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Classification Performance Improvement Using Random
Subset Feature Selection Algorithm for Data Mining

Abstract

This study focuses on feature subset selection from high dimensionality databases

and presents modification to the existing Random Subset Feature Selection(RSFS) al-

gorithm for the random selection of feature subsets and for improving stability. A

standard k-nearest-neighbor (kNN) classifier is used for classification. The RSFS al-

gorithm is used for reducing the dimensionality of a data set by selecting useful novel

features. It is based on the random forest algorithm. The current implementation suf-

fers from poor dimensionality reduction and low stability when the database is very

large. In this study, an attempt is made to improve the existing algorithm’s perfor-

mance for dimensionality reduction and increase its stability. The proposed algorithm

was applied to scientific data to test its performance. With 10 fold cross-validation and

modifying the algorithm classification accuracy is improved. The applications of the

improved algorithm are presented and discussed in detail. From the results it is con-

cluded that the improved algorithm is superior in reducing the dimensionality and

improving the classification accuracy when used with a simple kNN classifier. The

data sets are selected from public repository. The datasets are scientific in nature and

mostly used in cancer detection. From the results it is concluded that the algorithm

is highly recommended for dimensionality reduction while extracting relevant data

from scientific datasets.

Keywords: Random Forest, Subset Feature Selection, Dimensionality Reduction,

Scientific Data, Stability

1. Introduction

Data mining, the extraction of useful hidden features from large databases, is an

effective new innovation with incredible potential to help organizations, focus on

developing business strategies. The tools, developed for mining data, anticipate future

patterns and practices, permitting organizations to make proactive, learning-driven

choices. Many data mining tools can address business challenges more effectively

than can traditional query or report-based tools. The performance of traditional tool’s

is very poor because of the large quantities of data involved. However, large quantities
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of data might sometimes result in poor performance in data analytics applications as

well.

Most data mining algorithms are implemented column-wise, which makes them

become slower as the number of features increases. When the quantity of collected

data is very large, mining for relevant data is a challenge. This is known as the "curse

Of dimensionality"[1, 2, 3, 4]. Hence, there is a need for reducing the dimensionality

of data without compromising the intrinsic geometric properties. Several methods

have been developed, as shown in Figure (1), to address the challenge. Especially in

the fields of bio-medical engineering, drug testing, cancer research, the data quan-

tities involved are huge, and collecting them is very expensive. The data generated

from experiments, in the above-mentioned fields are popularly known as scientific

data. Such scientific data are tend to be noisy and sparse in nature [5, 6]. Because of

this, standard data mining tools often do not perform efficiently when applied to sci-

entific data. In this paper, an attempt is made to improve the existing random subset

feature selection(RSFS) algorithm for better dimensionality reduction when applied

on scientific data.

Scientific data sets result from extensive research in fields such as cancer research,

bio-informatics, medical diagnosis, genetic engineering and weather studies. These

data sets are sparse in nature. For example, cancer, also called malignancy, is an ab-

normal growth of cells. For cancer treatment chemotherapy, radiation, and/or surgery

may be required according to the severity of the disease. In this study, we attempted

to reduce the number of features to aid in the detection of cancer, leading to time

savings and saved lives. In this paper, we propose a dimensionality reduction on fea-

tures when applied to cancer data sets. We describe and evaluate our approach in

4 phases: (1) improvement of the random subset feature selection(RSFS) algorithm,

(2)the two-sample t-test to ascertain whether the difference between the existing and

proposed algorithms is significant, (3) a box plot comparing proposed algorithm’s per-

formance with that of the existing algorithm when datasets are from two classes are

of a multi-class labeled type, and (4)stability enhancement for a stable feature subset.

This paper is organized into 6 sections: 1. Introduction(this section), 2. Dimension-

ality Reduction Techniques Related Work, 3. About the existing RSFS, 4. Proposed

RSFS Algorithm(present work), 5. Experiments and Results, and 6. Conclusion.
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Figure 1: Taxonomy of techniques for dimensionality reduction

2. Dimensionality Reduction Techniques Related work

The dimensionality reduction techniques(shown in Figure (1)) are explained in the

following sections.

2.1. Feature Extraction and Feature Selection Techniques

Feature extraction is a dimensionality reduction technique to build a new set of

features from the original feature set.

The Principal component analysis(PCA)[7] is widely used in exploratory data

analysis for building predictive models: it is a statistical procedure that converts a

large data set with correlated features into a set of linearly uncorrelated principal

components. The Multi-Dimensional Scaling(MDS)data visualization technique[8] is

used to understand the level of similarity between individual cases of a data set. In-

dependent component analysis(ICA)[9], which is widely used in signal analysis, is a

computational method to separate, a multivariate signal into individual components.

Feature selection is a process for identifying and removing redundant and irrele-

vant features and increasing classification accuracy. The feature selection method[10,

11] selects a subset from the original feature set without impairing its knowledge.

Feature subset selection methods are classified into four types:(1) embedded methods

(2) wrapper methods (3) filter methods, and (4) hybrid methods. The feature selec-

tion methods are further divided into subset selection methods and feature scoring

methods.
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2.1.1. Feature Subset Selection Methods

Feature subset selection(FSS) is an important step in the data mining process[12,

13, 14] to select the relevant feature subset from a large data set before classification.

This process is important in the scientific research areas such as genomics, bioinfor-

matics, metabonomics, near-infrared and Raman spectroscopy [15, 16, 17], fields space

in which the data sets are very large and sparse or noisy in nature. The purpose of

feature subset selection is to improve performance and select effective predictors by

addressing the dimensionality. Several methods, are employed to address this chal-

lenge in the field of data mining: Two popular approaches are Feature Selection(FS)

and the other is Feature Extraction(FE)[18, 19, 20, 21]. It has been observed that for

scientific data mining FS is superior to FE[15, 20].

There are many important feature subset selection methods, such as sequential

forward selection(SFS)[22], sequential floating forward selection (SFFS)[23], mini-

mum redundancy and maximum relevancy method(MRMR[24]) and the random sub-

set feature selection (RSFS)method [25]. In SFS the features are selected by iteratively

updating the feature importance, however this some times results in, sub-optimal

output. To eliminate this problem, SFFS was developed, in which iterations are con-

tinued until they converge. The MRMR method selects the features based on their

relevancy:features that are independent are selected, and irrelevant features are elim-

inated. The above methods perform with greater degrees of accuracy when the data

set is small; however, when the data set is large, the results are unsatisfactory.

The random subset feature selection (RSFS)algorithm [26, 25, 27, 28, 29, 30] is

used for selecting relevant features from large data sets. Each feature is evaluated and

selected based on its usefulness. Because of the randomization technique, the selected

subset of features is always optimal.

The set covering problem(SCP)[31] is a popular method for subset selection that

is used in various applications; the supervised set covering problem(SSCP) or unsu-

pervised set covering problem(USCP) are subsets of the SCP for finding the optimal

set for classification.

2.1.2. Feature Scoring Methods

The goal of the statistical dependency(SD) method[32] is to ascertain whether

a feature is statistically dependent on the label; if all the features are independent,

then the SD value is minimized. Mutual information(MI) [18] is used for calculat-

ing the mutual dependence between two features. Both the SD and MI methods

are used for scoring and ranking of the features. The distribution alignment and

matching(DAM)method[33] is a fully unsupervised method used for selecting the fea-

tures by comparing their respective distributions. This method is very effective if the

data are already analyzed.
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This paper presents an improvement to the existing RSFS algorithm and evalu-

ates its performance with that of existing one. An attempt is made to select the most

useful and relevant features from a large data set. Unlike other Greedy heuristic al-

gorithms, this algorithm is not susceptible to local maxima[10]. However, it is sus-

ceptible to overfitting when proper precautions, such as cross-validation and data set

splitting, are not followed in the training and testing data sets. The algorithm learns a

good subset of features from the total data set for data mining classification tasks and

demonstrates reasonable performance on independent test sets. This study conducted

experiments using various scientific data sets, and the results are discussed in section

5.

2.2. Challenges in Feature Subset Selection on High Dimensional Scientific Data

Selection of the most important and relevant features from high dimensional sci-

entific data[34, 35], for the classification task is a challenge currently faced by many

data mining professionals. Ideally the best subset will contain those features provid-

ing complete information about the data and adding or subtracting information should

not improve or degrade the performance [20, 36, 37]. Since the resulting data set is

small than the original high dimensional dataset, it is easier to perform classification

on that data for further analysis [38, 36].

Although it may sound simple, there are two fundamental challenges in finding

an optimal feature subset from a huge scientific dataset:(1)exhaustive searching and

(2)over fitting. For a dataset of n features there exists 2n subsets. As the number of

features increases, the number of subsets increase exponentially, and searching for

a relevant subset is exhaustive and time consuming and sometimes computationally

impossible. Similarly, when the dataset is huge and the total number of features is

greater than the size of training sample, the model shows very good performance on

the training set but not on the test or validation data[39, 24, 40, 41].

In order to overcome the exhaustive search issue, several feature subset selection

methods[42] are used to select a good subset. Several heuristic methods are used, such

as incrementally adding the next best feature to the current feature subset known as

forward selection[22]; removing irrelevant features[43], known as backward elimina-

tion; or iteratively carrying out both to avoid feature nesting[23]. In some cases, a

correlation measure of feature importance can be used to select the most important

features based on the rank, which eliminates the need for iterative searching of the

best subsets.

The overfitting problem can be addressed by splitting the data set into training

and testing sets(two-thirds and one-third, respectively) and testing the quality of the

selected subset using the independent test set[38]. Although this technique can help

to estimate the amount of overfitting, it may not help in selecting the optimal feature

subset. However, in reality, the overfitting can either by using the comprehensive
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dataset or by using an algorithm that is not prone to "false" optima for a specific

training dataset.

In the current work, an improved random subset feature selection method is pre-

sented that reduces the dimensionality of the dataset without compromising the clas-

sification accuracy. The proposed method also has improved performance compared

with the existing algorithm.

2.3. Classifier

An instance based standard k-nearest-neighbor(kNN) classifier is used to deter-

mine the class membership. In all the experiments, the counts of the different class

labels within of k samples were normalized to account for uneven distribution.

2.4. Data Sets

Shown in Figure(2), the datasets were collected from various repositories such as

UCI-machine learning repository, www.featureselection.asu.edu, andwww.broadinstitute.org

[44]. The majority of the datasets are from cancer research studies.

Figure 2: Data sets

2.5. Stability

A feature selection algorithm is regarded as having high stability if it produces a

consistent feature subset when new training samples are added or when some training

samples are removed[45, 46, 47, 48]. If an algorithm produces a different result when

there is any change in the training data, then that algorithm is unreliable for feature

selection. Examples of instabilities are given in [48]. In Dunne et al. [46], wrapper

techniques were used to study stability measures and introduced with possible solu-

tions for addressing the problem. Various measures were established in[45, 49, 47]
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Table 1: Important notations used in the paper

Important notations used in the paper

Notation Description

x̄i Normalized value of the feature

μ Mean value of the feature

σ Standard deviation of feature

P Full set of features(columns)

N Samples(rows)

Ȳi Subset (selected features or columns)

fp Feature

rp Relevancy of feature fp
dq Dummy feature

rq Relevancy of dummy feature dq
I Number Of dummy features

Si Feature subset

ci Criterion function

E(c) Expected criterion

rrand Relevancy Of dummy feature

θ Threshold value

m Subset selected for processing
√
P

gq Relevancy Of dummy feature dq

for evaluating different subsets obtained using a certain number of iterations. Using

these measures, a more robust subset can be found for different datasets. In Yang

and Mao[48], a multi-criterion fusion algorithm was developed using a combining of

multiple classifiers to improve the accuracy.

The feature selection algorithm can alone provide the relevancy[50] of each fea-

ture for classification, but it cannot provide a stable subset on each iteration as it is

dependent on the classifier. In addition, a stable feature set cannot be provided on the

basis of an appropriate feature selection algorithm. However, it can aid in selecting

the relevant features when the latter is coupled with a classifier. In our approach, a

post-processing technique based on distance measure is implemented after the classi-

fier output is collected. This results in a stable feature subset. The procedure explained

in detail in the section that follow.

3. About the Existing RSFS Algorithm

The RSFS algorithm has three tasks, namely (1)pre-processing (2) random subset

feature selection, and (3)classification (4)challenges
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3.1. Pre-processing

Data transformation is an important task for improving the performance of a data

mining algorithm.There are several transformation techniques, such as min-max,Z

score, and decimal scaling. Of these three methods Z score is the most powerful[51,

52]. Based on the work ofAl Shalabi et al. [51], the Z score transformation is a widely

used pre-processing technique and it is applied here as well. Before initiating the

actual processing, all features are normalized to have a zero mean and unit standard

deviation:

x̄ = (xj − μj)/σj

where xj is the original value of the feature; µj and σj are the mean and standard

deviation, respectively, of the feature xj ; and x̄ is the normalized value of the feature.

The values measured across the respective data sets (training, development, and test

sets) are normalized to improve the performance.

3.2. Existing Random Subset Feature Selection(RSFS) Algorithm

The aim of the random subset feature selection algorithm is to identify the best

possible feature subset, from a large data set,in terms of its usefulness in a classifi-

cation task; this process is shown in Figure (3). The feature selection is carried out

iteratively. A simple kNN classifier is used to classify randomly selected subsets. In

each iteration, the relevancy is fine tuned based on the feature membership. In the

other feature subset selection algorithms, such as sequential forward selection [53],

the relevance of a feature is computed by its presence or absence in the subset, whereas

RSFS selects the features based on the average usefulness of the feature in the context

of other features. Because of randomness, the RSFS is not prone to converging to local

maxima[25, 50, 54].

In RSFS, as the number of iterations increases, more features are selected and

classified using the kNN classifier[55, 56].

3.3. Classification

During the classification, kNN classifiers are used to classify the random subsets

generated by the random forest algorithm[57, 58, 59, 56, 60, 61]. Since kNN is stable,

re-sampling is not necessary for kNN. Each kNN classifier classifies a test point by the

majority, or weightedmajority class, of its k nearest neighbors. The final classification

in each case is determined by a majority vote of random kNN classifications. This can

be similar to voting by majority [62].
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Figure 3: Feature subset selection and classification

3.4. Challenges

Several challenges are encountered with the existing methods of feature subset

selection methods resulting a need for improved one. The challenges are mentioned

below

The feature’s utility,in filter based methods, is computed as the correlation be-

tween feature and class label. This is carried out by ranking the features in descend-

ing order and selection the top scores. This method cannot capture the interaction

between the features. This results in suboptimal results and it is very difficult to de-

cide the optimal subset.

Using Wrapper methods, the feature subset selection relatively more accurate

when compared to the filter method but the feature subsets that are overly specific to

the used classifier.[63].

Both Filter and Wrapper methods uses search strategy for identifying the subsets.

Most widely usedmethod by researchers are Genetic Algorithm(GA) and Support Vec-

tor Machine(SVM) for classification. But the GA is cannot assure the global maxima

most likely to stuck at local maxima. The convergence tine is high some times leading

to overfitting. This algorithm gives better results if the labels are binary. The SVM’s

are memory intensive and difficult to tune as the performance depends on picking

the right kernel. The scalability is a challenge.Currently in industry Random Forest

Classifiers are preferred over SVMs

The existing RSFS algorithm works well as long as the data set has a moderate
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to high number of features. However, when the number of features in the data set

exceeds 9000, the classification accuracy starts to decline, and reliability becomes very

poor(see Figure (9))[64, 65]. As a result, there is a dire need of modification to the

existing algorithm to enhance the performance and improve reliability for cases in

which there are more than 10,000 features.

4. Proposed RSFS Algorithm

After carefully considering the challenges in the above mentioned section the pro-

posed algorithm is mentioned here

In order to achieve improved accuracy and reliability for high dimensional scien-

tific data sets, the modified RSFS algorithm is presented as follows.

Given a data set that contains N samples in rows and P features as columns, let

Yj be the columns selected in the previous iteration. Each true feature fp from the

full set of features P has a relevance value rp ∈ [-∞,∞ ] associated with it. A set

of dummy features dq ∈ I with related relevancies rqare also defined. During each

iteration, the algorithm operates as described below(see Figure (4)).

4.1. Improvement to the RSFS Algorithm

Themain advantages to observe in proposed(improved) RSFS algorithm are, which

are not there in exiting algorithm

1. Separate training and testing datasets are given as input for realistic accuracy

in improved RSFS algorithm.

2. Consistency of the final condensed subset is high.

3. Relatively lesser number of iterations will be taken for achieving the same re-

sult.

4. The benefits can be observed better for large data sets.

5. The number of features are reduced in proposed algorithm compared to existing

algorithm.

We now discuss the proposed algorithm. The improved algorithm begins by normal-

izing the data of a given dataset of sizeD. The dataset is split into two parts two-thirds

for the purpose of training and one-third for testing. From the training dataset, the

algorithm randomly generates subsetsSi of features(f(p)); each subsets size is equal

to
√
(No.offeatures) [62, 66]. The relevance of each generated subset is calculated

as the difference between performance criteria P (c) and expected criteria E(c). The
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Figure 4: Flow of proposed algorithm
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expected criterion is the average of all accuracies of all labels across all iterations,

calculated as

E(c) =
∑ (Correctly − Classified)

(Correctly − Classified) + (Wrongly − Classified)
× 100

n
(1)

where n is the number of class labels in the dataset.

The performance criterion is the average of all accuracies of all labels for the cur-

rent iteration. In the first iteration, the performance criterion and expected criterion

are the same. In every iteration, the relevance of each true feature is updated. The rel-

evancy columnmatrix is converted into a probability columnmatrix using the normal

cumulative function(normcdf()) as a transfer function. This transformation is required

because of the non availability of a global relevance value for each type of dataset. This

transformation helps us to convert the relevancy values to probability values to estab-

lish a common understanding[67]. A set of dummy features dq is generated, similar

to Si, to calculate the shape parameter and simulate the random walk process. As

mentioned above, the relevancies of the dummy features are updated in each itera-

tion. The dummy features‘ relevancies are useful as a baseline to set the threshold for

the stopping criterion. The "best"subset is determined as the probability(relevancy of

(feature (rp) > dummy feature (rq)) > (threshold value). The threshold value is user

set threshold for probability.(in the current work the arithmetic mean of Expected

criterion across all previous trials is used). The threshold value decides the time of

convergence and shall be carefully selected. If the threshold value is very high then

the no. of iterations will increase where as if the threshold value is less then the clas-

sification accuracy will decrease. Hence the value shall be selected based on nature of

problem. The relevancy of dummy features(rq) are modeled as normal distribution.

In our experiment, we selected the threshold value as 0.9(user defined threshold)

for Forest data set explanation due to space constraint in the paper, for the remaining

data sets 0.99 is threshold value and datasets were used as listed in Figure 2. Most

of the datasets were collected through cancer research, and the cost of collection is

very high. Dimensionality reduction on these datasets considerably helps the com-

munity for pre-screening the cancer condition in the early stages, as number of fea-

tures(confirming tests)is reduced. The sampling process was repeated 20,000 times

before the final reduced feature set was selected. The kNN classifier was selected as

the criterion function, and the number of selected neighbors k was 2 (see [62]).

A prerequisite required for an improved RSFS algorithm is splitting the total fea-

ture set into separate training and testing datasets respectively to eliminate the bias.

4.2. Pseudo-code for the Improved RSFS Algorithm

Step 1: Normalize all the features to have zero mean and unit standard deviation for

better performance.
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Step 2: Perform the following operations on the training set, until the threshold value

is reached.

Step 3: Randomly pick a subset Sj ofm features, where fp( |Sj |=mi p ∈ (1,|P |)), from
the full feature set P by sampling.

Step 4: Perform kNN classification on the reduced data set using Sj , and measure the

value of a desired criterion function cj .

Step 5: Update the relevancies rp of all selected features fp as

r′p ← rp + cj − E(c) (2)

where r′p is the updated current relevance values of the feature vector, cj is the
value of the performance criterion function for the jth iteration, and E(c) is

the expected criterion function. In the current work, this corresponds to the

average of the cj values across all previous iterations.

Step 6: The relevancies of all the features are converted into cumulative normal distri-

bution(to know the list of features, which satisfy the threshold criteria).

Step 7: Select all features which are ≥0.99 probability.

Step 8: The relevancies of such selected features are termed as weights.

Step 9: All selected features are sorted, in descending order based on their weights.

Step 10: After sorting, select the top two features, and store them in a separate array.

Step 11: If the feature is already in the top two features stored, in separate array, it will

not be selected in the current iteration to avoid the redundancy.

Step 12: Repeat the process from step 3 until the threshold value is reached.

Step 13: All such top two features, which are stored in a separate array is the final output

of the improved RSFS algorithm.

In parallel, a similar process is carried out on dummy features by always selecting a

random subset of m dummy features and then updating the relevance values rrand
according to equation (2). The dummy features are never used in the classification

task, but their relevancies are considered across all the trials. In the same way, the

relevance gq of any dummy feature dq represent a random walk process that has no

impact on the classification[68].

The best subset, as the final goal, is selected by satisfying the following equation

p(rk > rrand) ≥ θ (3)
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for all fk ∈ B, P and B ⊂ P , where rrand is the relevance of the dummy feature and

θ is a user defined threshold for computing the probability. The random baseline level

rrand is modeled as

p(rk > rrand) =
1

σg

√
2π

∫ rk

−∞

exp(−(x− μg)
2)

2σ2
g

dx (4)

where μg and σgare the mean and standard deviation respectively, of the dummy

feature relevancies rg .

In the current study unweighted average recall(UAR) was used as the criterion

function E(c) in equation (2), and the probability was set to θ =0.99. The features se-

lected in each iteration were set tom=round(
√|P |)[62]. Similarly,

√
I random features

were selected in each iteration, and the relevancies were updated in each iteration.

This process was repeated according to the condition given in equation (3) before the

final subset was selected. The kNN classifier was used for the classification task [62].

5. Experiments and Results

To demonstrate our claim, we illustrate with an example, of how the improved

RSFS algorithm operates. A simple data set "Forest" is used for purposes of explana-

tion. The data set has 27 features and 523 instances with a 4-way class label.

5.1. Example

Using this example, we explain the pre-processing, processing and results.

5.1.1. Pre-processing

1. Initially, the dataset is randomly divided into two parts in a ratio of one-third

to two-thirds. These corresponds to the test and training matrices respectively.

2. Both the training and test matrices are normalized column-wise for the entire

dataset.

3. The size of the subset is selected as 5 since the number of features is 27. The

subset size is round(
√

(No.offeatures)).

5.1.2. Processing

First Iteration

1. A subset of five features, feature numbers{ 20,20,20,10,11}, is randomly selected

by algorithm.

2. The features are classified using the kNN classifier.
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3. After first iteration, the classifier output(correctly classified and wrongly clas-

sified labels) is as shown below.

Label Correct Wrong

1 33 21

2 39 9

3 23 14

4 47 12

4. The performance criterion(P.C.) and expected criterion(E.C.) are equal at the

first iteration.

5. The performance criterion is the average of all accuracies of all labels for the

current iteration, = 71.0461%

6. The expected criterion is the average of all accuracies of all labels across all

iteration upto the current iteration. = 71.0461% (( 33 / (33+21) ) + ( 39 / (39 + 9)

) + ( 23/ (23 + 14) ) + ( 47/ (47 + 12) ))*100/4 = 71.0461%.

7. Similarly, the value of the expected criterion is calculated.

8. The relevance of the randomly selected features is equal to performance crite-

rion – expected criterion = 0.

Second Iteration

1. The randomly selected feature numbers in the subset are { 2,23,27,14,15}.

Label Correct Wrong
Total

Correct

Total

Wrong

1 35 19 68 40

2 33 15 72 24

3 28 9 51 23

4 30 29 77 41

2. Performance criterion = 2.599 /4 * 100 = 64.975%.

3. Expected criterion = ((68/(68 + 40)) + (72/(72+ 24)) + ( 51/(51+23)) + (77/(77+41)))*

100 /4 = 67.987%.

4. Relevance of the features (randomly) selected (P.C. – E.C.) = 64.975 – 67.987 =

(previous relevance)+ - 3.0120.

Third Iteration

1. The randomly selected feature numbers in the subset are { 12,19,26,7,18}.
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Label Correct Wrong
Total

Correct

Total

Wrong

1 42 12 110 52

2 24 24 96 48

3 31 6 82 29

4 45 14 122 55

2. Performance criterion = 71.958%.

3. Expected criterion = 69.3421%.

4. Relevance of the features (randomly) selected (P.C. – E.C.) = +2.6161.

5. Relevance of the features (randomly selected) = (previous iteration relevance)

+ 2.6161.

6. The relevancymatrix of all the features of the dataset at the end of third iteration

is shown in Table 2.

Table 2: Relevancy matrix of features after third iteration

2(a)

Feature No. Relevancy

1 0

2 -3.0210

3 0

4 0

5 0

6 0

7 2.6161

8 0

9 0

10 0

11 0

12 2.6161

13 -3.0210

2(b) (continued)

Feature No. Relevancy

14 -3.0210

15 -3.0210

16 0

17 0

18 2.6161

19 2.6161

20 0

21 0

22 0

23 -3.0210

24 0

25 0

26 2.6161

27 -3.0210

Similarly, the dummy features are processed and their relevancies are calculated

& updated in each iteration. The dummy features are not used in classification, but

their relevancies are accumulated across trials. However, the relevance of a dummy

feature is useful as a threshold value for selection of the relevant features.
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In every iteration, the mean and standard deviation of the dummy relevance are

taken as the shaping parameters from the normal distribution fit of the calculated

relevancies. The feature relevance is compared with the dummy feature relevance,

and the feature having a relevance value greater than the dummy feature relevance

value is selected.

Relevancy values are converted to probability values(Table 3) using normcdf() as

the transfer function. This will eliminate the need for global relevance values for

different data types.

Table 3: Probability matrix of features after third iteration

3(a)

Feature No. Probability

1 0.5171

2 0.0462

3 0.5171

4 0.5171

5 0.5171

6 0.5171

7 0.9379

8 0.5171

9 0.5171

10 0.5171

11 0.5171

12 0.9379

13 0.5171

3(b) (continued)

Feature No. Probability

14 0.0462

15 0.0462

16 0.5171

17 0.5171

18 0.9379

19 0.9379

20 0.5171

21 0.5171

22 0.5171

23 0.0462

24 0.5171

25 0.5171

26 0.9379

27 0.0462

Post processing Since the relevancy values are not constant globally, they are

converted into probability values using the normcdf function. Features having a prob-

ability of greater than 0.9 are selected, in that iteration. These are stored in a separate

array.

After every 1000 iterations, the coefficient of variation (deltaval) of the final set is

used as the termination condition for the algorithm. This value detects the addition of

features to the final feature set. If deltaval is less than 0.05, which means that there are

no new features added to the final set, the execution loop is terminated; otherwise,it

continues for another 1000 iterations.

The selected features are sorted in descending order based on their weight, and

the top two features are removed and stored in a separate array(final features). The

execution loop continues to select the next best features. After completion of the
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iterations, the best subset of features is available in the final feature array.

Final Iteration

1. The randomly selected feature numbers in the subset are {25,6,15,12,13}.

Label Correct Wrong
Total

Correct

Total

Wrong

1 73 32 116341 93554

2 34 4 56357 19605

3 36 10 67451 24503

4 85 51 150424 121440

2. Performance criterion = 74.9396%.

3. Expected criterion = ((68/(68 + 40)) + (72/(72+ 24)) + ( 51/(51+23)) + (77/(77+41)))*

100 /4 = 64.5757%.

4. Relevance of the features (randomly) selected (P.C. – E.C.) = previous relevance

+ 10.3639

Table 4: Relevancy matrix of features after Final iteration

4(a)

Feature No. Relevancy

1 776.9105

2 733.3913

3 740.1225

4 138.5532

5 647.2156

6 353.0844

7 -388.1886

8 -386.6553

9 -0.2404

10 727.5735

11 738.1689

12 309.5596

13 278.8731

4(b) (continued)

Feature No. Relevancy

14 590.62493

15 519.0916

16 -531.4572

17 -438.8865

18 106.5135

19 -2035.7649

20 -2144.5181

21 -1909.2496

22 -1917.7052

23 -2039.0581

24 -1793.7886

25 -1520.1799

26 -2166.6891

27 -2528.5155
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Table 5: Probability matrix of features after final iteration

5(a)

Feature No. Probability

1 1

2 1

3 1

4 0.99

5 1

6 0.99

7 0.00

8 0.00

9 0.94

10 1

11 1

12 0.99

13 0.99

5(b) (continued)

Feature No. Probability

14 1

15 1

16 0.14

17 0.20

18 0.99

19 0.93

20 0.51

21 0.51

22 0.51

23 0.04

24 0.51

25 0.51

26 0.93

27 0.04

From the example it can be seen that the original 27 features have been reduced to

eight features(1,2,3,5,10,11,14,15) whose probability values are greater than 0.99. The

dimensionality reduction has been carried out successfully.

Experiments were similarly conducted on all 31 datasets listed in Figure (2). The

results are tabulated in Figure (5)and Figure (6).

5.2. kNN Classification

The k-nearest neighbor classification rule was used in the current study. The algo-

rithm was tested using samples in the training set as a reference. This is conceptually

simple and easy to implement. When the classifier is trained with sufficient data, it

can easily classify complex patterns in datasets. However, the classier suffers from the

curse of dimensionality [69]. The optimum value of k was calculated based on 10 fold

cross validation. Owing to the splitting of the data into training and testing sets and

the performing of cross validation, the overfitting problem is minimized[70, 47, 71].

5.3. Feature Subset Selection Results

Using the above mentioned methods, the experiments were conducted using vari-

ous data sets with the kNN classifier. The results are tabulated in Figures(5) and Figure

(6). The comparison of the results, shown in Figure (7), indicates that the data reduc-

tion performance of the modified algorithm is superior to that of the RSFS algorithm,

while similar accuracy levels are maintained.
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Figure 5: Results

Figure 6: Results

The performance was measured using the average recall both weighted and un-

weighted. The un-weighted is the average classification accuracy of the classes, and
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Figure 7: Comparison of results of existing algorithm(RSFS) and improved algorithm(MRSFS)

the weighted is the ratio of correct to incorrect classification of samples. The results

are tabulated in Figures (5) and (6). From the results, as shown in Figure (7), it can be

seen that the modified algorithm is more efficient in addressing the curse of dimen-

sionality. This is also evident from Figures (5) and (6).

5.4. Stability Enhancement

In our method, we use the Hamming distance method to detect the change in

the final subset. The stability is plotted as, the final subset size versus the number

of iterations. The change in the final subset size is calculated using the following

equation:

dst = (No. of (xsj �= ytj)/n) (5)

where anm by n data matrixX , is the current iteration output, which ismx (1-by-n)

row vectors x1, x2, ..., xmx, and an my-by-n data matrix Y is the, previous iteration

output, which is my (1-by-n) row vectors y1, y2, ...,ymy . The distances between the

vectors xs and yt are calculated as shown in Yun et al.[34].

From the result in Figure(8), it can be seen that the proposed algorithm produces

a subset that is more stable than that produced by the existing one.
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Figure 8: Stability of the algorithms

Figure 9: Comparison of classification accuracy of existing(RSFS) and improved algorithm(MRSFS)

5.5. Two Sample t Test

The two-sample t-test is one of the most commonly used hypothesis tests. It is

applied to ascertain whether the average difference between the output of two algo-

rithms is significant or if it is due to random chance. It helps in answering questions

such as whether the dimensionality reduction is improved after a new algorithm has

been implemented.
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From the experimental results, it is evident that the hypothesis is proved as the

two algorithms‘ performance results are different. To validate this, a statistical test

was applied on the number of features selected by each algorithm and tested with the

two sample t-test.

The two sample t-Test was conducted on the datasets generated by the RSFS al-

gorithm(existing algorithm) and the improved RSFS algorithm. The results, shown

in Figure(10), indicate that the modified algorithm selects fewer features than the

existing algorithm, and the result is statistically significant[57]. This means that the

improved algorithm is more efficient in terms of dimensionality reduction [72, 73, 74].

Figure 10: Two sample t-Test results for existing RSFS and improved(MRSFS)algorithm
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Figure 11: Box plot for performance of the two algorithms(existing RSFS and improved (MRSFS)) for

dimensionality reduction

To understand the influence of two-label and multi-label class datasets on the fea-

ture subset selection performance, the experimental results were plotted on a box plot

as shown in Figure (11). From the box plot it is evident that the improved algorithm

has better performance than the existing algorithm.

6. Conclusion

Based on the above results, it is observed that the improved version of the RSFS

algorithm is more effective in reducing the dimensionality of the scientific datasets

than the existing algorithm and does not compromise the accuracy. The two sample

t-Test shows that data compression is improved in the modified algorithm, and this is

also evident from the box plot shown in Figure (11).

In the current study, the improved algorithm was iteratively applied on the train-

ing data set to enhance the classification accuracy. In the final result, it is evident that

the informative features are better chosen by the classifier even for the high dimen-

sional datasets. In every iteration the selected features are compared with final subset

array to discard the duplicate features. Features are not present in the final array are

selected and updated. In every iteration, the training data set is modified by omitting

the strong two features which are selected in the previous iteration. This enables to

converge the solution faster and more relevant features are selected[58, 75, 76].
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Although the modification was successfully implemented on high dimensional

scientific data[77, 78], to fully address the curse of dimensionality, more study is re-

quired to understand the behavior of the solution when applied to sparse datasets. It

is also required to undertake future study, on multi-class data with a combination of

classifiers.

In future a detailed comparative study is required using deferent types of classi-

fiers such as Support Vector machine (SVM),Artificial Neural Network (ANN) etc to

understand the performance of the algorithm.
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