Accepted Manuscript

Hadoop MapReduce performance on SSDs for analyzing social networks

M. Bakratsas, P. Basaras, D. Katsaros, L. Tassiulas

PII:
DOI:
Reference:

To appear in:

Received date:

Revised date:

Accepted date:

S2214-5796(17)30014-X
http://dx.doi.org/10.1016/j.bdr.2017.06.001
BDR 64

Big Data Research

16 January 2017
5 June 2017
23 June 2017

S
a
a2
=)
=2
8

1,02,001011100L01010

il

esearc

Please cite this article in press as: M. Bakratsas et al., Hadoop MapReduce performance on SSDs for analyzing social networks, Big Data
Res. (2017), http://dx.doi.org/10.1016/j.bdr.2017.06.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.bdr.2017.06.001

ACCEPTED MANUSCRIPT

Hadoop MapReduce performance on SSDs
for analyzing social networks

M. Bakratsas

University of Thessaly, Department of Electrical & Computer Engineering, Volos, GREECE

P. Basaras

University of Thessaly, Department of Electrical & Computer Engineering, Volos, GREECE

D. Katsaros

Yale University, Department of Electrical Engineering € Yale Institute for Network
Science, New Haven, CT, USA

L. Tassiulas

Yale University, Department of Electrical Engineering € Yale Institute for Network
Science, New Haven, CT, USA

Email addresses: mmpakrat@gmail.com (M. Bakratsas), pbasaras@gmail.com
(P. Basaras), d.katsaros@yale.edu (D. Katsaros), leandros.tassiulasQyale.edu
(L. Tassiulas)

Hadoop MapReduce performance on SSDs
for analyzing social networks

M. Bakratsas

University of Thessaly, Department of Electrical & Computer Engineering, Volos, GREECE

P. Basaras

University of Thessaly, Department of Electrical & Computer Engineering, Volos, GREECE

D. Katsaros

Yale University, Department of Electrical Engineering € Yale Institute for Network
Science, New Haven, CT, USA

L. Tassiulas

Yale University, Department of Electrical Engineering € Yale Institute for Network
Science, New Haven, CT, USA

Abstract

The advent of Solid State Drives (SSDs) stimulated a lot of research to inves-
tigate and exploit to the extent possible the potentials of the new drive. The
focus of this work is on the investigation of the relative performance and benefits
of SSDs versus hard disk drives (HDDs) when they are used as underlying stor-
age for Hadoop’s MapReduce. In particular, we depart from all earlier relevant
works in that we do not use their workloads, but examine MapReduce tasks and
data suitable for performing analysis of complex networks which present differ-
ent execution patterns. Despite the plethora of algorithms and implementations
for complex network analysis, we carefully selected our “benchmarking meth-
ods” so that they include methods that perform both local and network-wide
operations in a complex network, and also they are generic enough in the sense
that they can be used as primitives for more sophisticated network processing
applications. We evaluated the performance of SSDs and HDDs by executing
these algorithms on real social network data and excluding the effects of network
bandwidth which can severely bias the results. The obtained results confirmed
in part earlier studies which showed that SSDs are beneficial to Hadoop. How-

Email addresses: mmpakrat@gmail.com (M. Bakratsas), pbasaras@gmail.com
(P. Basaras), d.katsaros@yale.edu (D. Katsaros), leandros.tassiulas@yale.edu
(L. Tassiulas)

Preprint submitted to Big Data Research July 11, 2017

ever, we also provided solid evidence that the processing pattern of the running
application has a significant role, and thus future studies must not blindly add
SSDs to Hadoop, but they should build components for assessing the type of
processing pattern of the application and then direct the data to the appropriate
storage medium.

Key words: MapReduce; Hadoop; solid state disks, magnetic disks, social
networks, big data.

1. Introduction

A complex network is a graph with topological features such as scale-free
properties, existence of communities, hubs, and so on that is used to model real
systems, for example, technological (Web, Internet, power grid, online social
networks) networks, biological networks (gene, protein), social networks [23].
The analysis of online social networks (OSNs) such as Facebook, Twitter, In-
stagram has received significant attention because all these networks store and
process colossal volumes of data, mainly in the form of pair-wise interactions,
thus giving birth to networks, i.e., graphs which record persons’ interactions
whose analysis and mining offers both operational and business advantages to
the OSN owner.

Modern OSNs are comprised by millions of nodes and even billions of edges;
therefore any algorithm for their analysis that relies on a single machine (cen-
tralized) - exploiting solely the machine’s main memory and/or its disk - is
eventually doomed to fail due to lack of resources. Thus, the digitization of
the aforementioned relationships produces a vast amount of collected data, i.e.,
big data [9] requiring extreme processing power that only distributed comput-
ing can offer. However, developing a distributed solution is a challenging task
because it must deal sometimes with sequential processes. Some analysis algo-
rithms based on distributed solutions that can run only on a small cluster of
machines are still insufficient, since modern OSNs are maintained by Internet
giants such as Google, LinkedIn and Facebook who own huge datacenters and
operate clusters of several thousand machines. These clusters are usually pro-
grammed by data-parallel frameworks of the MapReduce type [4], a big data
analytics platform.

The Hadoop [29] middleware was designed to solve problems where the
“same, repeated processing” had to be applied to peta-scale volumes of data.
Hadoop’s initial design was based on magnetic disk’s characteristics, enforcing
sequential read and write operations introducing its own distributed file system
(HDFS - Hadoop Distributed File System) with blocks of large size.

Recently with the advent of faster Solid State Drives (SSDs) research is
emerging to test and possibly to exploit the potential of the new technologically
advanced drive [11, 12, 21, 33]. The lack of seek overhead gives them a signifi-
cant advantage with respect to Hard Disk Drives (HDDs) for workloads whose
processing requires random access instead of sequential access. Even though

the cost-per-capacity of SSDs is still high, their adoption could be widespread
if their performance was solidly proved to be superior to that of HDDs. The
world of databases has long time ago started [18] to assess the benefits of using
SSDs in various points of the database architecture, but the Hadoop world has
only recently [12, 13, 21, 30] started a similar investigation.

Providing a clear answer to the question of whether SSDs significantly out-
perform or offer increased performance in same cases compared to HDDs in the
Hadoop environment is not straightforward, because the results of a system-
analysis-based investigation are affected by the network speed and topology, by
the cluster (size, architecture,...), and by the nature of the benchmarks used
(MapReduce algorithms, input data). The efforts done so far to provide light
to this question suffer either because the experimentation was executed on a
virtualized cluster [13], or because their setup was affected by the underlying
network [21], or because their benchmark algorithms and data were mostly read-
oriented [12, 21], thus biasing the results in such a way that no clear answer and
universally holding conclusions could be drawn.

This article attempts to start the investigation from a new basis and to pro-
vide a clear answer to the following basic question: Ignoring any network biases
and storage media cost considerations, do SSDs provide improved performance
over HDDs for real workloads that are not dominated by either reads or writes?
In this context, our article makes the following contributions:

e It uses a different set of MapReduce jobs, i.e., complex network analysis
tasks, which have radically different characteristics from the earlier used
benchmarks.

e It isolates “external” dependencies, i.e., network, cost considerations.

e It shows that there exists at least one case where HDDs can deliver supe-
rior performance to SSDs, which has not been documented in any earlier
study.

e It provides solid evidence that the MapReduce job’s read/write behavior
will eventually provide the answer of whether SSDs are preferable over
HDDs, which is consistent with the conclusions reported in [20] where
random writes in SSDs are the “killing” application pattern for SSDs
(with respect to reads and sequential writes).

The rest of the article is organized as follows: In section 2 we present the re-
lated work, and in section 3 we briefly describe Hadoop’s structure. In section 4,
we provide information about the three algorithms that will be evaluated in the
storage media. Section 5 contains the evaluation results, and finally, section 6
concludes the article.

This paper is based on an earlier look on this topic [2]. In particular, the main
augmentation parts in the current paper are the following ones: section 2 has
been expanded significantly including more related works; section 3 which gives
a brief overview of Hadoop architecture; the whole section 4 which presents
in details the examined algorithms is practically new material (only Table 1

appears in the conference version of the article); section 5.3.1 which evaluates
the competing disks against an industry standard is new material; and finally,
performance results presented in Figure 7 and Figure 8 along with the associated
explanations are also new material.

2. Related work

Introducing and investigating the usage of SSDs in Hadoop clusters has been
a hot issue of discussion very recently. The most relevant work to ours is in-
cluded in the following articles [12, 13, 21, 26, 30]. The first effort [13] to study
the impact of SSDs on Hadoop was on a virtualized cluster (multiple Hadoop
nodes on a single physical machine) and showed up to three times improved
performance of SSDs versus HDDs. However, it remains unclear whether the
conclusions still hold in non-virtualized environments. The work in [21] com-
pared Hadoop performance on SSDs and HDDs on hardware with non-uniform
bandwidth and cost using the Terasort benchmark. The major finding is that
SSDs can accelerate the shuffle phase of MapReduce. However, this work is con-
fined by the very limited type of application/workload used to make the inves-
tigation and the intervention of data transfers across the network. Cloudera’s
employees in [12], using a set of same-rack-mounted machines (not reporting
how many of them), focus on measuring the relative performance of SSDs and
HDDs for equal-bandwidth storage media. The MapReduce jobs they used are
either read-heavy (Teravalidate, Teraread, WordCount) or network-heavy (Ter-
agen, HDFS data write), and the Terasort which is read/write/shuffle “neutral”.
Thus, neither the processing pattern is mixed nor the network effects are neu-
tral. Their findings showed SSD has higher performance compared to HDD, but
the benefits vary depending on the MapReduce job involved, which is exactly
where the present study aims at.

The analysis performed in [26] using Intel’s HiBench benchmark [6, 7] con-
cluded that “...the performance of SSD and HDD is nearly the same”, which
contradicts all previously mentioned works. A study of both pure (only with
HDDs or only with SSDs) and hybrid systems (combined SSDs and HDDs) is
reported in [30] using a five node cluster and the HiBench benchmark. Differ-
ently from the present work, in that work, the authors investigated the impact
of HDFS’s block size, memory buffers, and input data volume on execution
time showing that when the input data set size and/or the block size increases,
then the performance gap between a pure SSD system with a pure HDD system
widens in favor of the SSD system. Moreover, for hybrid systems, the work
showed that more SSDs result in better performance. These conclusions are
again expected since voluminous data imply increased network usage among
nodes.

Earlier work [8, 27] studied the impact of interconnection on Hadoop perfor-
mance in SSDs identifying bandwidth as a potential bottleneck. The increase
of bandwidth by using high-performance interconnects benefits HDFS perfor-
mance on both disk types, but especially SSDs. Both conclusions are expected

since a lot of data transfer takes place among nodes in map-shuffle-reduce op-
erations. Less related to our study, [1] proposes a performance model using
queuing network to simulate the execution time of MapReduce and thus come
up with a cost-performance model for SSDs and HDDs in Hadoop, and [5, 22]
explore how to optimize a Hadoop MapReduce framework with SSDs in terms
of performance, and/or cost/energy.

Finally, some works propose extensions to Hadoop with SSDs. For instance,
[11] proposes extensions to enable clusters of reconfigurable active SSDs to pro-
cess streaming data from SSDs using FPGAs. VENU [15] is a proposal for an
extension to Hadoop that will use SSDs as a cache for the slower HDDs not for
all data, but only for those that are expected to benefit from the use of SSDs.
This work still leaves open the question about how to tell which applications
are going to benefit from the performance characteristics of SSDs. Remotely
related to our work is the discussion about the introduction of SSDs in database
systems, e.g., [18].

3. Hadoop structure

Hadoop is an open source framework, written in the Java programming lan-
guage which allows for processing large data sets in a parallel/distributed com-
puting environment. HDFS and MapReduce (MR) are the two core components
of Apache Hadoop.

HDFS is Hadoop’s distributed file system that provides high-throughput
access to data, high-availability and fault tolerance. Data are saved as large
blocks (default size 128MB) making it suitable for applications that have huge
data sets. It creates replicas of each block and distributes them among the
nodes of the cluster.

MapReduce is a software framework that allows to write applications and
execute them upon a cluster comprised by a few machines to several thousand
commodity machines. It takes care of all cluster maintenance tasks and job
scheduling operations and allows the programmer to focus on programming the
logic of the application. Submitting a MapReduce job to the master node,
results in splitting the input “file” to several chunks (block sized) that are pro-
cessed by Map and Reduce tasks at parallel. Due to block replication of HDF'S,
tasks are scheduled to run on nodes where the required chunks of data already
exist, minimizing unnecessary transfer of these data.

The key functions to be implemented are Map and Reduce. The MapReduce
framework operates on (key,value) pairs. Each Map task processes an input
split (block) generating intermediate data of (key,value) format. Then, they are
sorted and partitioned by key, so later at Reduce phase, pairs of the same key
will be aggregated to the same reducer for further processing. The flow of data
is depicted in Figure 1. Here lays Hadoop’s main advantage. Partitions from
different nodes with the same key are transferred (shuffle phase) to a single node
and then merged (sort phase) and get ready to be fed to the reduce task. The
output of Reduce tasks is of format (key, value) as well.

Figure 1: Overview of Map/Reduce and Hadoop (from [29]).

4. Investigated algorithms

Complex network analysis comprises a large set of diverse tasks (algorithms
for finding communities, centralities, network growth models, resilience to at-
tacks, epidemics, etc) that cannot be enumerated here, and whose particular
form depends on the field of study (technology, biology, sociometry, medicine)
and also on the particular application that the “human miner” is interested in.
Apparently, not all these tasks accept distributed solutions (at least, efficient
ones) in the form of MapReduce algorithms, but there is already a significant
body of works that developed MapReduce algorithms for solving problems such
as triangle enumeration [14], k-shell computation [25], k-means clustering [32],
neural networks [31], etc.

Therefore, among all these problems and their associated MapReduce solu-
tions, we had to select some of them based on a) their usefulness in complex
network analysis tasks, b) in their suitability to the MapReduce programming
paradigm, c) the availability of their implementations (free/open code) for pur-
poses of reproducibility of measurements, and d) complexity in terms of mul-
tiple rounds of map-reduce operations. Based on these criteria, we selected
three problems/algorithms for running our experimentations. The first algo-
rithm deals with a very simple problem which is at the same time a fundamental
operation in Facebook , that of finding mutual friends. The second algorithm
deals with a network-wide path-based analysis for finding connected components
which finds applications in reachability queries, techniques for testing network
robustness and resilience to attacks, epidemics, etc. The third algorithm is
about counting triangles which is a fundamental operation for higher level tasks
such as calculating the clustering coefficient, or executing community finding
algorithms based on clique percolation concepts [24]. We wanted to have prob-
lems that deal with both the local and global structure of the network. Table 1
summarizes the “identity” of the examined tasks.

H Primitive [Type of analysis [Extent H

Mutual Neighbor-based Local network (neighborhood) properties
friends Recommendation queries

Connected Path-based Large-scale network properties,
components Reachability queries, Resilience queries
Triangle Mixed (extended Large-scale network properties,

counting neighborhood & paths) | Clustering/communities finding queries

Table 1: Characterization of problems/algorithms examined.

We need to emphasize that it is not the purpose of this article to develop a
benchmark suite of algorithms and input data for MapReduce, even though we
clearly recognize this need and call for the development of a really generic and
representative benchmark; current efforts in this topic (like the Hibench [6, 7])
are in a rather infantile age and their tasks (wordCount, k-means clustering,
Bayesian classification, PageRank, etc) are mostly appropriate for information
retrieval or basic, traditional data mining tasks. So, our benchmark includes
representative (in the notion described above) MapReduce jobs to cover com-
mon IO patterns expected to be seen in complex network analysis. We deferred
a more advanced method for measuring the performance for multi-job work-
load such as the one described in [3], because the standalone, one-job-at-the-
time method allows for the examination of interaction between MapReduce and
storage media without the interventions of job scheduling and task placement
algorithms.

We aim at showing that the conclusions about the relative performance
of SSDs versus HDDs are strongly depended on the features of the algorithms
examined, which has largely been neglected in earlier relative studies [12, 13, 21],
and based on these features we draw some conclusions on the relative benefits of
SSDs. For purposes of the article’s self-completeness, we present in the following
three sections the selected algorithms and a brief explanation of their operation.

4.1. Mutual friends

A common feature of various social networks is providing information of
the existence of mutual friends once visiting some other user’s profile page. A
simple algorithm was implemented for the calculation of mutual friends. The
necessary condition is that this pair of users are already friends (connected)
with each other. Pseudocode for the MapReduce algorithm is given in Figure 2.

The basic idea behind the algorithm is for every user (i.e., node) and his
friend-list (i.e., adjacency list) to create all possible triples consisting of:

e The owner of the friend-list,
e A user of the friend-list who will make a pair with the owner, and

e Another user of the friend-list who will be the candidate mutual friend.

%1st MR job - CalculateAdjacencyList:
ON MAP DO:
for each KV pair do:
K<-source_node
V<-destination_node
context.write (K,V)
context.write (V,K)
ON REDUCE DO:
for each K[V] pair do:
ego_user<-get (k)
for each v in V
add v to nodes_list
sort the nodes_list
for each node_id in nodes_list
append node_id to friendlist
context.write (ego_user,friendlist)

%2nd MR job - Creating triples:
ON MAP DO:
for each KV pair do:
K<-ego_user
V<-friendlist
for each friend in friendlist
for each other_friend in friendlist
if ego_user<friend then
context.write (ego_user-friend:other_friend , NULL)
else
context.write (friend-ego_user:other_friend , NULL)
ON REDUCE DO:
for each KV pair do:
if |V|==2 then
context.write (triple,NULL)
%3rd MR job
ON MAP DO:
for each KV pair do:
pair_and_mutual=K.split(":")
pair=pair_and_mutual (0)
mutual=pair_and_mutual(1)
context.write (pair,mutual)
ON REDUCE DO:
for each KV pair do:
pair<-get (K)
for each v in V
v<-mutual
mutuals_list.add(mutual)
context.write (pair,mutuals_list)

Figure 2: MapReduce pseudo-code for finding mutual friends.

The same work is performed for each and every user and his friend-list.
Eventually, if two exact triples are spotted, then the candidate is classified as a
mutual friend for the specified pair. For the implementation three MR jobs are
required:

1. Calculation of the adjacency list (friend-list). The input file is a graph
containing all the ties among the nodes. Each node is a number unique for
each user. All used social network datasets, were un-weighted, undirected
graphs. FEach line consists of a source node and destination node. Duplicate
relationships aren’t present in the original files. On the contrary, such
supplementary information is necessary for the creation of adjacency lists,
thus created by the Map function. Reduce function produces lines of every
node and its adjacency list.

2. Creation of all available triples according to the basic concept that was
mentioned previously. The Mapper output creates all available triples as
key. Value is set to NULL. At Reducer, for a specific Key aggregating two
NULL values, confirms the existence of a mutual friend.

3. Creation of the lists of mutual friends. At the Mapper, from each triple the

pair is extracted as Key and their mutual as Value. The Reducer completes
the creation of mutual friends list for every pair.

4.2. Connected components

Another very useful and primitive process of complex network analysis is
the detection of connected components i.e., clusters of nodes where every node
of the cluster can be eventually be accessed by any other node of the cluster
following a path of arbitrary number of hops. This task finds applications in
reachability analysis, in epidemics, i.e., once isolated users or groups are found,
the spread of a contagion can be stopped, etc.

For this task, the implementation by Thomas Jungblut [10] of an iterative
algorithm based on message passing technique is used (see Figure 3).

%1st MR job
ON MAP DO:
for each line (adjacency list)
realkey<-first edge of adjacency list
vertex<-all other edges sorted, plus minimal
context.write (realkey, vertex)
for all edges in vertex
context.write (edge, new empty vertex with edge as minimal)

ON REDUCE DO:
for each KV pair do:
if V is not message then
realVertex<-edges of V
activate realVertex
increment UPDATED counter
context.write(key,realVertex)

%2nd MR job
ON MAP DO:
for each KV pair do:
context.write (K,V)
if V is activated then
for all edges in V
if edge != minimal of V
newVertex<-null edges
newVertex<-minimal of V
context.write (edge, newVertex)

ON REDUCE DO:
for each K[V] pair do:
for every v in V
if v is not message then
realVertex<-v
else
track newMinimal among messages v in V
if realVertex.minimal > newMinimal then
update realVertex with the lower newMinimal
activate the realVertex
increment UPDATED counter
else
deactivate the realVertex
context.write(key, realVertex)

Figure 3: MapReduce pseudo-code for finding connected components.

At the first iteration, the algorithm maps every first element as key and its
adjacency list in vertex form as a pointsTo tree. Also, it maps each edge of
the tree in vertex form. At reduce, the algorithm marks all vertexes having a
pointsTo tree as activated. It sets the smallest element of this list (comparing
to the key as well), as vertex’s minimal. Then, it writes key and vertex in
context. At next iterations, map writes each key and vertex as it is. Also for
every activated vertex, it loops through the pointsTo tree and writes a message
(vertex with empty tree) with the (for this vertex) minimal vertex to every

10

edge of the tree. At reduce, it merges messages with the related vertex and
if a new minimum is found then activates the vertex. The updated counter
gets incremented. Otherwise deactivates the vertex. Iterations continue till no
vertex gets updated.

4.3. Counting triangles

Counting the number of triangles in a graph is a fundamental problem with
various applications especially in social network analysis. For example, the
clustering coefficient is frequently quoted as an important index for measuring
the concentration of clusters in graphs respectively its tendency to decompose
into communities.

%1st MR job - TriadConstruction:
ON MAP DO:
for each KV pair do:

if K < V write to context

ON REDUCE DO:
for each K[V] pair do:
for each v in V
save v in Array
context.urite (Kv, "zero")
sort the Array
for each v of sorted Array
for each v’ following v in the Array
context.write (vv’, "one")

%2nd MR job - TriadConstruction:

ON MAP DO:

for each KV pair do:
K<-source_node
V<-destination_node
context.write (K,V)

ON REDUCE DO:
for each K[V] pair do:
sum all v values in V
compare the sum to the #v in V
if not equal
increase #triangles found by sum
context.write(zero, count)

%3rd MR job - AggregateTriangles:
ON MAP DO:
for each KV pair do:
K<-source_node
V<-destination_node
context.write (K,V)
ON REDUCE DO:
for each K[V] pair (only one pair with "zero" key) do:
sum all v in V
context.write (sum, null)

Figure 4: MapReduce pseudo-code for triangle counting.

We used the implementation by Walkauskas [28] (pseudo-code in Figure 4)
which includes three MapReduce jobs:

e A triangle exists when a vertex has two adjacent vertexes that are also
adjacent to each other. The first job constructs all of the triads in the
graph. A triad is formed by a pair of edges sharing a vertex, called its
apex. Original edges are written, as well. The above are written as keys
with the value of 1 or 0 respectively to distinguish triads from original
edges.

11

e The second MapReduce job maps previous input line, and the Reducer
aggregates the triads with the edges for a specific triple. In order for a
triangle to exist, there should be at least one candidate triad and the edge
connecting the apex. The reducer eventually writes sum to context as “0,
sum”.

e The third MapReduce job aggregates the number of triangles that was
found from previous job for all chunks.

We see that all three algorithms are executed in two or more pairs of ‘maps’
and ‘reduces’ which is a desired complexity for our measurements in terms of
read and write operations.

5. Experimental environment and results

In this section we describe the system’s setup and then we provide the ob-
tained results for each one of the three algorithms presented earlier.

5.1. System setup

A commodity computer (Table 2) was used for the experiments. Three
storage media were used (Table IT) with capacities similar to that used in [21].
On each of the three drives (one HDD and two SSDs) a separate and identical
installation of the required software (Table 3) was used. We emphasize at this
point that since we need to factor out the network effects, we used single machine
installations. Three different incremental setting setups were used: a) with
default settings, allowing 6 parallel maps, b) with modified containers allowing
3 parallel maps, and ¢) with custom settings (Table 4). In all these setups,
speculative execution was disabled and no early shuffling was permitted. We
admit the a shortcoming of our study is the fact that we do not have a clear
view of the types of storage devices used in the datacenters of the Internet giants
(Google, Facebook), but still we are confident that the relative performance
of the devices used will support our arguments. Power saving options and
boosting technologies like Turbo-boost and IEST were disabled through BIOS
to minimize unexpected fluctuations among executions.

CPU Intel i5 4670 3.4Ghz (non HT)

RAM 8gb 1600mhz DDR3 (1333mhz with disabled XMP)
Disk 1 (HDD) | Western Digital Blue WD10EZEX 1TB

Disk 2 (SSD1) | Samsung 840 EVO 120GB

Disk 3 (SSD2) | Crucial MX100 512GB

Table 2: Computer specifications.

12

(0N Ubuntu 14.04 LTS 64bit

Java SDK Oracle Java 1.8.0-25 (8u25)

Hadoop version Hadoop 2.5.2 (pre-built 32-bit i386-Linux native Hadoop library)

Monitoring tools | Collect]l V3.6.9-1

Table 3: Installed software.

mapreduce.reduce.shuffle.parallel.copies | 5 — 50
mapreduce.task.io.sort.factor 10 — 100
mapreduce.map.sort.spill.percent 0.80 - 0.90
io.file.buffer.size 4KB - 64KB

Table 4: Custom settings.

5.2. Input data and performance measures

For the evaluation of the two disk types a sample of real data was required.
Recall that earlier efforts e.g., [21] used dummy data files that were read and
some primitive statistics were written out. Social networks is a representative
sub-genre of complex networks. Thus up to ten real social network graphs
were used (Table 5). They were retrieved from https://snap.stanford.edu/ and
http://konect.uni-koblenz.de/. The number of nodes and edges vary from a few
thousands to a few millions. Thus, we used networks that vary up to two orders
of magnitude in their size (number of nodes and/or edges).

H [Social network [# nodes [# edges H
1 Brightkite location based online social network | 58,228 214,078
2 Gowalla location based online social network 196,591 950,327
3 Amazon product co-purchasing network 334,863 925,872
4 DBLP collaboration network 317,080 1,049,866
5 YouTube online social network 1,134,890 | 2,987,624
6 YouTube (ver. 2) online social network 3,223,589 | 9,375,374
7 Flickr 1,715,255 | 15,550,782
8 LiveJournal online social network 3,997,962 | 34,681,189
9 LiveJournal (ver. 2) online social network 5,204,176 | 49,174,620
10 | Orkut online social network 3,072,441 | 117,185,083

Table 5: Social networks used for evaluation.

The evaluation will take place along two dimensions. The first one is similar
to that in [21] using TestDFSIO and the second one is the complex network
analysis-oriented that is the focus of this article. We have performed up to
five experiments for each of the “Mutual Friends” and “Counting Triangles”
algorithms and up to ten experiments for the “Connected Components”, one
for each dataset shown at Table 5. The latter algorithm acquired less disk
space during execution allowing us to evaluate it with larger datasets. The two

13

SSDs were of different size disallowing the execution of some datasets. The
most important measures we captured were the Map and Reduce execution
times, as also Sort (merge) and Shuffle phase All measured times are in seconds,
unless otherwise stated. The aforementioned measures would indicate practical
performance differentiations between the two disk types. One common side
effect is “cache hits” from previous executions that was also experienced in [21].
In order to give each experiment an equal environment to eliminate any possible
interaction effects from previous executions, Hadoop was halted and page cache
was flushed, after each experiment. Before each test HDFS was re-formatted.

5.3. Results

5.3.1. TestDFSIO

We begin with the HDFS throughput measurement. Test Distributed File
System (TestDFSIO) is an industry-standard benchmark which distributes map
tasks that read/write complete dummy files on nodes; each map task reads
the complete file and writes some statistics. Reduce tasks simply gather these
statistics for output.

The write throughput performance is presented in Figure 5. We observe that
for writing sequential files, with the increase of filesize, SSD1’s performance is
decreasing, falling behind the HDD. Contrariwise, the SSD2 appears much faster
with stable throughput. The 120GB Evo, features a second level TurboWrite
Cache (TWC). This 3GB block of high speed SLC memory allows the EVO to
write data (nominally) at 370 MB/s, nearly double its normal rate. However,
when the TWC is full or can not be used effectively, write speeds drop by
around 50%, and this is the pattern that we observe in the plot.

350

(N S A RS SRR SR B *
- X . ¥
300 %
z [SSD2] MX100 ---%---
g 0 [SSD1]EVO - % - 1
z D ——
E
a
5 200
B
o
£
£ 150
E oo
100
50
25 10 15 20 25 30 35 40
filesize (GB)

Figure 5: Comparing TestDFSIO write throughput for 3 disks.
The sequential read performance of the competitors is presented in Figure 6.

As expected, both SSDs’s sequential read throughput is outstanding. Moreover,
both SSDs attain a read performance close to that given by their specifications,

14

namely 540MB/s for SSD1 and 550MB/s for SSD2, and it is practically sta-
ble and independent on file size. On the other hand, the magnetic disk again
demonstrates stable performance, although noticeably slower than that of the

SSDs.

600

ERi * ORI *
500 [e I Sl SO RS
X -
2 RalE R
g
T [SSD2] MX100 ---%--
& [SSDI]EVO - =% -
E HDD —+—
2 300
=
g
200
/\\\\,
100
2 5 10 15 20 25 30 35 40
filesize (GB)

Figure 6: Comparing TestDFSIO read throughput for 3 disks.

5.8.2. Results on finding mutual friends

The complexity of this algorithm is exponential due to the mapper of the
2nd MapReduce job (“creating triple” - as described at section 4.1) where for
each user and his friend-list every possible triple is formed (double “for” used).
Thus, the 2nd MapReduce job is the most resource-intensive of the three jobs,
rendering it a good inspection point for our measures (see Table 6), whereas
the 1st and 3rd MapReduce jobs were fast-executed and almost identical for all
disks. For Amazon, Brightkite and DBLP, the three disks performed almost
equally. Remarkably, in comparison with both SSD drives, the magnetic disk
gives competitive (and slightly better) execution times for reduce phase for big-
ger datasets, whereas HDD performs lower for map phase. The SSD2 displays
superior performance at shuffling.

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDDSSD1|SSD2/[HDD|SSD1|SSD2[HDD|SSD1|SSD2[[HDD|SSD1|SSD2
Brightkitel| 52 | 52 | 52 1 1 1 0 0 0 11 | 10 | 10
IAmazon 36 | 35 | 35 2 1 1 0 0 0 8 7 8
Gowalla |[1780(1752(1593|| 120 | 103 | 42 0 0 0 |/ 178]195 | 194
IDBLP 90 | 89 | 89 5 2 3 0 0 0 16 | 17 | 17
YouTube (|11197] - |9708|| 812 | - |258 || 0 - 0 [|916] - |984

Table 6: Average times for each phase for 2nd job (creating triples) of “mutual friends”
algorithm.

15

5.8.3. Results on counting triangles

Here, the SSDs outperform the HDD for all the datasets that were tested.
At “forming the triads” job, HDD appeared competitive behavior at map and
reduce phases (Table 7). The “counting the triangles” job demonstrated greater
variations in execution times. With small datasets the performance differenti-
ations between the two disk types are small (Table 8). But with larger ones
(like YouTube dataset), SSDs capabilities become evident for shuffle and merge
(sort) phases.

Avg Map || Avg Shuffle || Avg Merge || Avg Reduce

HDD| SSD2 |HDD| SSD2 |[HDD| SSD2 |HDD| SSD2
Gowalla || 2 2 1 1 0 0 142 140
YouTube|| 6 6 1 1 0 0 706 694
[Flickr 13 13 1 1 0 0 5053| 5125

Table 7: Average times for each phase for 1st job (forming triads) of “counting triangles”
algorithm.

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDD|SSD1|SSD2[HDD|SSD1|SSD2{[HDD|SSD1|SSD2[HDD|SSD1|SSD2
Brightkitel| 18 | 18 | 18 1 1 1 0 0 0 4 4 3
IAmazon 9 9 9 1 1 1 0 0 0 2 2 2
Gowalla 38 139 |38 || 52|62 |21 |79 |8 | 70 ||106 | 106 | 110
DBLP 14| 14 | 14 1 1 1 0 0 0 7 5 5
YouTube || 42 | - | 41 |[655| - |[141(/820| - |668|689| - |551

Table 8: Average times for each phase for 2nd job (counting triangles) of “counting triangles”
algorithm.

For the 1st MR job (creating triads), map, shuffle and merge phases finished
quite fast and with almost zero differentiations among disks. Reduce phase
lasted significantly longer with both disks performing equally (Table 6). With
containers settings, the biggest dataset of Flickr gets significant improvement
for both disk types (Table 9). No further improvement achieved with custom
settings.

Avg Map || Avg Shuffle || Avg Merge || Avg Reduce

HDD| SSD2 |[HDD| SSD2 |HDD| SSD2 |HDD| SSD2
Gowalla || 2 2 1 1 0 0 141 138
[YouTube|| 6 6 1 1 1 1 697 707
Flickr 13 13 1 1 6 6 4163| 4140

Table 9: Average times for each phase for 1st job (create triads) of “counting triangles”
algorithm, with changed container’s settings.

16

To optimize performance, increasing the following settings provided best
results for the magnetic disk, compared to “containers” settings:

a) The number of streams to merge at once while sorting files.
We see (Table 10 and Table 11) that it minimizes merge time for both disk
types, but it improves the shuffling time of the HDD only. Even though
both disks are able to reap benefits from this settings, HDD gains the most.

H [HDD] just containers and varying io.sort.factor J_‘
Elapsed |[Avg Map|Avg ShufflgAvg MergelAvg Reduce|

io.sort.factor:10 52mins, 43sec, 25 565 596 720

io.sort.factor:100 [40Omins, 26sec 25 471 14 667

Table 10: Performance difference for YouTube dataset at “Counting Triangles”, increasing
sort factor, for HDD.

H [SSD2] just containers and varying io.sort.factor H
Elapsed |[Avg MaplAvg ShufflgAvg MergelAvg Reduce|
io.sort.factor:10 {4 1mins, 08sec 25 359 339 535
io.sort.factor:100 [35mins, 15sec] 25 371 16 497

Table 11: Performance difference for YouTube dataset at “Counting Triangles”, increasing
sort factor, for SSD2.

b) The buffer size for I/O (read/write) operations.
Examining the impact of this change (Table 12 and Table 13), we observe
that only the HDD is able to exploit efficiently, whereas its impact on SSD2
is mixed and insignificant.

| [HDD] just containers and io.file.buffer.size |
Elapsed |Avg MaplAvg ShuffleAvg MergelAvg Reduce
io.file.buffer.size: 4KB 52mins, 43sec| 25 565 596 720
io.file.buffer.size: 128KB [46mins, 44sec| 25 445 470 619

Table 12: Performance difference for YouTube dataset at “Counting Triangles”, increasing file
buffer size, for HDD.

To have a generic idea of the impact of “customs” and the “containers”
settings, we present in Tables 14 and 15, the relative performance of HDD
and SSD2 for a large network, namely YouTube, which shows that HDD is
a better beneficiary.

17

[[SSD2] just containers and io.file.buffer.size [
Elapsed |Avg Map|Avg ShuffleAvg MergelAvg Reduce]
io.file.buffer.size: 4KB “1mins, 8sec] 25 359 339 538
io.file.buffer.size: 128KB H1mins, 9sec] 24 361 331 554

Table 13: Performance difference for YouTube dataset at “Counting Triangles”, increasing file
buffer size, for SSD2.

H “Customs” difference to “Containers” J

IAvg Map |Avg Shuffle |Avg Merge [Avg Reduce
HDD | 4.00% -28.85% -97.65% -11.39%
SSD2 | 0.00% -2.23% -95.28% -10.41%

Table 14: Percentage difference between “customs” and “containers” settings for YouTube
dataset, at “Counting Triangles” algorithm.

H “Customs” difference to “Containers” H

IAvg Map |Avg Shuffle |[Avg Merge |Avg Reduce
HDD |[-26.14% -16.59% - -9.72%
SSD2 |-18.83% 0.78% - 4.36%

Table 15: Percentage difference between “customs” and “containers” settings for YouTube
dataset, at “Mutual Friends” algorithm.

5.8.4. Results on calculating connected components

Comparing SSD1 to HDD and SSD2, the Connected Components algorithm
(Table 16) seems to slightly favor the SSD1 for small datasets (first five ones), at
reduce phase which is surprising and somewhat hard to explain, because SSD1
has theoretically inferior performance to SSD2. However, we argue that the
function of SSD1’s TWC is quite successful. The generic pattern is that map,
shuffle and reduce times are close for both disk types for these small datasets,
contrary to what the current studies suggest.

When the size of data increases, e.g., for the datasets of Flickr and Live-
Journal the magnetic disk takes the lead at reduce phase over SSD1, which is
mostly characterized as “write” procedure for the Hadoop framework. SSD1
performs quite slowly at shuffle phase for the LiveJournal dataset, which again
is attributed to the TWC delivering inferior performance. The SSD2 generally
delivers great performance especially at map and shuffle phase, noticeably as
the datasets’ size increase. For the reduce phase, HDD falls behind SSD2, but
not with a great margin.

To a have a better understanding of the reasons behind the above perfor-
mance behavior between HDD and SSD2, we examined the details of CPU and
disk utilization during the execution of the 1st iteration of the connected compo-
nents algorithm on the largest of our networks, namely Orkut. Hadoop’s default

18

Avg Map Avg Shuffle Avg Merge Avg Reduce
HDD|SSD1|SSD2|[HDD|SSD1|SSD2/[HDD|SSD1|SSD2|[HDD|SSD1|SSD2
Brightkite 14|14 | 14 || 11 | 11 | 11 0 0 0 0 0 0
lAmazon 104 | 106 | 103 || 34 | 34 | 34 0 0 0 74| 61 | 62
Gowalla 27 | 26 | 26 || 10 | 10 | 10 0 0 0 14 | 14 | 16
DBLP 54 | 54 | 54 || 15 | 15 | 15 0 0 0 35| 34 | 33
YouTube 126|124 | 123 || 14 | 14 | 14 0 0 0 || 101] 96 | 98
[YouTube 2 2471243 | 244 || 28 | 24 | 24 0 0 0 428 | 424 | 408
Flickr 170 | 168 | 167 || 30 | 19 | 20 0 0 0 /309|314 | 304
LiveJourna 1 || 353 | 380 | 322 || 104 | 143 | 45 1 0 0 || 665|682 651
LiveJournal 2| 417 | - | 347 || 137| - 57 0 - 0 [[{930] - |912
Orkut 456 | - | 324|552 - 154 || 295 231 (|1448| - [1204

Table 16: Sum of average times for each phase for the iterative jobs of “Connected Compo-
nents”.

settings allowed the execution of up to 6 maps simultaneously. Thus the execu-
tion of Orkut dataset (input file of 14 blocks at HDF'S) was executed in three
waves of maps. The map phase is CPU intensive, hitting 100% utilization. High
disk throughput is required as well, with the disk constituting system’s bottle-
neck causing high CPU wait times, especially for HDD, see Figure 7(top), where
during map phase CPU utilization falls between map waves. Consequently us-
ing SSD2 provides better CPU utilization. Excessive disk usage appears at
shuffle phase demonstrating each disk’s capabilities; see Figure 7(bottom) and
Figure 8. At reduce phase, SSD2 performs slightly better.

The experiments established that default Hadoop settings are not optimized
for hard disks, and that the technology of SSDs might have dramatic impact
upon their (expected) performance. Most significantly, we provided solid ev-
idence that hard disks can be competitive to solid state disks for some I/O
patterns, at least for the application field that we have investigated.

6. Conclusions

Hadoop platform is used for the processing of big data, especially to run
analytics that is computationally intensive, such as social network analysis.
Some tasks can be solved with a single or more consecutive and distinct jobs
whereas others require iterative ones. Due to the SSD’s provided substantial
benefits over traditional hard disk drives, Hadoop administrators have started
considering the addition or even replacement of the existing HDDs with SSDs.
Yet, Hadoop’s internal design - especially HDFS - doesn’t appear to fully harness
the potential of solid state drives.

In this empirical study, we compared the performance of solid state drives
and hard disk drives for social network analysis. Three casual complex network
analysis algorithms were used leaving space for the implementation and testing
of many others, for even larger data sets.

19

0c

1st M/R Job of Connected Components - Orkut - HDD - Default Settings: Cpu-Util

100 T T T T U
n“‘f“ « 1' o —
[\‘] | More ——
) 80 M‘ “‘ \\4 “; H Wait
|l
2 \ '\ ‘/ ‘M ‘ ' [Map >
T 60 i H ‘ | .
5 h, ‘ ‘ h ‘ \“‘ Shuffle
= L U0 I | v
5 u‘“ ‘ |y 1 | | erge O
§ 40 - ‘ w‘ “ ‘ ‘\MH | H‘ \ N \‘ ‘ \\ ‘ \‘ I \“ ‘\ | Reduce
1l \/
: il ﬂ [N e | 1 o
20 | I ‘\ \/\ \ | { | P i U
| | T \ l Il —
‘ 1 \“”‘A il O I R
/ ,,/Il’\ ‘ W l ’ ‘\‘wunv»‘r LY “»H‘w “H ﬂ\“’\“r‘ “ ‘“M“‘i "Mw\, “"M‘M‘w “‘L"“Mm “ N m
0 | y Y ! AL
01:01 01:02 01:03 01:04 01:05 01:06 ‘ 01:07‘ 01:08 01:09 01:10 D
Day Time
1st M/R Job of Connected Components - Orkut - HDD - Default Settings: Disk-Util Z
200 -
T T ! Read MB/s >
180 - 7 Write MB/s Z
160
2 Map cC
g 140 - ! Shuffle
o | e &
& 100 - H
N
5 eor 1 By
r | —
5 w0l | U
20 | LM {VJ 4 . —
0 h h IN W | i
01:01 01:02 01:03 01:04 01:05 01:06 01:07 01:08 01:09 01:10
Day Time

Figure 7: (Top) CPU utilization for Connected Components with Orkut, using HDD, 1st iteration isolated. (Bottom) Disk usage for Connected
Components algorithm with Orkut, using HDD, 1st iteration isolated.

j¥é

1st M/R Job of Connected Components - Orkut - SSD2 - Default Settings: Cpu-Util

100 T . T T : - -
User
Sys
More
80 Wait
s >
T 60 Map
= Shuffle < ’
=
=1 Merge O
e Reduce
9 40 I I I
g o
20 |
- ml
0 J VA " | § L ‘
22:49 22:50 22:51 i2:52 | 2%:53 22:54 22:55 D
Day Time
1st M/R Job of Connected Components - Orkut - SSD2 - Default Settings: Disk-Util g
500
‘ ' ‘ ' Read MB/s >
450 - 1 Write MB/s Z
400 Map
@ ap C
g 350 - * Shuffle
T 300 | Merge CD
o Reduce
S 200 7 w
% 150 - B —
[4)
a U
100 B
50 + A Aﬂ E I
0 L | | |
22:49 22:50 22:51 ﬁ2:52 l 2&:53 22:54 22:55

Day Time

Figure 8: (Top) CPU utilization for Connected Components with Orkut, using SSD2, 1st iteration isolated. (Bottom) Disk usage for Connected
Components algorithm with Orkut, using SSD2, 1st iteration isolated.

A potential upgrade should be considered based on the tested applications’
performance. In our tests SSDs didn’t come out as the undisputed winner.
There were noticed great performance fluctuations between the two SSDs. The
second SSD performed significantly better. Otherwise, in many cases SSD1 and
the magnetic disk came into a draw. Although SSD1 was slightly faster in many
tests, in some cases the magnetic disk outperformed the SSD1. Even compared
to the faster SSD2, the magnetic disk provided competitive or faster times for
reduce phase, especially with the “mutual friends” algorithm.

Customizing Hadoop settings proves crucial. Magnetic disk’s shuffle times
can be significantly reduced. SSD’s performance doesn’t present further im-
provement. Nevertheless, HDD can’t catch up with SSD’s superior performance
at shuffling. With tweaking merge-sort can be performed in less steps minimiz-
ing merge’s phase times for both disk types, slightly favoring magnetic disk that
would perform slower otherwise. For map phase both disk types can get similar
performance improvement.

Overall, having no clear storage media winner, the paper suggests that the
development of “application profilers” e.g., [16, 17, 19] that will try to predict the
applications’ read /write pattern (random/sequential) and then incorporation of
them into the Hadoop architecture will help reap the performance benefits of
any current or new storage media.

References

[1] S. Ahn and S. Park. An analytical approach to evaluation of SSD effects
under MapReduce workloads. Journal of Semiconductor Technology and
Science, 15(5):511-518, 2015.

[2] M. Bakratsas, P. Basaras, D. Katsaros, and L. Tassiulas. Hadoop MapRe-
duce performance on SSDs: The case of complex network analysis tasks.
In P. Angelov, Y. Manolopoulos, L. Iliadis, A. Roy, and M. Vellasco, edi-
tors, INNS Conference on Big Data, volume 529 of Advances in Intelligent
Systems and Computing, pages 111-119. Springer, 2017.

[3] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluat-
ing Mapreduce performance using workload suites. In Proceedings of the
IEEE International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pages 390-399,
2011.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proceedings of the USENIX/ACM Symposium on Operating
Systems Design and Implementation (OSDI), pages 137-150, 2004.

[5] J. Hong, L. Li, C. Han, B. Jin, Q. Yang, and Z. Yang. Optimizing Hadoop
framework for solid state drives. In Proceedings of the IEEFE International
Congress on Big Data, 2016.

22

(6]

[10]

[11]

[12]

[13]

[14]

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench benchmark
suite: Characterization of the MapReduce-based data analysis. In Proceed-
ings of the IEEE International Conference on Data Engineering Workshops
(ICDEW), pages 41-51, 2010.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench benchmark
suite: Characterization of the MapReduce-based data analysis. In Frontiers
in Information and Software as Services, volume 74 of Lecture Notes in
Business Information Processing, pages 209-228. Springer, 2011.

N. Islam, M. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subra-
moni, C. Murthy, and D. Panda. High performance RDMA-design of HDF'S
over InfiniBand. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC), 2012.

H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,
R. Ramakrishnan, and C. Shahabi. Big data and its technical challenges.
Communications of the ACM, 57(7):86-94, 2014.

T. Jungblut. Retrieved on June 4th, 2017. Available at
http://codingwiththomas.blogspot.de/2011/04 /graph-exploration-with-
hadoop-mapreduce.html.

A. Kaitoua, H. Hajj, M. A. R. Saghir, H. Artail, H. Akkary, M. Awad,
M. Sharafeddine, and K. Mershad. Hadoop extensions for distributed com-
puting on reconfigurable active SSD clusters. ACM Transactions on Archi-
tecture and Code Optimization, 11(2), 2014.

K. Kambatla and Y. Chen. The truth about MapReduce performance on
SSDs. In Proceedings of the USENIX Large Installation System Adminis-
tration Conference (LISA), pages 109117, 2014.

S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee. A case for flash
memory SSD in Hadoop applications. International Journal of Control
and Automation, 6(1):201-210, 2013.

T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task. Counting
triangles in massive graphs with MapReduce. SIAM Journal on Scientific
Computing, 36(5):48-77, 2014.

K. R. Krish, M. S. Igbal, and A. R. Butt. VENU: Orchestrating SSDs in
Hadoop storage. In Proceedings of the IEEE International Conference on
Big Data (BigData), pages 207-212, 2014.

K. R. Krish, B. Wadhwa, M. S. Igbal, M. M. Rafique, and A. A. Butt.
On efficient hierarchical storage for big data processing. In Proceedings
of the IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pages 403-408, 2016.

23

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

S. Lee, H. Min, and S. Yoon. Will solid-state drives accelerate your bioin-
formatics? In-depth profiling, performance analysis and beyond. Briefings
in Bioinformatics, 17(4):713-727, 2016.

S. Lee, B. Moon, C. Park, and S. Kim. A case for flash memory SSD in
enterprise database applications. In Proceedings of the ACM Conference
on the Management of Data (SIGMOD), pages 1075-1086, 2008.

Y.-S. Lee, L. C. Quero, S.-H. Kim, J.-S. Kim, and S. Maeng. ActiveSort:
Efficient external sorting using active SSDs in the MapReduce framework.
Future Generation Computer Systems, 65(C):76-89, 2016.

C. Min, K. Kim, H. Cho, S.-W. Lee, and Y.I. Eom. SFS: Random write
considered harmful in solid state drives. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), 2012.

S. Moon, J. Lee, and Y. S. Kee. Introducing SSDs to the Hadoop MapRe-
duce framework. In Proceeding of the IEEE International Conference on
Cloud Computing (CLOUD), pages 272-279, 2014.

S. Moon, J. Lee, X. Sun, and Y.-S.3 Kee. Optimizing the Hadoop MapRe-
duce framework with high-performance storage devices. The Journal of
Supercomputing, 71(9):3525-3548, 2015.

M. E. J. Newman. Networks: An Introduction. Oxford University Press,
2013.

G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435:814-818, 2005.

K. Pechlivanidou, D. Katsaros, and L. Tassiulas. MapReduce-based dis-
tributed k-shell decomposition for online social networks. In Proceedings of
the International Workshop on Personalized Web Tasking (PWT), pages
30-37, 2014.

P. Saxena and Dr.Jerry Chou. How much solid state drive can improve the
performance of Hadoop cluster? Performance evaluation of Hadoop on SSD
and HDD. International Journal of Modern Communication Technologies
& Research, 2(5), 2014.

S. Sur, H. Wang, J. Huang, X. Ouyang, and D. Panda. Can high-
performance interconnects benefit Hadoop distributed file system. In Pro-
ceedings of the Workshop on Micro Architectural Support for Virtualization,
Data Center Computing, and Clouds (MASVDC), 2010.

Vertica. http://www.vertica.com/2011/09/21/counting-triangles/.

T. White. Hadoop: The Definitive Guide. O’'Reilly Media, 2015.

24

[30]

[31]

[32]

[33]

D. Wu, W. Xie, X. Ji, W. Luo, J. He, and D. Wu. Understanding the
impacts of solid-state storage on the Hadoop performance. In Proceedings
of the International Conference on Advanced Coud and Big Data, pages
125-130, 2013.

K. Zhang and X.-W. Chen. Large-scale deep belief nets with MapReduce.
IEEE Access, 2:395-403, 2014.

W. Zhao, H. Ma, and Q. He. Parallel k-means clustering based on MapRe-
duce. In Proceedings of the International Conference on Cloud Computing
(CloudCom), pages 674-679, 2009.

7. Zong, R. Ge, and Q. Gu. Marcher: A heterogeneous system supporting
energy-aware high performance computing and big data analytics. Big Data
Research, 8:27-38, 2017.

25

