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Clustering algorithms are recently regaining attention with the availability of large datasets and the rise
of parallelized computing architectures. However, most clustering algorithms suffer from two drawbacks:
they do not scale well with increasing dataset sizes and often require proper parametrization which
is usually difficult to provide. A very important example is the cluster count, a parameter that in
many situations is next to impossible to assess. In this paper we present A-BIRCH, an approach for
automatic threshold estimation for the BIRCH clustering algorithm. This approach computes the optimal
threshold parameter of BIRCH from the data, such that BIRCH does proper clustering even without
the global clustering phase that is usually the final step of BIRCH. This is possible if the data satisfies
certain constraints. If those constraints are not satisfied, A-BIRCH will issue a pertinent warning before
presenting the results. This approach renders the final global clustering step of BIRCH unnecessary
in many situations, which results in two advantages. First, we do not need to know the expected
number of clusters beforehand. Second, without the computationally expensive final clustering, the fast
BIRCH algorithm will become even faster. For very large data sets, we introduce another variation of
BIRCH, which we call MBD-BIRCH, which is of particular advantage in conjunction with A-BIRCH but is
independent from it and also of general benefit.

© 2017 Published by Elsevier Inc.
1. Introduction

Clustering is an unsupervised learning method that groups a
set of given data points into well separated subsets. Two promi-
nent examples of clustering algorithms are k-means, see Macqueen 
[10], and the expectation maximization (EM) algorithm, see Demp-
ster et al. [6]. This paper addresses two issues with clustering: (1) 
clustering algorithms usually do not scale well and (2) most algo-
rithms require the number of clusters (cluster count) as input. The 
first issue is becoming more and more important. For applications 
that need to cluster, for example, millions of documents, huge im-
age or video databases, or terabytes of sensor data produced by the 
Internet of Things, scalability is essential. The second issue severely 
reduces the applicability of clustering in situations where the clus-
ter count is very difficult to predict, such as for data exploration, 
feature engineering, and document clustering.

An important clustering method is balanced iterative reducing 
and clustering using hierarchies, or BIRCH, which was introduced by 
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Zhang et al. [19] and is one of the fastest clustering algorithms 
available. It outperforms most of the other clustering algorithms by 
up to two orders of magnitude. Thus, BIRCH already solves the first 
issue mentioned above. However, to achieve sufficient clustering 
quality, BIRCH requires the cluster count as input, therefore failing 
to solve the second issue. This paper describes a method to use 
BIRCH without having to provide the cluster count, yet preserving 
cluster quality and speed. This is achieved as follows. We first re-
move the global clustering step that is done at the end of BIRCH, 
since this is slow and often requires extra parameters like e.g. the 
cluster count as input. Then, by analyzing the remaining part of the 
BIRCH algorithm, which we call tree-BIRCH, we identify three ways 
in which tree-BIRCH can go wrong: cluster splitting, cluster combin-
ing, and supercluster splitting. This knowledge then enables us to 
improve tree-BIRCH and compute an optimal threshold parameter 
from the data. With the resulting algorithm, the user has to pro-
vide neither any parameters for the final clustering step like e.g. 
the cluster count, since there is no final clustering step anymore, 
nor the threshold parameter, since this is computed automatically.

The threshold parameter is computed from two attributes of 
the data, the maximum cluster radius Rmax and the minimum dis-
tance Dmin between clusters. Often, those attributes are already 
known. For situations in which this is not the case, we describe 
one possible procedure of obtaining them. Following an idea in 
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Bach and Jordan [2], we propose to learn these attributes from rep-
resentative data.

Above, supercluster splitting was mentioned as one of the prob-
lems with tree-BIRCH. This led us to devise another extension of 
BIRCH, MBD-BIRCH, which is considerably reducing supercluster 
splitting, though at the expense of speed. However, MBD-BIRCH, 
too, is still much faster than most of the other clustering algo-
rithms.

Our approach aims at datasets drawn from two-dimensional 
isotropic Gaussian distributions which are typical when dealing 
with, for example, geospatial data.

The paper is organized as follows. In Section 2 we review pre-
vious work. To fix notation, we give a short overview of the BIRCH 
algorithm in Section 3. The fundamental ideas of the paper are ex-
plained in Section 4. This is followed by the details of A-BIRCH, 
a new algorithm we developed, in Sections 5 and 6. Sections 7 and 
8 focus on issues arising when dealing with very large data and 
how to deal with them using another new algorithm, MBD-BIRCH. 
The described algorithms are evaluated in Section 9. Finally, after 
the description of future work in Section 10 the paper is summa-
rized in Section 11.

2. Related work

Clustering algorithms usually do not scale well, because of-
ten they have a complexity of O (N2) or O (N M), where N is 
the number of data points and M is the cluster count. Scalability 
is typically achieved by parallelization of the algorithm in com-
pute clusters, such as Mahout’s k-means clustering in Owen et al. 
[12] or Spark’s distributed versions of k-means, EM clustering, and 
power iteration, see Meng et al. [11]. Other parallelization attempts 
use the graphics processing unit (GPU). This has been done for k-
means in Zechner and Granitzer [18], for EM clustering in Kumar 
et al. [9], and for many others. The bottleneck here is the relatively 
slow connection between host and device memory if the data does 
not fit into device memory.

The second issue we are concerned with is the identification of 
the cluster count. A standard approach is to use one of the clus-
tering algorithms that require the cluster count to be input as a 
parameter, then run it for each count k in a set of likely values. 
Then, the “elbow method” from Sugar [16] is used to determine 
the optimal number k. For probabilistic models, one can apply in-
formation criteria such as the Akaike Information Criterion AIC as 
described in Akaike et al. [1] or the Bayesian Information Criterion
BIC following Schwarz [15] to rate the different clustering results, 
see, for example, Zhou and Hansen [20]. However, all these meth-
ods increase the computation time considerably, especially if there 
is not enough prior information to keep the range of possible clus-
ter counts small. Some clustering algorithms find the number of 
clusters directly, without being required to run the algorithm for 
all possible counts. Two of the more well-known examples are 
Density-based spatial clustering of applications with noise (DBSCAN) 
by Ester et al. [7] and Gap Statistic, Tibshirani et al. [17]. Besides 
our approach, there are also some other attempts to improve the 
clustering quality of BIRCH by changing the algorithm itself, for in-
stance in Ismael et al. [8] with non-constant thresholds, in Burbeck 
and Nadjm-Tehrani [3] with two different global thresholds, or by 
using DBSCAN on each tree level to reduce noise in Dash et al. 
[5]. However, while sometimes improving the quality, those ap-
proaches slow BIRCH down and still require the cluster count as 
input.

3. BIRCH

We shortly describe BIRCH, mainly to fix notations. For details,
see Zhang et al. [19]. BIRCH requires three parameters: the branch-
ing factor Br, the threshold T , and the cluster count k. While the 
data points are entered into BIRCH, a height-balanced tree, the 
cluster features tree, or CF tree, of hierarchical clusters is built. Each 
node represents a cluster in the cluster hierarchy, intermediate 
nodes are superclusters and the leaf nodes are the actual clus-
ters. The branching factor Br is the maximum number of children 
a node can have. This is a global parameter. Every node contains 
the most important information of the belonging cluster, the clus-
ter features (CF). From those, the cluster centers Ci = 1/ni

∑n
j xi j , 

where {xij}n
j=1 are the elements of the ith cluster, and the cluster

radii Ri =
√

1/ni
∑n

j (xij − Ci)
2 can be computed for each cluster. 

Every new point starts at the root and recursively walks down the 
tree, always entering the subcluster with the nearest center until 
the walk ends at a certain leaf node.

Once arrived at a leaf, the new point is added to this leaf 
cluster, provided this would not increase the radius of the clus-
ter beyond the threshold T . Otherwise a new cluster is created 
with the new point as its only member. This way, the threshold 
parameter controls the size of the clusters.

If the creation of a new cluster leads to more than Br child 
nodes of the parent, the parent is split. To ensure that the tree 
stays balanced, the nodes further above might need to be split re-
cursively. Once all points are submitted to BIRCH, the centers of 
the leaf clusters are, in the global clustering phase, entered into a 
clustering algorithm such as agglomerative clustering or k-means 
which is given as parameter the cluster count k. This last step im-
proves the cluster quality by merging neighboring clusters.

In this paper, when it is necessary to distinguish between the 
BIRCH algorithm with a final global clustering phase and the one 
without, we will call the former full-BIRCH and the latter tree-
BIRCH.

4. Concept

Tree-BIRCH is very fast. It clusters 100,000 points into 1000
clusters in 4 seconds, on a 2,9 GHz Intel Core i7, using scikit-
learn, see Pedregosa et al. [13]. The k-means implementation of the 
same library needs over two minutes to complete the same task on 
the same architecture. Furthermore, tree-BIRCH doesn’t require the 
cluster count as input, which in full-BIRCH is only needed for the 
global clustering phase. In addition, tree-BIRCH can be used as an 
online algorithm. Full-BIRCH cannot be used online, since it needs 
an end at which the global clustering could be run, but online al-
gorithms never end. However, tree-BIRCH usually suffers from bad 
clustering quality. Therefore, we focus on improving the clustering 
quality of tree-BIRCH.

In this paper, we consider the problem of clustering datasets 
that are samples of a mixture of two-dimensional isotropic Gaus-
sians. In particular, we present a method that automatically 
chooses an optimal threshold parameter for tree-BIRCH. As a pre-
requisite, we now describe three causes of erroneous clustering by 
tree-BIRCH and how they can, in principle, be eliminated.

Zhang et al. [19] noted that the CF-tree depends on the order 
in which the data is entered. If the points of a single cluster are 
entered in the order of increasing distance from the center, tree-
BIRCH is more likely to return just one cluster than if the first two 
points are from opposite sides of the cluster. In the latter case, the 
single cluster is likely to split, a situation we will refer to as cluster 
splitting (Fig. 1A).

Next, consider two neighboring clusters. If the first two points 
are from opposite clusters but still near each other, they could be 
collected into the same cluster, given the threshold is large enough, 
which we refer to as cluster combining (Fig. 1B).

Cluster combining often co-occurs with cluster splitting. To re-
duce splitting of a single cluster, the threshold parameter of tree-
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Fig. 1. Cluster splitting (A), cluster combining where the combining cluster is circled (B), depiction of cluster radius and cluster distance (C). Different forms and colors of the
observations correspond to different clusters they belong to.
BIRCH has to be increased, whereas a decreased threshold parame-
ter reduces cluster combining. Datasets with a large ratio of cluster 
distance (the distance between the cluster centers) to cluster ra-
dius are less likely to produce such errors (Fig. 1C).

The third source of deficient clustering cannot be influenced by 
the choice of the threshold. This happens if a cluster overlaps with 
two regions belonging to two non-leaf nodes in the CF-tree. We 
call this type of error supercluster splitting. It will be described in 
Section 7. This does not occur if the tree is flat, i.e. all leaves are 
children of the root. A flat tree can be obtained by choosing the 
branching factor Br to be larger than the maximal possible num-
ber of clusters. However, the tree structure is important for the 
performance if the number k of clusters is large, because the part 
of the algorithm that searches the cluster that a new point belongs 
to is logarithmic in k.

In the next section we will deduce a formula for the optimal 
threshold given two conditions: first we presume that the branch-
ing factor is chosen large enough for the BIRCH tree to be flat, and 
second, that all the clusters have approximately the same num-
ber of elements. In Sections 6, we lift the second condition, i.e., 
clusters can have different element counts. Then, in Section 7 and 
8, we consider supercluster splitting and develop an extension of 
tree-BIRCH that considerably reduces it.

5. Automatic estimation of the tree-BIRCH threshold for clusters
of same element count

As has already been pointed out, this paper focuses on the 
problem of clustering samples from a mixture of two-dimensional 
isotropic Gaussians and we want to describe a method which au-
tomatically finds the optimal threshold parameter for tree-BIRCH. 
In the current section this will be done for the special case that all 
clusters have approximately the same number of elements. Also, 
for now the BIRCH tree is chosen to be flat.

The goal is to obtain the optimal threshold parameter as a func-
tion of the maximum radius Rmax of the clusters and the minimum 
cluster distance Dmin , which we both presume to exist. The under-
lying assumption is that those two values are either already known 
or easy to obtain.

One typical procedure for finding Rmax and Dmin , if they are 
not known yet, is the following: We will presume that there exists 
a small but representative subset of the data that has the same 
maximum cluster radius Rmax and minimum cluster distance Dmin
as the full dataset. On this small dataset, Gap Statistic is applied 
to obtain the cluster count k. This k in turn is given to k-means 
to produce a clustering of the subset, which finally yields the two 
values Rmax and Dmin .

For the determination of Rmax and Dmin one could also use any 
other clustering algorithm that finds the cluster centers and radii 
without requiring the cluster count k as an input. However, Gap 
Statistic is chosen here, due to its high precision.

Our approach in this paper is mainly heuristic. For each sce-
nario of interest we run tree-BIRCH many times, always under the 
same conditions but each time with newly sampled data. From the 
frequencies of cluster splitting and cluster combining we deduce 
their probabilities. The number of repetitions necessary to obtain 
a required accuracy can be obtain from the well-known theory of 
confidence intervals, see e.g. Casella and Berger [4]. We have used 
the implementation in R Core Team [14]. Thus, for our error prob-
ability estimate at 0.01 to have a confidence interval of roughly 
±0.002, we need 10,000 repetitions, which is what we used in all 
our experiments.

Avoiding Cluster Splitting. We create many clusters contain-
ing the same number of elements n by sampling from a single 
isotropic two dimensional Gaussian probability density function. 
The units are chosen such that the radius R of this cluster will be 
one. Then, tree-BIRCH is applied with the same threshold T to each 
of those datasets. After each iteration, we determine whether tree-
BIRCH returns the correct number of clusters, namely one. From 
this, we assess if the error probability estimate for tree-BIRCH is 
less than 0.01, or one percent. We also investigate the impact of 
varying the number of elements n in the cluster on the result-
ing error probability. Finally, we repeat all the above for several 
thresholds T . For this heuristic analysis, we use the Python library 
scikit-learn, Pedregosa et al. [13], and its implementation of BIRCH.

According to the results presented in Fig. 2a, there is no indi-
cation that the number of objects in the cluster impacts the error 
probability. However the error probability is clearly affected by the 
threshold parameter; the error drops below one percent when the 
threshold value is greater than or equal to 1.6 (with units such 
that R = 1).

Avoiding Cluster Combining. While cluster splitting concerns 
only one single cluster, cluster combining involves two clusters. 
So, to begin with, we use a mixture of two Gaussians with a clus-
ter distance D = 6, both with equal radius R , again in units chosen 
such that R = 1. (If one of the clusters has radius R < 1, the error 
probabilities would be smaller, so we only consider the situation 
where both radii are equal.) Again, the error probabilities do not 
depend on the total number of data points, as shown in Fig. 3.

Note that our criterion for correct clustering is whether the 
right cluster count has been detected. We have found this crite-
rion to be sufficient and reliable for the problem that is considered 
here.

Fig. 3 pertains only to the cluster distance 6.0. To understand 
the situation for different cluster distances, consider Fig. 4. Here, 
we see the dependence of the error probability on the thresh-
old for several different cluster distances. For small thresholds 
(T < 1.7) we witness cluster splitting which results in higher clus-
ter counts and a higher error. This can also be deduced from 
Fig. 3, where for the small threshold T = 1.5 we see many clus-
ter counts of three and four. With T = 2.0 less splitting occurs and 
the error probability decreases. If the threshold continues grow-
ing (T = 3.0), cluster combining occurs more frequently, which 
increases the cluster counts of three and therefore increases the 
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Fig. 2. (a) For each pair (n, T ) of total number n of objects, running from 100 to 10,000, and threshold T ∈ {1.5, 1.6, 1.7}, we sampled n elements from an isotropic Gaussian
of radius R = 1, applied tree-BIRCH with threshold T , and recorded the cluster count. Every count different from 1 is an error. For each pair (n, T ) this was repeated 10.000
times to approximate the probabilities of cluster counts 1, 2, and 3. (b) For each threshold we sample 500 points from a single Gaussian of radius R = 1, apply tree-BIRCH
and record how often it returns the right number of clusters. This is repeated 10,000 times for each T to obtain an estimate for the error probability.

Fig. 3. For each pair (n, T ) of total number n of objects, running from 100 to 10,000, and thresholds T ∈ {1.5, 2.0, 3.0}, we sampled n elements from a mixture of two
isotropic Gaussians, both of radius R = 1 and distance 6.0, applied tree-BIRCH with threshold T , and recorded the cluster count. Every count different from 2 is an error. For
each pair (n, T ) this was repeated 10.000 times to approximate the probabilities of cluster counts 1, 2, 3, and 4.
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Fig. 4. For each pair (D, T ) of cluster distance D and threshold T , we sampled
10, 000 times 500 elements from a mixture of two Gaussians of radius R = 1 and
distance D . Each time we applied tree-BIRCH with the threshold set to T and com-
puted the error probabilities.

Fig. 5. For each pair (D, T ) of cluster distance D and threshold T , we sampled
10, 000 times 500 elements from a mixture of two isotropic Gaussians of radius
R = 1 and distance D . Each time we applied tree-BIRCH to compute the error prob-
abilities.

error probability. The fact that the graphs in Fig. 4 are dropping 
below one percent later than in Fig. 2b is due to cluster combin-
ing, which was not possible with just one cluster. For D ≥ 6.0 there 
are thresholds where the error probability drops below one per-
cent. More precisely, from Figs. 3 and 4 it can be deduced that, if 
D ≥ 6.0, a threshold of:

T = 2.0 · Rmax (1)

would ensure an error probability of less than one percent for each 
pair of neighboring clusters in the dataset.

Of course, if Dmin is clearly larger than 6.0 · Rmax , it would be 
beneficial to increase the threshold beyond (1). While the lower 
bound on the threshold is nearly the same for all cluster distances, 
the upper bound increases linearly, roughly with half the increase 
of the distance (Fig. 5). This is intuitively clear since two times 
the threshold should fit comfortably between two clusters to avoid 
cluster combining. To place the threshold in the middle between 
lower and upper bound, we choose 1

4 as the ratio of �Dmin and 
�T . We then fit an intercept of 0.7, which yields the following 
expression for choosing the threshold (in arbitrary units):

T = 0.2 · Dmin + 0.8 · Rmax, (2)

provided

Dmin ≥ 6.0 · Rmax. (3)

A-BIRCH with parallel Gap Statistic. Above, we have mentioned 
one possibility of obtaining the values Rmax and Dmin in case they 
are not yet already known. That involves the use of Gap Statistic. 
But Gap Statistic is very slow compared to full-BIRCH, possibly ru-
ining the overall performance. Therefore, we developed a parallel 
version of Gap Statistic. Note that Gap Statistic runs k-means for 
each cluster count k ∈ {1, . . . , kmax} not only on the dataset itself, 
but also on many Monte Carlo simulations (the R and MATLAB im-
plementations choose 100 simulations as default value). Therefore, 
we parallelized the loop over the Monte Carlo reference simula-
tions. The distribution of work and collection of the results are 
performed by Apache Spark.

Again we want to emphasize that this is not actually part of 
A-BIRCH, it is just one possibility to obtain Rmax and Dmin if they 
are not yet known. The proposed approach is summarized in Algo-
rithm 1.

Algorithm 1: A-BIRCH: Automatic threshold for tree-BIRCH us-
ing Gap Statistic for clusters with equal element count.

Data: N 2-dimensional data points {Xi}, kmax , number of Monte Carlo 
simulations B

Result: CF-tree
begin

make sure the data {Xi} is well shuffled
k∗ ← parallel Gap Statistic

(
subsample({Xi}), kmax, B )

labels ← k-means
(

subsample({Xi}), k∗ )
compute the maximum radius Rmax and the minimal distance Dmin from
the clustered data
if condition (3) is violated then

Warning: the clusters are too close – tree-BIRCH result might be
inaccurate

T ← equation (2)
CF-tree ← tree-BIRCH

( {Xi}, T , Br = ∞ )

6. Automatic estimation of the tree-BIRCH threshold for clusters
of different element count

In this section the condition that all clusters have the same 
number of elements is lifted. In the previous section, the mixture 
of Gaussians has been uniformly weighted, i.e. if a normal distribu-
tion with mean μ and covariance matrix � is written as N (μ, �), 
the data was sampled from a mixture:

p(x) =
k∑

i=1

1

k
N (μi,αi1), (4)

where αi ∈ R, α > 0 and the uniform weight is 1
k . Now, this con-

straint is lifted and the weights can be arbitrary positive real num-
bers {wi}k

i=1 that sum to one:

p(x) =
k∑

i=1

wi N (μi,αi1)

k∑
i=1

wi = 1, wi > 0 (i = 1, . . . ,k).

(5)

Again, tree-BIRCH is applied repeatedly to the case of two isotropic 
clusters. As before, it suffices to consider the situation where both 
clusters have radius one. However, this time the weight ratio is dif-
ferent from one. First, the weight ratio 1:10 is considered (Fig. 6). 
In this case, too, the simulation indicates that the probabilities of 
the cluster counts are independent of the total number of data 
points. However, contrary to the uniformly weighted case, an in-
creasing threshold very quickly leads to a wrong cluster count of 
one. Intuitively this can be understood as the smaller weighted 
cluster not being “strong” enough to prevail; it is more likely to be 
“swallowed” up by the heavier cluster.



JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.6 (1-10)

6 B. Lorbeer et al. / Big Data Research ••• (••••) •••–•••
Fig. 6. For each pair (n, T ) of total number n of objects, running from 100 to 1,000, and thresholds T ∈ {1.5, 1.9, 2.4}, we sampled n elements from a mixture of two isotropic
Gaussians with weight ratio 1:10, both of radius R = 1 and distance 6.0, applied tree-BIRCH with threshold T , and recorded the cluster count. Every count different from 2
is an error. For each pair (n, T ) this was repeated 10.000 times to approximate the probabilities of cluster counts 1, 2, 3, and 4.
Fig. 7. For each pair (wr, T ) of weight ratio wr and threshold T , we sampled 10, 000
times 500 elements from a mixture of two isotropic Gaussians of radius R = 1,
distance 7 and weight ratio wr. Each time we applied tree-BIRCH to compute the
error probabilities.

Next, the error probability as function of the threshold is com-
puted from simulations where, for a fixed cluster distance, the 
weight ratio is varied. As examples, cluster distances set to the 
values 7 and 13 are shown (Figs. 7 and 8). The results show that 
with increasing weight ratio, the interval of thresholds with error 
probability below 0.01 shrinks.

The next step is to obtain an expression for the optimal thresh-
old, the one with smallest error probability, as a function of cluster 
distance and weight ratio. To this end, we conducted simulations 
of the two-cluster scenario for various combinations of those two 
parameters, each time recording the optimal threshold. This data 
then suggested to fit a nonlinear function that is linear in the 
cluster distance D with a slope given by the inverse of a linear 
function of the weight ratio wr:
Fig. 8. For each pair (wr, T ) of weight ratio wr and threshold T , we sampled
10, 000 times 500 elements from a mixture of two isotropic Gaussians of radius
R = 1, distance D = 13 and weight ratio wr. Each time we applied tree-BIRCH to
compute the error probabilities.

T = 1

a · wr + b
D + c (6)

where a, b, and c are parameters to be learned. We used the non-
linear least square function nls provided by the statistics com-
puting environment R, see R Core Team [14]. The fitted parameters 
are (see also Fig. 9):

a = 0.3

b = 4.5

c = 0.8.

(7)

The correlation of the measured and fitted values is 0.9984.
Furthermore, we would like to know when the threshold from 

this formula leads to an error not greater than one percent. To 
this end, we have, again, run tree-BIRCH on many cases of two 
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Fig. 9. The dotted lines connect the optimal thresholds from the simulations, one
line for each weight ratio, and the solid lines are the fitted values.

neighboring clusters as described above. This time, cluster distance 
and weight ratio have been chosen from a grid of points in the 
plane spanned by those two parameters. We restricted the grid to 
cluster distances in the interval [6, 11]. Those points are separated 
into two regions, the one where the optimal threshold has an error 
probability of less then one percent and the region where it is 
above one percent. The boundary between those two regions was 
approximated with a line. This line is given by:

wr = 8.8 · D − 42.1, (8)

where D is the cluster distance in units of Rmax . For all pairs 
of cluster distance and weight ratio to the right of this line, the 
optimal threshold computed with (6) and (7) will have an error 
probability of less than one percent.

In summary (see Algorithm 2), we propose to use high-
performance clustering with Gap Statistic on a subset of the data 
as described above, to obtain the maximum radius Rmax , the mini-
mum cluster distance Dmin , and the maximum weight ratio wrmax
of neighboring clusters. Those parameters are then used to com-
pute the optimal threshold using (with arbitrary units):

T = 1

0.3 · wrmax + 4.5
· Dmin + 0.8 · Rmax. (9)

This formula gives the optimal threshold parameter T . Using it, 
tree-BIRCH will have an error probability of less then one percent 
for each neighboring cluster pair, provided the following conditions 
are satisfied:

6.0 · Rmax ≤ Dmin

wrmax ≤ 8.8 · Dmin

Rmax
− 42.1.

(10)

Note that those conditions are only sufficient, not necessary.
However, from Fig. 5, 7, and 8, it can be seen that with a 

threshold of T = 2 · Rmax the error probability is always clearly be-
low one percent, as long as the cluster distance and weight ratio 
are not too extreme. Thus, we can also formulate a rule of thumb:

If the minimal cluster distance is greater than six times the 
maximum radius and the weight ratio of neighboring clusters is 
Algorithm 2: A-BIRCH: Automatic threshold for tree-BIRCH for 
clusters with different element counts.

Data: N 2-dimensional data points {Xi}, kmax , number of Monte Carlo 
simulations B

Result: CF-tree
begin

make sure the data {Xi} is well shuffled
k∗ ← parallel Gap Statistic

(
subsample({Xi}), kmax, B )

labels ← k-means
(

subsample({Xi}), k∗ )
compute the maximum radius Rmax , the minimal distance Dmin , and the
maximum weight ratio of neighboring clusters from the clustered data
if conditions (10) are not satisfied then

Warning: the clusters are too close – tree-BIRCH result might be
inaccurate

T ← equation (9)
CF-tree ← tree-BIRCH

( {Xi}, T , Br = ∞ )

Fig. 10. Comparison of runtime between a flat tree and one with branching factor
100, computed with the BIRCH implementation of scikit-learn by Pedregosa et al.
[13].

not greater than ten, a threshold T = 2 · Rmax is a decent choice, 
with error probability smaller than one percent.

7. Supercluster splitting

The tree structure of BIRCH makes it possible to use BIRCH
in situations with many thousands of clusters. When a new data 
point enters the BIRCH tree at the root, it descends the tree to its 
belonging cluster in one of the leaves. For a flat tree, this search 
is of order O (k), with k being the current cluster count. For a tree 
with branching factor Br, this is of order O (Br · logBr(k)). So it is 
important to lift the condition that the branching factor is infinite, 
i.e. the tree will no longer be flat. In Fig. 10, we see a comparison 
of runtime for two different choices of branching factor (Python 
implementation in scikit-learn by Pedregosa et al. [13]). From now 
on, we will call BIRCH with a flat tree, i.e. the tree consists only 
of the root node and its direct children, which are all leaves, flat 
BIRCH. Otherwise, we call it deep BIRCH.

The downside of using deep BIRCH is that a new kind of er-
ror is introduced. Suppose the BIRCH tree consists of three layers 
and that the root has two children. The nodes at the lowest, third, 
layer, i.e. the leaves, represent the actual clusters, while the chil-
dren of the root node in the middle layer represent superclusters. 
Furthermore, presume that right in the middle between the cen-
ters of those two child nodes of the root, there is a cluster so that 
half of the points in this cluster are nearer to the center of the first 
child and the other half is nearer to the center of the second child. 



JID:BDR AID:75 /FLA [m5G; v1.224; Prn:18/10/2017; 14:09] P.8 (1-10)

8 B. Lorbeer et al. / Big Data Research ••• (••••) •••–•••
Fig. 11. (a) Flat BIRCH finds the right clusters. (b) The same dataset as in (a) is used here. The algorithm is deep BIRCH with a branching factor of 5. The right cluster count
is 50, but the algorithm finds 73. The reason for this is supercluster splitting.
That means that this middle cluster will already be split at this 
supercluster level in the BIRCH tree. This problem only arises with 
deep BIRCH, it does not occur when using flat BIRCH. Obviously, 
this effect is completely independent of the size of the threshold 
parameter. We call this effect supercluster splitting.

An example of how supercluster splitting affects the clustering 
quality can be seen in Figs. 11a and 11b. There, the same dataset is 
clustered both with flat (Fig. 11a) and with deep (Fig. 11b) BIRCH. 
The thresholds are the same, and the data enters BIRCH in the 
same order, so the difference in clustering performance is only 
due to the difference in the tree structure. The dataset consists of 
50 clusters and flat BIRCH properly recognizes exactly all of them. 
However, deep BIRCH, with a branching factor of 5, introduces su-
percluster splitting and finds 73 clusters.

In full BIRCH, i.e. when tree-BIRCH is followed by a global clus-
tering phase, this global clustering usually alleviates supercluster 
splitting to a certain extend, but with tree-BIRCH this effect is 
clearly noticeable.

8. Multiple branch descent

As was shown above, tree-BIRCH is especially susceptible to su-
percluster splitting. So an algorithm is needed that eliminates or 
at least considerably reduces this effect without resort to a final 
global clustering phase. We suggest the following modification of 
tree-BIRCH.

As was shown in Section 7, supercluster splitting happens be-
cause once a new point arrives at the second to last level, i.e. at 
the level of parents of the leaves, there is only a small portion 
of all the clusters, namely the children of the current parent, the 
point could possibly be assigned to. In unfavorable situations, the 
nearest cluster might not be among them. With flat trees, how-
ever, since all clusters are children of the same parent, the root, all 
clusters are considered when searching for the nearest one, so the 
closest one is always found. Our suggestion is to compromise be-
tween those two situations, by considering not only the leaves of 
a single parent, but also the leaves of parents nearby.

This is done as follows. Currently, at each node, the distance 
of the new point to the centers of all the children of this node 
are computed and the new point descends into the nearest child. 
This is modified by having the new point not only descend into 
the nearest child, but also into other children, that are not much 
further away from the new point than the nearest child. That way, 
the new point performs a multiple branch descend into the tree. As 
a result, the new point will be compared against more leaves and 
the probability that the nearest one is amongst them, increases.

Of course, one now has to specify a criterion deciding which 
children, besides the nearest one, the new point has to descend 
into. We have opted for a straight forward method: the user pro-
vides a parameter s, and all the children of the current node, 
whose distance from the new point is less than the distance of 
the new point to the nearest cluster center plus s, will be de-
scended into. To be more precise, if the new point is p, the metric 
is given by d(·, ·), the children {n}N

i=1 of the current node have cen-
ters C(ni), and the child with center nearest to the new point is n∗, 
then the set � of children to descend into is given by:

� = {ni | d(C(ni), p) − d(C(n∗), p) < s}. (11)

We call this algorithm multiple branch descent BIRCH (MBD-
BIRCH). The higher the parameter s, the less supercluster splitting 
there will be. On the other hand, a higher s will also slow down 
the algorithm, since the number of branches to descend into and 
the number of clusters to compare will increase.

9. Evaluation

First, we evaluated the accuracy of A-BIRCH for clusters with
approximately the same element count as discussed in Section 5. 
That means, we use the threshold estimation as stated in Equation 
(2). A-BIRCH performs correctly with different sizes of Dmin and 
different numbers of clusters. The evaluation datasets contain sam-
ples from two-dimensional isotropic Gaussian distributions with 
Dmin ≥ 6.0 · R , which is the requirement from (3) (see Fig. 12).

In an additional step, we evaluated the scalability of A-BIRCH. 
As already stated before, tree-BIRCH itself is very fast. So if Rmax

and Dmin are known attributes of the data, A-BIRCH with the com-
puted threshold from (2) or (9) will be extremely fast and scales 
with a complexity less than O (nk), where n is the number of 
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Fig. 12. The datasets A, B, C and D contain 3, 10, 100 and 200 clusters, respectively. Each cluster consists of 1000 elements, the radius of the clusters is R = 1, and the Dmin

is in all cases larger than 6: in A – 6.001, in B – 7.225, in C – 6.025, in D – 6.410.
Table 1
Speedup of Gap Statistic by parallelization on Spark.

Sequential Spark: 4 workers Spark: 8 workers

B = 100, kmax = 20 1775 s 349 s 197 s

B = 100, kmax = 40 7114 s 1425 s 795 s

B = 500, kmax = 20 8803 s 1470 s 725 s

B = 500, kmax = 40 35242 s 5953 s 2909 s

points and k the number of clusters. For the situations in which 
Rmax and Dmin are not yet known, we discussed above the use 
of a subsample to determine those parameters, using a parallel 
version of Gap Statistic. We have tested the parallelized implemen-
tation of Gap Statistic on an Apache Spark cluster on Microsoft 
Azure. Two compute cluster configurations have been evaluated, 
each with two master nodes and with four and eight workers, 
respectively, each of which running on virtual machines of type 
Standard_D3. They currently provide four CPU cores and 14GB 
of memory, running the Linux operating system. The parallelization 
has been implemented using the Spark Python API (PySpark). The 
computation of Gap Statistic was run on a dataset containing 10 
clusters, each consisting of 1000 two-dimensional data points. The 
computation times for varying numbers B of reference datasets 
and maximal number of clusters kmax are shown in Table 1.

The results show that the parallelized implementation of Gap 
Statistic with Spark is scalable as the computation times decrease 
linearly with an increasing number of worker nodes. Although the 
Gap Statistic phase is considered computationally expensive, it pro-
vides us with the parameters Rmax and Dmin that are needed for 
A-BIRCH to increases the correctness of tree-BIRCH significantly 
and does not require any prior knowledge on the dataset.

Next, we evaluated A-BIRCH with varying weight ratios. In 
Fig. 13 we have a data set with 100 clusters that has differing 
weights, and varying cluster radii, and the clusters are at times 
that near to each other that condition (10) is actually violated. 
Nevertheless, A-BIRCH succeeds in clustering the data set correctly.

In Section 8 MBD-BIRCH has been described as an alternative 
in cases where the cluster count is too large for flat A-BIRCH to 
satisfy given speed requirements. It has also been pointed out that 
the choice of the parameter s represents a trade-off between speed 
and quality. This is exemplified in Fig. 14. Here we have used a 
data set consisting of 400 clusters, each sampled from a Gaussian 
with radius 3, each containing 50 points. The inter-cluster distance 
is never smaller than 24. This data set has been clustered with 
branching factor 10 and various s values. We see that with branch-
ing factor 10 and s = 0, i.e. no multiple branch descent, superclus-
ter splitting leads to a cluster count of almost twice the correct 
value. But when the s value is increased, the detected cluster count 
approaches the correct value. Although the runtime increases with 
increasing s value, the correct cluster count is achieved with a run-
time that is still clearly smaller than the runtime of flat BIRCH.
Fig. 13. A-BIRCH clustering accuracy for a data set with 100 clusters with points
per cluster ranging from 30 to 300, cluster radius ranging from 4 to 7, and with a
maximum radius of 7 and a minimum cluster distance of 30. Even though condition
(10) is clearly violated, A-BIRCH succeeds in clustering the data set correctly.

This example reflects correctly what we have witnessed in mul-
tiple simulations. However, the influence of the choice of s on the 
clustering quality as well as on the runtime, depending on the 
branching factor and the attributes of the data set, needs to be 
investigated more thoroughly. Similarly, finding a method to auto-
matically choose an, in some appropriate sense, optimal s value, is 
a task that deserves more research.

10. Future work

This paper has focused only on two-dimensional data sets. In 
future work, the findings discussed here will be extended to data 
sets with more than two dimensions.

In Sections 5 and 6 we have fitted models for the optimal 
threshold in an ad hoc manner. It would be worthwhile to use 
methods of model selection to obtain more accurate solutions. 
Also, the parameter regions which result in error probabilities less 
than 1 percent, given by (3) and (10) could be improved, especially 
in regions with small cluster distance.

Most of the results in this paper have been achieved by inves-
tigating simulated samples from mixtures of Gaussians. It would 
be interesting to see how much could be achieved exclusively with 
mathematical reasoning. Take, for example, the splitting probability 
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Fig. 14. A dataset with 400 clusters has been clustered with MBD-BIRCH with
branching factor 10 and various s values. On the left, the detected cluster count
is plotted. The horizontal line signifies the correct cluster count. On the right, the
ratio between the runtime for the given s value and the runtime for s = 0 is plotted.
The horizontal line denotes the time needed by the flat tree.

of a single cluster and start with just two points. It is not diffi-
cult to compute the probability of those two points to belong to 
the same cluster for a given threshold T . Then, generalize this for-
mula to the case of arbitrarily many points. Next, try to find a 
mathematical formula, or a reasonable approximation, for the er-
ror probability in the case of two neighboring clusters. Also, the 
conditions 3 and 10 might benefit from a more thorough mathe-
matical description of the problem.

In Section 8 we have pointed out that in the choice of the opti-
mal parameter s there is a trade-off between speed and accuracy. 
In future work it would be important to make clear what exactly 
optimal means in this situation and to find an automatic way of de-
riving this optimal parameter s from appropriate attributes of the 
data set.

Last but not least, all the evaluations have been done with syn-
thetic data. It is important to see how A-BIRCH and MBD-BIRCH 
will perform on real world data.

11. Conclusion

In this paper we introduced A-BIRCH, a parameter-free variant
of BIRCH, and MBD-BIRCH, an extension of tree-BIRCH that im-
proves the accuracy when BIRCH uses deep trees.

Choosing the correct parameters for clustering algorithms is of-
ten difficult as it requires information about the dataset, which is 
often not available. This is also true for BIRCH, which requires the 
cluster count k as well as a threshold T in order to compute the 
clusters correctly. For this reason, we removed the global clustering 
phase, thus rendering the cluster count parameter k unnecessary, 
restricted the BIRCH trees to be flat, thus removing the possibility 
of supercluster splitting, and proposed a method that automati-
cally estimates the threshold T from the attributes Rmax and Dmin
of the data that are more likely to be already known or at least 
can be obtained more easily than T. Moreover, as an example how 
one could go about obtaining Rmax and Dmin in case they are not 
yet known, we described a method to obtain those parameters that 
involved analyzing a representative subset using a parallelized ver-
sion of Gap Statistic. The evaluation proved the applicability of our 
approach in a very robust manner for two-dimensional mixtures of 
isotropic Gaussians.

This version works well for data sets of tens of thousands of 
clusters. However, for data with even more clusters, it is advan-
tageous to use tree-BIRCH with deep trees. This introduces super-
cluster splitting, and we have developed MBD-BIRCH, an extension 
of tree-BIRCH, which reduces or even completely removes super-
cluster splitting while still being faster than tree-BIRCH with flat 
trees.
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