
 

Accepted Manuscript

Local Activity-Driven Structural-Preserving Filtering for Noise
Removal and Image Smoothing

Lijun Zhao, Huihui Bai , Jie Liang, Anhong Wang, Bing Zeng,
Yao Zhao

PII: S0165-1684(18)30372-4
DOI: https://doi.org/10.1016/j.sigpro.2018.11.012
Reference: SIGPRO 6986

To appear in: Signal Processing

Received date: 23 June 2018
Revised date: 12 November 2018
Accepted date: 14 November 2018

Please cite this article as: Lijun Zhao, Huihui Bai , Jie Liang, Anhong Wang, Bing Zeng, Yao Zhao,
Local Activity-Driven Structural-Preserving Filtering for Noise Removal and Image Smoothing, Signal
Processing (2018), doi: https://doi.org/10.1016/j.sigpro.2018.11.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.sigpro.2018.11.012
https://doi.org/10.1016/j.sigpro.2018.11.012


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Two novel edge-stop functions are introduced for our local activity-driven

anisotropic diffusion (LAD-AD) to efficiently remove severe artifacts and

preserve the fine geometry structures in HEVC-compressed depth images.

• We propose a simple yet effective local activity-driven RTV (LAD-RTV) with

the way of the product of gradient and the local activity measurement for image

smoothing and scale representation.

• LAD-RTV leverages the form of the division of gradient and the local activity

measurement to resolve the problem of general image de-noising by regarding

the noises as the duplicate texture elements.
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Abstract

In this paper, a local activity measurement of the clipped and normalized variance or

standard deviation is proposed to drive anisotropic diffusion and relative total variation

(RTV) to work better for structural preservation. Firstly, two novel edge-stop func-

tions are introduced for our local activity-driven anisotropic diffusion (LAD-AD) to

efficiently remove severe artifacts and preserve the fine geometry structures in HEVC-

compressed depth images. Secondly, we propose a simple yet effective local activity-

driven RTV (LAD-RTV) with the way of the product between gradient and the local

activity measurement for image smoothing and scale representation. Meanwhile, both

color-sharing information and each-channel discriminative information are considered,

which are significant to color image’s edge-preserving but not included in the RTV

model. Besides, LAD-RTV leverages the form of the division of gradient and the local

activity measurement to resolve the problem of general image de-noising by regarding

the noises as the duplicate texture elements. Experimental results have validated that

the proposed LAD-AD can greatly improve the precision of HEVC-compressed depth

images and the quality of its synthesized image. Additionally, large numbers of results

have shown our LAD-RTV is superior to several existing methods.
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1. Introduction

Image filtering is an effective way to improve the performance of many applica-

tions, such as edge detection and image editing [1, 2, 3, 4, 5, 6, 7, 8, 9]. Since different

types of images have different characteristics and different applications have different

requirements, image filtering algorithms should be designed for each case properly. For5

example, depth images having smooth regions divided by sharp boundaries represent

scene’s geometry structures. The high-quality boundaries should be preserved, because

they will strongly affect 3D video coding’s efficiency and the quality of view synthesis

with depth image-based rendering (DIBR). Therefore, the quality of the virtual-view

images should be enhanced after filtering contaminated depth images. Meanwhile, the10

precision of depth image should be kept at least or even be greatly improved. For

natural images, when we want to remove image noises, we need to preserve both

image’s structures and textural details at the same time. If we want to apply image

smoothing, we should remove texture details but keep major structures.

Although there are a large number of works for image filtering [5, 6, 7, 8, 9,15

10, 11, 12, 13, 14], most of these algorithms tend to be computationally complex,

which are not well suitable for practical applications. Meanwhile, their algorithms are

specifically designed for one model, which lose the sight of generalization, so we need

to re-design a new algorithm for each new model. Based on the above observations,

our motivation is whether a robust statistic measurement can be easily inserted into20

some models to adaptively control model’s trade-off parameter between data term and

regularization term. Meanwhile, this statistic measurement should not significantly

increase computational complexity. Besides, this measurement can be easily put into

most of low-level image processing model without complicated expert’s design. It

is generally known that standard deviation is a good measurement on the degree of25

dispersion for a set of data. Because each image patch’s standard deviation can be

quickly computed through matrix operations, it will not significantly increase the

complexity of the filtering. Consequently, we introduce a local activity measurement

of variance or standard deviation to drive different models for better solutions.

In this paper, a clipped and normalized local variance or standard deviation is30
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leveraged as the local activity measurement for image smoothing and denoising. In

particular, the ratio between gradient and the clipped local activity could locate the

noises and facilitate image denoising. In our first framework, we develop a robust local

activity-driven anisotropic diffusion framework (LAD-AD) and apply it for HEVC-

compression artifact removal of the contaminated piece-wise smooth images such as35

compressed depth images. More importantly, there are several issues to be noticed for

LAD-AD. For example, the clip function plays a key role in controlling image diffusion

of LAD-AD. Meanwhile, choosing local variance or standard deviation results in

different edge-stop function’s formations. Furthermore, the updated way of the local

activity measurement has great impacts on the algorithm’s performances.40

Our second framework is a local activity-driven relative total variation (LAD-RTV),

which not only uses the local activity but also takes the color-sharing information and

each-channel discriminative information into consideration. There are two schemes for

our LAD-RTV. The first scheme is a local activity-driven RTV for image smoothing

and image representation in different scale-spaces, where the RTV is divided by the45

clipped local activity, which emphasizes image’s salient contours. Additionally, the

color-sharing information and each-channel discriminative information used in our

LAD-RTV can provide more discriminative information than RTV. The second scheme

of LAD-RTV is designed to remove additive white Gaussian noises by treating image

noises as duplicate textures when using a ratio between gradient and the local activity50

to identify the location and the amplitude of the noises.

The rest of this paper is organized as follows. Firstly, some works on image

denoising and image smoothing are reviewed in Section 2. Secondly, we introduce

a robust local activity-driven anisotropic diffusion and a local activity-driven relative

total variation in Section 3 and 4 respectively. After that, experimental results are55

presented in Section 5. Finally, we conclude our paper in Section 6.

2. Related works

Because our work involves two popular low-level image processing problems, we

first give a review of general image denoising and image smoothing respectively. After
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that, we look back on a special class of image denoising for compressed depth image.60

2.1. General image denoising

Image denoising is often separated into two categories: weighted filtering and

optimization-based methods. For the first class, there are several well-known algo-

rithms, such as bilateral filtering and its extensions. For example, bilateral filtering

is a general image filtering technique [15], which can remove image noises and65

preserve sharp boundaries. Due to its high computational costs, fast bilateral filtering is

developed to accelerate image filtering in [16]. For visual-pleasing image denoising, an

optimally weighted bilateral filter is formed by minimizing the oracle mean-squared-

error to get optimal weights [17], whose performance is competitive to the non-local

means filter [18]. Recently, image’s local entropy is used to automatically direct filter’s70

range parameter selections of bilateral filtering [19]. Based on the density of connected

components, an image activity detector is built up for a fast noise removal filtering [20],

as compared to a classic median filtering.

Anisotropic diffusion [21] belongs to the second class of image denoising algo-

rithm. In [13], the relationship between anisotropic diffusion and robust statistics is75

analyzed. In [14], a new class of fractional-order anisotropic diffusion equations is

introduced for noise removal. To preserve edges and fine details, both local gradient

and variance are incorporated into the diffusion model to remove annoying noises

effectively [10, 11]. Most recently, a regularization model is leveraged to adaptively

adjust the diffusivity based on the image gradient’s magnitude [22]. It is well-known80

that the total variance model can be viewed as a special case of the anisotropic diffusion

with specific edge-stop function. Next, we review several works about total variation

model. In a spatially adaptive total variation model, image denoising’s strength is

differentially assigned to district regions and different bands [23]. In [24, 25], spatially

clustering-aware total variation is used, or total variation’s weighted parameter is85

controlled by spatial difference curvature to resolve image super-resolution problem.

Next, we will look back to medical image denoising, which is always used as a pre-

processing for computer-aided diagnosis system. Recently, CT image denoising and

MRI image denoising have been reviewed in [26, 27]. Here, several newest works will
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be discussed. Because there exist information redundancies for MR images in PCA90

domain, only noise principle component is removed, while other components are kept

to improve the signal-to-noise ratio [28]. To accurately diagnose disease from MRI

images, a group of filters is merged with an image segmentation technique to reduce

image noises [29]. Meanwhile, image’s grid segmentation is utilized to automatically

choose the filtering parameters for semi-classical signal analysis-based denoising [30].95

Because low-dose CT images often incur annoying noise and artifacts, both generative

adversarial loss and perceptual loss are introduced into the training of CNN-based

denoising model [31].

2.2. Image smoothing

Image smoothing, also known as texture removal, is another important technique100

for many low-level and high-level applications [2, 32, 33], because this technique

provides a lot of meaningful structural boundary clues. The family of weighted filtering

methods is often achieved by a weighting method within small or large patches. For

example, the guided image filter is a fast and non-approximate linear time algorithm

[4]. Another efficient method is rolling guidance filtering [7], which is a fast iterative105

bilateral method. In order to achieve real-time tasks, domain transform is proposed for

a high-quality edge preserving filtering [5].

Different from image weighted filtering for image smoothing, the family of

optimization-based methods always faces a non-convex yet complex problem. In [8],

both static guidance and dynamic guidance are jointly leveraged to achieve robust110

guided image filtering, which is formulated as a non-convex optimization problem.

In [3], a multi-scale image decomposition method is conducted to form the edge-

preserving smoothing operator in a weighted least square optimization framework. In

[2], an L0 gradient minimization optimization framework globally controls how many

non-zero gradients are kept in the smoothed image for textural removal. By taking115

advantage of a statistic diversity of gradient between texture patches and structure

patches, a relative total variation (RTV) framework is presented to preserve image’s

structures [1]. In this method, windowed inherent variation (WIV) and windowed

total variation (WTV) are combined to discriminate structures from textures, while
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an optimization problem is formulated to extract image’s main structure. Afterward,120

another efficient approach tries to use region covariance for image smoothing [6].

Recently, mutually guided image filter (muGIF) [34] defines a new measurement

for mutual response to manage structural similarity between two input images for

image smoothing and scale-space filtering, etc. Although these methods achieve

some excellent performances for structure-preserving smoothing, there are still some125

thorny problems, such as inefficient texture removal, severe boundary blurring, and the

inaccuracy of edge localization after filtering.

2.3. Depth image denoising

Although depth image filtering is similar to image processing problems described

above, there some differences between them. On the one hand, depth image denoising130

should keep surface smoothness within objects to satisfy depth image’s piece-wise

smooth characteristics, whose ambition is partly similar to textural removal. On the

other hand, depth denoising algorithms should also preserve depth image’s fine details

like general image denoising. Many methods have been explored to remove severe

artifacts in the compressed depth images so that the quality of the synthesized virtual135

image could be improved. In [35], a trilateral filtering method is treated as an in-loop

filter to reduce depth coding artifacts. This method employs three filtering weights,

which respectively come from the spatial domain, depth range domain, and color range

domain. In [36], an adaptive depth truncation filter (ADTF) is presented to restore sharp

object boundaries of depth images from blurring. In [37], a candidate-value-based140

depth boundary filtering is developed by selecting an appropriate candidate value to

replace each unreliable pixel based on spatial correlation and statistical characteristics.

In [38], two-stage filtering (TSF) scheme is presented to reduce depth coding artifacts

by using binary segmentation-based depth filtering and Markov Random Field (MRF).

Lately, an iterative range-domain weighted filtering (IRWF) [9] is used to improve145

the quality of compressed depth images without the use of spatial domain weights by

iteratively filtering in the range domain. These methods greatly reduce image artifacts

of synthesized virtual images caused by compressed depth image, but they often tend to

change depth images too much. Up to the now, simultaneously improving the accuracy
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of the depth image and its synthesized image quality by filtering compressed depth150

image is still a challenging problem and should be further studied.

3. Local activity-driven anisotropic diffusion

Generally, depth images are characterized with piece-wise smooth regions seg-

mented by sharp boundaries. However, depth boundaries usually suffer from various

compression artifacts after compression, which will badly affect the quality of view

synthesis [35, 36, 37, 38]. In this paper, we propose a local activity-driven anisotropic

diffusion (LAD-AD) method to mitigate coding artifacts of depth images, which is

written as:
∂I

∂t
= ∇ · (c(||∇I||,K)∇I), (1)

where ∇I is the gradient of image, ∇· is the divergence operator, and K is the local

activity image got from a HEVC-compressed depth image I . The discrete solution of

Eq. (1) can be written as:

It+1
i = Iti + λ

∑

j∈Ni

c(||∇Itij ||,Kt
i )∇Itij , (2)

where I0
i = Ii in the first iteration, and Kt

i is a clipped and normalized local activity

for pixel i at the t-th iteration, which will be defined later. Two novel local activity-

based edge-stop functions are defined as follows:

c(||∇Itij ||,Kt
j) = exp(−(

||∇Itij ||
ρ1Kt

i

)2), (3)

c(||∇Itij ||,Kt
j) = exp(−(

||∇Itij ||2
(ρ2)2Kt

i

)), (4)

where ρ1 and ρ2 are the diffusion parameters, e.g., ρ1 = 30 and ρ2 =
√

300 in

the default setting. Note that Kt
i is squared in Eq.(3), but not in Eq.(4). The ratio

of gradient and the local activity is used to capture where the coding artifacts exist155

in the compressed depth image. Moreover, the diffusion parameters are adaptively

adjusted according to this ratio, i.e., larger diffusion parameters are assigned to more

severely distorted pixels. Therefore, pixels with larger local activity would receive

8
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more anisotropic diffusion from neighboring pixels than pixels with smaller activity

under the constraint of the edge-stop function. This contributes to removing noisy160

pixels and preventing blurry regions from being heavily diffused.

Next, we will introduce a clipped and normalized local activity measurement

Kt
i . First, we calculate a local mean value Īti and standard deviation vti of the 8-

connected neighborhood around each pixel, which is written in Eq.(5). Here, Ni
denotes the 8-connected neighborhood of pixel i. Note that our anisotropic diffusion165

uses 4-connected neighborhood in the regularization term for compressed depth image

filtering, so only 3x3 window size is considered to get the local activity rather than

other larger window size.

vti = [
1

9
((Iti − Īti )

2 +
∑

j∈Ni

(Itj − Īti )
2)]

1
2 , Īti =

1

9
(Iti +

∑

j∈Ni

Itj) (5)

A clipped version of vti , denoted as V t
i , is given as: V t

i = tl, if 0 ≤ vti < tl;

V t
i = vti , if tl ≤ vti < th; V t

i = th, if th ≤ vti , which is the clip function. Here,

tl and th are two pre-defined truncated parameters of the clip function to control the

degree of diffusion by making anisotropic diffusion to work within a certain range of

local activity, e.g., tl = 1, th = 30. tl is the minimum truncated value, while th is the

maximum truncated value. This clip function restricts the local activity not to be large

or small, which makes each pixel have a valid local activity measurement. If we use

variance as local activity measurement to adjust image diffusion’s strength, too large

distance between the largest variance v2a and the smallest variance v2b will make some

pixels’ diffusion not to work or heavily diffused. To see this, we first use a fact that

(v2a − v2b ) is (va + vb) times of (va − vb). When va + vb > 1, (v2a − v2b ) is more than

one times of (va − vb). (v2a − v2b ) = (va − vb) if va + vb = 1. (v2a − v2b ) is less than

(va− vb) if va + vb < 1. Generally, the distance between va and vb is far larger than 1,

so (v2a − v2b ) is immensely larger than (va − vb), so we choose the standard deviation

as the local activity to driven image filtering. After calculating the local activity, V t
i is

normalized by max(V t), which is the maximal value across the image in Eq.(6).

V̄ t
i = V t

i /max(V t), 0 ≤ t ≤ (m− 1) (6)

9
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Finally, Kt
i is updated to make iterative results more stable from V̄ t

i for every

l iterations, which is defined as: Kt
i = V̄ t

i , if mod(t, l) = 0; Kt
i=V̄

t−mod(t,l)
i , if170

mod(t, l) 6= 0. Here, mod denotes the modulo operator, m be the maximal number

of iterations, and the updating interval l is chosen as l ∈ [1,m]. In the following, the

fixed local activity-driven anisotropic diffusion using Eq.(3) as edge-stop function is

denoted as FLAD-AD. And the time-updated local activity-driven anisotropic diffusion

with Eq.(3) is labeled as TLAD-AD. Meanwhile, the periodically local activity-driven175

anisotropic diffusion based on edge-stop function of Eq.(3) is referred to as PLAD-AD.

Similarly, when Eq.(4) is used, three other methods are denoted respectively as FLAD-

AD (I), TLAD-AD (I), and PLAD-AD (I). When l is set to be 1, the proposed method

becomes TLAD-AD. If l is larger than 1, but small than m, it reduces to PLAD-AD.

However, if l is set to be m, it is changed into FLAD-AD.180

There are three previous works [10, 11, 12], which are similar to the proposed

method, but there are different from each other in some aspects. Several discrepancies

between our LAD-AD and [10, 11] are listed as follows: we introduce a clipped

function to restrict the value of local activity; the local activity is calculated by the

interval-updated way; and our method uses the division between gradient and local185

activity, but the works of [10, 11] employ the multiplication way. The discrepancies

between the proposed LAD-AD and [12] are listed as follows:

1. In this paper, the clipped and normalized local activity in a periodically updated

way is used to drive the anisotropic diffusion adaptively. The detailed operation

of activity used in [12] is very complex, and the window for their activity is often190

set to be larger than 3×3. In this paper, we aim to achieve fast depth filtering for

distorted image compressed by HEVC coder, so we use 3 × 3 window centered

at pixel Di to get the 8-connected standard deviation vi instead of the variance.

If the variance is used, a small variance can be easily dominated by the large

variance, which leads to a little contribution to the diffusion. Another reason is195

that our LAD-AD uses the 4-connected neighborhood for anisotropic diffusion

so that both standard deviation and the local gradient is calculated according to

the same neighboring regions. But, the standard deviation within the 8-connected

10
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neighborhood is chosen to get the local activity rather than within 4-connected

neighborhood in order to make LAD-AD robust to image noises 1.200

2. A clipped function is used for the local activity to make diffusion stable during

anisotropic diffusion, because pixels with very large local activity always make

local activity-driven anisotropic diffusion useless for pixels with smaller local

activity measurements.

3. During the iterative diffusion, the updated activity is used to control the degree205

of diffusion. Generally, the fixed local activity often tends to blur image’s

discontinuities. The time-updated local activity can always preserve the sharp

boundaries, but it often requires extra calculation of the local activity in every

iteration. The interval-updated activity is a good alternative, especially when

some practical applications require fast filtering.210

4. Local activity-driven relative total variation

Inspired by the literature of [1], we propose a local activity-driven relative total

variation for image smoothing (denoted as LAD-RTVs) for color image. Given a color

image Ic0 = [R0,G0,B0], our LAD-RTVs is written in Eq. (7), where Ic denote

the smoothed color images, which has three channels [R,G,B]. The former term in215

Eq. (7) is data term, and the latter one is our LAD-RTVs regularization term. These

two terms are balanced by λ, which controls the degree of smoothness for the solution

Ic of our LAD-RTVs. The clipped and normalized local activity measurement vrp for

red-channel is obtained according to Eq.(5) as well as Eq.(6). Then, vgp as well as vbp

can be got like vrp. The superscript of vrp indicates this local activity belongs to red220

channel, while its subscript denotes the position of p in the image. Other symbols can

be labelled in this manner. vcp is the maximum value of the clipped and normalized local

activity measurements along image’s channel dimension. The tl and th for LAD-AD

are denoted as thl and thh in the LAD-RTV model for the clear usage in the following.

1More discussion can be found from https://github.com/mdcnn/Local-Activity-Driven-Filtering
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The default values of these two parameters for image smoothing are set to be thl = 1225

and thh = 10.

arg min
R,G,B

{∑

p

(R(p)−R0(p))2 +
∑

p

(G(p)−G0(p))2 +
∑

p

(B(p)−B0(p))2
}

+ λ ·





√√√√∑

p

(Dr)x(p)
(Lr)x(p)+ε

vrp
·

(
Dr)cx(p)

(Lr)cx(p)+ε
vcp

+

√√√√√∑

p

(Dr)y(p)
(Lr)y(p)+ε

vrp
·

(Dr)cy(p)
(Lr)cy(p)+ε

vcp

+

√√√√∑

p

(Dg)x(p)
(Lg)x(p)+ε

vgp
·

(Dg)cx(p)
(Lg)cx(p)+ε

vcp
+

√√√√√∑

p

(Dg)y(p)
(Lg)y(p)+ε

vgp
·

(Dg)cy(p)
(Lg)cy(p)+ε

vcp

+

√√√√∑

p

(Db)x(p)
(Lb)x(p)+ε

vbp
·

(Db)cx(p)
(Lb)cx(p)+ε

vcp
+

√√√√√∑

p

(Db)y(p)
(Lb)y(p)+ε

vbp
·

(Db)cy(p)
(Lb)cy(p)+ε

vcp





(7)

(Dr)x(p) · (Dr)cx(p) =
∑

q∈Np

gp,q|(∂xR)q| ·
∑

q∈Np

gp,q|
∑

k∈1,2,3
(∂xI

c(k))q/3|,

(Dr)y(p) · (Dr)cy(p) =
∑

q∈Np

gp,q|(∂yR)q| ·
∑

q∈Np

gp,q|
∑

k∈1,2,3
(∂yI

c(k))q/3| (8)

(Lr)x(p) · (Lr)cx(p) = |
∑

q∈Np

gp,q(∂xR)q| · |
∑

q∈Np

gp,q
∑

k∈1,2,3
(∂xI

c(k))q/3|,

(Lr)y(p) · (Lr)cy(p) = |
∑

q∈Np

gp,q(∂yR)q| · |
∑

q∈Np

gp,q
∑

k∈1,2,3
(∂yI

c(k))q/3| (9)

Our discriminatively color windowed total variation (DCWTV) measures along

each axis for red channel are respectively written in Eq. (8). Our discriminatively

color windowed inherent variation (DCWIV) measures along each axis for red channel

are respectively presented in Eq. (9). In most cases, pixels around edges have a230

higher value of local activity than in relative other non-edge regions, such as fine detail

regions. By dividing both vrp/vgp /vbp and vcp in Eq. (7), the LAD-RTVs regularization

term for the edge pixels becomes smaller than others, so these pixels will have fewer

contributions to the LAD-RTVs term in relative to the non-edge regions, which results

12
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in that more edges will be preserved. As compared to RTV [1], the proposed LAD-235

RTVs in Eq. (7) will further smoothen the detailed textures, but image salient structures

are left. Due to the non-convexity of Eq. (7), its solution cannot be directly obtained.

As described in [1, 39], an objective function with a quadratic term as the penalty

can be optimized linearly. The LAD-RTVs term for red-channel can be decomposed

into a quadratic part and a non-linear part. Thus, the square of LAD-RTVs term for240

red-channel in the x-direction can be re-written as:

∑

p

(Dr)x(p)
(Lr)x(p)+ε

vrp
·

(Dr)cx(p)
(Lr)cx(p)+ε

vcp
=
∑

p

∑
q∈Np gp,q·|(∂xR)p|

(Lr)x(p)+ε
vrp

·

∑
q∈Np gp,q·

|∑k∈1,2,3 (∂xIc(k))p|
3

(Lr)cx(p)+ε
vcp

=
∑

p

∑

q∈Np

gp,q·|(∂xR)p|
(Lr)x(p)+ε

vrp
·
gp,q·

|∑k∈1,2,3 (∂xIc(k))p|
3

(Lr)x(p)+ε
vcp

≈
∑

p

∑

q∈Np

(gp,q)
2 · 1

(Lr)x(p) + ε
·

1

|(∂xR)p|+ ε
· 1

vrp
· (∂xR)2p ·

1

(Lr)cx(p) + ε
· 1
|∑k∈1,2,3 (∂xIc(k))p|

3 + ε
· 1

vcp
· (∂xR)2p,

(10)

gp,q = exp(− (xp − x2q) + (yp − yq)2
2σ2

), (11)

where gp,q is a Gaussian weighting function with variance σ = 3, and (xp, yp) is the

location of image pixel p. This equation can be further rewritten as:

√√√√∑

p

(Dr)x(p)
(Lr)x(p)+ε

vrp
·

(Dr)cx(p)
(Lr)cx(p)+ε

vcp
≈
∑

p

srx,p · crp · (∂xR)2p, (12)

where

crp =
1√

vrp ∗ vcp
, (13)

srx,p =
∑

q∈Np

gp,q ·
1√

((Lr)x(p) + ε) · (|(∂xR)p|+ ε)
·

1√
((Lr)cx(p) + ε) · ( |

∑
k∈1,2,3 (∂xIc(k))p|

3 + ε)
.

(14)
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Similarly, the LAD-RTVs term for red-channel in the y-direction can be written as:
√√√√√∑

p

(Dr)y(p)
(Lr)y(p)+ε

vp
·

(Dr)cy(p)
(Lr)cy(p)+ε

vcp
≈
∑

p

sry,p · crp · (∂yR)2p, (15)

where

sry,p =
∑

q∈Np

gp,q ·
1√

((Lr)y(p) + ε) · (|(∂yR)p|+ ε)
·

1√
((Lr)cy(p) + ε) · ( |

∑
k∈1,2,3 (∂yIc(k))p|

3 + ε)
.

(16)

The LAD-RTVs term for green-channel and blue-channel can be defined similarly.

Finally, we re-write Eq. (7) in the form of matrix in the first iteration as follows:

arg min
R(1),G(1),B(1)

(VR(1)− VR)
T

(VR(1)− VR) + (VG(1)− VG)
T

(VG(1)− VG)

(VB(1)− VB)
T

(VB(1)− VB) + λ[(VR(1))
T
(Gr

x)
TSr

xC
rGr

xVR(1)

+ VR(1)
T

(Gr
y)
T
Sr
yC

rGr
yVR(1)] + λ[(VG(1))

T
(Gg

x)
TSg

xC
gGg

xVG(1)

+ (VG(1))
T

(Gg
y)
T
Sg
yC

gGg
yVG(1)] + λ[(VB(1))

T
(Gb

x)
T
Sb
xC

bGb
xVB(1)

+ (VB(1))
T

(Gb
y)
T
Sb
yC

bGb
yVB(1)], (17)

where VR, VG, and VB are respectively the vectors of R0, G0, and B0. In addition,

the symbols in Eq. (17) for red-channel will be introduced in the following, and the

symbols of other channels can be labelled similarly. Gr
x and Gr

y are the Toeplitz

matrices from the discrete gradient operators using forward difference for red-channel.245

Sr
x, Sr

y , and Cr are the diagonal matrices for red-channel, whose diagonal values are

Sr
x[i, i] = srx,i, S

r
y[i, i] = sry,i, and Cr[i, i] = cri .

To minimize Eq. (17), we take the derivative respectively w.r.t VR(1), VG(1), and

VB(1), and then set them to be zero. Finally, the solutions to the minimization of Eq.

(17) can be written as:

VR = [E + λ((Gr
x)
T
Sr
xC

rGr
x + (Gr

y)
T
Sr
yC

rGr
y]VR(1),

VG = [E + λ((Gg
x)
T
Sg
xC

gGg
x + (Gg

y)
T
Sg
yC

gGg
y]VG(1),

VB = [E + λ((Gb
x)
T
Sb
xC

bGb
x + (Gb

y)
T
Sb
yC

bGb
y]VB(1), (18)
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where E is the identity matrix.

Given the initial image Ic0 = [R0,G0,B0], the iterative optimization procedure of

our LAD-RTVs is specifically presented as follows:250

1. In each iteration, Eq. (14) and Eq. (16) are used to calculate srx,p and sry,p in

order to get matrices Sr
x(t − 1) and Sr

y(t − 1) for red-channel. Similarly, we

can get matrices Sg
x(t − 1), Sg

y(t − 1), Sb
x(t − 1), and Sb

y(t − 1). According

to Eq. (13), Cr(t − 1) can be obtained. In the first iteration, Sr
x(0) and Sr

y(0)

are calculated from R0. Otherwise, Sr
x(t− 1) and Sr

y(t− 1) are obtained from255

R(t − 1), whose vector form is VR(t − 1). In this way, Sg
x(t − 1), Sg

y(t − 1),

Sb
x(t− 1) and Sb

y(t− 1) can be calculated.

2. Given Sr
x(t− 1), Sr

y(t− 1), Gr
x(t− 1), and Gr

y(t− 1), the vector of VR(t) can

be calculated in each iteration according to Eq. (19). In the similar way, we can

get VG(t) and VB(t). Note that VR, VG, and VB are fixed during iteration.260

3. After ℵ times iterations with step (1-2), VR(ℵ), VG(ℵ), and VB(ℵ) are re-

arranged into a matrix Iℵ = [Rℵ,Gℵ,Bℵ] with size M × N × 3, which is the

final output image.

VR(t) = [E + λ(Gr
x(t− 1)

T
Sr
x(t− 1)Cr(t− 1)Gr

x(t− 1)

+ Gr
y(t− 1)

T
Sr
y(t− 1)Cr(t− 1)Gr

y(t− 1))]−1VR (19)

As compared with RTV [1], which is specifically designed for image smoothing,

our LAD-RTV framework can be used for not only image smoothing but also image

denoising. Next, we introduce our LAD-RTV denoising model (denoted as LAD-

RTVd) in detail. Given a noisy image Icnoisy = [R0,G0,B0], our LAD-RTVd is

given in Eq. (20). The solution of LAD-RTVd in Eq. (20) can be obtained in the t-th

iterative step similarly according to the derivation for LAD-RTV, which is presented in

Eq. (21), where W r is the diagonal matrix and its p-th diagonal value is
√
vrp · vcp.

In this way, W g and W b can be got similarly. The default values of thl and thh for

denoising with LAD-RTVd are respectively set to be 4 and 30. Just as the denoising of

LAD-AD, because the product of RTV and normalized and clipped standard variation
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could capture the locations of the noises in the contaminated image, the detected noisy

pixels are always smoothed by LAD-RTVd to achieve image denoising. This comes

from a fact that gradient information always contains noise’s gradient change except

for boundary change, but a local standard deviation is usually a more stable statistic

measure in relative.

arg min
R,G,B

[∑

p

(R(p)−R0(p))2 +
∑

p

(G(p)−G0(p))2 +
∑

p

(B(p)−B0(p))2
]

+ λ ·





√√√√
∑

p

(Dr)x(p) · vrp
(Lr)x(p) + ε

· (Dr)cx(p) · vcp
(Lr)cx(p) + ε

+

√√√√
∑

p

(Dr)y(p) · vrp
(Lr)y(p) + ε

· (Dr)cy(p) · vcp
(Lr)cy(p) + ε

+

√√√√
∑

p

(Dg)x(p) · vgp
(Lg)x(p) + ε

· (Dg)cx(p) · vcp
(Lg)cx(p) + ε

+

√√√√
∑

p

((Dg)y(p) · vgp
(Lg)y(p) + ε

· (Dg)cy(p) · vcp
(Lg)cy(p) + ε

+

√√√√
∑

p

(Db)x(p) · vbp
(Lb)x(p) + ε

· (Db)cx(p) · vcp
(Lb)cx(p) + ε

+

√√√√
∑

p

(Db)y(p) · vbp
(Lb)y(p) + ε

· (Db)cy(p) · vcp
(Lb)cy(p) + ε





(20)

VR(t) = [E + λ[(Gr
x(t− 1))

T
Sr
x(t− 1)W r(t− 1)Gr

x(t− 1)+

(Gr
y(t− 1))

T
Sr
y(t− 1)W r(t− 1)Gr

y(t− 1)]−1VR;

VG(t) = [E + λ[(Gg
x(t− 1))

T
Sg
x(t− 1)W g(t− 1)Gg

x(t− 1)+

(Gg
y(t− 1))

T
Sg
y(t− 1)W g(t− 1)Gg

y(t− 1)]−1VG;

VB(t) = [E + λ[(Gb
x(t− 1))

T
Sb
x(t− 1)W b(t− 1)Gb

x(t− 1)+

(Gb
y(t− 1))

T
Sb
y(t− 1)W b(t− 1)Gb

y(t− 1)]−1VB

(21)

In the RTV model [1], whether a pixel is judged as a texture pixel or a structural

pixel depends on the measurements of the WTV and WIV within a patch. Thus, the265

RTV model smoothes all the textural pixels so as to extract image structures from

textures. However, our LAD-RTVd judges whether and how much a pixel belongs to

a noisy pixel based on a combination of local activity measurement and gradient, so

LAD-RTVd prefers to smoothen noisy pixels detected by local activity and gradient,
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rather than all the textural pixels. Therefore, our LAD-RTVd can maintain more270

detailed textures than RTV for image denoising.

Note that the LAD-RTVs reduces to discriminatively color RTV (denoted as DC-

RTV), when
√
vri · vci = 1,

√
vgi · vci = 1, and

√
vbi · vci = 1 for each pixel i.

Our DC-RTV could preserve more structures than RTV, which will be validated later,

because both color-sharing information and single-channel discriminative information275

are used in our model. From Eq. (13), it can be clearly seen that LAD-RTV employs

a multiplication way between local activity
√
vrp · vcp and gradient in the x-direction

for red-channel. On the contrary, LAD-RTVd uses a division manner of local activity
√
vrp · vcp and gradient in the x-direction for red-channel. For the other channels, they

share the similar expression.280

5. Experimental results and analysis

In this section, we show extensive results to demonstrate the performance of the

proposed frameworks. First, we first introduce the parameter setting1, after which our

LAD-AD is applied to artifact removal of HEVC-compressed depth images. Then,

we validate the efficiency of the proposed LAD-RTVs on image smoothing and scale285

representation. Finally, our LAD-RTVd is compared with several denoising methods

to demonstrate its novelty.

5.1. Parameter setting

Several depth maps of different scenes from Middlebury2 are used to analyze the

parameter selection for HEVC-compressed depth image filtering, as displayed in Fig.290

1 (a-f). Meanwhile, several different color images in Fig. 2 (a-f) from the McMaster

dataset3 are used to observe the performance of LAD-RTVd with different parameters.

As well all know, the diffusion parameter plays a vital role in image denoising, so

we use TLAD-AD as an example to see how depth images change after filtering with

different diffusion parameters. From Fig. 1 (g-h), it can be observed that the filtered295

2http://vision.middlebury.edu/stereo/data/
3http://www4.comp.polyu.edu.hk/ cslzhang/CDM Dataset.htm
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Figure 1: (a-f) are several depth maps of different scenes from Middlebury, (g) HEVC-compressed depth

image with QP=41, (h) the close-ups of the depth images filtered by TLAD-AD with different ρ1 for (g)

except for the ground truth, (i) the close-ups of the depths filtered TLAD-AD with different parameters of

thl and thh for (g)

Figure 2: (a-f) are different color images from the McMaster dataset, (g) the noisy color image and its close-

up, (h) the close-ups of the denoised images filtered by LAT-RTVd with different parameters of thl and thh

for (g)

depth images tend to be blurry, when diffusion parameter ρ1 is set too large, e.g.,

ρ1 = 40 or 100. At the same time, coding artifacts can’t be well removed from the

HEVC-compressed depth image, if ρ1 is too small, e.g., ρ1 = 10 or 20. Moreover, the

performance of TLAD-AD always is robust to noise and not to be over-smoothed but

sharp when ρ1 = 30. Based on these observations, we choose ρ1 = 30 in the proposed300

TLAD-AD1. tl and th are two parameters in the clip function to truncate the local
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activity in the proposed anisotropic diffusion. From Fig. 2 (g, i), we see that filtered

depth images become to be more smooth or less sharp, when th is set to be lower, e.g.,

th = 25, and vice versa. If we fix the parameter, e.g., th = 40, TLAD-AD tends to

make more discontinuities preserved, as tl is set to be smaller, e.g, th = 0.05, and vice305

versa. From above, it can be known that both tl and th can’t be too large yet too small.

In our simulation, tl and th are chosen to be 1 and 30, because image smoothness and

image structural preservation should be well balanced.

In the LAD-RTVd1, the parameters of thl and thh have enormous impacts on

image denoising. When we change thl from low to high, as shown in Fig. 2 (h), non-310

boundary regions of the denoised image become more smooth and are less affected by

noise. The LAD-RTVd-filtered images tend to have more details as thh is adjusted

from 20 to 40, but some structures of noisy are kept. Therefore, thl in LAD-RTVd can

be chosen from 1 to 4, and thh are restricted to be less than 40 but larger than 20. To

trade-off image smoothness and insensitivity to noise’s structure, we choose thl to be315

4 and thh to be 30 for LAD-RTVd in default.

5.2. Compressed depth image filtering with LAD-AD

We use four standard multi-view-plus-depth sequences: Nokia’s Undo Dancer (U),

NICT’s Shark (S), Nagoya University’s Champagne Tower (C) (in which the first 250

frames of these three sequences are tested) and HHI’s Book Arrival (B) (in which the320

whole sequences with 100 frames are tested). The depth maps of these sequences are

compressed by HEVC-v16.8 with quantization parameter (QP) chosen as 31, 33, 35,

37, 39 and 41, respectively. In the simulations, the 1D-fast mode of 3D-HEVC (HTM-

DEV-2.0-dev3 version) is used to synthesize the virtual middle view using two views of

uncompressed texture images and compressed depth images (filtered or non-filtered).325

Generally, the direct way of iterative termination for our LAD-AD uses Mean

Square Error (MSE) δ between two latest iterative images as the iterative stop criteria.

For example, when δ is set to be very small as 0.0001, the corresponding TLAD-AD is

denoted as TLAD-AD-1. If δ equals to 0.001, we denote it as TLAD-AD-2. However,

this stop criteria doesn’t work well for compressed depth images filtering with the330

LAD-AD. This will be verified in the following. The alternative way is to use the fixed
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Table 1: The average objective quality comparison of HEVC-compressed depth images filtered by different

methods and its synthesized images over four standard multi-view-plus-depth sequences with different

quantization parameters. (The font of the top three ranking methods is bold)
Measurements PSNR ISS SSIM Time(s)

Methods Depth Sythesized Depth Sythesized Depth Sythesized Depth

Coded 44.05 50.20 52.61 55.84 0.96426 0.99690 —

BF 44.49 50.88 53.06 56.05 0.96755 0.99721 16.15

JTF 44.25 50.45 52.91 56.02 0.96741 0.99706 41.82

IRWF 44.04 51.37 53.02 56.36 0.96646 0.99743 16.86

ADTF 43.93 51.31 52.84 56.27 0.96557 0.99739 1.20

TSF 43.39 51.47 52.91 56.33 0.96386 0.99740 3.45

TLAD-AD-1 44.09 51.20 53.10 56.28 0.96596 0.99737 4.18

TLAD-AD-2 44.34 50.89 52.97 56.12 0.96653 0.99729 1.72

FLAD-AD 44.16 50.86 53.12 56.30 0.96635 0.99739 2.04

TLAD-AD 44.18 50.80 53.10 56.29 0.96629 0.99737 4.35

PLAD-AD 44.19 50.83 53.10 56.29 0.96636 0.99737 2.47

FLAD-AD (I) 44.39 51.43 53.18 56.33 0.96764 0.99740 2.30

PLAD-AD (I) 44.39 51.42 53.19 56.33 0.96767 0.99740 2.57

iteration number as the termination condition for compressed depth images with fixed

QP, because quantized depth image with fixed QP always has the same level coding

artifacts and the iteration number always affects the filtering time. For FLAD-AD,

TLAD-AD, PLAD-AD, FLAD-AD (I), and PLAD-AD (I), λ is 0.25, and the fixed335

number of iteration is 11 when QP is lower than 37, which are the experimental values.

Otherwise, the number of iteration is 21. For PLAD-AD and PLAD-AD (I), the interval

is 5 when QP =31, 34, 35, but the interval l is set to be 10 if QP=37, 39, 41. In our

experiment, all the sequences are set with the fixed parameters ρ1 and ρ2 for HEVC-

compressed depth filtering, as mentioned above. Note that we use the iteration number340

to control the strength of artifact removal, i.e., more artifacts would be removed, as

more iterations are updated.

In order to validate the efficiency of the proposed LAD-AD, our filtering results

are compared with the ones of BF [40], JTF [41], IRWF [9], ADTF [36], and TSF

[38]. For both filtered depth images and corresponding synthesized virtual images345

(the middle view of two reference views), peak signal noise ratio (PSNR), structural

similarity (SSIM), and image sharpness (ISS) [42], are taken as three objective quality

evaluation metrics.

From Table 1, it can be clearly observed that FLAD-AD, TLAD-AD, PLAD-AD,

FLAD-AD (I), and PLAD-AD (I) have better performance than TLAD-AD-1 and350
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Figure 3: The first row: (a) the close-up of the original depth map Shark in view 1, (b) HEVC (QP41), (c) BF

[40], (d) JTF [41], (e) IRWF [9], (f) ADTF [36], (g) TSF [38], (h-n) TLAD-AD-1, TLAD-AD-2, FLAD-AD,

TLAD-AD, PLAD-AD, FLAD-AD (I), PLAD-AD (I); the second row of (a-j) is corresponding depth image

of view 5; the third row of (a-n) is middle virtual images synthesized by corresponding depth images in the

first and second row.

TLAD-AD-2. It indicates that using the fixed iteration number as the termination

condition is superior to the MSE δ between two latest iterative images as the iterative

stop criteria, when depth images are compressed with fixed QP. In addition, FLAD-

AD (I) and PLAD-AD (I) have more stable results than FLAD-AD, TLAD-AD, and

PLAD-AD. The performances of FLAD-AD and TLAD-AD as well as PLAD-AD are355

different, and the sharpness of TLAD-AD is more than PLAD-AD, but TLAD-AD

requires to update the local activity in each step, so TLAD-AD has more complexity

than PLAD-AD. The diffusion of FLAD-AD leads to the blurring of depth image’s
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discontinuities, so it has the worst performance on boundary regions, as compared to

the other methods. Unlike FLAD-AD, TLAD-AD, and PLAD-AD, the performances360

of FLAD-AD (I), TLAD-AD (I), and PLAD-AD (I) are very similar, because the form

of (
||∇It

ij ||
ρ1Kt

i
)2 leads to more diffusion for some artifact pixels than the form of

||∇It
ij ||2

ρ22K
t
i

in each iteration. The stop-function in Eq. (3) is more efficient on preserving sharp

boundaries, as compared to the stop-function in Eq. (4). But the stop-function of

Eq. (4) in the proposed FLAD-AD (I), TLAD-AD (I), and PLAD-AD (I) does not365

change depth structures too much, and most of the detailed geometry structures are

well preserved when removing severe coding artifacts.

As shown in Table 1, the proposed method can greatly improve the quality of both

depth images and synthesized virtual image at the same time, as compared with several

state-of-the-art approaches. From this table, it can also be seen that the proposed370

PLAD-AD (I) and FLAD-AD (I) greatly improve the accuracy of depth images and

have the best performance except BF [40], while greatly enhancing synthesized images.

Although depth image’s PSNR of BF [40] is high, it gets a little gains regarding PSNR,

ISS, SSIM of the synthesized virtual image as well as ISS and SSIM of depth images,

as compared with other methods. The synthesized images with filtered depth images375

are displayed in Fig. 3, from which we can see that the visual quality of the proposed

method has superior performance to the other approaches.

From Fig. 3 (c), it can be observed that BF [40] can smoothen some artifacts, so it

cannot restore image’s sharp boundaries, and the edges remain to be blurring. JTF [41]

slightly improves the quality depth image and its synthesized color image, as displayed380

in Fig. 3 (d-n), but it can’t compete with the proposed LAD-AD, IRWF [9], ADTF

[36], and TSF [38] regarding the quality improvement of synthesized color image. As

depicted in Fig. 3 and Table 1, IRWF [9], ADTF [36], and TSF [38] improve the

objective and visual quality of synthesized images, but they do not greatly enhance

the quality of depth images and even make them worse than the unfiltered distorted385

depth images. One fatal drawback of ADTF [36], and TSF [38] is that these methods

always smoothen some small yet significant objects, and even may eliminate some

small objects, as shown in Fig. 3 (c-e). It is obvious that the proposed method can

avoid these drawbacks, as compared with these methods.
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From Table 1, it can be seen that the BF [40], JTF [41], and IRWF [9] spends more390

filtering time than the proposed method, ADTF [36], and TSF [38], while the filtering

time of the proposed TLAD-AD-2, TLAD-AD, FLAD-AD, PLAD-AD, FLAD-AD (I)

and FLAD-AD (I) is less than TSF and TLAD-AD-1, but more than ADTF [36]. In

addition, the TLAD-AD’s filtering time is more than FLAD-AD, PLAD-AD, FLAD-

AD (I) and PLAD-AD (I), because TLAD-AD requires to calculate the local activity in395

each iteration. TLAD-AD-1 spends more time than TLAD-AD-2 because it requires a

large number of iteration to reach the stop condition.

In summary, our FLAD-AD (I) and PLAD-AD (I) have more stable performances

than TLAD-AD-1, TLAD-AD-2, TLAD-AD, FLAD-AD, and PLAD-AD in terms of

PSNR, ISS, SSIM, and image filtering time for filtered depth image and its synthesized400

image. Our FLAD-AD (I) and PLAD-AD (I) can greatly improve the quality of the

depth image and its synthesized image at the same time, when compared with BF [40],

JTF [41], and IRWF [9], TSF [38], and ADTF [36]. Furthermore, our FLAD-AD (I)

and PLAD-AD (I) spend less filtering time than BF [40], JTF [41], IRWF [9], and TSF

[38], apart from ADTF [36].405

5.3. Image smoothing and scale representation with LAD-RTVs

For texture removal, we first compare the proposed LAD-RTVs with its reduced

DC-RTV and RTV [1]. As shown in Fig. 4, our DC-RTV and LAD-RTVs are

superior to RTV [1] on edge-preserving. In our LAD-RTVs model, by using both color-

sharing information and each-channel discriminative information to form DCWTV and410

DCWIV measurements, our model can better maintain image’s salient contours than

RTV [1]. Meanwhile, DC-RTV is inferior to the proposed model of LAD-RTVs, which

can further remove more details. Secondly, we compare the proposed LAD-RTVs with

several state-of-the-art image smoothing approaches, such as RTV [1], weighted least

squares (WLS) [3], region covariance based method (RC) [6], rolling guidance filter415

(RGF) [7], robust guided image filtering (RGIF) [8], and DEAF(RGF) [43], as shown

in Fig. 5. When the input image has complex textures with strong gradient, WLS

could not remove these detail pixels efficiently, as displayed in Fig. 5 (b). RGF and

DEAF(RGF) [43] could remove all kinds of textures, but this method has the difficulty
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and green-line boxed regions for better comparison of different methods), (b) RTV [1], (c) DC-RTV, (d) our

LAD-RTVs. For each image of (a-d), the left image is the full image, and the right image is the close-up.

Figure 5: The visual comparison of several image smoothing methods. (a) Input image, (b) WLS [3], (c) RC

[6], (d) RGF [7], (e) RGIF [8], (f) DEAF(RGF) [43], (g) RTV [1], (h) our LAD-RTVs.

on accurate edge localization, as displayed in Fig. 5 (d, f). In addition, RGF [7], RC420

[6] and DEAF(RGF) [43] may make most of edges to be blurred, as shown in Fig. 5 (d,

e, f), although they have removed many details and textures. As displayed in Fig. 5 (h,

g, e), the proposed LAD-RTVs, RTV [1], and RGIF [8] have some similar appearances

for texture removal, but our methods could preserve more meaningful salient contour

than RTV [1] and RGIF [8].425

For image representation in three scales, we have compared our LAD-RTVs with

WLS [3], L0GM [2], RTV [1], RGF [7], RGIF [8], and MuGIF [34]. Following

[34], we set the comparative methods in the common smoothing level by tuning the

parameters of each method to reach a similar difference, whose details can be found

in [34]. As depicted in Fig. 6 (h), the proposed LAD-RTVs can preserve sharp edge430

and well locate the edge of main object contour, as compared with several existing

methods. As displayed in Fig. 6 (b-c), WLS [3] and L0GM [2] can well remove

the texture details, but they work poorly on the scale representation. RGF [7] can

coarsely represent an image in different scales and preserve the contour, but it also

changes edge localizations using the isotropic Gaussian kernel during the initialization.435

From Fig. 6 (d-f) and (g-h), it can be seen that LAD-RTVs, RTV [1], RGIF [8],
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Figure 6: The visual comparison of scale-space representation (a) Input image, (b) WLS [3], (c) L0GM [2],

(d) RTV [1], (e) RGF [7], (f) RGIF [8], (g) MuGIF [34], (h) ours LAD-RTVs.

and MuGIF [34] have a similar performance on the scale-space representation of

images, but there are some differences on boundary preservation. The proposed

LAD-RTVs could preserve more structures for scale-space representation than others.

Although the proposed method LAD-RTVs, RGIF [8] and MuGIF [34] are achieved by440

optimization with similar appearances, they use different smoothing techniques. The

proposed LAD-RTVs and RTV [1] use the features of texture and structure, but both

RGIF [8] and MuGIF [34] consider the static and dynamic guidance’s joint effects for

image smoothing. Additionally, when compared with RTV [1], the proposed method

has better performance on texture removal and edge localization for image’s scale-445

representation, because our LAD-RTVs leverages both color-sharing information and

single-channel discriminative information.

5.4. Image denoising with LAD-RTVd

Figure 7: The visual comparison of several denoising methods: (a) ”Comic” containing zero mean Gaussian

noise with standard deviation to be 13; (b) is the close-ups of the line-boxed regions in (a); (c) BM3D [44],

(d) RBF [17], (e) WBF [17], (f) TV [45], (g) RTV [1], (h) LAD-RTVd (1), (i) our LAD-RTVd. (Note that

LAD-RTVd (1) refers to LAD-RTVd with thl = 1)

Ten image set consists of ”Monarch”, ”Barbara”, ”Pepper”, ”Lena”, ”Man”,
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Table 2: The average objective PSNR comparison of noisy images filtered by different methods.

Sigma Noisy BM3D RBF WBF TV RTV LAD- LAD-

[44] [17] [17] [45] [1] RTVd (1) RTVd

13 26.22 32.61 28.61 30.62 27.79 28.07 31.04 31.31

26 20.37 28.93 27.55 27.87 26.41 26.14 27.84 28.06

52 14.83 24.98 24.27 23.63 23.38 23.94 24.39 24.49

Ave. 20.47 28.84 26.81 27.38 25.86 26.05 27.76 27.95

”Comic”, ”Zebra”, ”Flowers”, ”Bird”, and ”Boat”. This set is tested to evaluate the450

efficiency of different methods for image denoising. The zero mean Gaussian noises

are added into the clean image with standard deviation of 13, 26, and 52 to get noisy

images. We compare the proposed LAD-RTVd with several existing novel methods:

BM3D [44], RBF [17], WBF [17], TV [45], and RTV [1], as shown in Table 2. From

this table, it can be observed that the average objective quality of the proposed method455

for denoising have better performance than TV, RTV, RBF and WBF. Meanwhile,

LAD-RTVd has better PSNR measurement than LAD-RTVd (1) and the LAD-RTVd

filtered images are more smooth than the one of LAD-RTVd (1).

However, LAD-RTVd has lower quality than the approach of BM3D, which

are built upon the block-matching and 3D filtering with very high computational460

complexity. Our LAD-RTVd comes from image smoothing by regarding the noises

as the duplicate texture elements. Thus, the inherent drawbacks of LAD-RTVd limit

its denoising efficiency, especially for textural images with noise-like details. As

compared to BM3D, our LAD-RTVd could produce sharper results, as displayed in

Fig. 7 (c, i). However, the BM3D-filtered image tends to be blurry, which may often465

lead to higher PSNR improvement than LAD-RTVd. The visual performance of TV

[45] is inferior to the one of RTV [1], as displayed in Fig. 7 (f, g). RBF [17] and

WBF [17] have high objective performance than RTV [1], as shown in Fig. 7 (d, e,

g). Although RBF [17] can eliminate the noisy pixels by bilateral filtering, it may

remove some fine details. Built on RBF [17], as shown in Fig. 7 (d, e), WBF [17]470

has better visual performance than RBF [17] by adding the corresponding BF-filtered

noisy image back to the filtered image. From Fig. 7 (g, h), it can be seen that RTV only

tends to smoothen the textures for image’s structures preservation, but the LAD-RTVd
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could well preserve details by catching the location and amplitude of noises according

to a combination of the local activity and gradient. Besides, the filtered image by LAD-475

RTVd is more smooth than the one by LAD-RTVd (1), as displayed in Fig. 7 (h, i).

6. Conclusion

In this paper, we propose to use a local activity measurement of the clipped

and normalized variance or standard deviation to drive anisotropic diffusion and

relative total variation for better structural-preserving filtering. Meanwhile, two novel480

edge-stop functions are introduced for our LAD-AD to efficiently remove severe

artifacts and preserve the fine geometry structures in HEVC-compressed depth images.

Furthermore, our LAD-RTV can be not only used for image denoising but also image

smoothing as well scale-representation. Through a large number of experimental

results, it has been demonstrated that our methods are superior to several state-of-485

the-art approaches. Additionally, the parameter setting for our frameworks has been

discussed and analyzed. Our future works will be put on the exploration of more

powerful local activity measurements for image filtering, and we will generalize the

proposed method for many other filtering frameworks.
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