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Abstract: Regardless of their implementation aspects and distr,. v.on elements, i.e.
centralized or distributed, service-based environments such . cloua computing and
edge/fog infrastructures, enable the provisioning of services : ddressit. - a wide range of
application domains. The key requirement for users and consun. ‘s of < uch services refers
to the corresponding levels of quality, which is affected bo’.i vy the real-world dynamics -
given the non-deterministic use of services, and by the w der’, ing resources state - given
the typically virtualized sharing nature of the resourc-~s. In thi- paper, an approach is
presented that aims at estimating the evolvement of services <d resources state in order to
provide insights for runtime adaptations, as requirec. *o ensur services quality. The state
refers to different metrics / parameters such as mei. ~ry, .. "= .oer of users, throughput, etc,
and can be extended and applied to different ones. The proposed approach exploits
polynomial regression and prediction to identi{, rne atorementioned state evolvement by
mapping the two first monitoring data points 1.. each metric / parameter to the
corresponding function that depicts their eve 'veu ..° The latter provides added value in
different cases, including among others the ac - station of monitoring time intervals, the
estimation of the potential breach of qual.v ‘hres. olds, and the prediction of the time for
runtime adaptations and scaling decisions. 1. ¢ e.iectiveness of the implemented approach
is demonstrated and evaluated through . <c. . ‘fferent scenarios.

Keywords: service oriented inf-ostructures; cloud computing; quality of service;
monitoring; runtime adaptations’ polync nial regression; polynomial prediction

1. Introduction

The continuous-changing lands .ape 0. “.e services provisioning space as well as the realization of
advanced communication ar . u.‘working paradigms - such as SDN/NFV and 5G, drives the
emergence of new holist'. environments. While these holistic environments integrate the
aforementioned advanced omr wnication paradigms, they also exploit computing infrastructures such
as cloud, edge and fog, 7 1 orac to provide added-value services to a wide set of users and consumers.
Currently, service pro ide's gc beyond the SPI model (Software, Platform, and Infrastructure as a
Service) [1], aiming at .. » c:livery of different assets as a service. Furthermore, new patterns of
mobility and the v 1de dcloyment of Internet of Things (IoT) environments contribute towards the
compilation of new servic' s and products through edge / fog computing models. In this context, cloud
infrastructures .cwally reflect a baseline utility for any IT-based service delivery environment. As a
result, the infi wstructu e space of emerging service-based environments includes different computing,
storage and com... ..cation elements that serve the needs of applications and users in a holistic way,
expressed - “c suplete computing” [2].

On the applica ‘ons space, the aforementioned communication and IoT environments act as enablers
for the provision of added-value services in combination with data management and computing
“backbone” infrastructures. All in one, they allow the realization and offerings of composite
applications that consist of application service components (i.e. micro-services) — often of different
nature. These application service components provide specific functionality, contributing to the overall
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application’s one, and may be offered by different providers. It has to be noted that this composite
application paradigm is also applied across the service stack since besides service components (on the
application layer), different infrastructure services (e.g., networking or storage resources) may also be
offered within the overall applications by exploiting the concept of containerizatior (3].

In this context, service provisioning is shifted from the concept of a delivery oi servic = “on top” of
resources to a “blended” service and infrastructure elements delivery: compr site application graphs
include application components, data management and processing mechanisi.” ( ..g. data cleaning or
aggregation), and communication elements (e.g. virtualized network function.® Thi. creates a number
of interdependencies among these elements in the service lifecycle and r us. s several challenges. One
of these refers to availability and its impact in consumers and busines: '« — as highlighted an incident
to top three cloud provides for 3-6 days would result in ground-up loe~ Hetw. ~n $6.9 and $14.7 billion
[4]. Another challenge refers to dependability - as also one of the main t 'ture Internet Architecture
Design Principles [5], which has been characterized as fundamental .~ the user needs. In general, the
requirement for services quality in these application and infras.ruct . blended environments is clear
and has been identified as a main requirement in both the e._¢ [6' and the cloud computing [7]
domains.

To address the quality requirement, several novel appic-~hes '.ave been proposed and realized,
ranging from the analysis of historical data for proactive ‘ecisions to runtime adaptations based on
real-time analytics and control loops in different le ... oI w.e service-oriented environments. The
fundamental block in all these approaches is the mou ‘oring framework collecting, storing and
processing monitoring data to drive runtime ada tav .. Jecisions for the provisioning of quality
guarantees [8]. However and given the scale, <*ructu. » and complexity in IoT, (mobile) edge, cloud
and application environments, monitoring fra.ne. orks need to be efficient in terms of the
corresponding monitoring time intervals / ¢ ... 1> order to minimize their footprint, performance
overhead and cost on the overall environment. 1 .~ example, an average of 18% of the total running
cost for cloud computing is consumed by .. ~nitoring tools, as in the case of Amazon EC2 CloudWatch
[9]. What is more, the time at vaich ruitime adaptations take place is critical given the
non-deterministic usage of the appli- ation. ‘v flecting usage behaviours) in combination with the fact
that these applications have specif.c st ict nuality requirements. Therefore, there is a need to “know
when to act” to ensure the prov'sion. ~f r.sources in time, while minimizing the cases of unrequired
overprovisioning. To this end, .. ‘< paper introduces an approach based on polynomial regression and
prediction to model the evolvement o the services and resources metrics in order to estimate the time
at which these services w'.l r¢ ich a specific threshold. This threshold may refer to a service level
objective, a parameter in o - :rvice level agreement, a resource threshold set by an infrastructure
provider, an applicatio -spr cific threshold such as number of sessions or users, etc. The goal of the
estimation is dual: fits'v to ' rovide insights on when to act and trigger runtime adaptations (e.g.
scaling decisions), .ud seco..dly to adjust monitoring time intervals accordingly given that the pace
and the direction a which metric evolves can be estimated.

The remainder [ the paper is structured as follows. Section 2 presents related work in the field of
adaptation of nonitor, 1g time intervals as a means for the estimation of the time for runtime decisions
towards the pro. ~i~_ of service quality guarantees. Section 3 introduces the overall architecture of the
proposed « oiu ..., while Section 4 presents the incorporated algorithms to model the evolvement of
different app. ‘ation and resources metrics / parameters and estimate the triggering time for runtime
adaptations. The evaluation results for different experimentation scenarios are cited in Section 5, while
Section 6 concludes with a discussion on future research and potentials for the current study.



2. Related Work

In the infrastructure domain and more specifically related to cloud computing services, monitoring for
managing service clouds is essential for the health of cloud systems and is s’znificant for both
providers and consumers [10], [11], [12], [13]. Generally, monitoring is a key tor 1 ..~ both managing
software and hardware resources, and for offering information for those resourr~~ and the consumers’
hosted applications. On the other hand, in the cloud computing field, monitori .g cr asists of two types:
high-level and low-level monitoring [14]. The high level monitoring fou.<es on the virtual
environment status. In addition, the low-level monitoring deals with informe ‘on collected for the
status of the physical infrastructure. Based on these types, three kinds .f m ..."*oring function can be
provided: (i) monitoring of physical resources, (ii) monitoring of virtual 1.~ wurces, and (iii) monitoring
of application services. A cloud monitoring system is a self-adjuc.ng and vypically multi-threaded
system supporting monitoring functionalities [15]. It comprel »nsivel’ monitors pre-identified
instances/resources on the cloud for abnormalities. On det..iing .ua abnormal behaviour, the
monitoring framework attempts to auto-repair this instance/res wrr - it he corresponding monitor has
a tagged auto-heal action [15]. Recently, many vendors ssoci~t<. with cloud services tend to
introduce cloud commercial and open source platforms, and moni. yring systems for cloud monitoring
services in order to take advantage of keeping their reso. ~es .nd applications operating at peak
efficiency, to detect variations in resource and application . ~~formance, to account the Service Level
Agreement (SLA) violations of certain quality paramc. s, and to track the leave and join operations of
cloud resources due to failures and other dynamic configu. tion changes. The most spread platforms
include commercial (e.g. CloudWatch [9], AzureWa b (10|, CloudStatus [17], Nimsoft Monitor [18],
LogicMonitor [19]) and open source ones (e.g “ang.’a [20], MonaLisa [21], GridICE [22], Nagios
[23], PCMONS [24], DARGOS [25], Hyperi-h [26], Sensu [27], etc). These monitoring
frameworks consist of a set of agents thar "~uccl Jata from the entities to be monitored and are
typically collocated with them (e.g. in the same v.rtual machine). The (centralized) monitor collects
the data from all agents and aggregates *".cu. ~roducing the monitoring output.

Recent interesting approaches move b. 'ond t'.e ones described previously by aim at estimating and
adapting the monitoring time interv'.is a~cotu.ng to different metrics. Such an approach is presented in
[28], on which authors perform -~or clatiyn analysis for different monitoring metrics in order to
monitor the most important one’ and tu.~ minimize the monitoring footprint, while also predicting the
possibility of faults througlh Pi.. ~ipal Component Analysis in order to adapt accordingly the
monitoring intervals. Morer .. - with the recent proliferation of cloud service brokerage, monitoring
federated service clouds ' ave oeen the most noteworthy and influential. When service clouds are
federated to accept othe 's wo. 'oad there needs to be a consideration of how monitoring will behave
in the presence of ths fed .rated cloud infrastructures. In this context, an approach for multi-cloud
monitoring by adapting .“e _orresponding cross-cloud intervals has been proposed [29], while a
similar approach ! as bec  proposed in [30] with however the drawback of the usage of the same
monitoring tool acoss al federated cloud systems. The Cloud Adoption Toolkit focuses on cost
prediction and anlows modelling the application requirements over time and predicting migration and
future costs & -ross n altiple cloud providers [31]. In the same context, i.e. the adaptation of the
infrastructnre by ..s0 considering the corresponding cloud services, authors in [32] propose a
mechanism for esumating the virtualized resource requirements of the application by defining the
minimum amc 'nt of required resources to avoid performance degradation of the running services. For
applications also exploiting edge computing environments, an adaptive mechanism is discussed in
[33]. Authors propose a distributed agent-based mechanism that utilizes edge nodes to perform
aggregation and runtime decision taking on an edge level towards effective and timely decision



making. Efficient resource optimization and runtime adaptations following an agent-based monitoring
system has been proposed in [34]. The system also includes an alarm feature, which is triggered if a
value breaches a threshold, which is however pre-defined. A quite interesting approach for
autonomous monitoring and management, namely iOverbook, has been introd uiced in [35]. The
proposed framework enable online overbooking based on a feed-forward neur..! ne. “ork model by
taking into account historical information regarding the usage of resources . ¢ 'der to forecast the
mean hourly resource usage one step ahead.

The differences between the existing approaches and the research outcomes vesen.ed in this section
and our proposed approach are summarized in the following: (i) adapta’.ic monnuring time intervals
for approaches that work with fixed ones, given the highly dynamic env ron aents, (ii) identification of
time intervals — or more precisely of the time at which adaptations ~eea .~ take place — based on
runtime information and not based on the analysis of historical dat: that ca » only occur offline, (iii) a
distributed architecture with distributed decision points that are .'l se’f-adaptable towards more
autonomous systems as required in the case of edge / fog com~ _‘ing, (iv) applicability to both
resource- and service- level metrics since the proposed approac.. 1s as aostic to the parameters being
analysed.

3. Overview of the proposed approach

The approach introduced in this paper aims at modelling ~nd estimating the evolvement of the services
and resources in terms of their state — i.e. different ..’ ~~< and parameters. Based on this modelling, it
is feasible to identify the time as an input to monitor. » s mechanisms (i.e. monitoring time interval) as
well as the time at which runtime adaptations nc>u “o tcke place in order to ensure quality of service.
The overall approach has been developed ~< a scvice, namely “Runtime analyser and estimator”,
incorporating the developed algorithms to en.™le estimation of the services and applications state
evolvement. The developed services has been evaluated (corresponding results are cited in Section 5)
in a cloud environment as shown in ‘igure 1. The key aspects of the proposed approach are the
following:

e The Runtime analyser and ‘ stir ator follows an hierarchical architectural approach: instances of
the service are deployed ~n a “ust’ r-level, while another instance is deployed on a multi-cluster
(e.g. cloud) level. Thr 'atter enables adaptations regarding monitoring time intervals on a
per-cluster case given that 'fferent applications and resources may require different time
intervals given thei sta 2 [36].

e  While monitoring .. intervals are updated on a cluster level, adaptation actions are triggered
on the cloud le- el. T'ven hough these adaptations may only refer to a specific cluster, they are
triggered on « ~'oud ievel given the need to ensure that the overall state of the cloud
environmer . 1> consiwered before for example triggering scaling decisions for a specific cluster.

e The Runtii 1e analy ser and estimator is not coupled to a specific monitoring framework but can
be utiliz~1 a5 - _ external “add-on” mechanism for optimization of runtime decisions and of
monit iring tu ‘e intervals.

Based on the ab. "= .ae proposed deployment is depicted in Figure 1, with the main information flows

summarize ' as o.. JWS:

e The w derlying resource management system provides the corresponding resources to different
applications. In this case, Mesossphere DC/OS [37] has been selected in order to abstract
resources and enable the provision of containers on a per-cluster case.



e The monitoring framework obtains information from different containers based on the agents
that have been deployed in the containers. Prometheus [38] has been chosen as a monitoring
framework. Prometheus gathers monitoring parameters at specified intervals. shows the results,
and triggers alerts based on rule expressions. Moreover, it follows an hiera  chical architectural
approach, with Prometheus servers and Push gateways being deployed in diffei. ~t levels of the
hierarchy. In this case, these have been deployed in each cluster and - ua. le the collection of
information on a per-cluster case by obtaining the monitoring data fro.. thr Exporters deployed
in each container. Exporters are probes and can be either provided by ‘he ap, 'ication developer
or obtained by the open source community supporting Promethe’ .- [addiuunal information on
the Exporters used in this case is cited in Section 5).

e Based on the collected monitoring data from the Prometheus server . =ach cluster, the Runtime
analyser and estimator performs modelling for the obtained jarame. >rs / metrics and according
to this modelling it esimates the monitoring time interve.' Thr latter is provided to the
Prometheus server (as a scrape interval) in order to v ydate “he monitoring intervals for the
containers of the cluster.

e On the next level of hierarchy (i.e. multi-cluster 1. l), the Prometheus server obtains
information from the deployed servers in different 'usters. “his information is modelled by the
Runtime analyser and estimator, which in turn ..’ogei. « scheduler that performs scalability
decisions. In this case, Fenzo scheduler [39] ha< hear = ]Joyed on top of Mesosphere. However,
Mesosphere allows the deployment of different ¢. ~ustom schedulers.

S
Runtime analyser and 4 Prometheus server
: R —
estimator ‘ (federated)
LA
— Cluster - N Cluster . ~
adaptation Runtime analyser Runtime analyser
actions and estimator and estimator
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scrape Prom .neus serve scrape Prometheus server
interval interval
[ !
p. Metr' s pull metrics
. ~hgateway H < Monitoring data O ‘ ‘ Push gateway ‘ ‘ < Monitoring data O
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= ¥
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Figure 1. Approach overview

4. Triggeriny <i.ne for runtime adaptations based on resources and services

evolveme, .

In this section, the algorithms that have been implemented in the Runtime analyser and estimator
service are presented. These algorithms aim both at modelling the evolvement of the state of the



resources and services and at estimating the time for triggering runtime adaptations and for adjusting
monitoring time intervals.

4.1 Modelling of the resources and services evolvement

By denoting as S; the i-th application service deployed in a container, each service is ci. “acterized by
a list of M service attributes S; = [sa;sa, Asay]7. In a similar way, R; i the i-th resource (e.g.
container) deployed in a cluster. Each resource is characterized by a list 0.’ "« resource attributes
R; = [rayra, Aray]T. The M attributes correspond to the quality paramc~rs of the application
service (e.g. users, sessions, response time, etc.) and the N attributes to .ne mality parameters of the
resource (e.g. CPU, memory, throughput, etc.). It should be noted ..t .he proposed approach is
agnostic to the actual metrics / parameters, meaning that given that it Z_cuses . n the evolvement of the
attributes values, these attributes could refer to any metric / parar eter (e. 5. memory or CPU). This
way, an application service or a resource are represented as a vector. .. *k~ context of this paper, these
attributes are considered to be numerical of real values ard w'.. “e the omes collected by the
monitoring mechanism.

Given that all service and resource parameters change in time, u.> goal of the modelling phase is to
identify a function that corresponds to the actual changes o1 . att (butes values in time. This function
is denoted as p(t), where t denotes the time. The main una. -ving concept of the proposed modelling
approach is to utilize interpolants in order to perforn. nolynomial fitting and as a result approximate
the evolution of the parameters (i.e. service and ~=<ource state) in time, thus identifying the p(t)
function. Considering that there will be n+1 points ¢“t".ied by the monitoring mechanism for a given
attribute a (e.g. memory usage), these refer to th - "llov ng:
(tor ao): (tl' al)' (f“- a?)' " (tn—lr an—l)' (tnr an)

Based on these set of points, there will be a polyi. ~mial p(t), with a maximum degree of n, for which:

p(ty) = ag,p(ty’ — o\, p(tyo1) = ap_q,p(ty) = a,

(te a,)
®

d {tg, 3g)

Figure 2. Interpolant p(t)

The key aspect is hat the ,e points may have been produced by a function f(t) that represents the
actual evolven i of an attribute a in time. Thus, it will be:

f@t) =p(ty), i=0123..n

Therefore, -, . "'ecting a set of monitoring data in different time frames, it is feasible to identify and
approximate  function that represents how a specific service or resource will behave in time in terms
of different attrioutes evolvement, such as CPU, memory, throughput, etc.

Furthermore, instead of linear approximation, the implemented modelling approach exploits
polynomial approximation up to the 5™ degree. Higher degrees actually refer to a service or resource



for which the changes are such that even if modelled, the overall behaviour will trigger continuous
adaptations and thus any modelling or estimation does not add value to monitoring time intervals
adaptation or triggering time of corrective actions. In order to perform interpolation, the set of
monitoring data is collected following the initial configuration of the monitoring fr- mework (e.g. per 1
minute). Based on the above and since the proposed modelling approach addre sses .~ to 5™ degree
polynomials, the required number of points to perform interpolation would t . p lynomial degree +
1,thus in total 6 points (i.e. monitoring data) are required.

Through the proposed modelling approach of the Runtime analyser ana
number of potential changes in the attributes of the resources and servic.s « an be addressed - as also

<tima.or component, a

depicted in the following figure (Figure 3).
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Figure 3. Pr .ent) 1 changes of the attributes of resources and services in time

As described previously the | ~lynomial p(t) crosses all given points (collected monitoring data).
However, it might be 1 Jssi’ ie tr develop the corresponding prediction by not crossing all given points,
a method known as leas. ‘w7 .es method. The evaluation of this method has shown higher error rates
(cited in Section %, for p~lynomials of 3™ degree and higher and therefore is not considered in the

approach presentec. in this paper.

4.2 Estimatio." and o sjtimization of the triggering time for runtime adaptations
The mode ...._ ~ntcome - reflected in the polynomial p(t), is associated with an error, expressed
through the ¢ 7.erion Chebyshev:
e=max|f(t) —p(t
max |f(6) = p(o)|
Based on the aforementioned criterion, in the case of non-polynomial, there could be a function that
represents the data (in our case the change in the parameters / metrics of a service or resource) in a
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better way — i.e. with a smaller (or even zero) error. Such a case could be for example an exponential
function (which is typical in the case of cloud applications and services). Thus, the proposed estimator
mechanism should also account for such cases before concluding to the actual function p(t) that
represents the evolvement of the state of services and resources. This is cor «idered during the
estimation phase as described below.

The next step of the mechanism is to estimate the time at which a specific thrs sho 1 might be reached
in order to trigger the corresponding runtime adaptations on the infrastructure ..~ .1 (e.g. scaling). This
threshold is denoted as th.

Given that polynomials of 5™ degree are considered in the proposed - ppri ~~h. it is not feasible to
solve the equation regarding the variable t. However and given tha. *ie services and resources
behaviour is non-deterministic and usually reflected in such polynor .iass, there is the need to estimate
the time ¢, at which a threshold (e.g. memory usage) is reached. Ti us, it is "equired to estimate the:

t, for which p(t,) = k, where k is the *'ucshola value.

To estimate the aforementioned time t,, the following alg. ~.am .as been implemented in the
Runtime analyser and estimator:

Optimization and estimation of the triggering time for ru.~time adaptations

1. Collect 6 monitoring data points (to enable polynon..~1s of 5th degree to be considered) for a
given attribute a (e.g. memory usage) in the i.. «wuny configured intervals of the Prometheus
server (every second):

(o) @), (t1,a1), (t2,a2), “ta sy, (ta, as), (ts, as)

2. Model the evolvement of a based on the ~lync mial regression and prediction by calculating
the function p(t).

3. Utilize the function p(t,) forx=7, ¢, 4. ... : 5. These refer to subsequent points of the initial
6 collected monitoring points as estimates (i.e. perform 10 predictions of the corresponding
attribute a through the p(t).

4. Store all the results in an arra, and pe' form binary search for the threshold th. If the value
being searched doesn’t mat_h a sp. fic one, consider as the triggering time the smallest
closest neighbor.

5. While th > p(t;5) retv nto>. = 3 and perform 10 additional predictions since the threshold
for a specific attribute aas ~ot yet been predicted from the identified polynomial.

6. Store the additional ~sults trom Step 5 in the array and perform binary search for the
threshold th in or er t obtain the estimation / prediction on the time at which the threshold
will be reached.

7. Obtain the cor espr adirg time ¢,.

8. Perform polynou. 1 {7 ing for an exponential function based on the 6 data points collected in
Step #1 ar d4 perf rm the number of predictions required as known by Step #5 (through a
global vari ble).

9. In tim «,_, compute the error & both for the p(t) and for the exponential function.
Acco ling to  1e smaller error, disregard one of the 2 functions for future cases.

10. For eacn . = . monitoring result / data, restart the overall process.

Table 1: Trig verr g ..me estimation algorithm

Based on the algorithm above, the scaling decisions are triggered through the Fenzo scheduler
presented in Section 3.

5. Evaluation



5.1 Experiment setup

The experiments used to evaluate the proposed approach were performed in a real-world setting in
terms of the utilized frameworks and tools. An infrastructure consisting of eight (%) nodes has been
exploited as a testbed for the validation of the mechanism results. The nodes . ave the following
characteristics: 16GB RAM, Intel i7-4790 @ 3.60 GHz x 8 CPU Cores, 2TB Storag. Mesosphere
DC/OS 1.11 has been deployed and in total 24 containers have bee: 1 ade available for
experimentation, presenting a small scale representative cloud environment.

Regarding the application services that have been used, WikiBench [401 ha. been selected as the
benchmark since it addresses a wide range of typical services (inclur mg - »lication servers, load
balancers, and databases) and thus different parameters can be monitorc ' .nodelled and estimated. It
should be noted that the purpose of this study is not to stress-test ap . ucation .ervers or databases, but
to demonstrate through a benchmark the non-deterministic beha iour ot services (and as a result
resources). To this end, WikiBench is an optimum benchmark gi*"~n u.. * “.ie load on the services (e.g.
web servers due to number of concurrent users) and on the re our ¢s ‘e.g. CPU or memory) follows
the usage patterns of visitors, which is non-deterministic.

To realize the evaluation environment and exploit Wikibench for . »ad generation, a load balancer has
been deployed, namely HAPProxy [41]. Moreover, Apache 1.. = be .n used as an application server and
MySQL as the database. In terms of monitoring, as alreaa, described in Section 3, Prometheus has
been selected and deployed, as well as the corresponu. g exporters (acting as probes for the different
services) being available from the Prometheus community [42]. These exporters are the following:
Apache exporter, HAProxy exporter, MySQL expo. ‘er Furthermore, the initial scrape interval in the
corresponding configuration file of Prometheu. as b.=n updated to lsec (the default is 1min). The
data that have been collected during the experimen.atiu.1 phase are summarized in the following table.

Metric Type oescription

cpu_usage float CPU usage percentage

memory_usage float Memory usage percentage

io_bytes read bytes/secc «d Number of bytes read from block devices
io_bytes_write bytes/sec nd Number of bytes written to block devices
rx_packets packet /secon.' Number of received packets

rx_bytes byte'/see >nd Number of received bytes

tx_packets par’.~ts/second Number of sent packets

tx_bytes F vtes’second Number of sent bytes

Table 2: Published service ttribu. </ QoS parameters
5.2 Evaluation result

A number of exper’ ...nts h. . been performed to evaluate different aspects of the proposed approach.
The main aspects under 1 vestigation include the following: (i) Evaluation of the choice regarding
polynomial regressic~ ~.d prediction comparing to the least square method, (ii) Evaluation of
potential char ze fro.~ polynomial approximation to exponential approximation as proposed by the
algorithm pres nted a Section 4.2, (iii) Evaluation of the numerical-driven approach to perform
search on .. 7~ta space in order to identify the time for triggering corrective actions, (iv) Evaluation
of the actual v edictions comparing to the ground truth and as a result the actual values.

An additional uspect that was taken into consideration refers to the evaluation of the presented

mechanism both for service-related metrics / parameters and for resource-related ones. To ensure that
both are being addressed, the experiments referring to aspects under investigation (i), (iii), (iv) above



have been conducted with a resource-related metric: the memory usage. The service-related metric has
been addressed by the aspect (ii) under investigation.

The following paragraphs showcase the results for all identified aspects under investigation.

Evaluation of the choice regarding polynomial regression and prediction compariny to the least
square method

To perform the specific evaluation 6 data points — monitoring data values - ha. ~ been collected and
the corresponding polynomial regression took place. The regression was p. formed for different
polynomial degrees to showcase the outcomes when not all points are ..~<idered (least square
method) and when all points are considered (5™ degree polynomial). The .~ ults are depicted in Figure
4 and Figure 5 respectively. It should also be noted that a specific t'.cesho'd nas also been considered
(e.g. obtained through a service level agreement) in order to showc:se whether the different
approaches have an impact on the runtime actions with respec* (> tha. uireshold. The threshold has
been set to 67% memory usage for the resource being modelled

To T T T T T T T

memory usage (percentage)
.

L A 1 L 1 1 1
0 1 3 4 5 6 7 8 9 10
t{sec)

(a) Polynomial (1* degree) approximation
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Figure 4. Polynomial approxims ‘v.. . *“ the least square method
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Figure 5. Polynomial (5" degree) approximation with interpolant

As depicted in the figures above, the least squares method would lead to overprovisioning of resources
given that the estimations either already cross the specified threshold or will lead to it within the next 2
seconds. The only case of least squares that does not reach the threshold is the 2™ degree
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approximation. However, the error in that case is very high (~10%) and thus cannot be considered as a
trustworthy estimation. The 5™ degree polynomial performs quite efficiently regarding the estimation
and prediction (error rate < 2%) and thus it has been selected for experimentation with additional
metrics and cases.

Evaluation of potential change from polynomial approximation to exponential 7 sp. 2ximation

The aim of this experimentation is to evaluate whether the approach fon.x:d in the algorithm
presented in Section 5.2 to utilize exponential approximation instead of poly. ~mia, adds value to the
overall prediction. To this end, an experiment has been performed consid .r1n ¥ this dme as a metric the
number of concurrent users, and a threshold set to 780 users. T. ~ ¢ ponential approximation
outperforms the polynomial one as shown in the following figure.

8O0 T T T T T T T
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number of users
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1 2 3 4 5 6 7 8 9 b
t

(a) Polynomial approximation
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(b) Exponential appi. “imation
Figure 6. Polynomial approxima* ~~ vs expunential approximation

Evaluation of the numerical-driven approach to .. *for, » search on the data space in order to identify
the time for triggering corrective actions

The next experiment aims at evaluating the aspc * of the algorithm to search on the data space in order
to conclude to the time at which corrective actions to ensure quality of service need to be taken. Given
that for >3" degree polynomials therr is no ‘mique solution, binary search has been selected as a
means to search on the data space. W.. thr initial threshold (set on 67% of memory usage) and
following the polynomial regressic « (p rformed until ts), a set of 10 estimations is produced and the
algorithm searches within this spac. (her ;after, the initial experiment has been updated to include a
second threshold - set to 90% f memo.y usage. The reason for the latter is to evaluate whether the
approach to perform every t.me a ~t of 10 sequential predictions and search in that space yields
acceptable results. The pred cu. n and the aforementioned thresholds are cited in the next figure.
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Figure 7. Polynomial (5" degree) . “gie. © = and prediction for t) - to

Based on the above and as depicted in the follow u, tab_e (Table 3), t;s is chosen as the time to trigger
corrective actions (i.e. before reaching the th==<hola

Time Estimation Threshold
ty 51.00 67.00
tg 53.21 67.00
to 52.01 67.00
tho 46.69 67.00
1 45.00 67.00
thr 42.75 67.00
113 43.57 67.00
t 48.56 67.00
tis 58.01 67.00
ty

71.03 67.00
Table 3: Estimated me~ 5ry u..'* .ation based on the interpolant for t; - ti4

In the case of the upJ~*= threshold, given that it is higher than the current set of estimations — shown
in Table 2, an additic -al set of estimations is compiled. In this case, the threshold value is lower than
the highest est, nated salue and thus binary search is performed within the data space. As shown in the

next table T.-'e 4). corrective actions will be triggered in t,,.
Time Estimation Threshold
t17 73.89 90.00
t1s 76.77 90.00
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tio 79.67 90.00

t20 82.53 90.00
123 85.32 90.00
t 88.01 90.00
t3 90.55 90.0C
to4 92.89 90 “u
tos 95.00 9. 00
tas 96.81 -1 00

Table 4: Estimated memory utilization based on the interpolant for t;7 - tys

Evaluation of the actual predictions comparing to the ground truth

For the previous experiment the monitoring data have been collectc 1 in orc r to analyse the error rate
of the estimations of the polynomial regression and prediction (~m~.ring to the ground truth
measurements. As shown in the figure below the error rate is | ss t+ ... 4% (absolute value), while the
average error rate is ~ 1.5%.
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90 - ]| 4,00%

| II w II 3,00%

‘l L 2,00%

\ U ' 1,00%
{

0 . Il\ .' I 0,00%
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0 \ -2,00%
||

‘ !

0 ia 4,00%

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

v A Fstim. ' n = Actual ——Error

Figure 8. Error percentage of po., ¢ nial prediction comparing to ground truth measurements

6. Conclusions

Service provisioning on .op o1 . infrastructures including cloud, edge / fog computing and Internet of
Things environments ' :ads (o v :lue creation for different entities in the ecosystem [43]. However, this
value is amplified only .. t'.e case of services that are provided with specific quality of service
guarantees. In thi contc 't, this paper introduced a complete solution that addresses the case of
decision taking re_ardinc adaptations on the infrastructure level, necessary to ensure quality of
service. A m .chanim has been developed and integrated with a well-established monitoring
framework (i =. Pror .etheus), enabling modelling and estimation of the evolution of different
parameters Thes. parameters could be application and / or resource metrics that are collected by
monitoring “a’.ieworks. The mechanism presented in this paper utilizes polynomial regression and
prediction in ¢ der to model and predict the aforementioned evolution of parameters in time. The latter
also contributes towards minimizing the overhead of monitoring, since by predicting the evolution of
an attribute’s value and estimating the time at which it will reach a specific value (e.g. a threshold) the
monitoring time intervals are adapted accordingly. For example in the case of a constant value the
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monitoring intervals will be increased (i.e. non-required monitoring will be avoided), while in the
contrary in the case of an exponential increase the intervals will be decreased since a threshold could
potential be reached in a short time window. Furthermore, according to the prediction, it is feasible to
identify when a threshold will be reached and thus take proactive actions. The thre ;hold can be set by
cloud administrators or obtained by service level agreements. Key aspect in the propu. ~d approach is
that polynomial fitting provides a high degree of accuracy and minimi-cs cases of potential
overprovisioning of resources in contrast with the least square method. I "orrover, the presented
mechanism utilizes polynomial approximation up to the 5" degree (and ..t linc* approximation),
which represents a broad change in parameters values and deals with pe'c. tial 5, ‘kes and bursts. An
initial prototype has been finalized and is fully functional in a real-worl’ set* ng va top of Mesosphere,
enabling the management of containers and services in an optimum wav.

Notwithstanding, it is within future plans to further improve the propo.>d approach. To this end,
Netwon polynomial will be utilized as a basis in order to enable n w poi its to be added during the
polynomial fitting. The final outcome of the compilation ot thk= polynomial will not change
(comparing to the approach presented in this paper), however “ °, mo e efficient since not all points
need to be re-calculated when a new point is considered 1.~ the compilation of the polynomial.
Furthermore, the approach will be enhanced to include weig t factors that will represent the
importance of services (in the cases of composite applic.*ions ~~.isisting of several services), as well
as the importance of different parameters / metrics comparn.. to others (e.g. CPU vs memory). The
latter will provide accurate estimations for runtime ada, *ations considering the overall application as
well as the overall underlying infrastructure in a hec *._*~ way, while cross-services and cross-resources
optimization will also be feasible. The overall predic i ,ns will also be considered during the resource
allocation phase in order to address cases of res. . ~es « ontention in the case of sharing resources and
concurrent (potentially conflicting) requests.
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