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HIGHLIGHTS

• The improved multiband structured subband adaptive filter (IMSAF) utilizes the input regressors at each

subband to speed up the convergence rate of MSAF. When the number of input regressors is increased, the

convergence rate of the IMSAF algorithm improves at the cost of increased complexity. The current study

introduces two new IMSAF algorithms with low computational complexity feature. In the first algorithm,

a subset of input regressors at each subband is optimally picked out during the adaptation. In the second

approach, the number of selected input regressors is dynamically changed at each subband for every iteration.

The introduced algorithms are called selective regressor IMSAF (SR-IMSAF) and dynamic selective regressor

IMSAF (DSR-IMSAF). The SR-IMSAF and DSR-IMSAF are shown to be capable of outperforming the full-

update IMSAF while the computational complexity is kept low. In the following, the general update equation

to establishment of the family of IMSAF algorithms is presented. Accordingly, the mean-square performance

analysis of the algorithms is studied in a unified way and the general theoretical expressions for transient, steady-

state, and the stability bounds for IMSAF, SR-IMSAF, and DSR-IMSAF are derived. The good performance

of the introduced algorithms and the validity of the derived theoretical relations are justified by presenting

various experimental results.

• We divided the contribution of the paper into the following four sections: A. Establishment of the Family

of IMSAF Algorithms The SR-IMSAF and the DSR-IMSAF algorithms are established. These algorithms

have the following features: 1) SR-IMSAF algorithm: The SR strategy is applied in IMSAF algorithm. In this

algorithm, the input regressors are optimally selected at each subband during the adaptation. The SR-IMSAF

has close performance to the conventional IMSAF while the computational complexity is kept low. 2) DSR-

IMSAF algorithm: The DSR approach is extended to IMSAF and DSR-IMSAF is proposed. In DSRIMSAF,

the number of selected input regressors is dynamically changed at each subband for every iteration. This

algorithm has a fast convergence speed and a small steady-state error compared to the conventional IMSAF.

In addition, the DSR-IMSAF retains a low overall computational complexity.

• B. General Update Equation We extend the general update equation in [20] to establishment of the family

of IMSAF algorithms. The IMSAF, SR-IMSAF, and DSR-IMSAF can be derived from the generic update

equation. By substituting the parameters and the matrices in this equation, various IMSAF algorithms will be

established. Also, this representation will be useful to analyze the mean-square performance of the family of

IMSAF algorithms in a unified way.

• C. Mean-Square Performance Analysis The theoretical transient and steady-state analyses and the stability

bounds of the proposed algorithms will be studied in a unified way. 1) Transient analysis: The mean-square

performance of the family of IMSAF algorithms is analyzed in a unified way and the transient behaviors

are studied. 2) Steady-state analysis: The generic closed form expressions for steady-state mean-square error

(MSE) and mean-square coefficient deviation (MSD) of IMSAF, SR-IMSAF, and DSR-IMSAF are derived.
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3) Stability bounds analysis: The theoretical stability bounds of IMSAF, SR-IMSAF, and DSR-IMSAF are

extracted.

• D. Simulation Results 1) The performance of the family of IMSAF algorithms is compared in convergence

speed, steady-state error and computational complexity features. 2) The validity of the theoretical relations for

transient and steady-state performances and the stability bounds is verified.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SIGNAL PROCESSING 3

Two Improved Multiband Structured Subband

Adaptive Filter Algorithms with Reduced

Computational Complexity
Mohammad Shams Esfand Abadi, John Håkon Husøy, and Mohammad Javad Ahmadi

Abstract

The improved multiband structured subband adaptive filter (IMSAF) utilizes the input regressors at each subband

to speed up the convergence rate of MSAF. When the number of input regressors is increased, the convergence rate

of the IMSAF algorithm improves at the cost of increased complexity. The current study introduces two new IMSAF

algorithms with low computational complexity feature. In the first algorithm, a subset of input regressors at each

subband is optimally picked out during the adaptation. In the second approach, the number of selected input regressors

is dynamically changed at each subband for every iteration. The introduced algorithms are called selective regressor

IMSAF (SR-IMSAF) and dynamic selective regressor IMSAF (DSR-IMSAF). The SR-IMSAF and DSR-IMSAF

are shown to be capable of outperforming the full-update IMSAF while the computational complexity is kept low.

In the following, the general update equation to establishment of the family of IMSAF algorithms is presented.

Accordingly, the mean-square performance analysis of the algorithms is studied in a unified way and the general

theoretical expressions for transient, steady-state, and the stability bounds for IMSAF, SR-IMSAF, and DSR-IMSAF

are derived. The good performance of the introduced algorithms and the validity of the derived theoretical relations

are justified by presenting various experimental results.

Index Terms

Improved multiband structured subband adaptive filter, mean-square performance, selective regressors, conver-

gence rate, computational complexity

I. INTRODUCTION

Adaptive filters are applied in many applications such as system identification, channel equalization, signal

prediction, and noise cancellation [1], [2], [3]. In these applications, the generated signals are processed to identify

the impulse response of the unknown system. This objective is successfully achieved by using adaptive filters rather
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than conventional digital filters. The adaptive filters utilize a recursive algorithm to design itself. The algorithm

updates the filter coefficients through successive iterations and finally converges to the optimal Wiener-Hopf solution.

The performance of an adaptive filtering algorithm is evaluated by the rate of convergence, misadjustment, and

computational complexity features. The conventional LMS adaptive filter algorithm has the advantage of being very

simple; it is easy to implement; and it has a very low computational complexity. However, when the input signal

is highly colored, the LMS convergence slows down [3], [4]. To improve the convergence behavior of the LMS,

various adaptive algorithms such as affine projection algorithm (APA) and multiband-structured subband adaptive

filter (MSAF) were proposed [5], [6]. To increase the convergence speed of MSAF, the variable step-size MSAF

(VSS-MSAF) was introduced [7]. Due to VSS, the computational complexity in VSS-MSAF increases.

The APA is one of the important family of adaptive filter algorithm. This algorithm uses the recent input regressors

in filter coefficients adaptation. Since the interplay between the computational complexity and the performance of

adaptive signal processing systems is important, several types of affine projection algorithms such as selective partial

update APA (SPU-APA) have been proposed [8]. Also, in selective regressor APA (SR-APA), a subset of recent

regressors at every iteration is optimally selected and utilized in APA [9]. The dynamic selection (DS) of recent

regressors during the filter coefficients adaptation was suggested in [10]. It has been shown that the SR-APA and

DS-APA have better performance than APA [9], [10]. Furthermore, by combining SPU and SR approaches, the

SPU-SR-APA was introduced [11].

Another important classes of adaptive filters are subband adaptive filter (SAF) algorithms [12], [13]. Lee and

Gan [6] developed the MSAF based on a constrained optimization problem. In comparison with NLMS, the MSAF

algorithm has better convergence speed. The same as APA, to reduce the computational complexity of MSAF,

different methods were proposed. In [14], the selective partial update MSAF (SPU-MSAF) algorithm was presented

where the filter coefficients are partially updated rather than the entire filter at every adaptation. In [15], the

dynamic selection of MSAF (DS-MSAF) algorithm was introduced. In this algorithm, the number of subbands was

dynamically selected during each iteration. The FS-MSAF was also proposed in [16]. In this algorithm, a subset

of subbands was selected during the adaptation.

To increase the convergence speed of MSAF, the improved MSAF (IMSAF) was developed [17], [18], [19]. This

algorithm utilizes the input regressors at each subband during the adaptation; however, the computational complexity

of this algorithm is high. This paper proposes a solution to reduce the computational load of the IMSAF algorithm.

In the first approach, the SR strategy is extended to IMSAF algorithm. In SR-IMSAF, the input regressors at each

subband are optimally selected at each iteration. In the second method, the number of selected input regressors is

dynamically changed at each subband for every adaptation. In the following, the general update equation for the

family of IMSAF algorithms is proposed. Based on this, the general mean-square performance analysis is introduced

and the theoretical relations for transient and steady-state performances are derived.

We divided the contribution of the paper into the following four sections:
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A. Establishment of the Family of IMSAF Algorithms

The SR-IMSAF and the DSR-IMSAF algorithms are established. These algorithms have the following features:

1) SR-IMSAF algorithm: The SR strategy is applied in IMSAF algorithm. In this algorithm, the input regressors

are optimally selected at each subband during the adaptation. The SR-IMSAF has close performance to the

conventional IMSAF while the computational complexity is kept low.

2) DSR-IMSAF algorithm: The DSR approach is extended to IMSAF and DSR-IMSAF is proposed. In DSR-

IMSAF, the number of selected input regressors is dynamically changed at each subband for every iteration.

This algorithm has a fast convergence speed and a small steady-state error compared to the conventional

IMSAF. In addition, the DSR-IMSAF retains a low overall computational complexity.

B. General Update Equation

We extend the general update equation in [20] to establishment of the family of IMSAF algorithms. The IMSAF,

SR-IMSAF, and DSR-IMSAF can be derived from the generic update equation. By substituting the parameters and

the matrices in this equation, various IMSAF algorithms will be established. Also, this representation will be useful

to analyze the mean-square performance of the family of IMSAF algorithms in a unified way.

C. Mean-Square Performance Analysis

The theoretical transient and steady-state analyses and the stability bounds of the proposed algorithms will be

studied in a unified way.

1) Transient analysis: The mean-square performance of the family of IMSAF algorithms is analyzed in a unified

way and the transient behaviors are studied.

2) Steady-state analysis: The generic closed form expressions for steady-state mean-square error (MSE) and

mean-square coefficient deviation (MSD) of IMSAF, SR-IMSAF, and DSR-IMSAF are derived.

3) Stability bounds analysis: The theoretical stability bounds of IMSAF, SR-IMSAF, and DSR-IMSAF are

extracted.

D. Simulation Results

1) The performance of the family of IMSAF algorithms is compared in convergence speed, steady-state error

and computational complexity features.

2) The validity of the theoretical relations for transient and steady-state performances and the stability bounds

is verified.

This paper is organized as follows. In Section II, the IMSAF algorithm is reviewed. Section III presents the

SR-IMSAF algorithms. The DSR-IMSAF is established in Section IV. The general update equation for the IMSAF

algorithm is introduced in Section V. The extension of this framework to SR-IMSAF and DSR-IMSAF is given in
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Section VI. The theoretical stability bounds of the introduced algorithms are presented in Section VII. The general

mean-square performance analysis of these algorithms is studied in Section VIII. The computational complexity

of the proposed algorithms is studied in Section IX. Finally, before concluding the paper, we demonstrate the

usefulness of the proposed algorithms by presenting several experimental results.

Throughout the paper, the following notations are used:

| . | Norm of a scalar.

‖.‖2 Squared Euclidean norm of a vector.

Tr(.) Trace of a matrix.

(.)T Transpose of a vector or a matrix.

E{·} Expectation operator.

diag{. . .} Creates a diagonal matrix with the elements in {. . .}.
bdiag{. . .} Creates a block diagonal matrix with the matrices in {. . .}.
‖t‖2Σ Σ-Weighted Euclidean norm of a column vector t defined as tTΣt.

vec(T) Creates an M2 × 1 column vector t through stacking the columns of the

M ×M matrix T.

vec(t) Creates an M ×M matrix T from the M2 × 1 column vector t.

II. BACKGROUND ON IMSAF

Consider a linear data model for d(n):

d(n) = xT (n)wo + v(n), (1)

where wo is an unknown M -dimensional vector that we aim to estimate, v(n) is the measurement noise with variance

σ2v , and x(n) = [x(n), x(n − 1), . . . , x(n −M + 1)]T denotes an M -dimensional input (regressor) vector. It is

assumed that v(n) is zero mean, white, Gaussian, and independent of x(n). Fig. 1 shows the structure of the MSAF

[6]. In this figure, f0, f1, . . . , fN−1 and g0,g1, . . . ,gN−1, are analysis and synthesis filter unit pulse responses of an

N channel orthogonal perfect reconstruction critically sampled filter bank system. xi(n) and di(n) are nondecimated

subband signals. It is important to note that n refers to the index of original sequences and k denotes the index

of decimated sequences (k=floor(n/N )). The decimated output signal is defined as yi,D(k) = xTi (k)w(k) where

xi(k) = [xi(kN), xi(kN − 1), . . . , xi(kN − M + 1)]T and w(k) = [w0(k), w1(k), . . . , wM−1(k)]T . Also, the

decimated subband error signal is expressed as ei,D(k) = di,D(k) − xTi (k)w(k). The filter update equation for

MSAF can be stated as

w(k + 1) = w(k) + µ
N−1∑

i=0

xi(k)

||xi(k)||2 ei,D(k), (2)

where µ is the step-size. The IMSAF minimizes the following cost function
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Fig. 1. Structure of the MSAF algorithm.

min‖w(k + 1)−w(k)‖2, (3)

subject to

di,D(k) = XT
i (k)w(k + 1), (4)

where

Xi(k) = [xi(k),xi(k − 1), . . . ,xi(k − P + 1)], (5)

and

di,D(k) = [di,D(k), . . . , di,D(k − P + 1)]T . (6)

The parameter P is the number of recent regressors in subbands. Therefore, the IMSAF algorithm is derived from

the solution of the following constraint minimization problem:

Θ(k) = ‖w(k + 1)−w(k)‖2 +
N−1∑

i=0

Λi[di,D(k)−XT
i (k)w(k + 1)], (7)

where Λi = [λi,1, λi,1, . . . , λi,P ] is the Lagrange multipliers vector with length P . Using ∂Θ(k)
∂w(k+1) = 0 and ∂Θ(k)

∂Λi
=

0, we get

w(k + 1) = w(k) +
1

2

N−1∑

i=0

Xi(k)ΛT
i , (8)

where

ΛT
i = 2[XT

i (k)Xi(k)]−1ei,D(k), (9)

and

ei,D(k) = di,D(k)−XT
i (k)w(k). (10)
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Therefore, the update equation for IMSAF becomes

w(k + 1) = w(k) + µ
N−1∑

i=0

Xi(k)[XT
i (k)Xi(k)]−1ei,D(k). (11)

To take care of the possibility that [XT
i (k)Xi(k)] may be close to singular, it is replaced by [εI + XT

i (k)Xi(k)],

where ε is the regularization parameter. Note that for P = 1, the conventional MSAF is established.

III. THE SR-IMSAF ALGORITHM

To reduce the computational complexity of IMSAF, the SR-IMSAF is proposed. In SR-IMSAF, a subset of the

input regressors at each subband is optimally selected for every adaptation. Let JS = {j1, j2, . . . , jS} denote a

S-subset (subset with S members) of the {0, 1, . . . , P − 1}. The SR-IMSAF minimizes (3) subject to di,D,JS
(k) =

XT
i,JS

(k)w(k + 1), where

di,D,JS
(k) = [di,D(k − j1), . . . , di,D(k − jS)]T , (12)

and

Xi,JS
(k) = [xi(k − j1),xi(k − j2), . . . ,xi(k − jS)]. (13)

Therefore, the cost function for the SR-IMSAF is given by

ΘJS
(k) = ‖w(k + 1)−w(k)‖2 +

N−1∑

i=0

Λi[di,D,JS
(k)−XT

i,JS
(k)w(k + 1)], (14)

where Λi = [λi,1, λi,2, . . . , λi,S ] indicates the Lagrange multipliers vector with length S. Following the same

approach as IMSAF, we get

w(k + 1) = w(k) +
1

2

N−1∑

i=0

Xi,JS
(k)ΛT

i , (15)

where ΛT
i = 2[XT

i,JS
(k)Xi,JS

(k)]−1ei,D,JS
(k), and

ei,D,JS
(k) = di,D,JS

(k)−XT
i,JS

(k)w(k). (16)

Then, the update equation for SR-IMSAF is established as

w(k + 1) = w(k) + µ
N−1∑

i=0

Xi,JS
(k)[εI + XT

i,JS
(k)Xi,JS

(k)]−1ei,D,JS
(k). (17)

We should select the regressors which make ΘJS
(k) as close as possible to Θ(k). Suppose that the amount of

filter coefficients update is small. Therefore, the posteriori errors di,D(k) − XT
i (k)w(k + 1) and di,D,JS

(k) −
XT
i,JS

(k)w(k + 1) can be approximated by the a priori errors. Then we get

Θ(k) = ‖w(k + 1)−w(k)‖2 +
N−1∑

i=0

[eTi,D(k)(XT
i (k)Xi(k))−1ei,D(k)], (18)

and

ΘJS
(k) = ‖w(k + 1)−w(k)‖2 +

N−1∑

i=0

[eTi,D,JS
(k)(XT

i,JS
(k)Xi,JS

(k))−1ei,D,JS
(k)]. (19)
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Thus, the optimum selection of the input regressors is obtained by a subset that minimizes

JoptS = |
N−1∑

i=0

[eTi,D(k)(XT
i (k)Xi(k))−1ei,D(k)− eTi,D,JS

(k)(XT
i,JS

(k)Xi,JS
(k))−1ei,D,JS

(k)]|. (20)

Since eTi,D,JS
(k)(XT

i,JS
(k)Xi,JS

(k))−1ei,D,JS
(k) is always smaller than eTi,D(k)(XT

i (k)Xi(k))−1ei,D(k), the opti-

mum selection is reformulated by a subset that maximizes

JoptS =
N−1∑

i=0

[eTi,D,JS
(k)(XT

i,JS
(k)Xi,JS

(k))−1ei,D,JS
(k)]. (21)

To reduce the computational complexity of (21), we assume that the diagonal elements of XT
i,JS

(k)Xi,JS
(k) is

much larger than off-diagonal elements [9]. Therefore, (21) is approximated for each subband as

eTi,D,JS
(k)(XT

i,JS
(k)Xi,JS

(k))−1ei,D,JS
(k) ≈

e2i,D(k − j1)
‖xi(k − j1)‖2

+ . . .+
e2i,D(k − jS)

‖xi(k − jS)‖2 (22)

where ei,D(k) = [ei,D(k), ei,D(k− 1), . . . , ei,D(k−P + 1)]T . Based on (22), the indices of the optimum subset at

each subband for every iteration are obtained by the following simplified procedure:

1) Compute the following values for 0 ≤ j ≤ P − 1 and 0 ≤ i ≤ N − 1

e2i,D(k − j)
‖xi(k − j)‖2

. (23)

2) The j-indices of JoptS for each i correspond to the indices of the S largest values of (23).

Table I presents the pseudo-codes of SR-IMSAF.

IV. THE DSR-IMSAF ALGORITHM

In DSR-IMSAF, the number of selected input regressors at each subband are dynamically changed for every

adaptation. By defining the weight error vector as w̃(k) = wo −w(k), the weight error vector update equation in

IMSAF can be stated as

w̃(k + 1) = w̃(k)− µ
N−1∑

i=0

Xi(k)[XT
i (k)Xi(k)]−1ei,D(k). (24)

Taking the squared Euclidean norm and then expectation from both sides of (24) lead to the mean-square deviation

(MSD) that satisfies

E{‖w̃(k + 1)‖2} = E{‖w̃(k)‖2} −∆, (25)

where1

∆ =
N−1∑

i=0

[µ(2− µ)E{eTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)} − 2µσ2vi,DTr(E{[XT

i (k)Xi(k)]−1})]. (26)

1Please see Appendix A for more details.
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TABLE I

THE SR-IMSAF ALGORITHM

1. Initialization the parameters

Initialization the parameters µ, ε, N , P , S

Initialization w(−1) = 0

for k = 0, 1, . . .

for i = 0, 1, . . . , N − 1

Xi(k) = [xi(k),xi(k − 1), . . . ,xi(k − P + 1)]T

di,D(k) = [di,D(k), di,D(k − 1), . . . , di,D(k − P + 1)]T

ei,D(k) = di,D(k)−XT
i (k)w(k)

2. Determining the j-indices based on the S largest values

for j = 0, 1, . . . , P − 1

Compute the values
e2i,D(k−j)
‖xi(k−j)‖2

end

3. Update the input signal matrix and desired signal vector according to the selected regressors

Xi,JS (k) = [xi(k − j1),xi(k − j2), . . . ,xi(k − jS)]

di,D,JS (k) = [di,D(k − j1), . . . , di,D(k − jS)]T

4. Calculate the error vector

ei,D,JS (k) = di,D,JS (k)−XT
i,JS

(k)w(k)

5. Update the filter coefficients

w(k + 1) = w(k) + µ
∑N−1

i=0
Xi,JS (k)[εI + XT

i,JS
(k)Xi,JS (k)]

−1ei,D,JS (k)

end

end

If ∆ is maximized, then the fastest convergence is obtained. In (26), σ2vi,D is the variance of the ith subband signal

of vi(k) being partitioned and decimated. Since the exact expected values are not available, the instantaneous values

are used as follows

∆̂ = µ(2− µ)
N−1∑

i=0

[eTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)− 2

2− µσ
2
vi,DTr([XT

i (k)Xi(k)]−1). (27)

Again we use the previous approximation for XT
i (k)Xi(k) and obtain [10]

∆̂ = µ(2− µ)
N−1∑

i=0

{(
e2i,D(k)− 2σ2vi,D/(2− µ)

‖xi(k)‖2 ) + (
e2i,D(k − 1)− 2σ2vi,D/(2− µ)

‖xi(k − 1)‖2 ) +

. . . (
e2i,D(k − P + 1)− 2σ2vi,D/(2− µ)

‖xi(k − P + 1)‖2 )}. (28)
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We can find the following facts. If at each subband e2i,D(k − j) > 2σ2vi,D/(2 − µ), then xi(k − j) contributes to

maximizing ∆̂. However, if e2i,D(k− j) ≤ 2σ2vi,D/(2− µ), then xi(k− l) makes ∆̂ decrease. Therefore, we should

perform the update with the input regressors satisfying e2i,D(k − j) > 2σ2vi,D/(2 − µ) at every iteration for the

largest MSD decrease. Thus, the number of the selected input regressors at each subband for every iteration should

be the same as the number of errors satisfying e2i,D(k − j) > 2σ2vi,D/(2− µ).

Suppose JSi(k) = {j1, j2, . . . , jSi(k)} indicates a subset with Si(k) members of the set {0, 1. . . . , P − 1} at each

subband. Then, the update equation for proposed DSR-IMSAF is introduced as

w(k + 1) = w(k) + µ
N−1∑

i=0

Xi,JSi(k)
(k)[εI + XT

i,JSi(k)
(k)Xi,JSi(k)

(k)]−1ei,D,JSi(k)
(k), (29)

where

ei,D,JSi(k)
(k) = di,D,JSi(k)

(k)−XT
i,JSi(k)

(k)w(k), (30)

and

ei,D,JSi(k)
(k) = [ei,D(k − j1), . . . , ei,D(k − jSi(k))]

T . (31)

Also

Xi,JSi(k)
(k) = [xi(k − j1) . . . ,xi(k − jSi(k))], (32)

and

di,D,JSi(k)
(k) = [di,D(k − j1), . . . , di,D(k − jSi(k))]. (33)

The parameter Si(k) changes between 0 and P . The indices of the subset (JSi(k)) are obtained through the following

procedure:

1) Compute the following values for 0 ≤ j ≤ P − 1 and 0 ≤ i ≤ N − 1

|ei,D(k − j)| >
√

2

2− µσvi,D (34)

2) The j-indices of JSi(k) at each subband correspond to the indices that satisfy the condition in (34).

Table II summarizes the pseudo-codes of DSR-IMSAF algorithm.

V. GENERAL UPDATE EQUATION

In [20], we showed that the update equation for the MSAF can be expressed as

w(k + 1) = w(k) + µX(k)F1[εI + diag[FT
1 XT (k)X(k)F1]

−1FT
1 e(k). (35)

In (35), F1 = [f0, f1, . . . , fN−1] is the K ×N matrix, where fi is K × 1 analysis filter bank at subband i, and

X(k) = [x(kN), . . . ,x(kN −K + 1)]. (36)
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TABLE II

THE DSR-IMSAF ALGORITHM

1. Initialization the parameters

Initialization the parameters µ, ε, N , P

Initialization w(−1) = 0

for k = 0, 1, . . .

for i = 0, 1, . . . , N − 1

Xi(k) = [xi(k),xi(k − 1), . . . ,xi(k − P + 1)]T

di,D(k) = [di,D(k), di,D(k − 1), . . . , di,D(k − P + 1)]T

ei,D(k) = di,D(k)−XT
i (k)w(k)

2. Determining the j-indices based on the the proposed condition

for j = 0, 1, . . . , P − 1

Compute the values |ei,D(k − j)| >
√

2
2−µσvi,D

end

3. Update the input signal matrix and desired signal vector according to the selected regressors

Xi,JSi(k)
(k) = [xi(k − j1) . . . ,xi(k − jSi(k)

)]

di,D,JSi(k)
(k) = [di,D(k − j1), . . . , di,D(k − jSi(k)

)]

4. Calculate the error vector

ei,D,JSi(k)
(k) = di,D,JSi(k)

(k)−XT
i,JSi(k)

(k)w(k)

5. Update the filter coefficients

w(k + 1) = w(k) + µ
∑N−1

i=0
Xi,JSi(k)

(k)[εI + XT
i,JSi(k)

(k)Xi,JSi(k)
(k)]−1ei,D,JSi(k)

(k)

end

end

Also, the error vector is given by

e(k) = d(k)−XT (k)w(k), (37)

where

d(k) = [d(kN), d(kN − 1), . . . , d(kN −K + 1)]T . (38)

In the following, we will show that the IMSAF can also be incorporated in this framework. Focusing on (11) and

following the straightforward analysis, the update equation for IMSAF can be established as

w(k + 1) = w(k) + µX(k)FP {εI + bdiag[FT
PXT (k)X(k)FP ]}−1FT

Pe(k), (39)
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where now

X(k) = [x(kN),x(kN − 1), . . . ,x((k − P + 1)N −K + 1)], (40)

and

d(k) = [d(kN), d(kN − 1), . . . , d((k − P + 1)N −K + 1)]T . (41)

The matrix FP is the (K + (P − 1)N)× PN matrix which is introduced as

FP = [f0,P , f1,P , . . . , fN−1,P ], (42)

where fi,P is (K + (P − 1)N)× P matrix and is given by

fi,P =




fi 0 . . . 0

0 fi . . . 0
...

...
. . .

...

0 0 . . . . . . fi



. (43)

VI. EXTENSION OF THE FRAMEWORK

Based on (39), the SR-IMSAF and the DSR-IMSAF can be incorporated in the framework. Based on this

extension, we can study the theoretical performance of introduced algorithms as well as IMSAF in a unified way.

A. SR-IMSAF

The SR-IMSAF algorithm in (17) can be remodeled as:

w(k + 1) = w(k) + µX(k)FPB(k){εI + bdiag[BT (k)FT
PXT (k)X(k)FPB(k)]}−1BT (k)FT

Pe(k), (44)

where B(k) is the PN × PN with the elements 1 and 0 on the diagonal. The positions of 1’s on the diagonal

determine which input regressors at each subband should be selected. The indices of these positions correspond to

the condition in (23).

B. DSR-IMSAF

The new presentation for update equation in DSR-IMSAF is the same as (44). But the positions of 1’s on the

diagonal are determined based on the condition in (34).

VII. MEAN-SQUARE PERFORMANCE ANALYSIS OF THE FAMILY OF IMSAF ALGORITHMS

To study the performance of all proposed algorithms, we introduce a generic update equation as

w(k + 1) = w(k) + µC(k)X(k)W(k)e(k). (45)

By selecting the proper matrices for C(k) and W(k) in (64), all proposed algorithms will be established. Table

III shows the family of IMSAF algorithms. The transient behavior of an adaptive filter algorithm is determined by
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TABLE III

THE FAMILY OF MSAF, IMSAF, SR-IMSAF, AND DSR-IMSAF ALGORITHMS

Algorithm P C(k) W(k)

MSAF P = 1 I F1{εI + diag[FT1 XT (k)X(k)F1]}−1FT1

IMSAF P ≤M I FP {εI + bdiag[FTPXT (k)X(k)FP ]}−1FTP

SR-IMSAF P ≤M I FPB(k){εI + bdiag[BT (k)FTPXT (k)X(k)FPB(k)]}−1BT (k)FTP

DSR-IMSAF P ≤M I FPB(k){εI + bdiag[BT (k)FTPXT (k)X(k)FPB(k)]}−1BT (k)FTP

the evolution of E{‖w̃(k)‖2Φ}, where w̃(k) = wo − w(k) is the weight error vector and Φ is positive definite

symmetric matrix. If Φ = R, where R = E{x(k)xT (k)} is the autocorrelation matrix, the EMSE learning curve

is obtained. For Φ = I, the MSD learning curve will be predicted. From (1) and (37), we obtain

e(k) = XT (k)w̃(k) + v(k). (46)

Therefore, the generic weight error vector update equation is given by

w̃(k + 1) = w̃(k)− µC(k)X(k)W(k)(XT (k)w̃(k) + v(k)). (47)

By defining Z(k) = WT (k)XT (k)CT (k), the Φ-weighted norm of both sides of (47) is expressed as

‖w̃(k + 1)‖2Φ = ‖w̃(k)‖2Ψ + µ2vT (k)Z(k)ΦZT (k)v(k) + {Crosstermsinvolvingv(k)}, (48)

where

Ψ = Φ− µΦZT (k)XT (k)− µX(k)Z(k)Φ + µ2X(k)Z(k)ΦZT (k)XT (k). (49)

Taking the expectation from both sides of (48) yields

E{‖w̃(k + 1)‖2Φ} = E{‖w̃(k)‖2Ψ}+ µ2E{vT (k)Z(k)ΦZT (k)v(k)}. (50)

To simplify the recent relation, we apply the following independence assumptions [21]:

1) X(k) is independent and identically distributed sequence matrix. This assumption guarantees that w̃(k) is

independent of both Ψ and X(k).

2) w̃(k) is independent of ZT (k)XT (k).

Using these assumptions, the final result is

E{‖w̃(k + 1)‖2Φ} = E{‖w̃(k)‖2Ψ}+ µ2E{vT (k)Z(k)ΦZT (k)v(k)}, (51)

where

Ψ = Φ− µΦE{ZT (k)XT (k)} − µE{X(k)Z(k)}Φ + µ2E{X(k)Z(k)ΦZT (k)XT (k)}. (52)
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Looking at the second term of the right-hand side of (52), we write

E{vT (k)Z(k)ΦZT (k)v(k)} = E{Tr(v(k)vT (k)Z(k)ΦZT (k))} = Tr(E{v(k)vT (k)}E{Z(k)ΦZT (k)}). (53)

Since E{v(k)vT (k)} = σ2vI, equation (51) can be stated as

E{‖w̃(k + 1)‖2Φ} = E{‖w̃(k)‖2Ψ}+ µ2σ2vTr(E{Z(k)ΦZT (k)}). (54)

Applying the vec(.) operator on both sides of (52) and using vec(PΣQ) = (QT ⊗P)vec(Σ) yield [22]

ψ = φ− µ(E{X(k)Z(k)} ⊗ I).φ− µ(I⊗ E{X(k)Z(k)}).φ+ µ2(E{(X(k)Z(k))⊗ (X(k)Z(k))}).φ, (55)

where ψ = vec(Ψ) and φ = vec(Φ). By defining the M2 ×M2 matrix G as

G = I− µE{X(k)Z(k)} ⊗ I− µI⊗ E{X(n)Z(k)}+ µ2E{(X(k)Z(k))⊗ (X(k)Z(k))}, (56)

equation (55) becomes

ψ = G.φ. (57)

Also by defining γ through

γ = vec(E{ZT (k)Z(k)}), (58)

the second term of the right-hand side of (54) is given by

Tr(E{ZT (k)Z(k)}.Φ) = γT .φ. (59)

From the above analysis, the recursion of (54) is represented as

E{‖w̃(k + 1)‖2φ} = E{‖w̃(k)‖2Gφ}+ µ2σ2vγ
Tφ. (60)

Focusing again on the learning curve, we substitute R for Φ, define r = vec(R), and write

E{‖w̃(k)‖2r} = E{‖w̃(0)‖2Gkr}+ µ2σ2vγ
T {I + G + · · ·Gk−1}r. (61)

From this recursion, we will be able to obtain the steady-state excess mean square error (EMSE), when k goes to

infinity. Doing this, the steady-state EMSE is established as

EMSE = µ2σ2vγ
T (I−G)−1r. (62)

When Φ = I, the transient behavior of mean square coefficient deviation (MSD) is predicted. The steady-state

MSD is also given by

MSD = µ2σ2vγ
T (I−G)−1vec(I). (63)
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VIII. MEAN AND MEAN-SQUARE STABILITY OF THE FAMILY OF IMSAF ALGORITHMS

Taking the expectation from both sides of (47) yields

E{w̃(k + 1)} = [I− µE{ZT (k)XT (k)}]E{w̃(k)}. (64)

From (64), the convergence to the mean of the adaptive algorithm in (45) is guaranteed for any µ that satisfies

µ <
2

λmax(E{ZT (k)XT (k)}) . (65)

The general recursion (equation (60)) is stable if the matrix G is stable [21]. From (56), we know that G =

I− µM + µ2N, where M = E{X(k)Z(k)} ⊗ I + I⊗ E{X(k)Z(k)}, and N = E{(X(k)Z(k))⊗ (X(k)Z(k))}.
The condition on µ to guarantee the convergence in the mean-square sense of the adaptive algorithms is

0 < µ < min{ 1

λmax(M−1N)
,

1

max(λ(H) ∈ <+)
}, (66)

where H =




1
2M −1

2N

I 0


.

IX. COMPUTATIONAL COMPLEXITY

Table IV compares the computational complexity of the IMSAF, SR-IMSAF, and DSR-IMSAF algorithms in

terms of the number of multiplications per iteration for real data. In this Table, M is the filter length, N is the

number of subbands, P is the number of input regressors, L is the length of channel filters, S is the number of

selected input regressors, and Si(k) is the number of selected regressors at each subband which is dynamic. This

table indicates that the number of multiplications in IMSAF depends on P . But in SR-IMSAF and DSR-IMSAF,

this parameter depends on S and Si(k). Also, the number of comparisons in SR-IMSAF and DSR-IMSAF is

O(P ) + P log2S and PN respectively [14]. In the next section, we also present the number of multiplications in

different simulations.

TABLE IV

COMPUTATIONAL COMPLEXITY OF THE IMSAF, SR-IMSAF, AND DSR-IMSAF ALGORITHMS PER ITERATION

Algorithm Number of Multiplications

IMSAF (P 2 + 2P )M + P 3 + P 2 + 3NL

SR-IMSAF (S2 + 2S)M + S3 + S2 + 2M(P − S) + 2P + 3NL

DSR-IMSAF
∑N−1

i=0
1
N
[(S2

i (k) + Si(k) + P )M + S3
i (k) + S2

i (k)] + 3NL
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TABLE V

TOTAL NUMBER OF MULTIPLICATIONS FOR IMSAF, SR-IMSAF, AND DSR-IMSAF ALGORITHMS UNTIL CONVERGENCE (INPUT

SIGNAL: COLORED GAUSSIAN AR(2))

Algorithm N = 4, P = 4 N = 4, P = 8 N = 4, P = 16

IMSAF 1.9× 107 5.8× 107 1.8× 108

SR-IMSAF 1.3× 107 3.6× 107 9.4× 107

DSR-IMSAF 5.8× 106 1.3× 107 1.9× 107

TABLE VI

TOTAL NUMBER OF MULTIPLICATIONS FOR IMSAF, SR-IMSAF, AND DSR-IMSAF ALGORITHMS UNTIL CONVERGENCE (INPUT

SIGNAL: REAL SPEECH)

Algorithm N = 4, P = 4 N = 4, P = 8 N = 4, P = 16

IMSAF 9.4× 108 1.4× 109 2.8× 109

SR-IMSAF 7.4× 108 9× 108 2.5× 109

DSR-IMSAF 2.4× 108 3.1× 108 6.5× 108

X. SIMULATION RESULTS

We demonstrate the performance of the proposed algorithms by several computer simulations in acoustic echo

cancellation (AEC) setup. The impulse response of the car echo path with 256 taps (M = 256) is used as an

unknown system in the experiment (Fig. 2) [23]. The input signal is an AR(2) signal which is generated by passing

a zero-mean white Gaussian noise through a second-order system 1
1−0.1z−1−0.8z−2 and the value of σ2v is set to 10−3.

Also, the filter bank in all simulations is the extended lapped transform (ELT) [14], [24]. In all simulations, we

show the normalized mean square deviation (NMSD), E[‖w
◦−w(k)‖2
‖w◦‖2 ], which is evaluated by ensemble averaging

over 50 independent trials.

A. Performance of the Algorithms

Fig. 3 shows the NMSD learning curves of IMSAF and SR-IMSAF algorithms. The parameters µ, ε, and N are

set 0.5, 0.01, and 4, respectively. To make the computational complexity similar, the parameter P in conventional

IMSAF is set to 4 and this parameter in SR-IMSAF is set to 8 and 16 where S = 4. Therefore, only 4 regressors

are selected at each subband in SR-IMSAF during the adaptation. We observe that the SR-IMSAF has faster

convergence speed than IMSAF while the computational complexity is similar.

Fig. 4 presents the NMSD learning curves of IMSAF and DSR-IMSAF algorithms. The step-size is set to 0.5 and

various values for P are selected in IMSAF algorithm (2, 4, 8, 16, and 32). In conventional IMSAF, by increasing

the parameter P , the convergence speed and steady-state error are increased. For DSR-IMSAF, we set the parameter
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Fig. 2. Impulse response of the car echo path (M = 256).
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(a) IMSAF, N = 4, P = 4, µ = 0.5

(b) SR-IMSAF, N = 4, P = 8, S = 4, µ = 0.5

(c) SR-IMSAF, N = 4, P = 16, S = 4, µ = 0.5

(b)

(a)

(c)

Input: Colored Gaussian AR(2)
M = 256,N = 4

Fig. 3. The NMSD learning curves of IMSAF and SR-IMSAF (Input signal: Colored Gaussian AR(2)).
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(a) IMSAF, N = 4, P = 2, µ = 0.5

(b) IMSAF, N = 4, P = 4, µ = 0.5

(c) IMSAF, N = 4, P = 8, µ = 0.5

(d) IMSAF, N = 4, P = 16, µ = 0.5

(e) IMSAF, N = 4, P = 32, µ = 0.5

(f) DSR-IMSAF, N = 4, P = 32, µ = 0.5

Input: Colored Gaussian AR(2)
M = 256,N = 4

(a)

(c)

(b)

(e)(d)

(f)

Fig. 4. The NMSD learning curves of IMSAF and DSR-IMSAF (Input signal: Colored Gaussian AR(2)).
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(a) DSR-IMSAF, i = 0

(b) DSR-IMSAF, i = 1

(c) DSR-IMSAF, i = 2

(d) DSR-IMSAF, i = 3

(e) Average of ANSR in all subbnads

(a)(e)

(c)
(b)

(d)

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 32

Fig. 5. The average number of selected regressors (ANSR) for DSR-IMSAF in different subbands with P = 32.

P to 32. In this case, the convergence speed of the proposed DSR-IMSAF is the same as the conventional IMSAF

with the maximum order, which has the fast convergence speed, while the steady-state error remains low. Fig.

5 shows the average number of selected regressors (ANSR) in DSR-IMSAF for different subbands. This figure

indicates that the number of selected regressors is dynamically decreased in all subbands. Therefore, the proposed

DSR-IMSAF has a low overall computational complexity because the average number of selected regressors in all

subbands is small. In Fig. 6, the performances of DSR-IMSAF based on Eqs. 27 and 28 are presented. In this

simulation, we set P to 4. Eq. 27 uses the all elements of XT
i (k)Xi(k) and Eq. 28 applies only the diagonal

elements of XT
i (k)Xi(k). The NMSD learning curves show that the performances of DSR-IMSAF based on these

relations are close together.

Figs. 7 and 8 show the performance of SR-IMSAF for different values of P . In Fig. 7, the step-size is set 0.5
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(a) DSR-IMSAF, N = 4, P = 4, µ = 0.5 (without assumption)

(b) DSR-IMSAF, N = 4, P = 4, µ = 0.5 (with assumption)

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 4

(b) Based on Eq. 28

Based on Eq. 27(a)

Fig. 6. The NMSD learning curves of DSR-IMSAF with P = 4 based on Eqs. 27 and 28.
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(a) SR-IMSAF, N = 4, P = 2, S = 1, µ = 0.5

(b) SR-IMSAF, N = 4, P = 4, S = 2, µ = 0.5

(c) SR-IMSAF, N = 4, P = 8, S = 4, µ = 0.5

(d) SR-IMSAF, N = 4, P = 16, S = 8, µ = 0.5

(b)

(d)
(c)

(a)
Input: Colored Gaussian AR(2)
M = 256,N = 4

Fig. 7. The NMSD learning curves of SR-IMSAF for different values of P and µ = 0.5 (Input signal: Colored Gaussian AR(2)).

and P is selected as 2, 4, 8, and 16. The value of S is chosen as P/2. By increasing P , the convergence speed

and the steady-state error increase. In Fig. 8, the step-size is set to 0.5 in SR-IMSAF with P = 2 and to make the

comparison fair, the step-sizes for SR-IMSAF with other values of P are chosen to get approximately the same

steady-state NMSD as SR-IMSAF with P = 2. As we see, by increasing P , the convergence speed increases. Figs.

9 and 10 present the results for DSR-IMSAF. The NMSD learning curves indicate that by increasing the parameter

P , the convergence speed are increased.

Fig. 11 compares the performance of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF algorithms. The values

of N and P are set to 4. The step-size is set to 0.5 in MSAF and to make the comparison fair, the step-sizes

for other algorithms are chosen to get approximately the same steady-state NMSD as MSAF. As we see, the

convergence performance of the proposed SR-IMSAF and DSR-IMSAF is comparable to the conventional IMSAF
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(a) SR-IMSAF, N = 4, P = 2, S = 1, µ = 0.5

(b) SR-IMSAF, N = 4, P = 4, S = 2, µ = 0.3

(c) SR-IMSAF, N = 4, P = 8, S = 4, µ = 0.2

(d) SR-IMSAF, N = 4, P = 16, S = 8, µ = 0.1

(a)

(b)

(c)

(d)

Input: Colored Gaussian AR(2)
M = 256,N = 4

Fig. 8. The NMSD learning curves of SR-IMSAF for different values of P with the same steady-state error (Input signal: Colored Gaussian

AR(2)).
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(a) DSR-IMSAF, N = 4, P = 2, µ = 0.5

(b) DSR-IMSAF, N = 4, P = 4, µ = 0.5

(c) DSR-IMSAF, N = 4, P = 8, µ = 0.5

(d) DSR-IMSAF, N = 4, P = 16, µ = 0.5

(b)

(c)

(d)

Input: Colored Gaussian AR(2)
M = 256,N = 4

(a)

Fig. 9. The NMSD learning curves of DSR-IMSAF for different values of P and µ = 0.5 (Input signal: Colored Gaussian AR(2)).

while the proposed SR-IMSAF and DSR-IMSAF have a better computational superiority. Fig. 12 shows the ANSR

for different subbands in DSR-IMSAF. The proposed DSR-IMSAF has a low overall computational complexity

because the average number of the selected input vectors is small in all subbands. Figs. 13 and 14 present the same

results for P = 8. Again good performance is observed for the proposed algorithms. The good performance of

the proposed algorithms for P = 16 is given in Figs. 15 and 16. Table V compares the number of multiplications

until convergence in IMSAF, SR-IMSAF, and DSR-IMSAF. This table shows that the computational complexity

of SR-IMSAF and DSR-IMSAF is lower than IMSAF. As we see, the number of multiplications in DSR-IMSAF

with P = 16 is even lower than IMSAF with P = 4. In Figs. 17 and 18, the input signal is changed to colored

Gaussian AR(1) with transfer function 1
1−ρz−1 , where ρ is set to 0.9 and 0.95. The parameters in this figure are



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SIGNAL PROCESSING 22

200 400 600 800 1000 1200 1400
−30

−25

−20

−15

−10

−5

0

Iteration Number

N
M
S
D

in
d
B

 

 

(a) DSR-IMSAF, N = 4, P = 2, µ = 0.5

(b) DSR-IMSAF, N = 4, P = 4, µ = 0.45

(c) DSR-IMSAF, N = 4, P = 8, µ = 0.4

(d) DSR-IMSAF, N = 4, P = 16, µ = 0.3

Input: Colored Gaussian AR(2)
M = 256,N = 4

(a)

(b)

(c)

(d)

Fig. 10. The NMSD learning curves of DSR-IMSAF for different values of P with the same steady-state error (Input signal: Colored

Gaussian AR(2)).

chosen according to Fig. 11. We observe good performance for the proposed algorithms in both input signals. In

Fig. 19, the performance of IMSAF algorithm based on Eqs. (11) and (39) is compared. The parameter N is set

to 4 and different values for P are selected. As we see, the same performance is achieved through these relations.
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(a) APA, P = 4, µ = 0.25

(b) MSAF, N = 4, µ = 0.5

(c) IMSAF, N = 4, P = 4, µ = 0.15

(d) SR-IMSAF, N = 4, P = 4, µ = 0.2

(e) DSR-IMSAF, N = 4, P = 4, µ = 0.35

(e)

(b)

(c)

(a)

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 4

(d)

Fig. 11. The NMSD learning curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 4 (Input signal: Colored Gaussian

AR(2)).

For tracking performance analysis, we consider a system to identify the two unknown filters with M = 256,

whose z-domain transfer functions are given by

W1(z) =
127∑

n=0

z−n −
M−1∑

n=128

z−n, (67)
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(a) DSR-IMSAF, i = 0

(b) DSR-IMSAF, i = 1

(c) DSR-IMSAF, i = 2

(d) DSR-IMSAF, i = 3

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 4

(c)
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(d)

Fig. 12. The average number of selected regressors (ANSR) for DSR-IMSAF in different subbands with P = 4.

0 500 1000 1500 2000 2500 3000
−30

−25

−20

−15

−10

−5

0

Iteration Number

N
M
S
D

in
d
B

 

 

(a) APA, P = 8, µ = 0.1

(b) MSAF, N = 4, µ = 0.5

(c) IMSAF, N = 4, P = 8, µ = 0.08

(d) SR-IMSAF, N = 4, P = 8, S = 6, µ = 0.1

(e) DSR-IMSAF, N = 4, P = 8, µ = 0.2

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 8

(d)

(a)

(b)

(c)

(e)

Fig. 13. The NMSD learning curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 8 (Input signal: Colored Gaussian

AR(2)).

and

W2(z) = −
M−1∑

n=0

z−n, (68)

where the transfer function of optimum filter coefficients will be W1(z) for n ≤ 5× 103, and the transfer function

of optimum filter coefficients will be W2(z) for 5×103 < n ≤ 10×103. Fig. 20 compares the tracking performance

of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF algorithms. The values of N and P are set to 4. The step-

size in MSAF is set to 0.5 and to make the comparison fair, the step-sizes for other algorithms are chosen to get

approximately the same steady-state NMSD as MSAF. The tracking performance of the introduced algorithms is the

same as the conventional IMSAF while the proposed algorithms have a low overall computational complexity. In
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(a) DSR-IMSAF, i = 0

(b) DSR-IMSAF, i = 1

(c) DSR-IMSAF, i = 2

(d) DSR-IMSAF, i = 3

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 8

(b)
(a)

(d)
(c)

Fig. 14. The average number of selected regressors (ANSR) for DSR-IMSAF in different subbands with P = 8.
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(a) APA, P = 16, µ = 0.05

(b) MSAF, N = 4, µ = 0.5

(c) IMSAF, N = 4, P = 16, µ = 0.04

(d) SR-IMSAF, N = 4, P = 16, S = 12, µ = 0.06

(e) DSR-IMSAF, N = 4, P = 16, µ = 0.18

(e)

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 16

(a)

(b)

(d)

(c)

Fig. 15. The NMSD learning curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 16 (Input signal: Colored Gaussian

AR(2)).

Fig. 21, the tracking performance of IMSAF, SR-IMSAF, and DSR-IMSAF is compared. In IMSAF, the parameter

P is set 16. To have a similar complexity with IMSAF, P and S are set 32 and 16 in SR-IMSAF. Also, the NMSD

learning curves of DSR-IMSAF with P = 16 and 32 are presented. The learning curves show that the tracking

performance of the proposed algorithms are better than conventional IMSAF.

In the following, we present the NMSD learning curves of the proposed algorithms for real speech input signal.

The parameters µ, ε, and N are set to 0.05, 0.5, and 4. Fig. 22 compares the performance of APA, MSAF, IMSAF,

SR-IMSAF, and DSR-IMSAF with P = 4. We observe that the performance of the proposed algorithms is close

to the conventional IMSAF. Figs. 23 and 24 present the learning curves for P = 8 and 16. The same performance

is observed in these figures. Table VI shows the number of multiplications in IMSAF, SR-IMSAF, and DSR-
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(a) DSR-IMSAF, i = 0

(b) DSR-IMSAF, i = 1

(c) DSR-IMSAF, i = 2

(d) DSR-IMSAF, i = 3

(b)

(a)

(c)

(d)

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 16

Fig. 16. The average number of selected regressors (ANSR) for DSR-IMSAF in different subbands with P = 16.
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(a) APA, P = 4, µ = 0.2

(b) MSAF, N = 4, µ = 0.5

(c) IMSAF, N = 4, P = 4, µ = 0.15

(d) SR-IMSAF, N = 4, P = 4, S = 3, µ = 0.2

(e) DSR-IMSAF, N = 4, P = 4, µ = 0.35

(e)

(d)

(b)

(a)

(c)

Input: Colored Gaussian AR(1), ρ = 0.9
M = 256,N = 4, P = 4

Fig. 17. The NMSD learning curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 4 (Input signal: Colored Gaussian

AR(1), ρ = 0.9).

IMSAF, when the NMSD arrives to -18dB. As we see, the computational load of DSR-IMSAF is significantly

lower than IMSAF. Also, to measure the effectiveness of the proposed algorithms, we compute the echo return loss

enhancement (ERLE). The ERLE is obtained by evaluating the difference between the powers of the echo and the

error signal. The segmental ERLE estimates are obtained by averaging over 140 samples. The segmental ERLE

curves for the measured speech and echo signals are shown in Figs. 25 and 26. These figures illustrate that the

proposed algorithms and conventional IMSAF have comparable ERLE performance.
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(a) APA, P = 4, µ = 0.17

(b) MSAF, N = 4, µ = 0.5

(c) IMSAF, N = 4, P = 4, µ = 0.15

(d) SR-IMSAF, N = 4, P = 4, S = 3, µ = 0.2

(e) DSR-IMSAF, N = 4, P = 4, µ = 0.35

(a)

(b)

(e)

(c)

(d)

Input: Colored Gaussian AR(1), ρ = 0.95
M = 256,N = 4, P = 4

Fig. 18. The NMSD learning curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 4 (Input signal: Colored Gaussian

AR(1), ρ = 0.95).
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IMSAF based on Eq. (11)

IMSAF based on Eq. (39)

Input: Colored Gaussian AR(2)
M = 256,N = 4, P = 2, 4, 8, µ = 0.5

(b) N = 4, P = 4

(a) N = 4, P = 2

(c) N = 4, P = 8

Fig. 19. The NMSD learning curves of IMSAF with N = 4, P = 2, 4, 8 based on Eqs. (11) and (39) (Input signal: Colored Gaussian

AR(2)).

B. Transient Performance

To justify the theoretical results, we present the simulated and theoretical NMSD learning curves. The unknown

impulse response is randomly selected with 32 taps (M = 32). The input signal is an AR(1) signal generated by

passing a zero-mean white Gaussian noise through a first-order system H(z) = 1
1−0.95z−1 and the value of σ2v is

set to 10−3. The theoretical learning curves are obtained from (61). The simulated learning curves are established

by ensemble averaging over 30 independent trials. Fig. 27 presents the simulated and theoretical learning curves

for SR-IMSAF with S = 3 and different values of P . Good agreement between simulated and theoretical learning

curve is observed. The results for DSR-IMSAF can be seen in Fig. 28 for various values of P . As we can see,
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(a) APA, P = 4, µ = 0.2

(b) MSAF, N = 4, µ = 0.5

(c) IMSAF, N = 4, P = 4, µ = 0.15

(d) SR-IMSAF, N = 4, P = 4, S = 3, µ = 0.2

(e) DSR-IMSAF, N = 4, P = 4, µ = 0.3

(a)

(b)

(c)

(d)
(e)

Fig. 20. Tracking performance of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 4 (Input signal: Colored Gaussian AR(2)).
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(a) IMSAF, N = 4, P = 16, µ = 0.5

(b) SR-IMSAF, N = 4, P = 32, S = 16, µ = 0.5

(c) DSR-IMSAF, N = 4, P = 16, µ = 0.5

(d) DSR-IMSAF, N = 4, P = 32, µ = 0.5

(d)

(a)

(c)
(b)

Fig. 21. Tracking performance of IMSAF, SR-IMSAF, and DSR-IMSAF (Input signal: Colored Gaussian AR(2)).

there is good agreement between simulated and theoretical learning curves.

C. Steady-State Performance

Figs. 29-31 show the simulated and theoretical steady-state NMSD values as function of the step-size for the

proposed algorithms. The theoretical values are calculated from (63) and the simulated values are obtained from the

averaging over 500 steady-state samples from 500 independent realizations for each value of µ for a given algorithm.

The values of the step-size change in the stability bounds. Fig. 29 shows the results for IMSAF algorithms for two

different values of P . As we can see, there is good agreement between simulated and theoretical values for both

values of P . Fig. 30 presents the steady-state NMSD values as a function of the step-size for SR-IMSAF. In this

algorithm, for P = 4, the parameter S is set to 3 and for P = 8, the parameter S is set 6. In both figures, the
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(a) APA, P = 4, µ = 0.05

(b) MSAF, N = 4, µ = 0.05

(c) IMSAF, N = 4, P = 4, µ = 0.05

(d) SR-IMSAF, N = 4, P = 4, S = 3, µ = 0.05

(e) DSR-IMSAF, N = 4, P = 4, µ = 0.05

(e)

(a)

(b)

(c)

(d)

Input: Real Speech
M = 256,N = 4, P = 4

Fig. 22. The NMSD learning curves of IMSAF, SR-IMSAF, and DSR-IMSAF with P = 4 (Input signal: Real speech).
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(a) APA, P = 8, µ = 0.05

(b) MSAF, N = 4, µ = 0.05

(c) IMSAF, N = 4, P = 8, µ = 0.05

(d) SR-IMSAF, N = 4, P = 8, S = 6, µ = 0.05

(e) DSR-IMSAF, N = 4, P = 8, µ = 0.05

Input: Real Speech
M = 256,N = 4, P = 8(b)

(a)

(c)

(d) (e)

Fig. 23. The NMSD learning curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 8 (Input signal: Real speech).

agreements are good. Finally, in Fig. 31, the results for DSR-IMSAF with P = 4 and 8 are shown. The agreement

is well in this figure for both values of P .

D. Stability Bounds

Figs. 32-34 present the simulated steady-state NMSD values as a function of the step-size for the proposed

algorithms with various values of P . The step-size changes from 0.05 to µmax. The values of the µmax are

obtained from (65) and (66) which are presented in Table VII. Fig. 32 presents the results for IMSAF, SR-IMSAF

and DSR-IMSAF algorithms with P = 4. Figs. 33 and 34 show the same curves for P = 8 and 16. We can see

good agreement between the stability bounds from Table VII and the simulated steady-state NMSD for µmax in

all figures.
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(a) APA, P = 16, µ = 0.05

(b) MSAF, N = 4, µ = 0.05

(c) IMSAF, N = 4, P = 16, µ = 0.05

(d) SR-IMSAF, N = 4, P = 16, S = 12, µ = 0.05

(e) DSR-IMSAF, N = 4, P = 16, µ = 0.05

(c)

(d)
(e)

Input: Real Speech
M = 256,N = 4, P = 16(b)

(a)

Fig. 24. The NMSD learning curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 16 (Input signal: Real speech).
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APA, P = 4

MSAF, N = 4

IMSAF, N = 4, P = 4

SR-IMSAF, N = 4, P = 4, S = 3

DSR-IMSAF, N = 4, P = 4

Fig. 25. Segmental ERLE curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 4.

XI. CONCLUSION

This paper proposed two new adaptive filter algorithms with low computational complexity feature. These

algorithms utilized the SR and DSR approaches in IMSAF algorithm. In SR-IMSAF, a subset of input regressors

was optimally selected at each subband for every iteration. The dynamic selection of input regressors at each

subband was performed in DSR-IMSAF algorithm. The introduced algorithms have shown good convergence

performance with significantly reduced complexity. In the following, the general update equation for establishment

of the proposed algorithms was introduced. Based on this, a unified approach for performance analysis of all

algorithms was presented. The theoretical relations for transient, steady-state, and stability bounds were derived.

Good performances of SR-IMSAF and DSR-IMSAF algorithms and the validity of the theoretical relations were
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APA, P = 8

MSAF, N = 4

IMSAF, N = 4, P = 8

SR-IMSAF, N = 4, P = 8, S = 6

DSR-IMSAF, N = 4, P = 8

Fig. 26. Segmental ERLE curves of APA, MSAF, IMSAF, SR-IMSAF, and DSR-IMSAF with P = 8.
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(a) SR-IMSAF, S = 3, P = 4

(b) SR-IMSAF, S = 3, P = 8

(c) SR-IMSAF, S = 3, P = 16

Input: Colored Gaussian AR(1)
M = 32, N = 4

Simulation
Theory

(c)

(a)

(b)

Fig. 27. The simulated and theoretical NMSD learning curves of SR-IMSAF for P = 4, 8, and 16 (Input signal: Colored Gaussian AR(1)).

justified through several experiments.

APPENDIX A

DERIVATION OF EQ. 26

Taking the squared Euclidean norm and then expectation from both sides of (24) yield

E{‖w̃(k + 1)‖2} = E{‖w̃(k)‖2} − 2µ
N−1∑

i=0

E{w̃T (k)Xi(k)[XT
i (k)Xi(k)]−1ei,D(k)}

+µ2
N−1∑

i=0

E{eTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)}. (69)
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(a) DSR-IMSAF, P = 4

(b) DSR-IMSAF, P = 8

(c) DSR-IMSAF, P = 16

Simulation
Theory

(a)

(c)

(b)

Input: Colored Gaussian AR(1)
M = 32, N = 4

Fig. 28. The simulated and theoretical NMSD learning curves of DSR-IMSAF for P = 4, 8, and 16 (Input signal: Colored Gaussian

AR(1)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−45

−40

−35

−30

−25

−20

−15

−10

N
M
S
D

in
d
B

 

 

(a) IMSAF, P = 4, Simulation

(b) IMSAF, P = 4, Theory
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(a) IMSAF, P = 8, Simulation

(b) IMSAF, P = 8, Theory

Input: Colored Gaussian AR(1)
M = 32, N = 4, P = 8

Input: Colored Gaussian AR(1)
M = 32, N = 4, P = 4

(a)

(b)

(b)

(a)

Fig. 29. The simulated and theoretical steady-state NMSD values of IMSAF as a function of the step-size for P = 4 and 8 (Input signal:

Colored Gaussian AR(1)).

Since XT
i (k)w̃(k) = ei,D(k)− vi,D(k), we have

E{‖w̃(k + 1)‖2} = E{‖w̃(k)‖2} − 2µ
N−1∑

i=0

E{(eTi,D(k)− vTi,D(k))[XT
i (k)Xi(k)]−1ei,D(k)}

+µ2
N−1∑

i=0

E{eTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)} (70)

Therefore,

E{‖w̃(k + 1)‖2} = E{‖w̃(k)‖2} − 2µ
N−1∑

i=0

E{eTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)}
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(a) SR-IMSAF, P = 4, S = 3, Simulation

(b) SR-IMSAF, P = 4, S = 3, Theory
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(a) SR-IMSAF, P = 8, S = 6, Simulation

(b) SR-IMSAF, P = 8, S = 6, Theory

Input: Colored Gaussian AR(1)
M = 32, N = 4, P = 8

Input: Colored Gaussian AR(1)
M = 32, N = 4, P = 4

(b)

(a)

(a)(b)

Fig. 30. The simulated and theoretical steady-state NMSD values of SR-IMSAF as a function of the step-size for P = 4 and 8 (Input

signal: Colored Gaussian AR(1)).
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(a) DSR-IMSAF, P = 4, Simulation

(b) DSR-IMSAF, P = 4, Theory
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(a) DSR-IMSAF, P = 8, Simulation

(b) DSR-IMSAF, P = 8, Theory

(a)

(b)

(b)

(a)

Input: Colored Gaussian AR(1)
M = 32, N = 4, P = 4

Input: Colored Gaussian AR(1)
M = 32, N = 4, P = 8

Fig. 31. The simulated and theoretical steady-state NMSD values of DSR-IMSAF as a function of the step-size for P = 4 and 8 (Input

signal: Colored Gaussian AR(1)).

+2µ
N−1∑

i=0

E{vTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)}+ µ2

N−1∑

i=0

E{eTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)}. (71)

The third term in the right-hand side of Eq. 71 can be written as

N−1∑

i=0

E{vTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)} =

N−1∑

i=0

E{vTi,D(k)[XT
i (k)Xi(k)]−1[XT

i (k)w̃(k) + vi,D(k)]} (72)

Assuming vi,D(k) is as zero mean and independent and identically distributed (i.i.d) sequence which is statistically

independent of the input data, and by neglecting the dependency of w̃(k) on the past noise, Eq. 72 is obtained as

N−1∑

i=0

E{vTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)} =

N−1∑

i=0

E{vTi,D(k)[XT
i (k)Xi(k)]−1vi,D(k)}. (73)
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TABLE VII

STABILITY BOUNDS OF THE IMSAF, SR-IMSAF AND DSR-IMSAF ALGORITHMS FOR N = 4 AND DIFFERENT VALUES OF P (INPUT

SIGNAL: COLORED GAUSSIAN AR(2))

Algorithm 2
λmax(E{sgn(X(k)F)W(k)FTXT (k)})

1
λmax(M−1N)

1
max(λ(H)∈<+)

µmax

IMSAF (N = 4, P = 4) 2.1287 0.8098 2.126 0.8098

IMSAF (N = 4, P = 8) 1.7120 0.6169 1.1814 0.6169

IMSAF (N = 4, P = 16) 0.7180 0.5336 0.6828 0.5336

SR-IMSAF (N = 4, P = 4) 2.8135 1.3575 3.902 1.3575

SR-IMSAF (N = 4, P = 8) 1.8294 1.2263 2.6794 1.2263

SR-IMSAF (N = 4, P = 16) 0.8826 0.8372 1.4723 0.8372

DSR-IMSAF (N = 4, P = 4) 2.2316 0.9173 2.177 0.9173

DSR-IMSAF (N = 4, P = 8) 1.5674 0.7667 1.2386 0.7667

DSR-IMSAF (N = 4, P = 16) 0.7991 0.6270 0.7616 0.6270
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(a) IMSAF, P = 4

(b) SR-IMSAF, P = 4, S = 3

(c) DSR-IMSAF, P = 4

Input: Colored Gaussian AR(2)
M = 32, N = 4, P = 4

(a)

(b)

(c)

Fig. 32. The simulated steady-state NMSD values of IMSAF, SR-IMSAF, and DSR-IMSAF as a function of the step-size for P = 4 (Input

signal: Colored Gaussian AR(2)).

Eq. 73 can be simplified as

N−1∑

i=0

E{vTi,D(k)[XT
i (k)Xi(k)]−1vi,D(k)} =

N−1∑

i=0

E{Tr(vi,D(k)vTi,D(k)[XT
i (k)Xi(k)]−1)}

=
N−1∑

i=0

Tr(E{vi,D(k)vTi,D(k)}E{[XT
i (k)Xi(k)]−1}). (74)
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(a) IMSAF, P = 8

(b) SR-IMSAF, P = 8, S = 6

(c) DSR-IMSAF, P = 8

Input: Colored Gaussian AR(2)
M = 32, N = 4, P = 8

(c)

(b)(a)

Fig. 33. The simulated steady-state NMSD values of IMSAF, SR-IMSAF, and DSR-IMSAF as a function of the step-size for P = 8 (Input

signal: Colored Gaussian AR(2)).
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(a) IMSAF, P = 16

(b) SR-IMSAF, P = 16, S = 12

(c) DSR-IMSAF, P = 16

Input: Colored Gaussian AR(2)
M = 32, N = 4, P = 16

(a)

(b)

(c)

Fig. 34. The simulated steady-state NMSD values of IMSAF, SR-IMSAF, and DSR-IMSAF as a function of the step-size for P = 16

(Input signal: Colored Gaussian AR(2)).

Since E{vi,D(k)vTi,D(k)} = σ2vi,DI, we have

N−1∑

i=0

E{vTi,D(k)[XT
i (k)Xi(k)]−1ei,D(k)} =

N−1∑

i=0

σ2vi,DTr(E{[XT
i (k)Xi(k)]−1}). (75)

By substituting (75) into (71), Eq. 26 is established.
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