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Highlights

• A fixed-point algorithm is proposed to estimation the maximum of generalized correntropy (termed FP-GMC).

• A sufficient condition is obtained for the convergence of the FP-GMC algorithm.

• The sliding-window method and recursive method are applied to the FP-GMC algorithm for online signal pro-

cessing. And, call these online algorithms as SW-GMC and RGMC, respectively.

• A convex combination algorithm is proposed by adaptively combine two RGMC algorithms to improve the

convergence rate of RGMC algorithm. And, call this combination algorithm as AC-RGMC.

• The convergence rate of the AC-RGMC has been further increased by a simple and efficient weight control scheme.

And, call this control algorithm as AC-RGMC-C.
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Abstract

Compared with the MSE criterion, the generalized maximum correntropy (GMC) criterion shows a better robustness

against impulsive noise. Some gradient based GMC adaptive algorithms have been derived and available for practice.

But, the fixed-point algorithm on GMC has not yet been well studied in the literature. In this paper, we study

a fixed-point GMC (FP-GMC) algorithm for linear regression, and derive a sufficient condition to guarantee the

convergence of the FP-GMC. Also, we apply sliding-window and recursive methods to the FP-GMC to derive online

algorithms for practice, these two called sliding-window GMC (SW-GMC) and recursive GMC (RGMC) algorithms,

respectively. Since the solution of RGMC is not analyzable, we derive some approximations that fundamentally result

in the poor convergence rate of the RGMC in nonstationary situations. To overcome this issue, we propose a novel

robust filtering algorithm (termed adaptive convex combination of RGMC algorithms (AC-RGMC)), which relies on

the convex combination of two RGMC algorithms with different memories. Moreover, by an efficient weight control

method, the tracking performance of the AC-RGMC is further improved, and this new one is called AC-RGMC-C

algorithm. The good performance of proposed algorithms are tested in plant identification scenarios with abrupt

change under impulsive noise environment.

Keywords: Convergence, Fixed-point algorithm, Convex combination, Adaptive filter, Non-Gaussian noise,

Generalized maximum correntropy (GMC) criterion

1. Introduction

Adaptive filtering algorithms (AFAs) have been successfully applied in various fields such as system identification,

channel equation, acoustic echo cancelation, active noise control, and so forth [1, 2, 3]. The most existing AFAs are

based on the Gaussian scenarios justified by the central limit theorem, such as the family of least mean-square (LMS)

algorithms, the class of affine projection algorithms (APA), and the tribe of recursive least squares (RLS) algorithms5

[3, 4]. Among these algorithms, the LMS is the most widely used filtering algorithm because of its simplicity, the
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RLS can accelerate the convergence rate of the LMS in the presence of colored input signals, and the APA appears as

intermediate complexity between the LMS and the RLS.

Note that almost all aforementioned algorithms performances may degrade dramatically under non-Gaussian distri-

butions, such as the light-tailed (e.g., binary, uniform, etc.) and the fat-tailed (e.g., Laplace, Cauchy, mixed Gaussian,10

alpha-stable, etc.) distributions [5, 6, 7, 8, 9, 10]. Generally, different p-powers of the error signal, i.e., |e|p, are used

as cost functions to obtain robust algorithms [5, 11, 12, 13]. Specifically, when the desired signals are contaminated by

the non-Gaussian interferences with light-tailed distribution, a high-order power of the error is usually more desirable

to achieve a better tradeoff between the transient and steady-state performance. For example, the least mean absolute

third (LMAT) algorithm with p = 3 [14], and the least mean fourth (LMF) algorithm with p = 4 [15]. On the other15

hand, for these heavy-tailed impulsive interferences, a lower-order power of the error with p < 2 is usually more robust.

For example, the LMS type algorithms (e.g., the least mean p-powers algorithm (LMP), especially the sign algorithm

with p = 1 )[16], the APA type algorithms (e.g., the affine projection sign algorithm (APSA)) [17, 18], and the RLS

type algorithms (e.g., the recursive least mean p-powers algorithm (RLMP))[19, 20].

In addition, based on the information theoretical learning (ITL), the minimum error entropy (MEE) and maximum20

correntropy (MC) criterion have been developed as alternative robust and efficient cost criteria for non-Gaussian signal

processing and machine learning [21, 22], such as the stochastic information gradient algorithms [23, 24, 25, 26, 27, 28],

and the recursive adaptive algorithms [29, 30, 31]. However, the MEE possesses heavier computational complexity

than that of the MC, and more relations between the MEE and MC can be found in [32, 33]. Moreover, the MC

is only based on the Gaussian kernel, while this kernel is not always the best choice (i.e., other Mercer kernels may25

be used to define the correntropy). In recent years, a generalized maximum correntropy (GMC) criterion has been

proposed and applied for robust signal processing [6, 7, 34]. However, a analytical solution of the GMC (the MC is

a special case of the GMC) cannot be derived even with a linear model (e.g., a finite impulse response (FIR) filter).

A practical approach to maximize the GMC criterion is to update the solution by an iterative algorithm. Usually,

a simple gradient based search algorithm is applied. For instance, the GMC filtering algorithm and the convergence30

of it has been studied in [6]. Alternatively, the fixed-point iterative algorithm can be used to update the solution

of the GMC, which is step-size free and usually converges to the solution more quickly [7, 34]. Nevertheless, for the

fixed-point GMC (FP-GMC) algorithms, up to now there is still no study concerning the convergence. In this work, we

study, firstly, the convergence of a FP-GMC algorithm and derive a sufficient condition to guarantee the convergence

of this fixed-pointed algorithm. Also, we apply the sliding-window approach and recursive approach to the FP-GMC35

to derive the corresponding online algorithms for practical use, and call these online ones as the sliding-window GMC

(SW-GMC) and recursive GMC (RGMC) algorithms, respectively.

Besides the robust of the AFAs, the convergence rate is another critical role for filtering algorithms. There are

numerous variable step-size strategies to improve the convergence rate of the LMS type or APA type filtering algorithms
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[35, 36, 37, 38]. Moreover, the convex combination of adaptive filters is another interesting and efficient way to improve40

the performance of adaptive filters [1, 25, 39, 40, 41]. However, most existing combination filters are motivated by the

idea of combing different filters with different step-sizes to offer complementary capabilities. By combining two RGMC

algorithms with different memories, we obtain a novel adaptive filtering algorithm, termed adaptive convex combination

of RGMC algorithms (AC-RGMC) to overcome the slower convergence rate of the RGMC when the abrupt change

occurs, that issue was not properly discussed in [7]. Furthermore, we apply a simple and efficient method to further45

modify the convergence rate of the AC-RGMC algorithm, and call the new algorithm as AC-RGMC with control

scheme (AC-RGMC-C).

The rest of the paper is organized as follows. In Section 2, after briefly reviewing the background of alpha-stable

distribution (α-SD) which can model such types of non-Gaussian noises, and the concept of the GMC criterion, we

derive a fixed-point GMC algorithm and present a sufficient condition for guaranteeing the convergence of the FP-GMC.50

In Section 3, we apply the sliding-window method and the recursive method to obtain the solutions of the FP-GMC

algorithm for practical application, and we also explain the reason why this work uses the combination strategy to

propose a novel adaptive filtering algorithm. We derive a adaptive convex combination of RGMC algorithms in Section

4. Section 5 shows the simulation results in nonstationary scenarios with impulsive noise modeled by the α-SD. Finally,

conclusions are given in Section 6.55

Notation: Throughout this paper, the superscript T denotes the transpose; the small or capital italic letters denote

scalar variables, such as: a, b, A and B; the small bold letters denote vectors, e.g., ω ∈ Rl, where R means the real-value

set; the capital bold letters denote matrices, e.g., R ∈ Rl×l; the notation ‖ · ‖p is an lp-norm of a vector or an induced

norm of a matrix defined by ‖M‖p = max
‖u‖p 6=0

‖Mu‖p
‖u‖p with p ≥ 1, M ∈ Rl×l, and u ∈ Rl.

2. Fixed-point Algorithm for GMC Estimation and It’s Convergence Analysis60

2.1. Alpha-stable Distribution

In this work, the impulsive noise is modeled by alpha-stable distribution (α-SD) with following characteristic

function [5]

φ(t) = exp{iδt− λ|t|α[1 + iρsgn(t)s(t, α)]} (1)

in which

s(t, α) =





tan
απ

2
if α 6= 1

2

π
log |t| if α = 1

(2)

where i =
√
−1; sgn(·) is the sign function; α ∈ (0, 2] denotes the characteristic factor which measures the tail heaviness

of the distribution; δ ∈ (−∞,+∞) denotes the location parameter; λ > 0 is the dispersion parameter and plays a role

similar to the variance of the Gaussian distribution; and ρ ∈ [−1, 1] means the symmetry parameter. As we can see
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that, when α = 2 and ρ = 0, the α-SD is equivalent to Gaussian distribution and the λ equals to the variance. For the65

sake of simplicity, we collect the parameters of the α-SD in a vector, namely, pα = [α, δ, λ, ρ].

2.2. Generalized Maximum correntropy criterion

The correntropy between two random variables X and Y is a local similarity measure defined by [24]

V (X,Y ) = E[κ(X − Y )] =

∫
κ(x− y)dFx,y(x, y) (3)

where E[·] denotes the expectation operator; κ(·) stands for a Mercer kernel; and Fx,y(x, y) is the joint distribution

function of X and Y . Generally, the following Gaussian kernel is chosen as the kernel function in (3)

κσ(x− y) =
1√
2πσ

exp(−|x− y|
2

2σ2
) (4)

where σ > 0 denotes the kernel size and 1/(
√

2πσ) is the normalization parameter. Practically, the joint distribution

Fx,y(x, y) is estimated by the Parzen kernel estimator based on available data {xn, yn}Nn=1 of the variables X and Y ,

i.e.,

V̂ σN (X,Y ) =
1

N

N∑

n=1

κσ(xn − yn) (5)

The estimator (5) has been widely used as a new cost function for adaptive systems, because, in statistical meaning,

one obtains the maximum correntropy (MC) of error yielding the maximum error probability density at the origin [21].

However, the Gaussian kernel used in (5) maybe not always the best selection. Recently, a more reasonable kernel

function based on the generalized Gaussian density is defined as

κs,t(x− y) =
s

2tΓ(s−1)
exp(−|x− y|

s

ts
) (6)

where s and t are positive numbers and present the shape parameter and the scale parameter, respectively; Γ(·) is the

gamma function; t−s is the kernel parameter; and s/(2tΓ(s−1)) denotes the normalization constant. Similar to (5), a

new Parzen estimator is

V̂ s,tN (X,Y ) =
1

N

N∑

n=1

κs,t(xn − yn) (7)

which results in a new correntropy called generalized correntropy (GC). The GC has some well properties presented in

[6], and based on these properties, we can use the GC of error as a cost function for adaptation (called the generalized

MC (GMC)) [6, 7, 34].70

2.3. Fixed-point GMC Algorithm

In this work, we consider the input vector u(n) = [un, un−1, . . . , un−l+1]T passing through an FIR system with

intrinsic weight vector ωo = [ωo1, ω
o
2, . . . , ω

o
l ]T , where l denotes the length of the memory. Therefore, the system output

is

d(n) = u(n)
T
ωo + ν(n) (8)

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where ν(n) denotes an additive α-SD noise. In order to estimate the weight vector ωo, following weighted cost function

is optimized by an exponentially-weighted mechanism to put more emphasis on recent sample and to deemphasis on

sample from the remote past

J(ω) =

N∑

i=1

βN−iexp(−τ |d(i)− u(i)
T
ω|s)

=

N∑

i=1

βN−iexp(−τ |e(i)|s) (9)

where τ = t−s denotes a kernel parameter; e(i) = d(i)−u(i)
T
ω is the estimation error; β ∈ (0, 1] is a forgetting factor;

and ω = [ω1, ω2, . . . , ωl]
T denotes the estimated weight vector. Note that, for simplicity, the normalization constant

s/(2tΓ(s−1)) in (6) has been removed in (9).

Taking the gradient of J(ω) with respect to the ω, we have

∂J(ω)

∂ω
=

N∑

i=1

βN−iexp(−τ |e(i)|s)τs|e(i)|s−1sgn(e(i))u(i)

(a)
=

N∑

i=1

βN−iexp(−τ |e(i)|s)τs|e(i)|s−2e(i)u(i)

=
N∑

i=1

βN−iexp(−τ |e(i)|s)τs|e(i)|s−2d(i)u(i)

−
N∑

i=1

βN−iexp(−τ |e(i)|s)τs|e(i)|s−2u(i)u(i)
T
ω (10)

where (a) uses the fact e(i) = |e(i)|sgn(e(i)). Setting this gradient equal to null vector, we obtain

ω =
[ N∑

i=1

βN−iexp(−τ |e(i)|s)|e(i)|s−2u(i)u(i)
T
]−1

×
N∑

i=1

βN−iexp(−τ |e(i)|s)|e(i)|s−2d(i)u(i) (11)

To derive concisely, we introduce some symbols as




RU =
N∑

i=1

βN−if(i)u(i)u(i)
T

zd =
N∑

i=1

βN−if(i)d(i)u(i)

f(i) = exp(−τ |e(i)|s)|e(i)|s−2

(12)

where RU denotes a weighted autocorrelation matrix of the input data, and zd is a weighted cross correlation vector

between the desired and the input signals. Then, we obtain the matrix form of (11) as

ω = [RU ]−1zd (13)

6
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The above solution is, in form, very similar to the RLS update rule that tracks the Wiener solution with every update.

As one can see, since both the matrix RU and the vector zd are themselves functions of ω through f(i), (13) is not a

closed form solution. Hence, the solution of (13) is actually a fixed-point equation, which can be represented as

ω = fp(ω) = [RU ]−1zd (14)

In practice, we can apply the following iterative fixed-point algorithm to get the solution of (14) as

ω(n) = fp(ω(n− 1)) (15)

where ω(n) means the estimated weight vector at instance n. And, we call this algorithm as the fixed-point GMC75

algorithm (FP-GMC). In this work, for tractability we assume that the matrix RU is invertible with λmin[RU ] > 0,

where λmin[·] means the minimum eigenvalue of a matrix. Following, we will derive a sufficient condition under which

the FP-GMC algorithm surely converges to a unique fixed-point.

2.4. Convergence of the FP-GMC algorithm

In mathematics, the Banach Fixed-Point Theorem (also known as the contraction mapping theorem) is a standard

method for proving the convergence of a fixed-point algorithm [42, 43]. Based on the Banach Fixed-Point Theorem, the

convergence of the FP-GMC is guaranteed if ∃A > 0 and 0 < B < 1 such that the initial weight vector ‖ω(0)‖p ≤ A,

and ∀ω ∈ {ω ∈ Rl : ‖ω‖p ≤ A}, it holds that





‖fp(ω)‖p ≤ A

‖∇ωfp(ω)‖p ≤ B
(16)

where ∇ωfp(ω) is the l × l Jocobian matrix of fp(ω) with respect to ω, denoted by

∇ωfp(ω) =
[ ∂
ω1
fp(ω),

∂

ω2
fp(ω), . . . ,

∂

ωl
fp(ω)

]
(17)

where

∂

ωj
fp(ω) =

∂

ωj

(
[RU ]−1zd

)

= − [RU ]−1
( ∂
ωj

RU

)
[RU ]−1zd + [RU ]−1

( ∂
ωj

zd

)

= − [RU ]−1
( N∑

i=1

βN−ige(i)uj(i)f(i)u(i)u(i)
T
)
fp(ω)

+ [RU ]−1
( N∑

i=1

βN−ige(i)uj(i)f(i)d(i)u(i)
)

(18)

where j ∈ {1, 2, . . . , l} and ge(i) = τs|e(i)|s−2e(i) − (s − 2)sgn(e(i))|e(i)|−1. Before deriving a sufficient condition to80

guarantee the convergence of the FP-GMC algorithm, following two theorems shall be proven.
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Theorem 1. If 0 < s ≤ 2, |d(i)| ≥ A‖u(i)‖1 with i ∈ {1, 2, . . . , N}, and

A > ξ =

√
L
∑N
i β

N−i(|d(i)| −A‖u(i)‖1)s−2|d(i)|‖u(i)‖1
λmin[

∑N
i β

N−i|∆|s−2u(i)u(i)
T

]

where ∆ = |d(i)|+A‖u(i)‖1, and τ ≤ τ∗, where τ∗ is the solution of equation ϕ(τ) = A, where

ϕ(τ) =

√
l
∑N
i β

N−i(|d(i)| −A‖u(i)‖1)s−2|d(i)|‖u(i)‖1
λmin[

∑N
i β

N−iexp(−τ |∆|s)|∆|s−2u(i)u(i)
T

]
(19)

Then ‖F (ω)‖1 ≤ A for all ω ∈ {ω ∈ Rl : ‖ω‖1 ≤ A}.

Proof. Actually, the induced matrix norm is compatible with the corresponding vector lp-norm, and we get

‖fp(ω)‖1 = ‖[RU ]−1zd‖1 ≤ ‖[RU ]−1‖1‖zd‖1 (20)

where ‖[RU ]−1‖1 denotes the column-sum norm of the inverse matrix [RU ]−1, which is simply the maximum absolute

column sum of the matrix. Based on the matrix theory, we have following inequality

‖[RU ]−1‖1 ≤
√
l‖[RU ]−1‖2 =

√
lλmax

[
[RU ]−1

]
(21)

where ‖[RU ]−1‖2 denotes the spectral norm of [RU ]−1, which equals the maximum eigenvalue of the matrix. Further,

we have

λmax
[
[RU ]−1

]
=

1

λmin
[
RU

]

=
1

λmin
[∑N

i=1 β
N−if(i)u(i)u(i)

T
]

(b)

≤ 1

λmin
[∑N

i=1 β
N−iexp(−τ |∆|s)|∆|s−2u(i)u(i)

T
]

(22)

where (b) comes from 


|e(i)| = |d(i)− ωTu(i)| ≤ |d(i)|+A‖u(i)‖1 = ∆

f(i) = exp(−τ |e(i)|s)|e(i)|s−2 ≥ exp(−τ |∆|s)|∆|s−2
(23)

Moreover, we have

‖zd‖1 = ‖
N∑

i=1

βN−if(i)d(i)u(i)‖1

(c)

≤
N∑

i=1

βN−i|f(i)||d(i)|‖u(i)‖1

(d)

≤
N∑

i=1

βN−i(|d(i)| −A‖u(i)‖1)s−2|d(i)|‖u(i)‖1 (24)

8
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where (c) follows from the convexity of the vector l1-norm, and (d) comes from

|f(i)| = |exp(−τ |e(i)|s)|e(i)|s−2|

≤ |e(i)|s−2

≤ (|d(i)−A‖u(i)‖1|)s−2 (25)

Combining (20),(21),(22) and (24), we obtain

‖fp(ω)‖1 ≤
√
l
∑N
i β

N−i(|d(i)| −A‖u(i)‖1)s−2|d(i)|‖u(i)‖1
λmin[

∑N
i β

N−iexp(−τ |∆|s)|∆|s−2u(i)u(i)
T

]
= ϕ(τ) (26)

Clearly, the function ϕ(τ) is a continuous and monotonically increasing function of τ ∈ (0,∞), satisfying lim
τ→∞

ϕ(τ) =∞
and lim

τ→0+
ϕ(τ) = ξ. Therefore, if A > ξ, the equation ϕ(τ) = A will get a unique solution τ∗ ∈ (0,∞), and if τ < τ∗,

we obtain ϕ(τ) < A, which completes the proof.85

Theorem 2. If 0 < s ≤ 2, |d(i)| ≥ A‖u(i)‖1 with i ∈ {1, 2, . . . , N}, and

A > ξ =

√
L
∑N
i β

N−i(|d(i)| −A‖u(i)‖1)s−2|d(i)|‖u(i)‖1
λmin[

∑N
i β

N−i|∆|s−2u(i)u(i)
T

]

where ∆ = |d(i)|+A‖u(i)‖1, and τ ≤ min(τ∗, τ�), where τ∗ is the solution of equation ϕ(τ) = A, and τ� is the solution

of equation ψ(τ) = B (0 < B < 1), where

ψ(τ) =

√
l
∑N
i β

N−iD(i)‖u(i)‖1[A‖u(i)u(i)
T ‖1 + ‖d(i)u(i)‖1]

λmin[
∑N
i β

N−iexp(−τ |∆|s)|∆|s−2u(i)u(i)
T

]
(27)

in which

D(i) =
τs(|d(i)|+A‖u(i)‖1)s + 2− s

(|d(i)| −A‖u(i)‖1)3−s
(28)

Then ‖fp(ω)‖1 ≤ A, and ‖∇ωfp(ω)‖1 ≤ B for all ω ∈ {ω ∈ Rl : ‖ω‖1 ≤ A}.

Proof. According to Theorem 1, we get ‖fp(ω)‖1 ≤ A. To prove ‖∇ωfp(ω)‖p ≤ B, it suffices to prove ∀j, ‖ ∂ωj
fp(ω)‖1 ≤

B. By (19), we obtain

∥∥∥ ∂
ωj
fp(ω)

∥∥∥
1
≤
∥∥∥[RU ]−1

( N∑

i=1

βN−ige(i)uj(i)f(i)u(i)u(i)
T )
F (ω)

∥∥∥
1

︸ ︷︷ ︸
fuu

+
∥∥∥[RU ]−1

( N∑

i=1

βN−ige(i)uj(i)f(i)d(i)u(i)
)∥∥∥

1

︸ ︷︷ ︸
fu

(29)
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And we can derive

fuu ≤ ‖[RU ]−1‖1
N∑

i=1

βN−i
∥∥∥ge(i)uj(i)f(i)u(i)u(i)

T
∥∥∥
1
‖fp(ω)‖1

≤ A‖[RU ]−1‖1
N∑

i=1

βN−i
∥∥∥ge(i)uj(i)f(i)u(i)u(i)

T
∥∥∥
1

= A‖[RU ]−1‖1
N∑

i=1

βN−i
∥∥∥uj(i)f(i)sgn(e(i))[sτ |e(i)s−1|+ (2− s)|e(i)|−1]u(i)u(i)

T
∥∥∥
1

≤ A‖[RU ]−1‖1
N∑

i=1

βN−i
∥∥∥uj(i)f(i)[sτ |e(i)|s−1 + (2− s)|e(i)|−1]u(i)u(i)

T
∥∥∥
1

= A‖[RU ]−1‖1
N∑

i=1

βN−i
∥∥∥uj(i)exp(−τ |e(i)|s)|e(i)|s−3[sτ |e(i)s|+ (2− s)]u(i)u(i)

T
∥∥∥
1

≤ A‖[RU ]−1‖1
N∑

i=1

βN−i‖exp(−τ |e(i)|s)|e(i)|s−3[sτ |e(i)s|+ (2− s)]‖1‖u(i)‖1‖u(i)u(i)
T ‖1

≤ A‖[RU ]−1‖1
N∑

i=1

βN−i
sτ(|d(i)|+A‖u(i)‖1)s + 2− s

(|d(i)| −A‖u(i)‖1)3−s︸ ︷︷ ︸
D(i)

‖u(i)‖1‖u(i)u(i)
T ‖1 (30)

similarly

fu ≤ ‖[RU ]−1‖1
N∑

i=1

βN−iD(i)‖u(i)‖1‖d(i)u(i)‖1

(31)

Then, combining (21), (22), (29), (30) and (31), we get

∥∥∥ ∂
ωj
fp(ω)

∥∥∥
1
≤
√
l
∑N
i β

N−iD(i)‖u(i)‖1[A‖u(i)u(i)
T ‖1 + ‖d(i)u(i)‖1]

λmin[
∑N
i β

N−iexp(−τ |∆|s)|∆|s−2u(i)u(i)
T

]
= ψ(τ) (32)

Obviously, ψ(τ) is also a continuous and monotonically increasing function of τ ∈ (0,∞), satisfying lim
τ→∞

ψ(τ) = ∞
and lim

τ→0+
ψ(τ) = 0. Therefore, given 0 < B < 1, the equation ψ(τ) = B gets a unique solution τ� ∈ (0,∞), and if

τ < τ�, we obtain ψ(τ) < B, which completes the proof.

Remark 1. By Theorem 2 and Banach Fixed-Point Theorem, given an initial weight vector satisfying ‖ω(0)‖1 ≤ A,90

the FP-GMC algorithm (15) will surely converge to a unique fixed-point in the range ω ∈ {ω ∈ Rl : ‖ω‖1 ≤ A}
provided that kernel parameter τ is smaller than a certain value. Moreover, the value of B (0 < B < 1) guarantees

the convergence rate. It is worth noting that the derived sufficient condition will be a little loose, due to the zooming

out in the proof process. In addition, when the value of s is set as 2, the results of Theorem 2 are equivalent to that

of Theorem 2 in [44].95
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3. The Sliding-window and Recursive GMC Algorithms

As one can see that the FP-GMC algorithm (15) is not suitable for online situations. In this part, we apply the

sliding-window method and recursive method to the FP-GMC algorithm for practical applications.

3.1. Sliding-window GMC Algorithm

Similar to the RLMP [19], when a new sample is acquired, one can use the sliding-window method and set some

stoping criteria to obtain the solution of (13). Hence, we rewrite (12) and (13) as follows

ωsw(n) = [Rsw
U (n)]−1zswd (n) (33)

with 



Rsw
U (n) =

n∑

i=n−W+1

βn−ifswe (n, i)u(i)u(i)
T

zswd (n) =

n∑

i=n−W+1

βn−ifswe (n, i)d(i)u(i)

fswe (n, i) = exp(−τ |esw(n, i)|s)|esw(n, i)|s−2

(34)

where W is the length of the sliding-window and esw(n, i) = d(i)−u(i)
T
ωsw(n). And, we can use an iterative scheme100

to solve for ωsw(n) at each instant. Such a scheme is called sliding-window generalized maximum correntropy algorithm

(SW-GMC) with filter parameters vector psw = [s, τ, β,W,K, ε1], where K denotes the number of subcycles and ε1 is

a filtering accuracy. The SW-GMC is summarized in Algorithm 1. Although, the SW-GMC can be used to obtain the

solution of (33), there are two drawbacks of the sliding-algorithm: 1) this algorithm is not a truly online algorithm,

because it buffers previous samples (decided by W ) within a window; 2) the computational complexity of this algorithm105

is not known a priori, and it varies at each instance n relying on the stoping criteria (the number of subcycles K and

the filtering accuracy ε1).

3.2. Recursive GMC Algorithm

Alternatively, a online algorithm can be derived by some properly operations [7, 29]. Investigating the structure

of the Rrg
U and the zrgd in (12), we obtain a approximately recursive formula to update them when a new arrives as

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1: The Sliding-window GMC Algorithm

Initialization:

s > 0, τ > 0, 0 < β ≤ 1, 1 ≤W , 1 ≤ K, 0 < ε1 � 1 and ωsw(0) = 0.

Computation:

while {u(n), d(n)}n≥1 available do

1 : ω0
sw(n) = ωsw(n− 1),

2 : for m = 1 : K

3 : [Rsw
U ]m(n) =

∑n
i=n−W+1 β

n−ifswe (n, i)u(i)u(i)
T
,

4 : [zswd ]m(n) =
∑n
i=n−W+1 β

n−ifswe (n, i)d(i)u(i),

5 : ωmsw(n) =
[
[Rsw

U ]m(n)
]−1

[zswd ]m(n),

6 : if ‖ωmsw(n)− ωm−1sw (n)‖/‖ωmsw(n)‖ < ε1, then end for

7 : else m = m+ 1, go to step 3,

end while

follows

Rrg
U (n) =

n∑

i=1

βn−iexp(−τ |d(i)− u(i)
T
ωrg(n)|s)|d(i)− u(i)

T
ωrg(n)|s−2u(i)u(i)

T

=

n−1∑

i=1

βn−iexp(−τ |d(i)− u(i)
T
ωrg(n)|s)|d(i)− u(i)

T
ωrg(n)|s−2u(i)u(i)

T

︸ ︷︷ ︸
(e)

+ exp(−τ |d(n)− u(n)
T
ωrg(n)|s)|d(n)− u(n)

T
ωrg(n)|s−2u(n)u(n)

T

≈ β
n−1∑

i=1

β(n−1)−iexp(−τ |d(i)− u(i)
T
ωrg(n− 1)|s)|d(i)− u(i)

T
ωrg(n− 1)|s−2u(i)u(i)

T

︸ ︷︷ ︸
(f)

+ exp(−τ |d(n)− u(n)
T
ωrg(n)|s)|d(n)− u(n)

T
ωrg(n)|s−2u(n)u(n)

T

= βRrg
U (n− 1) + frge (n, n)u(n)u(n)

T
(35)

where frge (n, i) = exp(−τ |erg(n, i)|s)|erg(n, i)|s−2 with erg(n, i) = d(i)− u(i)
T
ωrg(n). The main difference of (e) and

(f) in (35) is that the ωrg(n) in (e) is replaced by ωrg(n− 1) in (f). In this way, the zrgd (n) can also be approximated

as

zrgd (n) ≈ βzrgd (n− 1) + frge (n, n)d(n)u(n) (36)
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By applying the matrix inversion lemma (5.4) [3], the inverse of Rrg
U (n) denoted as P rg

U (n) can be represented as

P rg
U (n) =

[
Rrg
U (n)]−1

=
[
βRrg

U (n− 1) + frge (n, n)u(n)u(n)
T ]−1

= β−1P rg
U (n− 1)− β−1g(n)u(n)

T
P rg
U (n− 1) (37)

where the gain vector g(n) is defined as

g(n) =
frge (n, n)P rg

U (n− 1)u(n)

β + frge (n, n)u(n)
T
P rg
U (n− 1)u(n)

(38)

Substituting the (36) and (37) into ωrg(n) = [Rrg
U (n)]−1zrgd (n), and after some manipulations, we readily obtain

ωrg(n) = ωrg(n− 1) + g(n)erg(n, n− 1) (39)

where erg(n, n−1) = d(n)−u(n)
T
ωrg(n−1) denotes the a priori error, and the undate equation (39) is called recursive

generalized maximum correntropy (RGMC) algorithm with filter parameters vector prg = [s, τ, β]110

Remark 2. From (35) and (36), one can observe that frge (n, i) = exp(−τ |erg(n, i)|s)|erg(n, i)|s−2 is approximated

by f̂rge (n, i) = exp(−τ |erg(n−1, i)|s)|erg(n−1, i)|s−2 for i ∈ [1, n−1], which means as n→ +∞, the ωrg(n−1)→ ωrg(n)

resulting in u(i)
T
ωrg(n − 1) → u(i)

T
ωrg(n) [7]. Unfortunately, the approximations used in (35) and (36) may

dramatically damage filter performance when the impulse response of FIR changes abruptly. Because, in the abrupt

case, the difference f̃rge (n, i) = frge (n, i)− f̂rge (n, i) can be obvious for many instances, and thus the errors incurred by115

the approximations of Rrg
U (n) and zrgd (n) can be very significant. [7] and [29] did not pay enough attention to this

problem.

To explain this influence, we plot the averaging time evolution of the cost function (9) in Fig. 1 (a), when using the

sliding-window and recursive solutions for RU (n) and zd(n), respectively, with an abrupt change in the ωo to −ωo at

n = 2000 under the α-SD niose with pα = [1.45, 0, 0.5, 0], and the filters with psw = [1.4, 0.001, 0.99, 1000, 50, 0.001] and120

prg = [1.4, 0.001, 0.99], respectively. As we can observe that, in comparison with the SW-GMC algorithm, the RGMC

algorithm induces a non-negligible error after the change. Furthermore, Fig. 1 (b) shows the evolution of the difference

f̃rge (n, i) for sample i = 1900, and it also illustrates that f̃rge (n, i) does fluctuate obviously for many instances after the

change, which results in the error induced by the approximations in (35) and (36). Actually, the negative effect of this

error can be alleviated by the small forgetting factor β, since frge (n, i) is multiplied by βn−i in (35). And, this is the125

reason why we consider the combination schemes to modify overall filtering performance of the RGMC algorithm.

4. Adaptive Convex Combination of RGMC algorithms

In this section, we propose to convexly combine two RGMC algorithms with different forgetting factors, a large one

β1 and a small one β2, i.e., 0 < β2 < β1 ≤ 1. Based on the conventional idea of convex combination [1, 25, 39, 40, 41],
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Figure 1: Influence of approximations for Rrg
U (n) and zrg

d (n). (a) Evolution of J(ω(n)) averaged over 100 Monte Carlo simulations when

using the sliding-window and recursive solutions, respectively. (b) Averaging value of the difference f̃rge (n, i) = frge (n, i) − f̂rge (n, i) for

i = 1900 under the RGMC algorithm.
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Figure 2: Adaptive convex combination of two RGMC algorithms. Each component is updated using its own adaption rules, while the

mixing parameter λ(n) is chosen to maximize the GMC of the overall filter’s error.
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the two component filters with different forgetting factors are independently updated using their own adaption rules

as shown in Fig. 2. To be more specific, the overall output of the proposed algorithm is obtained by combining the

output of the component RGMC algorithms as

y(n) = λ(n)y1(n) + (1− λ(n))y2(n) (40)

where λ(n) is the mixing parameter; y1(n) = u(n)
T
ωrg1(n) is the component filter with large β1, this filter provides

accurate identification in steady-state, but suffers the abrupt change problem regarding the lack of adaption for

frge (n, i), thus poor convergence; y2(n) = u(n)
T
ωrg2(n) is another component filter with small β2, this one provides

better behavior in fast varying situations, and also serve as a control mechanism for the first component with β1, since

the influence of errors affecting frge (n, i) is significantly reduced, and approximations (35) and (36) are more acceptable.

Based on (40), the overall filter output error is that

e(n) = d(n)− y(n)

= d(n)− (λ(n)y1(n) + (1− λ(n))y2(n))

= λ(n)(d(n)− y1(n)) + (1− λ(n))(d(n)− y2(n))

= λ(n)e1(n) + (1− λ(n))e2(n) (41)

where ei(n) = d(n)− u(n)
T
ωrgi(n), i ∈ {1, 2}, denote the component errors.

Following relevant literature, the mixing parameter λ(n) is defined as the output of a sigmoidal function

λ(n) =
1

1 + exp(−χ(n))
(42)

which results in λ(n) ∈ [0, 1]. The χ(n) is an adaption parameter related to the estimation error e(n), and it usually

applies a stochastic gradient method to update [1, 25, 39, 40, 41]. On the downside, updating the χ(n), in conventional

combination scheme, by minimizing the square error is not robust to α-SD noises. Hence, we maximize the generalized

correntropy with a normalized gradient ascend scheme to modify the adaptive rule [41], i.e.,

χ(n+ 1) = χ(n) +
µχ

τLp(n)

∂exp(−τ |e(n)|s)
∂χ(n)

= χ(n) +
µχ

Lp(n)
exp(−τ |e(n)|s)|e(n)|s−2e(n)

× λ(n)(1− λ(n))(y1(n)− y2(n)) (43)

where µχ > 0 denotes a combination step-size, and Lp(n) is a low-pass filtered estimation of |y1(n) − y2(n)|s [11],

namely

Lp(n) = θLp(n− 1) + (1− θ)|y1(n)− y2(n)|s (44)
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where θ ∈ (0, 1) denotes a selection parameter. Furthermore, when the value of λ(n) is too close to 1 or 0, the

adaptation of χ(n) will be very slow or stop. Thus, we constrain the range of χ(n) ∈ [−4,+4] to avoid this issue.130

So far we have derived the adaptive convex combination of two RGMC algorithms, and call it as AC-RGMC

algorithm. This new algorithm is able to effectively assemble the smaller steady-state error of the β1-RGMC and

the faster convergence rate of the β2-RGMC. In addition, we can use the weight transfer idea to further improve the

convergence rate of the AC-RGMC in some instants [25]. Specifically, the faster component β2-RGMC uses its P rg
U2(n)

to reset P rg
U1(n) of the slower one β1-RGMC whenever λ(n) < ε2, where ε2 is a relatively small positive constant. It135

is worth noting that, when the ε2 is very small, the component with β2 achieves better filtering accuracy than that of

the filter with β1. This situation usually occurs following abrupt changes in the intrinsic weight vector ωo, because the

large forgetting factor of β1-RGMC leads this filter keep using very outdated values of frge (n, i) for a long instances.

Resetting P rg
U1(n) guarantees β1-RGMC immediately discarding these outdated terms, thus improving its convergence

rate. And, in this work, we call the AC-RGMC with control scheme as AC-RGMC-C. Moreover, we summarize the140

proposed algorithms in Algorithm 21.

5. Simulation Results

In this section, we assess the filtering performances of the proposed AC-RGMC and AC-RGMC-C algorithms in a

plant identification. The desired output d(n) is modeled by d(n) = u(n)
T
ωo + ν(n), where ωo is randomly generated

with length l = 32 and is the impulse response of the system to identify, and the ν(n) is an additive impulsive noise

modeled by α-SD. The input signal is obtained by filtering a white, zero-mean Gaussian signal with power as 1 through

a second-order system H(z) = (1 + 0.6z−1)/(1 + z−1 + 0.21z−2). We test the performances of the AC-RGMC and

AC-RGMC-C algorithms in scenario that changes ωo to −ωo at n = 2000. The convergence performance is measured

by the normalized mean-square deviation (NMSD)

NMSD = 10log10
‖ωo − ω(n)‖22
‖ωo‖22

(45)

The NMSD learning curves are obtained in dB scale and averaged over 100 Monte Carlo simulations.

In the first experiment, we demonstrate the efficiency of the AC-RGMC and AC-RGMC-C algorithms in comparison

with the component algorithms under the α-SD noise with pα = [1.5, 0, 0.1, 0]. For β1-RGMC, the parameter vector145

is prg1 = [1.4, 0.001, 0.99]; for β2-RGMC, it has the same setting as β1-RGMC except β2 = 0.9; for AC-RGMC and

AC-RGMC-C, the parameters are: µχ = 2, θ = 0.9 and ε2 = 0.05. Fig. 3 (a) plots the NMSD curves for the component

algorithms and for the combination-based algorithms, and Fig. 3 (b) shows the evolution of mixing parameters for

the combination-based algorithms. From Fig. 3 (a) we can see that: 1) in comparison with other algorithms, the

1Proposed AC-RGMC algorithm : step 1 to step 14 and 16; Proposed AC-RGMC-C algorithm : step 1 to step 16.
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filtering accuracy of β2-RGMC is the worst and fluctuates obviously; 2) in steady-state, both the AC-RGMC and AC-150

RGMC-C can achieve almost the same filtering accuracy as that of β1-RGMC, since the mixing parameters λacr(n)

(for AC-RGMC) and λacrc(n) (for AC-RGMC-C) are very close to 1 as plotted in Fig. 3 (b) resulting in AC-RGMC

and AC-RGMC-C ignoring the effect of β2-RGMC; 3) all RGMCs almost present the similar initial convergence rate

when n < 180, however, after n = 2000, the β1-RGMC slows convergence rate down due to the lack of adaptation

of the frge (n, i), and the AC-RGMC can capture the contribution of faster convergence of β2-RGMC realizing faster155

convergence rate than that of β1-RGMC; 4) the application of the simple control mechanism allows AC-RGMC-C to

accelerate the convergence rate of AC-RGMC after the abrupt change as shown in Fig. 3 (a), and the convergence

improvement can be explained that, when the AC-RGMC-C and AC-RGMC-C both capture the fast initial convergence

rate of the β2-RGMC, the AC-RGMC-C rapidly switches to the β1-RGMC while the AC-RGMC gets bogged down in

the β2-RGMC more instances as shown in Fig. 3 (b). Furthermore, Fig. 3 (c) and (d) show the influences of different160

values of the shape parameter s ∈ {1, 1.5, 2, 3} on the proposed algorithms. From Fig. 3 (c), we can find that: 1) the

β1-RGMC with small values of s (such as s = 1 or s = 1.5 ) realize better filtering accuracies, however, when the

abrupt change occurs, these small values of s slow down the convergence rate of corresponding β1-RGMC algorithms;

2) the β2-RGMC with large values of s (such as s = 1.5, s = 2 or s = 3) yield much fluctuation in terms of filtering

accuracies, and the different values of s have less influences on the convergence rate of RGMC with small forgetting165

factor. In addition, Fig. 3 (d) reveals that: 1) the AC-RGMC and AC-RGMC-C with large values of s (such as s = 2

or s = 3) result in much fluctuation in terms of filtering accuracies; 2) the smaller s is the better filtering performances

of the AC-RGMC and AC-RGMC-C are; 3) combining the filtering results of Fig. 3 (a) and (d), one can see that the

AC-RGMC-C can achieve best filtering performances.

In the second experiment, we investigate the effects of the parameter θ on the AC-RGMC and AC-RGMC-C.170

Based on the results of the first experiment, we choose the same parameters for these two algorithms except that

θ ∈ {0.1, 0.25, 0.4, 0.55, 0.7, 0.9, 0.99}. As shown in Fig. 4, one can observe that: 1) when the θ is very close to 1 (such

as θ = 0.99), for the AC-RGMC and AC-RGMC-C, after the abrupt change, the convergence rates are slower than

other combination-based algorithms, especially for AC-RGMC-C with θ = 0.99 the initial convergence rate slows down

compared with other AC-RGMC-C algorithms; 2) when the θ ≤ 0.9, all combination-based algorithms achieve also the175

same filtering performances in terms of convergence rate and filtering accuracy, in other words, the smaller θ the less

influence on AC-RGMC and AC-RGMC-C. Hence, we can conclude that, when the θ is small, this θ is not critical for

the good performance of the proposed algorithms.

In the third experiment, we study the influence of the parameter ε2 on the AC-RGMC-C algorithm. According to

the conclusion of the second trial, we fix the θ = 0.9 and consider different values of ε2 ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.180

From Fig. 5, we can see that: 1) different values of ε2 only affects the convergence rates of the AC-RGMC-C algorithms

after the abrupt change; 2) in this experiment, the relatively small ones may slow down the convergence rate, actually,
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when the ε2 is too small (e.g., smaller than 0.01) or relatively large (e.g., larger than 0.04), the filtering performances

of the AC-RGMC-C will be invariant.
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Figure 5: The influence of the parameter ε2 on the AC-RGMC-C algorithm with θ = 0.9.

Finally, under different alpha stable noises, we compare the performance of the AC-RGMC-C algorithm (with185

the same parameters as the first experiment except ε2) against other state-of-the-art methods, e.g., 1) the combina-

tion of the affine projection algorithm and the affine projection sign algorithm (C-APA-SA) with parameters vector

pca = [µ1, µ2, P, αca, γca, βca], where µi, i ∈ {1, 2}, is the step-size, P denotes the projection orders, αca is the degree

of weighting parameter, γca stands for the ratio threshold, and βca means the scale factor [1]; 2) the combination

of maximum correntropy (CMC) criterion algorithm with parameters vector pcm = [µ1, µ2, P, σ, γcm, βcm], where σ190

denotes the kernel-size of entropy, γca stands for the smoothing factor, and βcm is similar as the βca [25]; 3) the

SW-GMC presented in Algorithm 1. In this experiment, the combination-based algorithms have the same combination

step-size as 2 and the initial value as 4, and all parameters vectors are listed in Table 1. Fig. 6 plots the NMSD curves

of all adaptive filtering algorithms, from this figure, we can observe that: 1) the correntropy-based algorithms can

achieve the better filtering accuracy than that of C-APA-SA; 2) as we expect, the convergence rate of the CMC can195

be slowed down by the correlated input signal; 3) compared with other algorithms, the proposed algorithm can realize

the best filtering performances in terms of convergence rate and filtering accuracy; 4) the NMSD of the C-APA-SA

dramatically fluctuates under vary fat-tailed noise (e.g., α-SD with α = 1.5) as shown in Fig. 6 (a); 5) the SW-GMC

algorithms can achieve fast initial convergence rate, and the SW-GMC with longer window (e.g., W = 300) realizes

better filtering accuracy than that of SW-GMC with shorter window (e.g., W = 50). Moreover, Table 1 also sum-200

marizes the steady-state NMSD averaged from the last 100 iterations (where S1 and S2 stand for steady-state results

before and after the abrupt change, respectively), and the average cost time for one simulation, where the cost time

is measured on a PC configured with a 3.4-GHz with 8-GB of RAM, running Matlab R2015a on Windows7. As one

can see that: 1) the gradient based algorithm, CMC, is the fastest approach; 2) the computational requirements for

the SW-GMC algorithm depend upon the number of a samples window, and thus the SW-GMC is not practical for205
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real-time applications; 3) the AC-RGMC-C algorithm, in comparison with other algorithms, can achieve best filtering

accuracy with an affordable computation time.

iterations (α = 1.5)
0 5000 10000 15000

N
M

S
D

(d
B

)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

CMC
CAPA-APSP
SW-RGMC-300
SW-RGMC-50
AC-RGMC-C

(a) The characteristic factor of α-SD is 1.5.
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(b) The characteristic factor of α-SD is 1.9.

Figure 6: The NMSD curves of different algorithms in system changes at n = 4000 with different α-SD noises.

6. Conclusions

The generalized maximum correntropy (GMC) criterion is very useful for robust signal processing. In this paper,

we investigated a fixed-point algorithm for GMC estimation, and obtained a sufficient condition to guarantee the210

convergence of the FP-GMC algorithm. Results of the proposed theorem show that the FP-GMC will surely converge

to a unique fixed point if the kernel parameter τ is small than a certain value. For a specific application, we didn’t

solve the problem of how to set the best kernel parameter, but the theoretic results of this paper may provide a possible

range for selecting a kernel parameter for the FP-GMC algorithm.

In addition, based on the proposed FP-GMC algorithm, we applied the sliding-window method and recursive215

method to the FP-GMC for adaptive filtering. However, since the SW-GMC is not a truly online algorithm and the

computational complexity of SW-GMC is uncertain, this sliding algorithm is not proper for practical environments.

As we mentioned in Remark 2, the approximations in (35) and (36) lead to the RGMC algorithm suffering, when

abrupt change occurs, slower convergence rate demonstrated in Fig. 1. This drawback of the RGMC is the reason why

we propose the convex combination RGMC (AC-RGMC) algorithm relying on two RGMC algorithms with big and220

small forgetting factors. Furthermore, the AC-RGMC with control scheme (AC-RGMC-C) is proposed to increase the

convergence rate of the AC-RGMC. We have studied the influences of free parameters on AC-RGMC and AC-RGMC-C,

and obtained that: 1) when the θ is samll, the value of θ is not critical for the AC-RGMC and AC-RGMC-C; 2) when

the ε2 gets too small value or relative large value, the AC-RGMC-C can remain its filtering performances. Moreover, the

comparison experiment shows that the AC-RGMC-C outperforms the CMC, CAPA-APSP, and SW-GMC algorithms225
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for the abrupt change problem. Finally, the computational complexity is affordable for the AC-RGMC-C algorithm,

since it realizes better filtering accuracy than that of CMC, and thus the proposed algorithm is suitable for real-time

applications.
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[26] S. Zhao, B. Chen, J. C. Pŕıncipe, Kernel adaptive filtering with maximum correntropy criterion, in: Proceedings

of the International Joint Conference on Neural Networks, 2011, pp. 2012–2017.285
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Algorithm 2: AC-RGMC and AC-RGMC-C algorithms

Initialization:

For components: s > 0, τ > 0, 0 < β2 < β1 ≤ 1, ωrgi(0) = 0T and P rg
Ui(0) = I, where i ∈ {1, 2} and I is the unit

matrix with compatible dimension.

For adaptive combination: µχ > 0, χ(1) = 4, Lp(0) = 0, 0 < θ < 1, 0 < ε2 � 1.

Computation:

while {u(n), d(n)}n≥1 available do

1 : λ(n) = (1 + exp(−χ(n)))−1,

2 : yi(n) = u(n)
T
ωrgi(n− 1), i ∈ {1, 2},

3 : y(n) = λ(n)y1(n) + (1− λ(n))y2(n),

4 : e(n) = d(n)− y(n),

5 : ei(n) = d(n)− yi(n),

6 : frgei (n, n) = exp(−τ |ei(n)|s)|ei(n)|s−2,
7 : ♦i(n) = βi + frgei (n, n)u(n)

T
P rg
Ui(n− 1)u(n),

8 : gi(n) = ♦i(n)
−1

(frgei (n, n)P rg
Ui(n− 1)u(n)),

9 : P rg
Ui(n) = βi

−1(P rg
Ui(n− 1)− gi(n)u(n)

T
P rg
Ui(n− 1)),

10 : ωrgi(n) = ωrgi(n− 1) + gi(n)ei(n),

11 : Lp(n) = θLp(n− 1) + (1− θ)|y1(n)− y2(n)|s,
12 : feλ(n) = Lp(n)

−1
exp(−τ |e(n)|s)|e(n)|s−2e(n)λ(n)(1− λ(n)),

13 : χ(n+ 1) = χ(n) + µχf
e
λ(n)(y1(n)− y2(n)),

14 : if |χ(n+ 1)| > 4, then χ(n+ 1) = sgn(χ(n+ 1))× 4, end if,

15 : if λ(n) < ε2, then P rg
U1(n) = P rg

U2(n), end if, (control scheme)

16 : ω(n) = λ(n)ω1(n) + (1− λ(n))ω2(n),

end while
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Table 1: Parameters and Simulation results with system changes at n = 4000 under different α-SD noises.

α-SD noises with pα = [α, 0, 0.1, 0] α = 1.5 α = 1.9

Algorithms Parameters
NMSD(dB)

Time(sed)
NMSD(dB)

Time(sed)
S1 S2 S1 S2

CMC
pcm =

-33.90 -33.84 1.47 -37.04 -36.84 1.48
[0.05, 0.01, 2, 2, 0.8]

C-APA-SA
pca =

-21.61 -19.85 3.25 -29.11 -30.86 3.26
[0.1, 0.001, 10, 0.9, 2, 5]

SW-GMC-50 psw = -23.58 -21.55 27.15 -40.09 -39.95 23.05

SW-GMC-300 [1.4, 0.001, 0.99, 50 or 300, 10, 0.001] -35.45 -34.59 42.73 -27.38 -28.05 38.8

AC-RGMC-C ε2 = 0.005 -38.78 -38.08 3.36 -40.09 -39.95 3.40
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