Study: Surveillance Application

Surveillance systems need robust and scalable infras-

tructure. To achieve that, all data flow and data itself are

needed to be analyzed and modelled.

A set of sensors and video cameras are needed to mon-

itor the whole city. Assume that, we cluster the sensors

and cameras according to the districts and each cluster

forwards sensed data to the HQ (Head Quarter) which is

the operation center. At the HQ, an alarm is triggered, or

a notification is sent to the officers to early detection of

violence.

Sensor types can be seismic, acoustic and PIR (Pas-

sive Infrared) which are types of scalar sensors. In ad-

dition to them, video cameras or thermal cameras can be

added to critical locations. As the default, cameras are

switched off. According to the sensed information from

scalar sensors, the predefined conditions can be extracted

using rule-based approaches. The motion or environmen-

tal change may be detected and interpreted to activate the

camera by providing a rough prediction of the moving ob-

ject.

We categorize the moving object as; Animal, Human,

and Vehicle. The data collected from scalar sensors are

analyzed to guess the category of the objects according to

predefined thresholds (Table 7).

After activation of the camera by analyzing scalar sen-

sor data, video and audio streams from the camera are

started to be processed. That processing in the sensor

node is called the first level fusion. After fusion, we have

a concept of the moving object and maybe even a silhou-

ette. Fusion output is reported to the gateway which is the

leading node of that district.

A gateway is connected to a set of sensors and cam-

eras. The described operations are done for all leaded

sensors so that the gateway receives many concepts and

silhouettes. By applying some algorithms like filtering the

duplicate concepts or aggregating them to normalize the

received data, the gateway accomplishes the second level

fusion. After fusion, we have more accurate concepts and

silhouettes provided by many sensors. Fusion output is

forwarded to the HQ (Headquarter) for a final decision.

As there are many districts in a city, there are many

gateways which are far away from the HQ and not di-

rectly connected to it. In that case, data is forwarded over

other gateways. At the HQ, the received data from all dis-

tricts are analyzed, aggregated or filtered for the purpose

of detecting anomalies or finding some patterns, which is

called the third level fusion. At the end, the fusion comes

to the conclusion and an alarm is triggered to the officers

or the external system of the armed forces is notified.

Table 7: Sample Thresholds To Identify Objects

Object Type PIR Seismic (Hz) Acoustic (dB)

Animal True 5 - 20 5 - 30

Human True 21 - 55 31 - 50

Vehicle True >35 >50

12



9. Experimental Work

We setup a test environment to make some experiments

on our graph model. Test environment specifications are;

• Intel i7-4710HQ Quad Core CPU

• 16 GB DDR3 RAM

• 240 GB SSD Storage

• 4 GB NVIDIA 860GTX GPU

Test environment has three database systems which are;

• OrientDB v2.2.5 (Graph database)

• Neo4j v2.3.2 (Graph database)

• MySQL v5.7.1 (Relational database)

We have simulated a multimedia wireless sensor net-

work with synthetic raw data. Sensor nodes are placed in

a square shaped area. Gateways are located in the center

of each group of sensor nodes. The sink node is placed in

the center of the whole area as shown in Figure 6.

There are 25 million sensor nodes which are leaded by

2,500 gateways. There is sink node to collect all data in

our simulation environment. Each gateway leads 10,000

sensor nodes.

9.1. Comparison to Relational Data Model

This experiment is done on all three databases installed

in our test environment. We have run many queries on

both our graph data model and relational data model. Fig-

ure 9 shows the relational database representative of our

graph data model on MySQL.

Below queries are randomly selected sample queries

and Table IV shows the test results of the experiment.

9.1.1. Concepts Based Query
This query finds the specific type of objects with the

highest probability of its detection time and location.

OrientDB Query:
SELECT concep t , weight , f u s i o n D a t e , o u t ( ” f u s e d b y ” ) .

indexX , o u t ( ” f u s e d b y ” ) . indexY FROM f u s e d d a t a
WHERE weight >0.90 AND c o n c e p t = ” V e h i c l e ” ORDER
BY f u s i o n D a t e

Neo4j Query:

Figure 9: Relational Database Schema

MATCH ( b : f u s e d d a t a ) −[: f u s e d b y ]−>( sd : s e n s o r n o d e ) WHERE
b . c o n c e p t = ”Human” AND b . weight >0.90 RETURN b .
concep t , b . weight , b . f u s i o n D a t e , sd . indexX , sd .
indexY

Relational SQL Query:
SELECT b . concep t , b . weight , a . f u s i o n D a t e , sd . indexx ,

sd . i n dex y FROM s i n k f u s e d d a t a a , g a t e w a y f u s e d d a t a
g , s e n s o r f u s e d d a t a b , s e n s o r n o d e sd WHERE a .
c o n c e p t = ’ Veh ic l e ’ AND a . weight >0.90 AND a . i d =
g . f u s i o n AND g . i d = b . f u s i o n AND b . f u s e d b y = sd .
i d ORDER BY a . f u s i o n D a t e ASC

9.1.2. Video Based Query
This query finds the possible explosions by identifying

continued high volume around the surveillance area with

their recorded video paths and video duration. The value

bigger than 15 is assumed to be a high volume sound.

OrientDB Query:
SELECT i n ( ” c o l l e c t ” ) . name [ 0 ] , i n ( ” c o l l e c t ” ) . indexX [ 0 ] ,

i n ( ” c o l l e c t ” ) . indexY [ 0 ] , a c o u s t i c , o u t ( ” v i d e o ” ) .
v i d e o P a t h [ 0 ] , o u t ( ” v i d e o ” ) . v i d e o D u r a t i o n S e c [ 0 ]
FROM s e n s o r r a w d a t a WHERE a c o u s t i c >15 AND o u t ( ”
n e x t ” ) . a c o u s t i c [0]>15 AND o u t ( ” n e x t ” ) . o u t ( ” n e x t ” )
. a c o u s t i c [0]>15 ORDER BY name

Neo4j Query:
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MATCH ( sn : s e n s o r n o d e ) −[: c o l l e c t ]−>( s a : s e n s o r r a w d a t a )
−[: n e x t ]−>( sb : s e n s o r r a w d a t a ) −[: n e x t ]−>( s c :
s e n s o r r a w d a t a ) −[: v i d e o ]−>( sv : s e n s o r r a w v i d e o d a t a )
WHERE sa . a c o u s t i c >15 AND sb . a c o u s t i c >15 AND sc .
a c o u s t i c >15 RETURN sn . name , sa . a c o u s t i c , sn .
indexX , sn . indexY , sv . v i d e o P a t h , sv .
v i d e o D u r a t i o n S e c ORDER BY sn . name

Relational SQL Query:
SELECT s . name , s . indexx , s . indexy , r a . c o l l e c t D a t e , r a .

a c o u s t i c , v . v i d e o p a t h , v . d u r a t i o n FROM
s e n s o r n o d e s , s e n s o r r a w d a t a ra , s e n s o r r a w d a t a rb ,

s e n s o r r a w d a t a rc , s e n s o r r a w v i d e o d a t a v WHERE r a .
a c o u s t i c >15 AND rb . a c o u s t i c >15 AND r c . a c o u s t i c >15
AND s . i d = r a . s e n s o r n o d e i d and r a . i d = rb .

n e x t i d and rb . i d = r c . n e x t i d and r c . v i d e o i d =
v . i d ORDER BY s . name ASC

9.1.3. Recursive Query
This query finds the detected “Human” typed objects

with high accuracy and calculates the distance of the sen-

sor node to the sink node.

OrientDB Query:
SELECT $nodeId , o u t ( ’ fusedby ’ ) . name [ 0 ] , f u s i o n D a t e ,

$deep . c o u n t FROM f u s e d d a t a LET $nodeId = o u t ( ’
fusedby ’ ) . @rid , $deep = SELECT COUNT(∗ ) FROM (
TRAVERSE i n ( ’ l ead ’ ) FROM $nodeId ) WHERE c o n c e p t =

’Human ’ AND w ei g h t > 0 . 9

Neo4j Query:
MATCH p =( a : s i n k ) −[: l e a d∗]−>(b : ga teway ) WITH b . name as

gname , l e n g t h ( p ) AS d e p t h MATCH ( s f d : f u s e d d a t a )
−[: f u s e d b y ]−>( sn : s e n s o r n o d e )<−[: l e a d ]−(g : ga teway )
WHERE s f d . c o n c e p t = ”Human” AND s f d . weight >0.9

AND g . name = gname RETURN gname , sn . name , s f d .
f u s i o n D a t e , d e p t h

Relational SQL Query:
WITH RECURSIVE s e a r c h g r a p h ( id , name , l ead , d e p t h ) AS

SELECT g . id , g . name , g . l ead , 0 FROM gateway g
WHERE g . l e a d i s n u l l UNION ALL

SELECT g . id , g . name , g . l ead , 0 FROM gateway g WHERE g .
l e a d i s n u l l UNION ALL

SELECT g . id , g . name , g . l ead , sg . d e p t h + 1 FROM gateway
g , s e a r c h g r a p h sg WHERE g . l e a d = sg . i d

SELECT s . name , s2 . name , s2 . indexX , s2 . indexY , s . d e p t h
FROM s e a r c h g r a p h s i n n e r j o i n

s e l e c t d i s t i n c t sn . id , sn . name , sn . indexX , sn . indexY ,
sn . l e a d FROM s i n k f u s e d d a t a s fd , g a t e w a y f u s e d d a t a
gfd , s e n s o r f u s e d d a t a s r f d , s e n s o r n o d e sn WHERE
s r f d . f u s i o n = gfd . i d AND gfd . f u s i o n = s f d . i d AND
s r f d . f u s e d b y = sn . i d AND

s f d . c o n c e p t = ’Human ’ AND s f d . weight >0.9
s2 ON s2 . l e a d = s . i d

Table 8 shows the performance results of our example

queries. For the first query is a simple range query which

is focused on the basic query performance. OrientDB

performs better than Neo4j because of the under-hood

architecture of OrientDB which is a multi-model graph

database. And graph model performs better than the rela-

tional model since there is no join operation as promised

by the NoSQL databases.

Table 8: Test Results (Numbers are in milliseconds)

Query OrientDB Neo4j MySQL

Concept Based 209 618 938

Video Based 355 145 422

Recursive 4,293 79,812 36,469

For the second query, Neo4j performs better than Ori-

entDB and the graph model is again better than MySQL.

This time again graph databases beat relational databases

because of their join-free query capability. To understand

why Neo4j is faster than OrientDB, we have to dive into

queries. The query is neighbors and neighbors of neigh-

bors query, which is a typical graph matching problem

considering paths of length 1 or 2. In PostgreSQL we

use a relational table with id from / id to backed by an

index. Neo4j performs better because of its “index-free

adjacency” for the edges.

The last query is to test the recursive SQL type of a

query. The graph-based model is much faster than the

relational model. Neo4j fails for this recursive query.

There can be some optimizations possible while using the

Cypher language (the query language of Neo4j) but we

couldn’t find them in the available Neo4j documentation.

9.2. Doubling Sensed Raw Data Size
An OrientDB graph database is selected for the execu-

tion of experiments. The previous experiments are ap-

plied on generated synthetic data of one month where

each sensor node can sense data with 5 minutes of pe-

riod. Now we increase the simulation duration from 1

month to 5 months step by step and diagnosed the query

performance.

Figure 10 shows the chart of query times affected by

the increased simulation duration. The query time is in-

creased and it is better than linear which is fairly well

compared to the doubled data size.

10. Conclusions

In this paper, we propose a graph-based model for com-

plex multimedia and sensor big data. Our first aim is

to represent the wireless sensor networks with multime-

dia data. Our implementation is composed of two main

modules. The first module is the implementation of the
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Figure 10: OrientDB Query Time/Simulation Duration Chart

proposed data model. The second module is the simula-

tion which includes a simulator to produce synthetic big

sensor multimedia data and the simulation infrastructure

which represents the objects moving in our multimedia

sensor networks.

We have focused on the surveillance systems to de-

sign our graph data model. The network topology and the

data flow between each sensor nodes, gateways and sink

are modeled so that all static and kinetic data is stored

within the sensor network which must be assumed to be

big data. The database to store big data is the NoSQL

graph database. Because graph databases are good at rep-

resentation of complex relations and scalable to store big

multimedia sensor data.

We have tested our model on both graph databases

and a relational database. Test results show that

graph database model performs better that the relational

database model. To decide which graph database is more

convenient and efficient, we chose two well-known graph

databases, OrientDB and Neo4j, for experiments. Neo4j

is the market leading graph database, but it does not fit

into our needs, which is to store complex multimedia big

data. Because Neo4j supports high availability with the

master-slave approach, which can scale vertically. But, in

order to survive in the big data world, we need a master-

master approach, which OrientDB has. In addition to that,

our experiments show that OrientDB performs better than

Neo4j.

We have simulated our WMSN prototype system with

millions of data to test the proposed graph model sim-

ulating the system. We have tested the query perfor-

mance with many complex scenarios. We have showed

that our generated millions of synthetic data can be effi-

ciently queried efficiently on our graph database.

As future research work, we plan to do graph analytics

on our big graph model. Object tracking, topology opti-

mization, and path extraction like analytics suit well for

our surveillance domain.
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