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Abstract: Regardless of their implementation aspects and distribution elements, i.e. 
centralized or distributed, service-based environments such as cloud computing and 
edge/fog infrastructures, enable the provisioning of services addressing a wide range of 
application domains. The key requirement for users and consumers of such services refers 
to the corresponding levels of quality, which is affected both by the real-world dynamics - 
given the non-deterministic use of services, and by the underlying resources state - given 
the typically virtualized sharing nature of the resources. In this paper, an approach is 
presented that aims at estimating the evolvement of services and resources state in order to 
provide insights for runtime adaptations, as required to ensure services quality. The state 
refers to different metrics / parameters such as memory, number of users, throughput, etc, 
and can be extended and applied to different ones. The proposed approach exploits 
polynomial regression and prediction to identify the aforementioned state evolvement by 
mapping the two first monitoring data points for each metric / parameter to the 
corresponding function that depicts their evolvement. The latter provides added value in 
different cases, including among others the adaptation of monitoring time intervals, the 
estimation of the potential breach of quality thresholds, and the prediction of the time for 
runtime adaptations and scaling decisions. The effectiveness of the implemented approach 
is demonstrated and evaluated through a set of different scenarios.  
 

Keywords: service oriented infrastructures; cloud computing; quality of service; 
monitoring; runtime adaptations; polynomial regression; polynomial prediction 

 

1. Introduction 

The continuous-changing landscape of the services provisioning space as well as the realization of 
advanced communication and networking paradigms - such as SDN/NFV and 5G, drives the 
emergence of new holistic environments. While these holistic environments integrate the 
aforementioned advanced communication paradigms, they also exploit computing infrastructures such 
as cloud, edge and fog, in order to provide added-value services to a wide set of users and consumers. 
Currently, service providers go beyond the SPI model (Software, Platform, and Infrastructure as a 
Service) [1], aiming at the delivery of different assets as a service. Furthermore, new patterns of 
mobility and the wide deployment of Internet of Things (IoT) environments contribute towards the 
compilation of new services and products through edge / fog computing models. In this context, cloud 
infrastructures actually reflect a baseline utility for any IT-based service delivery environment. As a 
result, the infrastructure space of emerging service-based environments includes different computing, 
storage and communication elements that serve the needs of applications and users in a holistic way, 
expressed as “complete computing” [2].  

On the applications space, the aforementioned communication and IoT environments act as enablers 
for the provision of added-value services in combination with data management and computing 
“backbone” infrastructures. All in one, they allow the realization and offerings of composite 
applications that consist of application service components (i.e. micro-services) – often of different 
nature. These application service components provide specific functionality, contributing to the overall 
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application’s one, and may be offered by different providers. It has to be noted that this composite 
application paradigm is also applied across the service stack since besides service components (on the 
application layer), different infrastructure services (e.g., networking or storage resources) may also be 
offered within the overall applications by exploiting the concept of containerization [3].  

In this context, service provisioning is shifted from the concept of a delivery of services “on top” of 
resources to a “blended” service and infrastructure elements delivery: composite application graphs 
include application components, data management and processing mechanisms (e.g. data cleaning or 
aggregation), and communication elements (e.g. virtualized network functions). This creates a number 
of interdependencies among these elements in the service lifecycle and raises several challenges. One 
of these refers to availability and its impact in consumers and businesses – as highlighted an incident 
to top three cloud provides for 3-6 days would result in ground-up loss between $6.9 and $14.7 billion 
[4]. Another challenge refers to dependability - as also one of the main Future Internet Architecture 
Design Principles [5], which has been characterized as fundamental for the user needs. In general, the 
requirement for services quality in these application and infrastructure blended environments is clear 
and has been identified as a main requirement in both the edge [6] and the cloud computing [7] 
domains. 

To address the quality requirement, several novel approaches have been proposed and realized, 
ranging from the analysis of historical data for proactive decisions to runtime adaptations based on 
real-time analytics and control loops in different levels of the service-oriented environments. The 
fundamental block in all these approaches is the monitoring framework collecting, storing and 
processing monitoring data to drive runtime adaptation decisions for the provisioning of quality 
guarantees [8]. However and given the scale, structure and complexity in IoT, (mobile) edge, cloud 
and application environments, monitoring frameworks need to be efficient in terms of the 
corresponding monitoring time intervals / periods in order to minimize their footprint, performance 
overhead and cost on the overall environment. For example, an average of 18% of the total running 
cost for cloud computing is consumed by monitoring tools, as in the case of Amazon EC2 CloudWatch 
[9]. What is more, the time at which runtime adaptations take place is critical given the 
non-deterministic usage of the applications (reflecting usage behaviours) in combination with the fact 
that these applications have specific strict quality requirements. Therefore, there is a need to “know 
when to act” to ensure the provision of resources in time, while minimizing the cases of unrequired 
overprovisioning. To this end, this paper introduces an approach based on polynomial regression and 
prediction to model the evolvement of the services and resources metrics in order to estimate the time 
at which these services will reach a specific threshold. This threshold may refer to a service level 
objective, a parameter in a service level agreement, a resource threshold set by an infrastructure 
provider, an application-specific threshold such as number of sessions or users, etc. The goal of the 
estimation is dual: firstly to provide insights on when to act and trigger runtime adaptations (e.g. 
scaling decisions), and secondly to adjust monitoring time intervals accordingly given that the pace 
and the direction at which a metric evolves can be estimated. 

The remainder of the paper is structured as follows. Section 2 presents related work in the field of 
adaptation of monitoring time intervals as a means for the estimation of the time for runtime decisions 
towards the provision of service quality guarantees. Section 3 introduces the overall architecture of the 
proposed approach, while Section 4 presents the incorporated algorithms to model the evolvement of 
different application and resources metrics / parameters and estimate the triggering time for runtime 
adaptations. The evaluation results for different experimentation scenarios are cited in Section 5, while 
Section 6 concludes with a discussion on future research and potentials for the current study. 
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2. Related Work 

In the infrastructure domain and more specifically related to cloud computing services, monitoring for 
managing service clouds is essential for the health of cloud systems and is significant for both 
providers and consumers [10], [11], [12], [13]. Generally, monitoring is a key tool for both managing 
software and hardware resources, and for offering information for those resources and the consumers’ 
hosted applications. On the other hand, in the cloud computing field, monitoring consists of two types: 
high-level and low-level monitoring [14]. The high level monitoring focuses on the virtual 
environment status. In addition, the low-level monitoring deals with information collected for the 
status of the physical infrastructure. Based on these types, three kinds of monitoring function can be 
provided: (i) monitoring of physical resources, (ii) monitoring of virtual resources, and (iii) monitoring 
of application services. A cloud monitoring system is a self-adjusting and typically multi-threaded 
system supporting monitoring functionalities [15]. It comprehensively monitors pre-identified 
instances/resources on the cloud for abnormalities. On detecting an abnormal behaviour, the 
monitoring framework attempts to auto-repair this instance/resource if the corresponding monitor has 
a tagged auto-heal action [15]. Recently, many vendors associated with cloud services tend to 
introduce cloud commercial and open source platforms, and monitoring systems for cloud monitoring 
services in order to take advantage of keeping their resources and applications operating at peak 
efficiency, to detect variations in resource and application performance, to account the Service Level 
Agreement (SLA) violations of certain quality parameters, and to track the leave and join operations of 
cloud resources due to failures and other dynamic configuration changes. The most spread platforms 
include commercial (e.g. CloudWatch [9], AzureWatch [16], CloudStatus [17], Nimsoft Monitor [18], 
LogicMonitor [19]) and open source ones (e.g. Ganglia [20], MonaLisa [21], GridICE [22], Nagios 
[23], PCMONS [24], DARGOS [25], Hyperic-HQ [26], Sensu [27], etc). These monitoring 
frameworks consist of a set of agents that collect data from the entities to be monitored and are 
typically collocated with them (e.g. in the same virtual machine). The (centralized) monitor collects 
the data from all agents and aggregates them producing the monitoring output.  

Recent interesting approaches move beyond the ones described previously by aim at estimating and 
adapting the monitoring time intervals according to different metrics. Such an approach is presented in 
[28], on which authors perform correlation analysis for different monitoring metrics in order to 
monitor the most important ones and thus minimize the monitoring footprint, while also predicting the 
possibility of faults through Principal Component Analysis in order to adapt accordingly the 
monitoring intervals. Moreover, with the recent proliferation of cloud service brokerage, monitoring 
federated service clouds have been the most noteworthy and influential. When service clouds are 
federated to accept other’s workload there needs to be a consideration of how monitoring will behave 
in the presence of the federated cloud infrastructures. In this context, an approach for multi-cloud 
monitoring by adapting the corresponding cross-cloud intervals has been proposed [29], while a 
similar approach has been proposed in [30] with however the drawback of the usage of the same 
monitoring tool across all federated cloud systems. The Cloud Adoption Toolkit focuses on cost 
prediction and allows modelling the application requirements over time and predicting migration and 
future costs across multiple cloud providers [31]. In the same context, i.e. the adaptation of the 
infrastructure by also considering the corresponding cloud services, authors in [32] propose a 
mechanism for estimating the virtualized resource requirements of the application by defining the 
minimum amount of required resources to avoid performance degradation of the running services. For 
applications also exploiting edge computing environments, an adaptive mechanism is discussed in 
[33]. Authors propose a distributed agent-based mechanism that utilizes edge nodes to perform 
aggregation and runtime decision taking on an edge level towards effective and timely decision 
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making. Efficient resource optimization and runtime adaptations following an agent-based monitoring 
system has been proposed in [34]. The system also includes an alarm feature, which is triggered if a 
value breaches a threshold, which is however pre-defined. A quite interesting approach for 
autonomous monitoring and management, namely iOverbook, has been introduced in [35]. The 
proposed framework enable online overbooking based on a feed-forward neural network model by 
taking into account historical information regarding the usage of resources in order to forecast the 
mean hourly resource usage one step ahead.  

The differences between the existing approaches and the research outcomes presented in this section 
and our proposed approach are summarized in the following: (i) adaptable monitoring time intervals 
for approaches that work with fixed ones, given the highly dynamic environments, (ii) identification of 
time intervals – or more precisely of the time at which adaptations need to take place – based on 
runtime information and not based on the analysis of historical data that can only occur offline, (iii) a 
distributed architecture with distributed decision points that are all self-adaptable towards more 
autonomous systems as required in the case of edge / fog computing, (iv) applicability to both 
resource- and service- level metrics since the proposed approach is agnostic to the parameters being 
analysed.  

 

3. Overview of the proposed approach 

The approach introduced in this paper aims at modelling and estimating the evolvement of the services 
and resources in terms of their state – i.e. different metrics and parameters. Based on this modelling, it 
is feasible to identify the time as an input to monitoring mechanisms (i.e. monitoring time interval) as 
well as the time at which runtime adaptations need to take place in order to ensure quality of service. 
The overall approach has been developed as a service, namely “Runtime analyser and estimator”, 
incorporating the developed algorithms to enable estimation of the services and applications state 
evolvement. The developed services has been evaluated (corresponding results are cited in Section 5) 
in a cloud environment as shown in Figure 1. The key aspects of the proposed approach are the 
following: 

 The Runtime analyser and estimator follows an hierarchical architectural approach: instances of 
the service are deployed on a cluster-level, while another instance is deployed on a multi-cluster 
(e.g. cloud) level. The latter enables adaptations regarding monitoring time intervals on a 
per-cluster case given that different applications and resources may require different time 
intervals given their state [36].  

 While monitoring time intervals are updated on a cluster level, adaptation actions are triggered 
on the cloud level. Even though these adaptations may only refer to a specific cluster, they are 
triggered on a cloud level given the need to ensure that the overall state of the cloud 
environment is considered before for example triggering scaling decisions for a specific cluster. 

 The Runtime analyser and estimator is not coupled to a specific monitoring framework but can 
be utilized as an external “add-on” mechanism for optimization of runtime decisions and of 
monitoring time intervals. 

Based on the above, the proposed deployment is depicted in Figure 1, with the main information flows 
summarized as follows: 

 The underlying resource management system provides the corresponding resources to different 
applications. In this case, Mesossphere DC/OS [37] has been selected in order to abstract 
resources and enable the provision of containers on a per-cluster case.  
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 The monitoring framework obtains information from different containers based on the agents 
that have been deployed in the containers. Prometheus [38] has been chosen as a monitoring 
framework. Prometheus gathers monitoring parameters at specified intervals, shows the results, 
and triggers alerts based on rule expressions. Moreover, it follows an hierarchical architectural 
approach, with Prometheus servers and Push gateways being deployed in different levels of the 
hierarchy. In this case, these have been deployed in each cluster and enable the collection of 
information on a per-cluster case by obtaining the monitoring data from the Exporters deployed 
in each container. Exporters are probes and can be either provided by the application developer 
or obtained by the open source community supporting Prometheus (additional information on 
the Exporters used in this case is cited in Section 5). 

 Based on the collected monitoring data from the Prometheus server on each cluster, the Runtime 
analyser and estimator performs modelling for the obtained parameters / metrics and according 
to this modelling it esimates the monitoring time interval. The latter is provided to the 
Prometheus server (as a scrape interval) in order to update the monitoring intervals for the 
containers of the cluster.  

 On the next level of hierarchy (i.e. multi-cluster level), the Prometheus server obtains 
information from the deployed servers in different clusters. This information is modelled by the 
Runtime analyser and estimator, which in turn triggers a scheduler that performs scalability 
decisions. In this case, Fenzo scheduler [39] has been deployed on top of Mesosphere. However, 
Mesosphere allows the deployment of different or custom schedulers. 

 

 
Figure 1. Approach overview 

 

4. Triggering time for runtime adaptations based on resources and services 

evolvement 

In this section, the algorithms that have been implemented in the Runtime analyser and estimator 
service are presented. These algorithms aim both at modelling the evolvement of the state of the 
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better way – i.e. with a smaller (or even zero) error. Such a case could be for example an exponential 
function (which is typical in the case of cloud applications and services). Thus, the proposed estimator 

mechanism should also account for such cases before concluding to the actual function ሺݐሻ that 
represents the evolvement of the state of services and resources. This is considered during the 
estimation phase as described below. 

The next step of the mechanism is to estimate the time at which a specific threshold might be reached 
in order to trigger the corresponding runtime adaptations on the infrastructure level (e.g. scaling). This 
threshold is denoted as ݄ݐ. 

Given that polynomials of 5th degree are considered in the proposed approach, it is not feasible to 
solve the equation regarding the variable t. However and given that the services and resources 
behaviour is non-deterministic and usually reflected in such polynomials, there is the need to estimate 
the time ݐ௫ at which a threshold (e.g. memory usage) is reached. Thus, it is required to estimate the: 

ሻݔݐሺ ௫ for whichݐ ൌ ݇, where k is the threshold value. 

To estimate the aforementioned time ݐ௫ , the following algorithm has been implemented in the 
Runtime analyser and estimator: 

Optimization and estimation of the triggering time for runtime adaptations 
1. Collect 6 monitoring data points (to enable polynomials of 5th degree to be considered) for a 

given attribute a (e.g. memory usage) in the initially configured intervals of the Prometheus 
server (every second): 

ሺݐ, ܽሻ, ሺݐଵ, ܽଵሻ, ሺݐଶ, ܽଶሻ, ሺݐଷ, ܽଷሻ, ሺݐସ, ܽସሻ, ሺݐହ, ܽହሻ 
2. Model the evolvement of a based on the polynomial regression and prediction by calculating 

the function ሺݐሻ. 
3. Utilize the function ሺݐ௫ሻ for x = 7, 8, 9, … 16. These refer to subsequent points of the initial 

6 collected monitoring points as estimates (i.e. perform 10 predictions of the corresponding 
attribute a through the ሺݐሻ. 

4. Store all the results in an array and perform binary search for the threshold ݄ݐ. If the value 
being searched doesn’t match a specific one, consider as the triggering time the smallest 
closest neighbor. 

5. While ݄ݐ   ଵହሻ return to Step 3 and perform 10 additional predictions since the thresholdݐሺ
for a specific attribute has not yet been predicted from the identified polynomial.  

6. Store the additional results from Step 5 in the array and perform binary search for the 
threshold ݄ݐ in order to obtain the estimation / prediction on the time at which the threshold 
will be reached.  

7. Obtain the corresponding time ݐ௫. 
8. Perform polynomial fitting for an exponential function based on the 6 data points collected in 

Step #1 and perform the number of predictions required as known by Step #5 (through a 
global variable). 

9. In time ݐ௫ିଵ  compute the error ߝ  both for the ሺݐሻ  and for the exponential function. 
According to the smaller error, disregard one of the 2 functions for future cases. 

10. For each new monitoring result / data, restart the overall process. 
Table 1: Triggering time estimation algorithm 

Based on the algorithm above, the scaling decisions are triggered through the Fenzo scheduler 
presented in Section 3. 
 

5. Evaluation 
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5.1 Experiment setup 

The experiments used to evaluate the proposed approach were performed in a real-world setting in 
terms of the utilized frameworks and tools. An infrastructure consisting of eight (8) nodes has been 
exploited as a testbed for the validation of the mechanism results. The nodes have the following 
characteristics: 16GB RAM, Intel i7-4790 @ 3.60 GHz x 8 CPU Cores, 2TB Storage. Mesosphere 
DC/OS 1.11 has been deployed and in total 24 containers have been made available for 
experimentation, presenting a small scale representative cloud environment. 

Regarding the application services that have been used, WikiBench [40] has been selected as the 
benchmark since it addresses a wide range of typical services (including application servers, load 
balancers, and databases) and thus different parameters can be monitored, modelled and estimated. It 
should be noted that the purpose of this study is not to stress-test application servers or databases, but 
to demonstrate through a benchmark the non-deterministic behaviour of services (and as a result 
resources). To this end, WikiBench is an optimum benchmark given that the load on the services (e.g. 
web servers due to number of concurrent users) and on the resources (e.g. CPU or memory) follows 
the usage patterns of visitors, which is non-deterministic.  

To realize the evaluation environment and exploit Wikibench for load generation, a load balancer has 
been deployed, namely HAPProxy [41]. Moreover, Apache has been used as an application server and 
MySQL as the database. In terms of monitoring, as already described in Section 3, Prometheus has 
been selected and deployed, as well as the corresponding exporters (acting as probes for the different 
services) being available from the Prometheus community [42]. These exporters are the following: 
Apache exporter, HAProxy exporter, MySQL exporter. Furthermore, the initial scrape interval in the 
corresponding configuration file of Prometheus has been updated to 1sec (the default is 1min). The 
data that have been collected during the experimentation phase are summarized in the following table. 
 
Metric Type Description 
cpu_usage float CPU usage percentage 
memory_usage float Memory usage percentage 
io_bytes_read bytes/second Number of bytes read from block devices 
io_bytes_write bytes/second Number of bytes written to block devices 
rx_packets packets/second Number of received packets 
rx_bytes bytes/second Number of received bytes 
tx_packets packets/second Number of sent packets 
tx_bytes bytes/second Number of sent bytes 
Table 2: Published service attributes / QoS parameters 

5.2 Evaluation results 

A number of experiments has been performed to evaluate different aspects of the proposed approach. 
The main aspects under investigation include the following: (i) Evaluation of the choice regarding 
polynomial regression and prediction comparing to the least square method, (ii) Evaluation of 
potential change from polynomial approximation to exponential approximation as proposed by the 
algorithm presented in Section 4.2, (iii) Evaluation of the numerical-driven approach to perform 
search on the data space in order to identify the time for triggering corrective actions, (iv) Evaluation 
of the actual predictions comparing to the ground truth and as a result the actual values. 

An additional aspect that was taken into consideration refers to the evaluation of the presented 
mechanism both for service-related metrics / parameters and for resource-related ones. To ensure that 
both are being addressed, the experiments referring to aspects under investigation (i), (iii), (iv) above 
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monitoring intervals will be increased (i.e. non-required monitoring will be avoided), while in the 
contrary in the case of an exponential increase the intervals will be decreased since a threshold could 
potential be reached in a short time window. Furthermore, according to the prediction, it is feasible to 
identify when a threshold will be reached and thus take proactive actions. The threshold can be set by 
cloud administrators or obtained by service level agreements. Key aspect in the proposed approach is 
that polynomial fitting provides a high degree of accuracy and minimizes cases of potential 
overprovisioning of resources in contrast with the least square method. Moreover, the presented 
mechanism utilizes polynomial approximation up to the 5th degree (and not linear approximation), 
which represents a broad change in parameters values and deals with potential spikes and bursts. An 
initial prototype has been finalized and is fully functional in a real-world setting on top of Mesosphere, 
enabling the management of containers and services in an optimum way.  
Notwithstanding, it is within future plans to further improve the proposed approach. To this end, 
Netwon polynomial will be utilized as a basis in order to enable new points to be added during the 
polynomial fitting. The final outcome of the compilation of the polynomial will not change 
(comparing to the approach presented in this paper), however it is more efficient since not all points 
need to be re-calculated when a new point is considered for the compilation of the polynomial. 
Furthermore, the approach will be enhanced to include weight factors that will represent the 
importance of services (in the cases of composite applications consisting of several services), as well 
as the importance of different parameters / metrics comparing to others (e.g. CPU vs memory). The 
latter will provide accurate estimations for runtime adaptations considering the overall application as 
well as the overall underlying infrastructure in a holistic way, while cross-services and cross-resources 
optimization will also be feasible. The overall predictions will also be considered during the resource 
allocation phase in order to address cases of resources contention in the case of sharing resources and 
concurrent (potentially conflicting) requests. 
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Highlights 
 

- Prediction of the evolution of application services and resources parameters / metrics based on 

polynomial approximation 

- Identification of time intervals for triggering runtime adaptations on the infrastructure level 

towards the provision of quality guarantees  

- Distributed architecture with distributed decision points evaluated in a real-world setting on 

top of a container-oriented resource management system and with a well-established 

monitoring framework 

 


