
JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.1 (1-10)

Big Data Research ••• (••••) •••–•••
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Variations on the Clustering Algorithm BIRCH ✩

Boris Lorbeer, Ana Kosareva, Bersant Deva, Dženan Softić, Peter Ruppel, Axel Küpper

Service-centric Networking, Telekom Innovation Laboratories, Technische Universität Berlin, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 January 2017
Received in revised form 7 July 2017
Accepted 25 September 2017
Available online xxxx

Clustering algorithms are recently regaining attention with the availability of large datasets and the rise
of parallelized computing architectures. However, most clustering algorithms suffer from two drawbacks:
they do not scale well with increasing dataset sizes and often require proper parametrization which
is usually difficult to provide. A very important example is the cluster count, a parameter that in
many situations is next to impossible to assess. In this paper we present A-BIRCH, an approach for
automatic threshold estimation for the BIRCH clustering algorithm. This approach computes the optimal
threshold parameter of BIRCH from the data, such that BIRCH does proper clustering even without
the global clustering phase that is usually the final step of BIRCH. This is possible if the data satisfies
certain constraints. If those constraints are not satisfied, A-BIRCH will issue a pertinent warning before
presenting the results. This approach renders the final global clustering step of BIRCH unnecessary
in many situations, which results in two advantages. First, we do not need to know the expected
number of clusters beforehand. Second, without the computationally expensive final clustering, the fast
BIRCH algorithm will become even faster. For very large data sets, we introduce another variation of
BIRCH, which we call MBD-BIRCH, which is of particular advantage in conjunction with A-BIRCH but is
independent from it and also of general benefit.

© 2017 Published by Elsevier Inc.
1. Introduction

Clustering is an unsupervised learning method that groups a
set of given data points into well separated subsets. Two promi-
nent examples of clustering algorithms are k-means, see Macqueen
[10], and the expectation maximization (EM) algorithm, see Demp-
ster et al. [6]. This paper addresses two issues with clustering: (1)
clustering algorithms usually do not scale well and (2) most algo-
rithms require the number of clusters (cluster count) as input. The
first issue is becoming more and more important. For applications
that need to cluster, for example, millions of documents, huge im-
age or video databases, or terabytes of sensor data produced by the
Internet of Things, scalability is essential. The second issue severely
reduces the applicability of clustering in situations where the clus-
ter count is very difficult to predict, such as for data exploration,
feature engineering, and document clustering.

An important clustering method is balanced iterative reducing
and clustering using hierarchies, or BIRCH, which was introduced by

✩ This article belongs to Big Data & Neural Network.
E-mail addresses: lorbeer@tu-berlin.de (B. Lorbeer), ana.kosareva@tu-berlin.de

(A. Kosareva), bersant.deva@tu-berlin.de (B. Deva), softic.dzenan@gmail.com
(D. Softić), peter.ruppel@tu-berlin.de (P. Ruppel), axel.kuepper@tu-berlin.de
(A. Küpper).
https://doi.org/10.1016/j.bdr.2017.09.002
2214-5796/© 2017 Published by Elsevier Inc.
Zhang et al. [19] and is one of the fastest clustering algorithms
available. It outperforms most of the other clustering algorithms by
up to two orders of magnitude. Thus, BIRCH already solves the first
issue mentioned above. However, to achieve sufficient clustering
quality, BIRCH requires the cluster count as input, therefore failing
to solve the second issue. This paper describes a method to use
BIRCH without having to provide the cluster count, yet preserving
cluster quality and speed. This is achieved as follows. We first re-
move the global clustering step that is done at the end of BIRCH,
since this is slow and often requires extra parameters like e.g. the
cluster count as input. Then, by analyzing the remaining part of the
BIRCH algorithm, which we call tree-BIRCH, we identify three ways
in which tree-BIRCH can go wrong: cluster splitting, cluster combin-
ing, and supercluster splitting. This knowledge then enables us to
improve tree-BIRCH and compute an optimal threshold parameter
from the data. With the resulting algorithm, the user has to pro-
vide neither any parameters for the final clustering step like e.g.
the cluster count, since there is no final clustering step anymore,
nor the threshold parameter, since this is computed automatically.

The threshold parameter is computed from two attributes of
the data, the maximum cluster radius Rmax and the minimum dis-
tance Dmin between clusters. Often, those attributes are already
known. For situations in which this is not the case, we describe
one possible procedure of obtaining them. Following an idea in

https://doi.org/10.1016/j.bdr.2017.09.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:lorbeer@tu-berlin.de
mailto:ana.kosareva@tu-berlin.de
mailto:bersant.deva@tu-berlin.de
mailto:softic.dzenan@gmail.com
mailto:peter.ruppel@tu-berlin.de
mailto:axel.kuepper@tu-berlin.de
https://doi.org/10.1016/j.bdr.2017.09.002

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.2 (1-10)

2 B. Lorbeer et al. / Big Data Research ••• (••••) •••–•••
Bach and Jordan [2], we propose to learn these attributes from rep-
resentative data.

Above, supercluster splitting was mentioned as one of the prob-
lems with tree-BIRCH. This led us to devise another extension of
BIRCH, MBD-BIRCH, which is considerably reducing supercluster
splitting, though at the expense of speed. However, MBD-BIRCH,
too, is still much faster than most of the other clustering algo-
rithms.

Our approach aims at datasets drawn from two-dimensional
isotropic Gaussian distributions which are typical when dealing
with, for example, geospatial data.

The paper is organized as follows. In Section 2 we review pre-
vious work. To fix notation, we give a short overview of the BIRCH
algorithm in Section 3. The fundamental ideas of the paper are ex-
plained in Section 4. This is followed by the details of A-BIRCH,
a new algorithm we developed, in Sections 5 and 6. Sections 7 and
8 focus on issues arising when dealing with very large data and
how to deal with them using another new algorithm, MBD-BIRCH.
The described algorithms are evaluated in Section 9. Finally, after
the description of future work in Section 10 the paper is summa-
rized in Section 11.

2. Related work

Clustering algorithms usually do not scale well, because of-
ten they have a complexity of O (N2) or O (N M), where N is
the number of data points and M is the cluster count. Scalability
is typically achieved by parallelization of the algorithm in com-
pute clusters, such as Mahout’s k-means clustering in Owen et al.
[12] or Spark’s distributed versions of k-means, EM clustering, and
power iteration, see Meng et al. [11]. Other parallelization attempts
use the graphics processing unit (GPU). This has been done for k-
means in Zechner and Granitzer [18], for EM clustering in Kumar
et al. [9], and for many others. The bottleneck here is the relatively
slow connection between host and device memory if the data does
not fit into device memory.

The second issue we are concerned with is the identification of
the cluster count. A standard approach is to use one of the clus-
tering algorithms that require the cluster count to be input as a
parameter, then run it for each count k in a set of likely values.
Then, the “elbow method” from Sugar [16] is used to determine
the optimal number k. For probabilistic models, one can apply in-
formation criteria such as the Akaike Information Criterion AIC as
described in Akaike et al. [1] or the Bayesian Information Criterion
BIC following Schwarz [15] to rate the different clustering results,
see, for example, Zhou and Hansen [20]. However, all these meth-
ods increase the computation time considerably, especially if there
is not enough prior information to keep the range of possible clus-
ter counts small. Some clustering algorithms find the number of
clusters directly, without being required to run the algorithm for
all possible counts. Two of the more well-known examples are
Density-based spatial clustering of applications with noise (DBSCAN)
by Ester et al. [7] and Gap Statistic, Tibshirani et al. [17]. Besides
our approach, there are also some other attempts to improve the
clustering quality of BIRCH by changing the algorithm itself, for in-
stance in Ismael et al. [8] with non-constant thresholds, in Burbeck
and Nadjm-Tehrani [3] with two different global thresholds, or by
using DBSCAN on each tree level to reduce noise in Dash et al.
[5]. However, while sometimes improving the quality, those ap-
proaches slow BIRCH down and still require the cluster count as
input.

3. BIRCH

We shortly describe BIRCH, mainly to fix notations. For details,
see Zhang et al. [19]. BIRCH requires three parameters: the branch-
ing factor Br, the threshold T , and the cluster count k. While the
data points are entered into BIRCH, a height-balanced tree, the
cluster features tree, or CF tree, of hierarchical clusters is built. Each
node represents a cluster in the cluster hierarchy, intermediate
nodes are superclusters and the leaf nodes are the actual clus-
ters. The branching factor Br is the maximum number of children
a node can have. This is a global parameter. Every node contains
the most important information of the belonging cluster, the clus-
ter features (CF). From those, the cluster centers Ci = 1/ni

∑n
j xi j ,

where {xij}n
j=1 are the elements of the ith cluster, and the cluster

radii Ri =
√

1/ni
∑n

j (xij − Ci)
2 can be computed for each cluster.

Every new point starts at the root and recursively walks down the
tree, always entering the subcluster with the nearest center until
the walk ends at a certain leaf node.

Once arrived at a leaf, the new point is added to this leaf
cluster, provided this would not increase the radius of the clus-
ter beyond the threshold T . Otherwise a new cluster is created
with the new point as its only member. This way, the threshold
parameter controls the size of the clusters.

If the creation of a new cluster leads to more than Br child
nodes of the parent, the parent is split. To ensure that the tree
stays balanced, the nodes further above might need to be split re-
cursively. Once all points are submitted to BIRCH, the centers of
the leaf clusters are, in the global clustering phase, entered into a
clustering algorithm such as agglomerative clustering or k-means
which is given as parameter the cluster count k. This last step im-
proves the cluster quality by merging neighboring clusters.

In this paper, when it is necessary to distinguish between the
BIRCH algorithm with a final global clustering phase and the one
without, we will call the former full-BIRCH and the latter tree-
BIRCH.

4. Concept

Tree-BIRCH is very fast. It clusters 100,000 points into 1000
clusters in 4 seconds, on a 2,9 GHz Intel Core i7, using scikit-
learn, see Pedregosa et al. [13]. The k-means implementation of the
same library needs over two minutes to complete the same task on
the same architecture. Furthermore, tree-BIRCH doesn’t require the
cluster count as input, which in full-BIRCH is only needed for the
global clustering phase. In addition, tree-BIRCH can be used as an
online algorithm. Full-BIRCH cannot be used online, since it needs
an end at which the global clustering could be run, but online al-
gorithms never end. However, tree-BIRCH usually suffers from bad
clustering quality. Therefore, we focus on improving the clustering
quality of tree-BIRCH.

In this paper, we consider the problem of clustering datasets
that are samples of a mixture of two-dimensional isotropic Gaus-
sians. In particular, we present a method that automatically
chooses an optimal threshold parameter for tree-BIRCH. As a pre-
requisite, we now describe three causes of erroneous clustering by
tree-BIRCH and how they can, in principle, be eliminated.

Zhang et al. [19] noted that the CF-tree depends on the order
in which the data is entered. If the points of a single cluster are
entered in the order of increasing distance from the center, tree-
BIRCH is more likely to return just one cluster than if the first two
points are from opposite sides of the cluster. In the latter case, the
single cluster is likely to split, a situation we will refer to as cluster
splitting (Fig. 1A).

Next, consider two neighboring clusters. If the first two points
are from opposite clusters but still near each other, they could be
collected into the same cluster, given the threshold is large enough,
which we refer to as cluster combining (Fig. 1B).

Cluster combining often co-occurs with cluster splitting. To re-
duce splitting of a single cluster, the threshold parameter of tree-

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.3 (1-10)

B. Lorbeer et al. / Big Data Research ••• (••••) •••–••• 3
Fig. 1. Cluster splitting (A), cluster combining where the combining cluster is circled (B), depiction of cluster radius and cluster distance (C). Different forms and colors of the
observations correspond to different clusters they belong to.
BIRCH has to be increased, whereas a decreased threshold parame-
ter reduces cluster combining. Datasets with a large ratio of cluster
distance (the distance between the cluster centers) to cluster ra-
dius are less likely to produce such errors (Fig. 1C).

The third source of deficient clustering cannot be influenced by
the choice of the threshold. This happens if a cluster overlaps with
two regions belonging to two non-leaf nodes in the CF-tree. We
call this type of error supercluster splitting. It will be described in
Section 7. This does not occur if the tree is flat, i.e. all leaves are
children of the root. A flat tree can be obtained by choosing the
branching factor Br to be larger than the maximal possible num-
ber of clusters. However, the tree structure is important for the
performance if the number k of clusters is large, because the part
of the algorithm that searches the cluster that a new point belongs
to is logarithmic in k.

In the next section we will deduce a formula for the optimal
threshold given two conditions: first we presume that the branch-
ing factor is chosen large enough for the BIRCH tree to be flat, and
second, that all the clusters have approximately the same num-
ber of elements. In Sections 6, we lift the second condition, i.e.,
clusters can have different element counts. Then, in Section 7 and
8, we consider supercluster splitting and develop an extension of
tree-BIRCH that considerably reduces it.

5. Automatic estimation of the tree-BIRCH threshold for clusters
of same element count

As has already been pointed out, this paper focuses on the
problem of clustering samples from a mixture of two-dimensional
isotropic Gaussians and we want to describe a method which au-
tomatically finds the optimal threshold parameter for tree-BIRCH.
In the current section this will be done for the special case that all
clusters have approximately the same number of elements. Also,
for now the BIRCH tree is chosen to be flat.

The goal is to obtain the optimal threshold parameter as a func-
tion of the maximum radius Rmax of the clusters and the minimum
cluster distance Dmin , which we both presume to exist. The under-
lying assumption is that those two values are either already known
or easy to obtain.

One typical procedure for finding Rmax and Dmin , if they are
not known yet, is the following: We will presume that there exists
a small but representative subset of the data that has the same
maximum cluster radius Rmax and minimum cluster distance Dmin
as the full dataset. On this small dataset, Gap Statistic is applied
to obtain the cluster count k. This k in turn is given to k-means
to produce a clustering of the subset, which finally yields the two
values Rmax and Dmin .

For the determination of Rmax and Dmin one could also use any
other clustering algorithm that finds the cluster centers and radii
without requiring the cluster count k as an input. However, Gap
Statistic is chosen here, due to its high precision.

Our approach in this paper is mainly heuristic. For each sce-
nario of interest we run tree-BIRCH many times, always under the
same conditions but each time with newly sampled data. From the
frequencies of cluster splitting and cluster combining we deduce
their probabilities. The number of repetitions necessary to obtain
a required accuracy can be obtain from the well-known theory of
confidence intervals, see e.g. Casella and Berger [4]. We have used
the implementation in R Core Team [14]. Thus, for our error prob-
ability estimate at 0.01 to have a confidence interval of roughly
±0.002, we need 10,000 repetitions, which is what we used in all
our experiments.

Avoiding Cluster Splitting. We create many clusters contain-
ing the same number of elements n by sampling from a single
isotropic two dimensional Gaussian probability density function.
The units are chosen such that the radius R of this cluster will be
one. Then, tree-BIRCH is applied with the same threshold T to each
of those datasets. After each iteration, we determine whether tree-
BIRCH returns the correct number of clusters, namely one. From
this, we assess if the error probability estimate for tree-BIRCH is
less than 0.01, or one percent. We also investigate the impact of
varying the number of elements n in the cluster on the result-
ing error probability. Finally, we repeat all the above for several
thresholds T . For this heuristic analysis, we use the Python library
scikit-learn, Pedregosa et al. [13], and its implementation of BIRCH.

According to the results presented in Fig. 2a, there is no indi-
cation that the number of objects in the cluster impacts the error
probability. However the error probability is clearly affected by the
threshold parameter; the error drops below one percent when the
threshold value is greater than or equal to 1.6 (with units such
that R = 1).

Avoiding Cluster Combining. While cluster splitting concerns
only one single cluster, cluster combining involves two clusters.
So, to begin with, we use a mixture of two Gaussians with a clus-
ter distance D = 6, both with equal radius R , again in units chosen
such that R = 1. (If one of the clusters has radius R < 1, the error
probabilities would be smaller, so we only consider the situation
where both radii are equal.) Again, the error probabilities do not
depend on the total number of data points, as shown in Fig. 3.

Note that our criterion for correct clustering is whether the
right cluster count has been detected. We have found this crite-
rion to be sufficient and reliable for the problem that is considered
here.

Fig. 3 pertains only to the cluster distance 6.0. To understand
the situation for different cluster distances, consider Fig. 4. Here,
we see the dependence of the error probability on the thresh-
old for several different cluster distances. For small thresholds
(T < 1.7) we witness cluster splitting which results in higher clus-
ter counts and a higher error. This can also be deduced from
Fig. 3, where for the small threshold T = 1.5 we see many clus-
ter counts of three and four. With T = 2.0 less splitting occurs and
the error probability decreases. If the threshold continues grow-
ing (T = 3.0), cluster combining occurs more frequently, which
increases the cluster counts of three and therefore increases the

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.4 (1-10)

4 B. Lorbeer et al. / Big Data Research ••• (••••) •••–•••
Fig. 2. (a) For each pair (n, T) of total number n of objects, running from 100 to 10,000, and threshold T ∈ {1.5, 1.6, 1.7}, we sampled n elements from an isotropic Gaussian
of radius R = 1, applied tree-BIRCH with threshold T , and recorded the cluster count. Every count different from 1 is an error. For each pair (n, T) this was repeated 10.000
times to approximate the probabilities of cluster counts 1, 2, and 3. (b) For each threshold we sample 500 points from a single Gaussian of radius R = 1, apply tree-BIRCH
and record how often it returns the right number of clusters. This is repeated 10,000 times for each T to obtain an estimate for the error probability.

Fig. 3. For each pair (n, T) of total number n of objects, running from 100 to 10,000, and thresholds T ∈ {1.5, 2.0, 3.0}, we sampled n elements from a mixture of two
isotropic Gaussians, both of radius R = 1 and distance 6.0, applied tree-BIRCH with threshold T , and recorded the cluster count. Every count different from 2 is an error. For
each pair (n, T) this was repeated 10.000 times to approximate the probabilities of cluster counts 1, 2, 3, and 4.

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.5 (1-10)

B. Lorbeer et al. / Big Data Research ••• (••••) •••–••• 5
Fig. 4. For each pair (D, T) of cluster distance D and threshold T , we sampled
10, 000 times 500 elements from a mixture of two Gaussians of radius R = 1 and
distance D . Each time we applied tree-BIRCH with the threshold set to T and com-
puted the error probabilities.

Fig. 5. For each pair (D, T) of cluster distance D and threshold T , we sampled
10, 000 times 500 elements from a mixture of two isotropic Gaussians of radius
R = 1 and distance D . Each time we applied tree-BIRCH to compute the error prob-
abilities.

error probability. The fact that the graphs in Fig. 4 are dropping
below one percent later than in Fig. 2b is due to cluster combin-
ing, which was not possible with just one cluster. For D ≥ 6.0 there
are thresholds where the error probability drops below one per-
cent. More precisely, from Figs. 3 and 4 it can be deduced that, if
D ≥ 6.0, a threshold of:

T = 2.0 · Rmax (1)

would ensure an error probability of less than one percent for each
pair of neighboring clusters in the dataset.

Of course, if Dmin is clearly larger than 6.0 · Rmax , it would be
beneficial to increase the threshold beyond (1). While the lower
bound on the threshold is nearly the same for all cluster distances,
the upper bound increases linearly, roughly with half the increase
of the distance (Fig. 5). This is intuitively clear since two times
the threshold should fit comfortably between two clusters to avoid
cluster combining. To place the threshold in the middle between
lower and upper bound, we choose 1

4 as the ratio of �Dmin and
�T . We then fit an intercept of 0.7, which yields the following
expression for choosing the threshold (in arbitrary units):

T = 0.2 · Dmin + 0.8 · Rmax, (2)

provided

Dmin ≥ 6.0 · Rmax. (3)

A-BIRCH with parallel Gap Statistic. Above, we have mentioned
one possibility of obtaining the values Rmax and Dmin in case they
are not yet already known. That involves the use of Gap Statistic.
But Gap Statistic is very slow compared to full-BIRCH, possibly ru-
ining the overall performance. Therefore, we developed a parallel
version of Gap Statistic. Note that Gap Statistic runs k-means for
each cluster count k ∈ {1, . . . , kmax} not only on the dataset itself,
but also on many Monte Carlo simulations (the R and MATLAB im-
plementations choose 100 simulations as default value). Therefore,
we parallelized the loop over the Monte Carlo reference simula-
tions. The distribution of work and collection of the results are
performed by Apache Spark.

Again we want to emphasize that this is not actually part of
A-BIRCH, it is just one possibility to obtain Rmax and Dmin if they
are not yet known. The proposed approach is summarized in Algo-
rithm 1.

Algorithm 1: A-BIRCH: Automatic threshold for tree-BIRCH us-
ing Gap Statistic for clusters with equal element count.

Data: N 2-dimensional data points {Xi}, kmax , number of Monte Carlo
simulations B

Result: CF-tree
begin

make sure the data {Xi} is well shuffled
k∗ ← parallel Gap Statistic

(
subsample({Xi}), kmax, B)

labels ← k-means
(

subsample({Xi}), k∗)
compute the maximum radius Rmax and the minimal distance Dmin from
the clustered data
if condition (3) is violated then

Warning: the clusters are too close – tree-BIRCH result might be
inaccurate

T ← equation (2)
CF-tree ← tree-BIRCH

({Xi}, T , Br = ∞)

6. Automatic estimation of the tree-BIRCH threshold for clusters
of different element count

In this section the condition that all clusters have the same
number of elements is lifted. In the previous section, the mixture
of Gaussians has been uniformly weighted, i.e. if a normal distribu-
tion with mean μ and covariance matrix � is written as N (μ, �),
the data was sampled from a mixture:

p(x) =
k∑

i=1

1

k
N (μi,αi1), (4)

where αi ∈ R, α > 0 and the uniform weight is 1
k . Now, this con-

straint is lifted and the weights can be arbitrary positive real num-
bers {wi}k

i=1 that sum to one:

p(x) =
k∑

i=1

wi N (μi,αi1)

k∑
i=1

wi = 1, wi > 0 (i = 1, . . . ,k).

(5)

Again, tree-BIRCH is applied repeatedly to the case of two isotropic
clusters. As before, it suffices to consider the situation where both
clusters have radius one. However, this time the weight ratio is dif-
ferent from one. First, the weight ratio 1:10 is considered (Fig. 6).
In this case, too, the simulation indicates that the probabilities of
the cluster counts are independent of the total number of data
points. However, contrary to the uniformly weighted case, an in-
creasing threshold very quickly leads to a wrong cluster count of
one. Intuitively this can be understood as the smaller weighted
cluster not being “strong” enough to prevail; it is more likely to be
“swallowed” up by the heavier cluster.

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.6 (1-10)

6 B. Lorbeer et al. / Big Data Research ••• (••••) •••–•••
Fig. 6. For each pair (n, T) of total number n of objects, running from 100 to 1,000, and thresholds T ∈ {1.5, 1.9, 2.4}, we sampled n elements from a mixture of two isotropic
Gaussians with weight ratio 1:10, both of radius R = 1 and distance 6.0, applied tree-BIRCH with threshold T , and recorded the cluster count. Every count different from 2
is an error. For each pair (n, T) this was repeated 10.000 times to approximate the probabilities of cluster counts 1, 2, 3, and 4.
Fig. 7. For each pair (wr, T) of weight ratio wr and threshold T , we sampled 10, 000
times 500 elements from a mixture of two isotropic Gaussians of radius R = 1,
distance 7 and weight ratio wr. Each time we applied tree-BIRCH to compute the
error probabilities.

Next, the error probability as function of the threshold is com-
puted from simulations where, for a fixed cluster distance, the
weight ratio is varied. As examples, cluster distances set to the
values 7 and 13 are shown (Figs. 7 and 8). The results show that
with increasing weight ratio, the interval of thresholds with error
probability below 0.01 shrinks.

The next step is to obtain an expression for the optimal thresh-
old, the one with smallest error probability, as a function of cluster
distance and weight ratio. To this end, we conducted simulations
of the two-cluster scenario for various combinations of those two
parameters, each time recording the optimal threshold. This data
then suggested to fit a nonlinear function that is linear in the
cluster distance D with a slope given by the inverse of a linear
function of the weight ratio wr:
Fig. 8. For each pair (wr, T) of weight ratio wr and threshold T , we sampled
10, 000 times 500 elements from a mixture of two isotropic Gaussians of radius
R = 1, distance D = 13 and weight ratio wr. Each time we applied tree-BIRCH to
compute the error probabilities.

T = 1

a · wr + b
D + c (6)

where a, b, and c are parameters to be learned. We used the non-
linear least square function nls provided by the statistics com-
puting environment R, see R Core Team [14]. The fitted parameters
are (see also Fig. 9):

a = 0.3

b = 4.5

c = 0.8.

(7)

The correlation of the measured and fitted values is 0.9984.
Furthermore, we would like to know when the threshold from

this formula leads to an error not greater than one percent. To
this end, we have, again, run tree-BIRCH on many cases of two

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.7 (1-10)

B. Lorbeer et al. / Big Data Research ••• (••••) •••–••• 7
Fig. 9. The dotted lines connect the optimal thresholds from the simulations, one
line for each weight ratio, and the solid lines are the fitted values.

neighboring clusters as described above. This time, cluster distance
and weight ratio have been chosen from a grid of points in the
plane spanned by those two parameters. We restricted the grid to
cluster distances in the interval [6, 11]. Those points are separated
into two regions, the one where the optimal threshold has an error
probability of less then one percent and the region where it is
above one percent. The boundary between those two regions was
approximated with a line. This line is given by:

wr = 8.8 · D − 42.1, (8)

where D is the cluster distance in units of Rmax . For all pairs
of cluster distance and weight ratio to the right of this line, the
optimal threshold computed with (6) and (7) will have an error
probability of less than one percent.

In summary (see Algorithm 2), we propose to use high-
performance clustering with Gap Statistic on a subset of the data
as described above, to obtain the maximum radius Rmax , the mini-
mum cluster distance Dmin , and the maximum weight ratio wrmax
of neighboring clusters. Those parameters are then used to com-
pute the optimal threshold using (with arbitrary units):

T = 1

0.3 · wrmax + 4.5
· Dmin + 0.8 · Rmax. (9)

This formula gives the optimal threshold parameter T . Using it,
tree-BIRCH will have an error probability of less then one percent
for each neighboring cluster pair, provided the following conditions
are satisfied:

6.0 · Rmax ≤ Dmin

wrmax ≤ 8.8 · Dmin

Rmax
− 42.1.

(10)

Note that those conditions are only sufficient, not necessary.
However, from Fig. 5, 7, and 8, it can be seen that with a

threshold of T = 2 · Rmax the error probability is always clearly be-
low one percent, as long as the cluster distance and weight ratio
are not too extreme. Thus, we can also formulate a rule of thumb:

If the minimal cluster distance is greater than six times the
maximum radius and the weight ratio of neighboring clusters is
Algorithm 2: A-BIRCH: Automatic threshold for tree-BIRCH for
clusters with different element counts.

Data: N 2-dimensional data points {Xi}, kmax , number of Monte Carlo
simulations B

Result: CF-tree
begin

make sure the data {Xi} is well shuffled
k∗ ← parallel Gap Statistic

(
subsample({Xi}), kmax, B)

labels ← k-means
(

subsample({Xi}), k∗)
compute the maximum radius Rmax , the minimal distance Dmin , and the
maximum weight ratio of neighboring clusters from the clustered data
if conditions (10) are not satisfied then

Warning: the clusters are too close – tree-BIRCH result might be
inaccurate

T ← equation (9)
CF-tree ← tree-BIRCH

({Xi}, T , Br = ∞)

Fig. 10. Comparison of runtime between a flat tree and one with branching factor
100, computed with the BIRCH implementation of scikit-learn by Pedregosa et al.
[13].

not greater than ten, a threshold T = 2 · Rmax is a decent choice,
with error probability smaller than one percent.

7. Supercluster splitting

The tree structure of BIRCH makes it possible to use BIRCH
in situations with many thousands of clusters. When a new data
point enters the BIRCH tree at the root, it descends the tree to its
belonging cluster in one of the leaves. For a flat tree, this search
is of order O (k), with k being the current cluster count. For a tree
with branching factor Br, this is of order O (Br · logBr(k)). So it is
important to lift the condition that the branching factor is infinite,
i.e. the tree will no longer be flat. In Fig. 10, we see a comparison
of runtime for two different choices of branching factor (Python
implementation in scikit-learn by Pedregosa et al. [13]). From now
on, we will call BIRCH with a flat tree, i.e. the tree consists only
of the root node and its direct children, which are all leaves, flat
BIRCH. Otherwise, we call it deep BIRCH.

The downside of using deep BIRCH is that a new kind of er-
ror is introduced. Suppose the BIRCH tree consists of three layers
and that the root has two children. The nodes at the lowest, third,
layer, i.e. the leaves, represent the actual clusters, while the chil-
dren of the root node in the middle layer represent superclusters.
Furthermore, presume that right in the middle between the cen-
ters of those two child nodes of the root, there is a cluster so that
half of the points in this cluster are nearer to the center of the first
child and the other half is nearer to the center of the second child.

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.8 (1-10)

8 B. Lorbeer et al. / Big Data Research ••• (••••) •••–•••
Fig. 11. (a) Flat BIRCH finds the right clusters. (b) The same dataset as in (a) is used here. The algorithm is deep BIRCH with a branching factor of 5. The right cluster count
is 50, but the algorithm finds 73. The reason for this is supercluster splitting.
That means that this middle cluster will already be split at this
supercluster level in the BIRCH tree. This problem only arises with
deep BIRCH, it does not occur when using flat BIRCH. Obviously,
this effect is completely independent of the size of the threshold
parameter. We call this effect supercluster splitting.

An example of how supercluster splitting affects the clustering
quality can be seen in Figs. 11a and 11b. There, the same dataset is
clustered both with flat (Fig. 11a) and with deep (Fig. 11b) BIRCH.
The thresholds are the same, and the data enters BIRCH in the
same order, so the difference in clustering performance is only
due to the difference in the tree structure. The dataset consists of
50 clusters and flat BIRCH properly recognizes exactly all of them.
However, deep BIRCH, with a branching factor of 5, introduces su-
percluster splitting and finds 73 clusters.

In full BIRCH, i.e. when tree-BIRCH is followed by a global clus-
tering phase, this global clustering usually alleviates supercluster
splitting to a certain extend, but with tree-BIRCH this effect is
clearly noticeable.

8. Multiple branch descent

As was shown above, tree-BIRCH is especially susceptible to su-
percluster splitting. So an algorithm is needed that eliminates or
at least considerably reduces this effect without resort to a final
global clustering phase. We suggest the following modification of
tree-BIRCH.

As was shown in Section 7, supercluster splitting happens be-
cause once a new point arrives at the second to last level, i.e. at
the level of parents of the leaves, there is only a small portion
of all the clusters, namely the children of the current parent, the
point could possibly be assigned to. In unfavorable situations, the
nearest cluster might not be among them. With flat trees, how-
ever, since all clusters are children of the same parent, the root, all
clusters are considered when searching for the nearest one, so the
closest one is always found. Our suggestion is to compromise be-
tween those two situations, by considering not only the leaves of
a single parent, but also the leaves of parents nearby.

This is done as follows. Currently, at each node, the distance
of the new point to the centers of all the children of this node
are computed and the new point descends into the nearest child.
This is modified by having the new point not only descend into
the nearest child, but also into other children, that are not much
further away from the new point than the nearest child. That way,
the new point performs a multiple branch descend into the tree. As
a result, the new point will be compared against more leaves and
the probability that the nearest one is amongst them, increases.

Of course, one now has to specify a criterion deciding which
children, besides the nearest one, the new point has to descend
into. We have opted for a straight forward method: the user pro-
vides a parameter s, and all the children of the current node,
whose distance from the new point is less than the distance of
the new point to the nearest cluster center plus s, will be de-
scended into. To be more precise, if the new point is p, the metric
is given by d(·, ·), the children {n}N

i=1 of the current node have cen-
ters C(ni), and the child with center nearest to the new point is n∗,
then the set � of children to descend into is given by:

� = {ni | d(C(ni), p) − d(C(n∗), p) < s}. (11)

We call this algorithm multiple branch descent BIRCH (MBD-
BIRCH). The higher the parameter s, the less supercluster splitting
there will be. On the other hand, a higher s will also slow down
the algorithm, since the number of branches to descend into and
the number of clusters to compare will increase.

9. Evaluation

First, we evaluated the accuracy of A-BIRCH for clusters with
approximately the same element count as discussed in Section 5.
That means, we use the threshold estimation as stated in Equation
(2). A-BIRCH performs correctly with different sizes of Dmin and
different numbers of clusters. The evaluation datasets contain sam-
ples from two-dimensional isotropic Gaussian distributions with
Dmin ≥ 6.0 · R , which is the requirement from (3) (see Fig. 12).

In an additional step, we evaluated the scalability of A-BIRCH.
As already stated before, tree-BIRCH itself is very fast. So if Rmax

and Dmin are known attributes of the data, A-BIRCH with the com-
puted threshold from (2) or (9) will be extremely fast and scales
with a complexity less than O (nk), where n is the number of

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.9 (1-10)

B. Lorbeer et al. / Big Data Research ••• (••••) •••–••• 9
Fig. 12. The datasets A, B, C and D contain 3, 10, 100 and 200 clusters, respectively. Each cluster consists of 1000 elements, the radius of the clusters is R = 1, and the Dmin

is in all cases larger than 6: in A – 6.001, in B – 7.225, in C – 6.025, in D – 6.410.
Table 1
Speedup of Gap Statistic by parallelization on Spark.

Sequential Spark: 4 workers Spark: 8 workers

B = 100, kmax = 20 1775 s 349 s 197 s

B = 100, kmax = 40 7114 s 1425 s 795 s

B = 500, kmax = 20 8803 s 1470 s 725 s

B = 500, kmax = 40 35242 s 5953 s 2909 s

points and k the number of clusters. For the situations in which
Rmax and Dmin are not yet known, we discussed above the use
of a subsample to determine those parameters, using a parallel
version of Gap Statistic. We have tested the parallelized implemen-
tation of Gap Statistic on an Apache Spark cluster on Microsoft
Azure. Two compute cluster configurations have been evaluated,
each with two master nodes and with four and eight workers,
respectively, each of which running on virtual machines of type
Standard_D3. They currently provide four CPU cores and 14GB
of memory, running the Linux operating system. The parallelization
has been implemented using the Spark Python API (PySpark). The
computation of Gap Statistic was run on a dataset containing 10
clusters, each consisting of 1000 two-dimensional data points. The
computation times for varying numbers B of reference datasets
and maximal number of clusters kmax are shown in Table 1.

The results show that the parallelized implementation of Gap
Statistic with Spark is scalable as the computation times decrease
linearly with an increasing number of worker nodes. Although the
Gap Statistic phase is considered computationally expensive, it pro-
vides us with the parameters Rmax and Dmin that are needed for
A-BIRCH to increases the correctness of tree-BIRCH significantly
and does not require any prior knowledge on the dataset.

Next, we evaluated A-BIRCH with varying weight ratios. In
Fig. 13 we have a data set with 100 clusters that has differing
weights, and varying cluster radii, and the clusters are at times
that near to each other that condition (10) is actually violated.
Nevertheless, A-BIRCH succeeds in clustering the data set correctly.

In Section 8 MBD-BIRCH has been described as an alternative
in cases where the cluster count is too large for flat A-BIRCH to
satisfy given speed requirements. It has also been pointed out that
the choice of the parameter s represents a trade-off between speed
and quality. This is exemplified in Fig. 14. Here we have used a
data set consisting of 400 clusters, each sampled from a Gaussian
with radius 3, each containing 50 points. The inter-cluster distance
is never smaller than 24. This data set has been clustered with
branching factor 10 and various s values. We see that with branch-
ing factor 10 and s = 0, i.e. no multiple branch descent, superclus-
ter splitting leads to a cluster count of almost twice the correct
value. But when the s value is increased, the detected cluster count
approaches the correct value. Although the runtime increases with
increasing s value, the correct cluster count is achieved with a run-
time that is still clearly smaller than the runtime of flat BIRCH.
Fig. 13. A-BIRCH clustering accuracy for a data set with 100 clusters with points
per cluster ranging from 30 to 300, cluster radius ranging from 4 to 7, and with a
maximum radius of 7 and a minimum cluster distance of 30. Even though condition
(10) is clearly violated, A-BIRCH succeeds in clustering the data set correctly.

This example reflects correctly what we have witnessed in mul-
tiple simulations. However, the influence of the choice of s on the
clustering quality as well as on the runtime, depending on the
branching factor and the attributes of the data set, needs to be
investigated more thoroughly. Similarly, finding a method to auto-
matically choose an, in some appropriate sense, optimal s value, is
a task that deserves more research.

10. Future work

This paper has focused only on two-dimensional data sets. In
future work, the findings discussed here will be extended to data
sets with more than two dimensions.

In Sections 5 and 6 we have fitted models for the optimal
threshold in an ad hoc manner. It would be worthwhile to use
methods of model selection to obtain more accurate solutions.
Also, the parameter regions which result in error probabilities less
than 1 percent, given by (3) and (10) could be improved, especially
in regions with small cluster distance.

Most of the results in this paper have been achieved by inves-
tigating simulated samples from mixtures of Gaussians. It would
be interesting to see how much could be achieved exclusively with
mathematical reasoning. Take, for example, the splitting probability

JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.10 (1-10)

10 B. Lorbeer et al. / Big Data Research ••• (••••) •••–•••
Fig. 14. A dataset with 400 clusters has been clustered with MBD-BIRCH with
branching factor 10 and various s values. On the left, the detected cluster count
is plotted. The horizontal line signifies the correct cluster count. On the right, the
ratio between the runtime for the given s value and the runtime for s = 0 is plotted.
The horizontal line denotes the time needed by the flat tree.

of a single cluster and start with just two points. It is not diffi-
cult to compute the probability of those two points to belong to
the same cluster for a given threshold T . Then, generalize this for-
mula to the case of arbitrarily many points. Next, try to find a
mathematical formula, or a reasonable approximation, for the er-
ror probability in the case of two neighboring clusters. Also, the
conditions 3 and 10 might benefit from a more thorough mathe-
matical description of the problem.

In Section 8 we have pointed out that in the choice of the opti-
mal parameter s there is a trade-off between speed and accuracy.
In future work it would be important to make clear what exactly
optimal means in this situation and to find an automatic way of de-
riving this optimal parameter s from appropriate attributes of the
data set.

Last but not least, all the evaluations have been done with syn-
thetic data. It is important to see how A-BIRCH and MBD-BIRCH
will perform on real world data.

11. Conclusion

In this paper we introduced A-BIRCH, a parameter-free variant
of BIRCH, and MBD-BIRCH, an extension of tree-BIRCH that im-
proves the accuracy when BIRCH uses deep trees.

Choosing the correct parameters for clustering algorithms is of-
ten difficult as it requires information about the dataset, which is
often not available. This is also true for BIRCH, which requires the
cluster count k as well as a threshold T in order to compute the
clusters correctly. For this reason, we removed the global clustering
phase, thus rendering the cluster count parameter k unnecessary,
restricted the BIRCH trees to be flat, thus removing the possibility
of supercluster splitting, and proposed a method that automati-
cally estimates the threshold T from the attributes Rmax and Dmin
of the data that are more likely to be already known or at least
can be obtained more easily than T. Moreover, as an example how
one could go about obtaining Rmax and Dmin in case they are not
yet known, we described a method to obtain those parameters that
involved analyzing a representative subset using a parallelized ver-
sion of Gap Statistic. The evaluation proved the applicability of our
approach in a very robust manner for two-dimensional mixtures of
isotropic Gaussians.

This version works well for data sets of tens of thousands of
clusters. However, for data with even more clusters, it is advan-
tageous to use tree-BIRCH with deep trees. This introduces super-
cluster splitting, and we have developed MBD-BIRCH, an extension
of tree-BIRCH, which reduces or even completely removes super-
cluster splitting while still being faster than tree-BIRCH with flat
trees.

References

[1] H. Akaike, B. Petrov, F. Csaki, Information Theory and an Extension of the Max-
imum Likelihood Principle, 1973.

[2] F.R. Bach, M.I. Jordan, Learning spectral clustering, in: Advances in Neural In-
formation Processing Systems, 2004, pp. 305–312.

[3] K. Burbeck, S. Nadjm-Tehrani, Adaptive real-time anomaly detection with in-
cremental clustering, Inf. Secur. Tech. Rep. 12 (1) (2007) 56–67.

[4] G. Casella, R.L. Berger, Statistical Inference, vol. 2, Duxbury, Pacific Grove, CA,
2002.

[5] M. Dash, H. Liu, X. Xu, ‘1 + 1 > 2’: merging distance and density based clus-
tering, in: Database Systems for Advanced Applications, Proceedings of the
Seventh International Conference on Database Systems for Advanced Applica-
tions, DASFAA 2001, April 2001, pp. 32–39.

[6] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the em algorithm, J. R. Stat. Soc. B 39 (1) (1977) 1–38.

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discover-
ing clusters in large spatial databases with noise, in: E. Simoudis, J. Han, U.M.
Fayyad (Eds.), Second International Conference on Knowledge Discovery and
Data Mining, AAAI Press, 1996, pp. 226–231.

[8] N. Ismael, M. Alzaalan, W. Ashour, Improved multi threshold birch clustering
algorithm, Int. J. Artif. Intell. Appl. Smart Devices 2 (1) (2014) 1–10.

[9] N.S.L.P. Kumar, S. Satoor, I. Buck, Fast parallel expectation maximization for
Gaussian mixture models on GPUs using CUDA, in: 11th IEEE International
Conference on High Performance Computing and Communications, June 2009,
pp. 103–109.

[10] J.B. Macqueen, Some methods for classification and analysis of multivariate ob-
servations, in: Proceedings of the Fifth Berkeley Symposium on Math, Statistics,
and Probability, vol. 1, University of California Press, 1967, pp. 281–297.

[11] X. Meng, J.K. Bradley, B. Yavuz, E.R. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D.B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M.J. Franklin, R. Zadeh, M. Zaharia,
A. Talwalkar, MLlib: machine learning in apache spark, CoRR, 2015.

[12] S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action, Manning Publica-
tions Co., 2011.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in
python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[14] R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, 2015, https://
www.R-project.org/.

[15] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (2) (1978)
461–464.

[16] C.A. Sugar, Techniques for Clustering and Classification with Applications to
Medical Problems, Stanford University, 1998.

[17] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data
set via the gap statistic, J. R. Stat. Soc., Ser. B, Stat. Methodol. 63 (2) (2001)
411–423.

[18] M. Zechner, M. Granitzer, Accelerating k-means on the graphics processor via
cuda, in: First International Conference on Intensive Applications and Services,
2009, pp. 7–15.

[19] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: a new data clustering algorithm
and its applications, Data Min. Knowl. Discov. 1 (2) (1997) 141–182.

[20] B. Zhou, J. Hansen, Unsupervised audio stream segmentation and clustering via
the Bayesian information criterion, in: Proceedings of ISCLP-2000: International
Conference of Spoken Language Processing, 2000, pp. 714–717.

https://www.R-project.org/
https://www.R-project.org/

	Variations on the Clustering Algorithm BIRCH
	1 Introduction
	2 Related work
	3 BIRCH
	4 Concept
	5 Automatic estimation of the tree-BIRCH threshold for clusters of same element count
	6 Automatic estimation of the tree-BIRCH threshold for clusters of different element count
	7 Supercluster splitting
	8 Multiple branch descent
	9 Evaluation
	10 Future work
	11 Conclusion
	References

