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a b s t r a c t 

Various image prior based regularization techniques have been proposed for image deblurring. By uti- 

lizing existing image smoothing operators, the method-noise provides a new way to formulate image 

regularizers. The method noise is defined as the difference of an image and its smoothed version, ob- 

tained by an image smoothing operator such as the non-local means(NLM). Therefore, the method noise 

mainly contains edges, small scaled details and noise (if exists). The l 2 -NLM method noise regularization 

has been successfully used in image denoising. However, the restored image exists over-smoothed edges 

and noise in smooth areas cannot be perfectly removed. In this work, we propose a weighted- l 1 -method- 

noise regularization model for image deblurring. We analyze the advantages of the proposed model in 

terms of variational form and its solution. Specifically, the l 1 penalty of the method noise is better than 

the l 2 penalty in removing noise in smooth areas. The incorporated gradient based weight can better pre- 

serve image edges. Experimental results show that the proposed method can obtain better results than 

other method noise based regularization methods. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

Image deblurring aims to estimate a sharp clean image from a

blurred noisy image, which is one of the most basic problems in

image processing. In general, image blurring can be described by

the following mathematical formulation [1] : 

f = A ∗ u + k (1)

where f and u ∈ R N (N = m × n ) denotes the observed image and

the original image respectively, A stands for the blurring convolu-

tion kernel, ∗ denotes the convolution operation, and k ∈ R N is the

white Gaussian noise with variance σ 2 . 

In recent years, many image deblurring methods have been pre-

sented based on the following variational framework [2–6] : 

ˆ u = arg min 

u 
‖ 

A ∗ u − f ‖ 

2 
2 + λJ(u ) (2)

where ‖ ·‖ 2 2 stands for square of l 2 norm in R N . The first term is the

data fitting term which ensures the blurred version of the restored

image close to the observed image. The second term J ( u ) is called

regularization term, which imposes smoothness or some kind of

structure constraint on the estimated image and can be deduced

from the prior of the real image. λ> 0 is a tuning parameter to

balance the data fitting term and the regularization term. 
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Various regularization terms such as the well-known total vari-

tion (TV) [2] , non-local TV [3] , sparse in a transform domain [5] ,

nd their modifications [4,6,24–26] were proposed. However, these

ethods exist some shortcomings. For example, the TV based

ethods suffer from staircasing effect in smooth area while the

parsity based methods show visible distortion around the edges.

ow to restore the real image and preserve as much important

tructures like edges and details without spurious distortion is still

hallenging. 

Buades et al. [7] uses the residual of the real image and its non-

ocal means (NLM) [8] estimation as the regularization term for

mage denoising and obtains good results. Specifically, the regu-

arization term is J ( u ) = 

∥∥u − NL M f (u ) 
∥∥2 

2 
, where NLM f ( u ) denotes

he nonlocal means of u and the weight is computed from the ob-

erved image f , Wang and Bao [9] adapts this regularization term

y using the real image rather than the observed image to com-

ute the weight. 

The general form of this kind of regularity is J ( u ) = ‖ u − D (u ) ‖ ,
here D ( ·) is an image smoothing operator, u − D (u ) is called

ethod noise, and ‖·‖ is a vector norm measuring the method

oise. Existing examples of D ( ·) include TV minimization [10] ,

eighborhood filtering (NF) [11] , and the block-matching and 3D

ltering (BM3D) [12] . Fig. 1 shows the method noise u − D (u ) ,

ith u being part of the clean image “Lenna”, and D ( ·) being TV

inimization, NF, NLM and BM3D, respectively. One can observe

isually significant structure, such as large-scale edges and small-

cale details, in the method noise of TV minimization. Though less
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Fig. 1. Method noise experiment on a natural image. 

Fig. 2. Edges detected by some gradient operators from a noisy image (the standard deviation of noise is 20). 
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isual meaningful structure is noticeable in the method noise of

F, NLM and BM3D, there still exists noticeable discrepancies. In

he scenario of image deblurring, we expect that, in smooth area of

 , D ( u ) is close to u ; or equivalently, the method noise should be

lose to zero; while around edges, considering the smoothing ef-

ect of D ( ·), we should allow proper discrepancy between D ( u ) and

 . This suggests that a sparse penalty of the method noise should

e better than the l 2 penalty of the method noise. 

In this work we propose a novel regularization term. Basically,

e use an l 1 -norm penalty of the method noise to enforce its

parsity. To better preserve edges in the recovered image, we intro-

uce an image gradient-based weight in the method noise penalty.

pecifically, in smooth area, the gradient is close to zero and the

eight is close to one, the penalty of the method noise enforces

he sparsity of the method noise; while around edges, the gradi-
nt is large and the weight is close to zero, which greatly reduce

he penalty of the method noise and allow the edges be well pre-

erved in the restored image. We use the global sparse gradient

GSG) model [13] to estimate image gradient because it can detect

mage gradient better than the classical gradient operators, such

s Roberts operator [14] , Prewitt operator [15] , and Sobel opera-

or [16] , especially when the image is corrupted by noise. The pro-

osed model is nonlinear and non-smooth, we propose a Bregman

perator splitting (BOS) based algorithm [19] to solve our model.

umerical experiments show that our deblurring method outper-

orms some state-of-the-art methods such as l 2 -NLM method and

lug-and-play Priors [17,18] . 

The rest of the paper is organized as follows. Section 2 reviews

he related work: the l 2 -NLM model [8] and the GSG model [13] .

e present our model and give a new algorithm in Section 3 . In
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Fig. 3. Tested images. 

Fig. 4. Effects of parameters λ, δ and t on the performance of our method. (a), (b) and (c) shows the effect of the parameter λ, δ and t , respectively. 
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Fig. 5. The errors 
∥∥A ∗ u k − f 

∥∥
2 

and 
∥∥u k − u k −1 

∥∥
2 

vs. the iteration times for three methods: l 2 -NLM, l 1 -NLM and W l 1 -NLM. 

Fig. 6. Restored results from 5 × 5 average blurred image Lenna by different methods. 
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Fig. 7. Restored results from 5 × 5 average blurred image Cameraman by different methods. 
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Section 4 , we present some experimental results obtained by our

method and evaluate our method by both objective metrics and

visual effects. Conclusions are drawn in Section 5 . 

2. Related work and discussion 

The non-local means based regularization model [7] is: 

ˆ u = arg min 

u 

∥∥u − NL M f ( u ) 
∥∥2 

2 
s.t. ‖ 

A u − f ‖ 

2 
2 ≤ σ 2 (3)

where NLM f ( u ) denotes the non-local means of u by using weight

computed from f . Since the observed image f is blurred and maybe

corrupted by noise, the weight computed from it is unreliable.

Wang and Bao [9] proposed to improve the above model by com-

puting the weights from the restored image u : 

ˆ u = arg min 

u 
‖ 

u − NL M u ( u ) ‖ 

2 
2 s.t. ‖ 

A u − f ‖ 

2 
2 ≤ σ 2 (4)

To solve the problem in Eq. (4) , they propose the following

BOS algorithm, which combines the Bregman iteration and opera-

tor splitting into a unified framework (more detailed explanations
n BOS can be found in [9,19,20] ): 
 

 

 

v k +1 = u 

k − δA 

T ∗ (A ∗ u 

k − f k ) 

u 

k +1 = arg min 

u 
( 
∥∥u − NL M v k +1 ( v k +1 ) 

∥∥2 

2 
+ λ

∥∥u − v k +1 
∥∥2 

2 
) 

f k +1 = f k + f − A ∗ u 

k +1 

(5)

here δ is a positive number, λ is a scaling parameter which bal-

nces the two terms of the object function, u 

k denotes an inter-

ediate restored image, and f k , v k are the iterative observed im-

ge and intermediate blurred image. The minimization problem in

q. (5) has an analytic solution: 

 

k +1 = 

1 

1 + λ
NL M v k +1 ( v k +1 ) + 

λ

1 + λ
v k +1 (6)

Putting together, l 2 -NLM algorithm can be summarized as fol-

ows: 
 

 

 

 

 

v k +1 = u 

k − δA 

T ∗ (A ∗ u 

k − f k ) 

u 

k +1 = 

1 

1 + λ
NL M v k +1 ( v k +1 ) + 

λ

1 + λ
v k +1 

f k +1 = f k + f − A ∗ u 

k +1 

(7)

A direct extension of the above algorithm can be obtained by

eplacing the non-local mean operator NLM with a general image
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Fig. 8. Restored results from motion blurred ( θ = 10 0 , L = 5 ) image “Lenna” by different methods. 
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moothing operator D ( u ), which leads to the following algorithm:

 

 

 

 

 

v k +1 = u 

k − δA 

T ∗ (A ∗ u 

k − f k ) 

u 

k +1 = 

1 

1 + λ
D v k +1 ( v k +1 ) + 

λ

1 + λ
v k +1 

f k +1 = f k + f − A ∗ u 

k +1 

(8) 

e call it l 2 -Denoiser. When D ( u ) is taken as a particular smooth-

ng operator such as BM3D, we name it l 2 -BM3D. 

The GSG model [13] is a state-of-the-art method for detecting

radients directly from a noisy image. Different from the tradi-

ional local gradient operators, such as Roberts operator [14] , Pre-

itt operator [15] , Sobel operator [16] , the GSG model utilizes the

rst order Taylor expansion to estimate the gradient. The specific

odel is as follows: 

u = arg min 

∇u ∈ R N×2 

N ∑ 

i, j=1 

1 

N 

ϕ 

s 
i j ( z i − z j + ∇ u i ( x j − x i )) + λ‖ 

∇u ‖ 1 (9)

here z i = z( x i ) , z ( x ), u ( x ) and k ( x ), x ∈ R N , respectively represents

he noisy image, the clean image and the noise, which is assumed
o be i.i.d.additive Gaussian noise, or: 

 ( x ) = u ( x ) + k ( x ) (10)

he expression z i − z j + ∇ u i 
(
x j − x i 

)
denotes the error between

 i and its first order Taylor expansion at x j , so the first term
 N 
i, j=1 

1 
N ϕ 

s 
i j 
( z i − z j + ∇ u i ( x j − x i )) denotes the total approximation

rror, where the kernel ϕ 

s 
i j 

= exp ( −‖ x j −x i ‖ 2 2 

2 s 2 
) is incorporated to

mphasize the role of the nearby points and s is a scale parameter

ontrolling the rate of decay of the kernel. The regularization term

∇u ‖ 1 is used to suppress the noise. To solve problem (10) , Zhang

t al. [13] proposed the following iterative algorithm by using the

orward-backward splitting technique [21] : 

u 

(k +1) 
i 

= T λα(Q 

(k ) 
i 

) = ( T λαQ 

(k ) 
1 ,i 

, T λαQ 

(k ) 
2 ,i 

) (11)

here α is a constant parameter, Q 

(k ) 
i 

= ∇u (k ) 
i 

− α 2 
N ϕ 

s 
i j 
( z i − z j +

u (k ) 
i 

( x j − x i ) ( x j − x i ) 
T ) , T β : R n → R n is the well-known soft

hresholding operator [22] : 

 β ( x i ) = max { | x i | − β, 0 } · sgn ( x i ) (12)
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Fig. 9. Restored results from motion blurred ( θ = 10 0 , L = 5 ) image Cameraman by different methods. 
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Fig. 2 shows gradients obtained by the GSG method and some

commonly used gradient operators from the noisy image “House”.

One can see that the GSG method is much more stable than other

methods in detecting the image edges. 

3. The proposed model and algorithm 

3.1. The proposed model 

The NLM-based regularization model shows that the method

noise u − D (u ) can be used to regularize images in applications

of image restoration, where D ( ·) is an existing image smoothing

operator such as NLM, NF, and BM3D. Based on the observation

and analysis we made in the introduction, we propose to use an

l 1 -norm penalty of the method noise to enforce its sparsity. To

better preserve edges in the recovered image, we also introduce a

gradient-based weight in the method noise to adaptively adjust the

penalty. Specifically, in smooth area, the weight should be close to

one and enforce the sparsity of the method noise; while around

edges, the weight should be close to zero and help to preserve

edges. Because the global sparse gradient (GSG) model [13] can de-
ect image gradient better than the classical gradient operators, es-

ecially when the image is corrupted by heavy noise, we use GSG

radient operator to compute the gradient-based weight. 

Motivated by the above analysis, we present the following

odel: 

ˆ 
 = arg min 

u 
‖ 

w ( | ∇u | ) � ( u − D (u ) ) ‖ 1 s.t. ‖ 

Au − f ‖ 

2 
2 ≤ σ 2 (13)

here � stands for Hadamard product, ‖ . ‖ 1 is the l 1 norm, and

he weight is defined by 

 ( | ∇u | ) = 1 / 

(
1 + 

| ∇u | 
t 

)
(14)

n which t is a scaling constant. Note that such a weight is

sed in the anisotropic diffusion [21] to protect edges. It is easy

o see w (| ∇u |) ∈ (0, 1). In smooth areas of the image, | ∇u | ≈ 0,

 (| ∇u |) ≈ 1; while around edges, | ∇u | → ∞ , w (| ∇u |) → 0. The ob-

ective function essentially enforces that the method noise in

he smooth area to be zero, or the restored image close to the

moothed image; while around edges, the small weight tends to

rotect edges from being over-smoothed. The constraint ensures
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he fidelity of the restored image to the observed image. We call

ur model W l 1 -Denoiser. We will further analyze the advantages

f our method in detail (see Section 3.3 ) from the solution of our

odel. 

.2. Minimization algorithm 

Note that the proposed model (13) is non-linear and non-

mooth. To make the solution easier, we use the GSG model

13] and the Tikhonov regularization method as in [23] to obtain

n initial image u 

0 and its gradient ∇u 

0 from the observed image

 , and we set the weight w ( | ∇u | ) = w 

(∣∣∇ u 

0 
∣∣) in our model. 

By using the BOS technique, we give the following iterative al-

orithm to solve the problem (13) : 

 

k +1 = u 

k − δA 

T ∗ (A ∗ u 

k − f k ) (15) 

 

k +1 = arg min 

u 

∥∥w 

(∣∣∇ u 

0 
∣∣) �

(
u − D ( v k +1 ) 

)∥∥
1 

+ λ
∥∥u − v k +1 

∥∥2 

2 

(16) 

f k +1 = f k + f − A ∗ u 

k +1 (17) 

To solve the subproblem (16) , we first let p = u − D ( v k +1 ) and

ewrite (16) in the following form: 

p 

k +1 = arg min 

p 
λ
∥∥p −

(
v k +1 − D ( v k +1 ) 

)∥∥2 

2 
+ 

∥∥w 

(∣∣∇ u 

0 
∣∣) � p 

∥∥
1 

(18) 

hen we solve problem (18) by the soft thresholding operator [22] :

p 

k +1 = T 

w ( | ∇ u 0 | ) 
2 λ

( v k +1 − D ( v k +1 )) (19)

nd obtain u 

k +1 as: 

 

k +1 = T 

w ( | ∇ u 0 | ) 
2 λ

( v k +1 − D ( v k +1 )) + D ( v k +1 ) (20)

here T β : R n → R n is the well-known soft thresholding operator :

 β ( x i ) = max { | x i | − β, 0 } · sgn ( x i ) (21)

he pseudo-code is given in Algorithm 1 , where Atol and Btol are

lgorithm 1 W l 1 -Denoiser for image deblurring. 

nput: Observed image f , convolution kernel A , initial image u 

0 ,

values of parameters λ, δ, Atol and Btol. 

1: compute: w 

(∣∣∇ u 

0 
∣∣) = 1 / 

(
1 + 

| ∇ u 0 | 
t 

)
. 

2: Initialize: k = 0 , f 0 = f . 

3: while not converge do 

4: fix u and f , update v by Eq. (15); 

5: fix v and f , update u by Eq. (19); 

6: fix u and v , update f by Eq. (17); 

7: k = k + 1 ; 

8: check the convergence condition: 

9: k ≤ Max _ iteration && 

∥∥A ∗ u k − f 
∥∥

2 
> Atol && 

∥∥u k − u k −1 
∥∥

2 
< 

Btol 

10: end while 

utput: u 

k . 

wo error tolerances, and Max _iteration is the maximum iteration

imes. 

The computational complexity of the proposed algorithm is

rovided as follows. The computational complexity of the weight
 (| ∇u 0 |) is O( N 

2 ) [13] . The computational complexity for updat-

ng v is O ( N ), The soft thresholding operator has a computational

omplexity of O( N 

2 ). The computational complexity for updating

 is O ( N ). The complexity of these computation ( D ( ·) excluded) is

( N 

2 ). The total computational complexity of Algorithm 1 depends

n the image smoothing operator D ( ·) used. In the experiment, we

ill show that our method is more efficient than other methods in

he sense that the errors 
∥∥A ∗ u 

k − f 
∥∥

2 
and 

∥∥u 

k − u 

k −1 
∥∥

2 
descend

ore quickly as the iteration progresses. 

.3. Advantages of our model 

Note that, if the weight function w 

(∣∣∇ u 

0 
∣∣) = 1 , our W l 1 -

enoiser model degenerates into the following l 1 -Denoiser model:

ˆ 
 = arg min 

u 
‖ 

u − D (u ) ‖ 1 s.t. ‖ 

Au − f ‖ 

2 
2 ≤ σ 2 (22) 

imilar to (13), (22) can be solved by using the BOS technique. The

ormula for updating v k +1 and f k +1 is the same as Eqs. (15) and

17) , respectively. The formula for updating u 

k +1 is: 

 

k +1 = T 1 
2 λ

( v k +1 − D ( v k +1 )) + D ( v k +1 ) (23)

Furthermore, 1 
2 λ

→ + ∞ when λ→ 0 . By the definition of Soft

hresholding operator [22] , Eq. (23) degenerates into: 

 

k +1 = D ( v k +1 ) (24) 

This leads to the following BOS iteration: 

 

v k +1 = u 

k − δA 

T ∗ (A ∗ u 

k − f k ) 

u 

k +1 = D ( v k +1 ) 

f k +1 = f k + f − A ∗ u 

k +1 

(25) 

he iteration scheme in Eq. (25) is consistent with the Plug-and-

lay Priors algorithm [17,18] , which we call P 3 -Denoiser. 

Compare Eq. (19) of our method with Eq. (23) of l 1 -Denoiser,

q. (24) of P 3 -Denoiser, and Eq. (6) of l 2 -NLM, one can appreciate

he advantages of our method over others from the solution pro-

ess. In the iteration schemes of all methods, v k +1 is essentially

n intermediate blurred image and u 

k +1 further refines v k +1 . Dif-

erent models lead to different refining strategies. Our method im-

roves the quality of u 

k +1 in this way: it first applies an image

moothing operator D ( ·) to the intermediate blurred image v k +1 ,

ielding a smoothed clean version D ( v k +1 ) and a residual or the

ethod noise v k +1 − D ( v k +1 ) , which mainly contains the edges,

mall scaled details and noise of v k +1 . To restore the edges back

hile discarding the noise, it applies the soft-thresholding operator

 

w ( | ∇ u 0 | ) 
2 λ

to the method noise v k +1 − D ( v k +1 ) with gradient tun-

ng thresholds 
w ( | ∇ u 0 | ) 

2 λ
. In smooth area of the image, the method

oise mainly contains noise and w (| ∇u 

0 |) ≈ 1, the soft-thresholding

perator filters out noise and small scaled details; around edges,

he method noise mainly contains edges, and w (| ∇u 

0 |) ≈ 0, the soft

hresholding operator preserves the edges very well. By adding the

dges T 
w ( | ∇ u 0 | ) 

2 λ

( v k +1 − D ( v k +1 )) back to the smooth and clean im-

ge D ( v k +1 ) , our method obtains a refined version u 

k +1 of v k +1 .

he method l 1 -Denoiser refines v k +1 in a similar way; the major

ifference is that it uses a uniform threshold value in filtering the

ethod noise, thus may wrongly filter out some edges and can-

ot preserve edges as well as our method. The P 3 -Denoiser actually

oes not restore edges back. Actually, it refines v k +1 directly by ap-

lying a smoothing operator D ( ·), thus may cause over smoothing

f the edges. The method l 2 -NLM refines v k +1 by the weighted av-

rage of v k +1 and its smoothed clean version NL M v k +1 ( v k +1 ) , which

ay also cause edges to be over smoothed. 
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Table 1 

Deblurring performance of different methods for average blur. 

Blur mask size Image Buades P 3 -NLM l 2 -NLM l 1 -NLM W l 1 -NLM P 3 -BM3D l 1 -BM3D W l 1 -BM3D 

5 × 5 Lenna PSNR 27.62 28.41 28.46 28.65 28.76 28.67 28.93 29.05 

SSIM 0.747 0.790 0.786 0.805 0.813 0.810 0.826 0.835 

Cameraman PSNR 25.94 26.89 26.94 27.17 27.29 27.35 27.58 27.62 

SSIM 0.759 0.795 0.800 0.811 0.832 0.824 0.845 0.853 

Peppers PSNR 29.03 29.78 29.81 30.02 30.11 30.04 30.23 30.43 

SSIM 0.801 0.847 0.851 0.879 0.884 0.869 0.884 0.897 

Boats PSNR 26.19 27.07 27.12 27.34 27.45 27.38 27.62 27.71 

SSIM 0.732 0.765 0.768 0.783 0.795 0.783 0.802 0.811 

Barbara PSNR 27.25 28.10 28.13 28.30 28.43 28.49 28.64 28.72 

SSIM 0.745 0.788 0.789 0.805 0.811 0.805 0.827 0.839 

Ave. PSNR 27.20 28.05 28.09 28.29 28.40 28.39 28.60 28.71 

SSIM 0.756 0.797 0.798 0.816 0.827 0.818 0.836 0.846 

7 × 7 Lenna PSNR 26.44 26.94 27.09 27.31 27.43 27.4 27.62 27.78 

SSIM 0.701 0.744 0.747 0.763 0.770 0.769 0.801 0.815 

Cameraman PSNR 24.44 25.25 25.33 25.80 25.91 26.87 26.13 26.21 

SSIM 0.709 0.759 0.760 0.775 0.787 0.779 0.798 0.802 

Peppers PSNR 27.63 28.59 28.68 28.72 28.8 28.79 29.00 29.12 

SSIM 0.771 0.818 0.821 0.837 0.845 0.84 0.865 0.879 

Boats PSNR 24.36 25.84 25.97 26.07 26.22 26.19 26.41 26.54 

SSIM 0.668 0.713 0.715 0.731 0.744 0.735 0.752 0.768 

Barbara PSNR 25.65 26.68 26.72 27.04 27.16 27.23 27.30 27.43 

SSIM 0.702 0.750 0.752 0.767 0.776 0.773 0.789 0.783 

Ave. PSNR 25.70 26.67 26.75 26.99 27.10 27.01 27.28 27.41 

SSIM 0.710 0.757 0.759 0.775 0.784 0.779 0.801 0.810 

9 × 9 Lenna PSNR 25.62 26.31 26.37 26.59 26.70 26.69 26.93 27.02 

SSIM 0.661 0.719 0.721 0.743 0.752 0.748 0.769 0.780 

Cameraman PSNR 23.67 24.56 24.60 24.72 24.83 24.78 25.04 25.15 

SSIM 0.694 0.734 0.738 0.762 0.77 0.761 0.775 0.789 

Peppers PSNR 26.58 27.30 27.32 27.59 27.72 27.70 27.91 28.03 

SSIM 0.752 0.80 0.802 0.820 0.834 0.829 0.842 0.855 

Boats PSNR 24.1 24.85 24.89 25.07 25.21 25.14 25.38 25.50 

SSIM 0.665 0.671 0.673 0.686 0.699 0.681 0.699 0.706 

Barbara PSNR 25.13 25.94 26 26.15 26.26 26.22 26.45 26.54 

SSIM 0.663 0.718 0.720 0.739 0.745 0.744 0.761 0.771 

Ave. PSNR 25.02 25.79 25.83 26.02 26.14 26.10 26.34 26.45 

SSIM 0.687 0.728 0.731 0.750 0.760 0.753 0.769 0.780 
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4. Experimental results and analysis 

Extended experiments show the effectiveness and efficiency of

our method. Here we present our experimental results in two blur

scenarios: average blur and motion blur, to demonstrate the effec-

tiveness of the proposed method. Fig. 3 shows some of the test

images (grayscale, 256 × 256) used in our experiment. The aver-

age blur is simulated by applying box filter of size 5 × 5, 7 × 7 and

9 × 9, respectively to the test images. The larger the size, the heav-

ier the image is blurred. The motion blur consists of two causes:

rotation unclockwise through an angle θ (in degree) and shift-

ing by L (in pixel). We consider three examples of motion blur:

(θ, L ) = ( 5 0 , 5) , and (θ, L ) = ( 10 0 , 5) , (θ, L ) = ( 10 0 , 10) . To show

robustness of our method to noise, we also add i.i.d. white Gaus-

sian noise with variance σ 2 = 25 into the blurred images. 

We compare the proposed method with several state-of-the-art

deblurring methods, including Buades’s non-local means regular-

ization method [7] , l 2 -Denoiser [9] , l 1 -Denoiser and P 3 -Denoiser

[17,18] , with D ( u ) being taken as NLM and BM3D. we assess the

methods by two objective image quality metrics: the Peak Signal

to Noise Ratio (PSNR) and the Structural Similarity Index Metric

(SSIM). We also present the restored image for visual assessment. 

The initial image gradient is estimated by using the GSG

method and the parameters are set as the same as given in [13] .

For all experiments, the maximum iteration number Ma x iteration =
20 . The parameters of other methods are set to get the optimal

results. 

We select the parameters λ, δ and t in our method manually.

Taking the average blurred “Cameraman” as an example, we show

how these parameters influence the PSNR metric of the restored
mages obtained by different methods in Fig. 4 , where (a), (b) and

c) shows the effect of the parameter λ, δ and t , respectively. Be-

ide each curve, we state the size of the average blur mask and

ur method with particular D ( ·). For example, (5 × 5, W l 1 -BM3D)

eans the size of the average blur mask is 5 × 5, and the image

s restored by using our method W l 1 -BM3D, in which the image

moothing operator BM3D is used. We select the optimal parame-

er values: λ = 0 . 01 , δ = 1 and t = 100 , which yields the best PSNR

alues. Experiments show that these parameter values also apply

or other images, so we use these values for all test images. 

To show the efficiency of our method, we display how the er-

ors 
∥∥A ∗ u k − f 

∥∥
2 

and 

∥∥u k − u k −1 
∥∥

2 
descend in the iteration for

hree methods: l 2 -NLM, l 1 -NLM and W l 1 -NLM in Fig. 5 . The test

mage is “Lenna” and the blur mask size is 7 × 7. One can see

hat errors of our method descend more quickly than that of other

ethods. In other words, our method needs fewer iterations to

btain an estimated image within the same error tolerances. The

urves also show our method converges numerically. In all experi-

ents, we set the error tolerances Atol = 10 −4 and Btol = 10 −4 . 

To evaluate our method objectively, we report the PSNRs and

SIMs of the restored images by different methods in Table 1 for

verage blur, and Table 2 for motion blur. The best results are in

old font. It can be observed that the PSNRs and SSIMs of the

roposed method are superior than that of other methods. Take

he average blur 7 × 7 as an example. In terms of average PSNR,

ur method W l 1 -NLM improves Buades’s method, P 3 -NLM, l 2 -NLM

nd l 1 -NLM by 1.40 dB, 0.43 dB, 0.35 dB and 0.11 dB, respec-

ively; our method W l 1 -BM3D improves P 3 -BM3D and l 1 -BM3D by

.40 dB and 0.13 dB. In terms of average SSIM, the proposed W l 1 -

LM improves these methods by 0.074, 0.030, 0.029 and 0.011;
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Table 2 

Deblurring performance of different methods for motion blur. 

Motion blur Image Buades P 3 -NLM l 2 -NLM l 1 -NLM W l 1 -NLM P 3 -BM3D l 1 -BM3D W l 1 -BM3D 

θ = 5 0 Lenna PSNR 27.90 28.79 28.81 29.03 29.15 29.24 29.46 29.58 

L = 5 SSIM 0.749 0.808 0.809 0.835 0.846 0.852 0.873 0.884 

Cameraman PSNR 27.24 28.02 28.00 28.26 28.38 28.42 28.61 28.72 

SSIM 0.718 0.764 0.768 0.790 0.802 0.798 0.810 0.822 

Peppers PSNR 28.87 29.74 29.79 29.97 30.07 30.02 30.26 30.40 

SSIM 0.782 0.830 0.832 0.856 0.864 0.872 0.892 0.905 

Boats PSNR 27.05 27.94 27.95 28.12 28.20 28.26 28.48 28.58 

SSIM 0.705 0.754 0.753 0.772 0.785 0.791 0.815 0.824 

Barbara PSNR 26.72 27.61 27.68 27.89 28.00 28.14 28.33 28.49 

SSIM 0.724 0.760 0.764 0.784 0.796 0.808 0.831 0.841 

Ave. PSNR 27.56 28.42 28.45 28.65 28.76 28.81 29.02 29.15 

SSIM 0.736 0.783 0.785 0.807 0.819 0.824 0.844 0.855 

θ = 10 0 Lenna PSNR 26.33 27.09 27.14 27.40 27.54 27.61 27.83 27.97 

L = 5 SSIM 0.681 0.719 0.721 0.746 0.757 0.762 0.788 0.801 

Cameraman PSNR 24.53 25.38 25.40 25.71 25.82 25.90 26.17 26.29 

SSIM 0.698 0.742 0.747 0.776 0.790 0.792 0.831 0.844 

Peppers PSNR 27.86 28.64 28.62 28.90 29.05 29.11 29.32 29.48 

SSIM 0.747 0.790 0.792 0.816 0.828 0.832 0.857 0.873 

Boats PSNR 25.16 25.92 25.91 26.08 26.19 26.17 26.39 26.51 

SSIM 0.677 0.730 0.739 0.757 0.771 0.769 0.792 0.805 

Barbara PSNR 25.98 26.74 26.76 26.95 27.09 27.12 27.35 27.49 

SSIM 0.661 0.728 0.729 0.750 0.768 0.771 0.794 0.810 

Ave. PSNR 26.97 26.75 26.77 27.00 27.13 27.18 27.41 27.55 

SSIM 0.692 0.742 0.746 0.769 0.782 0.785 0.812 0.826 

θ = 10 0 Lenna PSNR 26.04 26.80 26.79 27.01 27.12 27.17 27.40 27.52 

L = 10 SSIM 0.654 0.705 0.702 0.729 0.740 0.738 0.760 0.771 

Cameraman PSNR 24.59 25.32 25.35 25.58 25.71 25.84 26.08 26.18 

SSIM 0.677 0.721 0.725 0.749 0.761 0.768 0.788 0.800 

Peppers PSNR 27.31 28.06 28.08 28.27 28.39 28.42 28.65 28.76 

SSIM 0.701 0.758 0.761 0.784 0.797 0.804 0.825 0.837 

Boats PSNR 24.78 25.51 25.54 25.74 25.87 25.91 26.16 26.19 

SSIM 0.667 0.714 0.715 0.735 0.746 0.741 0.760 0.772 

Barbara PSNR 25.40 26.16 26.17 26.36 26.48 26.49 26.72 26.86 

SSIM 0.645 0.698 0.701 0.720 0.732 0.736 0.759 0.769 

Ave. PSNR 25.62 26.37 26.39 26.59 26.71 26.77 27.00 27.10 

SSIM 0.668 0.719 0.720 0.743 0.755 0.757 0.778 0.789 
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ur method W l 1 -BM3D improves P 3 -BM3D and l 1 -BM3D by 0.031

nd 0.009, respectively. As for motion blur, our method W l 1 -NLM

nd W l 1 -BM3D outperform other methods. In all, by utilizing gra-

ient weighted sparse penalty of the method noise, the proposed

ethod W l 1 -Denoiser can perform better than l 1 -Denoiser and l 2 -

enoiser in protecting edges while removing noise. 

For visual assessment, we show the restored images of Lenna

nd Cameraman in Figs. 6 , 7 for average blur, and Figs. 8 , 9 for mo-

ion blur. The size of the average blur mask is 5 × 5, and the pa-

ameters of the motion blur are θ = 10 0 , L = 5 . Either using NLM

r BM3D as the image smoothing operator, our W l 1 -Denoiser ob-

ain better results than l 1 -Denoiser, l 2 -Denoiser and P 3 -Denoiser.

or example, the image ( Fig. 6 (i)) restored by our method W l 1 -

M3D is visually much better than the images ( Fig. 6 (h)) restored

y l 1 -BM3D. In the smooth areas of the image in figure Fig. 6 (i),

ne can notice that the noise is removed perfectly, while in the

mooth areas of the image in figure Fig. 6 (h), one can notice some

nnoying distortions. Moreover, the eye (marked in red box) looks

ore natural than that obtained by other methods. 

. Conclusion 

Image prior is significant to regularization methods for image

eblurring. But due to the great variety of images, the exact image

rior is not available. By utilizing existing image smoothing opera-

ors, the method noise provides a new way to create image regu-

arizers. In this work, we propose a weighted- l 1 -method noise reg-

larization model for image deblurring. The proposed method has

wo-fold advantages: the l 1 penalty of the method-noise is better

han the l 2 penalty in removing noise in smooth areas; The in-

orporated gradient-based weight can better preserve image edges.
he advantages are verified by experimental results. In our paper,

e only considered the deblurring problem with a given convolu-

ion kernel. In case that the convolution kernel is unknown, how

o incorporate estimation of the convolution kernel in our method

ill be explored in our future work. 
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