

Accepted Manuscript

Set-Membership Adaptive Kernel NLMS Algorithms: Design and
Analysis

André Flores, Rodrigo C. de Lamare

PII: S0165-1684(18)30238-X
DOI: https://doi.org/10.1016/j.sigpro.2018.07.007
Reference: SIGPRO 6871

To appear in: Signal Processing

Received date: 14 February 2018
Revised date: 21 May 2018
Accepted date: 10 July 2018

Please cite this article as: André Flores, Rodrigo C. de Lamare, Set-Membership Adap-
tive Kernel NLMS Algorithms: Design and Analysis, Signal Processing (2018), doi:
https://doi.org/10.1016/j.sigpro.2018.07.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.sigpro.2018.07.007
https://doi.org/10.1016/j.sigpro.2018.07.007

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

Set-Membership Adaptive Kernel NLMS

Algorithms: Design and Analysis
André Flores and Rodrigo C. de Lamare

Abstract

In the last decade, a considerable research effort has been devoted to developing adaptive algorithms based on

kernel functions. One of the main features of these algorithms is that they form a family of universal approximation

techniques, solving problems with nonlinearities elegantly. In this paper, we present data-selective adaptive kernel

normalized least-mean square (KNLMS) algorithms that can increase their learning rate and reduce their computa-

tional complexity. In fact, these methods deal with kernel expansions, creating a growing structure also known as the

dictionary, whose size depends on the number of observations and their innovation. The algorithms described herein

use an adaptive step-size to accelerate the learning and can offer an excellent tradeoff between convergence speed

and steady state, which allows them to solve nonlinear filtering and estimation problems with a large number of

parameters without requiring a large computational cost. The data-selective update scheme also limits the number of

operations performed and the size of the dictionary created by the kernel expansion, saving computational resources

and dealing with one of the major problems of kernel adaptive algorithms. A statistical analysis is carried out along

with a computational complexity analysis of the proposed algorithms. Simulations show that the proposed KNLMS

algorithms outperform existing algorithms in examples of nonlinear system identification and prediction of a time

series originating from a nonlinear difference equation.

Keywords

Adaptive algorithms, set-membership algorithms, data-selective techniques, kernel methods, statistical analysis.

I. INTRODUCTION

Adaptive filtering algorithms have been the focus of a great deal of research in the past decades and the

machine learning community has embraced and further advanced the study of these methods. In fact, adaptive

algorithms are often considered with linear structures, which limits their performance and does not draw attention

André Flores is with the Centre for Telecommunications Studies (CETUC), PUC-Rio, Rio de Janeiro, Brazil and Rodrigo C. de Lamare is

with both CETUC and with the Department of Electronic Engineering, University of York, UK. Part of this work has been presented at the

IEEE International Conference on Acoustics, Speech and Signal Processing 2017. The emails of the authors are andre.flores@cetuc.puc-rio.br

and delamare@cetuc.puc-rio.br

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

to nonlinear problems that can be solved in various applications. In order to deal with nonlinear problems a

family of nonlinear adaptive algorithms based on kernels has been developed. In particular, a kernel is a function

that compares the similarity between two inputs and can be used for filtering, estimation and classification tasks.

Kernel adaptive filtering (KAF) algorithms have been tested in many different scenarios and applications [1],

[2], [3], [4], [5], showing very good results. One of the main advantages of KAF algorithms is that they are

universal approximators [1], which gives them the ability to address complex and nonlinear problems. However,

their computational complexity is much higher than their linear counterparts [1].

One of the first KAF algorithms to appear, which is widely adopted in the KAF family because of its simplicity, is

the kernel least-mean square (KLMS) algorithm proposed in [6] and later extended in [7]. The KLMS algorithm has

been inspired by the least-mean square (LMS) algorithm and, thanks to its good performance, led many researchers

to work in the development of kernel versions of conventional adaptive algorithms. For instance, a kernel version of

the NLMS algorithm has been proposed in [5] using a nonlinear regression approach for time series prediction. In

[8], [9], the affine projection algorithm (APA) has been used as the basis of the derivation of kernel affine projection

(KAP) algorithms. Adaptive projection algorithms using kernel techniques have been reported in [10], [11]. The

recursive least squares algorithm (RLS) has been extended in [12], where the kernel recursive least squares (KRLS)

has been described. Later, the authors of [13] proposed an extension of the KRLS algorithm and the use of multiple

kernels has been studied in [14] and [15].

Previously reported kernel algorithms have to deal with kernel expansions, which increases significantly the

computational cost. In other words, they create a growing structure, also called dictionary, where every new data

input that arrives is employed to compute the estimate of the desired output. The natural problem that arises is

that the time and computational cost required to compute a certain output could exceed the tolerable limits for an

application. Several criteria to manage the growing structure of kernel algorithms have been proposed to solve this

problem such as algorithms with fixed dictionary size as studied in [16], [17] and [18]. One of the most simple

criteria is the novelty criterion (NC), presented in [19]. Specifically, NC establishes two thresholds to limit the

size of the dictionary. Another method, the approximate linear dependency (ALD) has been proposed in [12] and

verifies if a new input can be expressed as a linear combination of the elements stored before adding this input

to the dictionary. The coherence criterion (CC) has been described in [5] also to limit the size of the dictionary

based on the similarity of the inputs. A measure called surprise criterion (SC) has been presented in [20] to remove

redundant data.

In this work, we present set-membership normalized kernel least-mean square (SM-KNLMS) adaptive algorithms,

which have been initially reported in [21] and can provide a faster learning than existing kernel-based algorithms

and limit the size of the dictionary without compromising performance. Unlike the equivalent set-theoretic approach

in [11] the set-membership algorithms presented here exploit variable step sizes, which can lead to a faster

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

learning performance. Similarly to existing set-membership algorithms [22], [23], [24], [25], [26], [27], [28], the

proposed SM-KNLMS algorithms are equipped with variable step sizes and perform sparse updates. We consider

both centroid-based SM-KNLMS (C-SM-KNLMS) and nonlinear regression-based SM-KNLMS (NLR-KNLMS)

algorithms, where the latter lends itself to statistical analysis [5]. Unlike existing kernel-based adaptive algorithms

the proposed SM-KNLMS algorithms deal, in a natural way, with the kernel expansion because of the data selectivity

based on error bounds that they implement. A statistical analysis of the NLR-SM-KNLMS algorithm along with

the derivation of analytical formulas to predict the mean-square error (MSE), and an analysis of their computational

cost are carried out. Simulations comparing the performance of the SM-KNLMS and existing algorithms for several

scenarios are then conducted.

In summary, the contributions of this work are:

• The development of the proposed C-SM-KNLMS and NLR-SM-KNLMS algorithms.

• A statistical analysis of the NLR-SM-KNLMS algorithm and the development of analytical formulas to predict

its performance.

• A simulation study of the proposed C-SM-KNLMS, NLR-SM-KNLMS and existing algorithms for several

scenarios of interest.

This paper is organized as follows. In Section II, the principles of kernel methods and set-membership techniques

are introduced. In Section III, we review set-membership adaptive algorithms and present the derivation of the

proposed C-SM-KNLMS algorithm. Section IV presents the proposed NLR-SM-KNLMS algorithm. Section V

details the statistical analysis of the NLR-SM-KNLMS algorithm and a comparison of the computational complexity

of the proposed and existing algorithms. Section VI describes and discusses the simulation results and Section VII

contains the conclusions of this work.

II. PRINCIPLES OF KERNEL METHODS AND SET-MEMBERSHIP TECHNIQUES

Conventional adaptive algorithms work with linear structures, limiting the performance that they can achieve

and constraining the number of problems that can be solved. Under this scope, a new family of nonlinear adaptive

algorithms based on kernels has been developed [1]. The main objective of these algorithms is to learn an arbitrary

input-output mapping based on a sequence of samples and a kernel. Basically, a kernel κ (·, ·) is a function that

measures the similarity between two inputs and generally returns a real number. Several kernel functions are

described in the literature [1]. Choosing a kernel function is important because it is equivalent to implicitly defining

a feature space where the algorithms are performed. Let us now introduce two commonly used kernel functions.

The first one is the Gaussian kernel, defined by

κ
(
x,x′

)
= exp

(
−‖ x− x′ ‖2

2ν2

)
, (1)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4

where ν is the kernel bandwidth that specifies the shape of the kernel function. Another important kernel function

is the polynomial kernel, given by

κ
(
x,x′

)
=
(
xTx′ + 1

)p
, (2)

with p ∈ N known as the polynomial degree.

The relevant point about implementing kernel functions is that the scalar product can be implicitly computed

in the feature space by a kernel evaluation, without explicitly using or even knowing the mapping applied to the

data [29]. This means that there is no need to perform any operation on the high dimensional space, as long as

the quantities are expressed as an inner product. This approach is known as the “kernel trick” and allows us to

compute scalar products in spaces, where the computations are hard to perform. As a result, we avoid a significant

increase of the computational complexity, which is one of the major problems that arises when working with high

dimensional spaces. In particular we have

κ
(
x,x′

)
=
〈
κ (·,x) , κ

(
·,x′
)〉
. (3)

To summarize, kernel adaptive algorithms map the data to a high-dimensional space through kernels. Then, linear

methods can be applied on the transformed data to solve nonlinear problems.

Let us now consider an adaptive linear filtering problem with a sequence of training samples given by {x (i) , d (i)},
where x (i) is the N-dimensional input vector and d (i) represents the desired response at time instant i. The output

of the adaptive linear filter is given by

y (i) = wT (i)x (i) , (4)

where w (i) is the weight vector with length N .

We can extend linear models to nonlinear models by mapping the input data into a high-dimensional space. In

order to perform this mapping, let us define a nonlinear transformation denoted by ϕ : RN → F, which maps

the data in RN to a high-dimensional feature space F that performs the nonlinear transformation. Applying the

transformation stated before, we map both the input and the weights into the feature space which results in

ϕ (i) = ϕ (x (i)) , (5)

ω (i) = ϕ(w (i)). (6)

We should emphasize that ω (i) is now a vector where each component is a function of the elements of w (i),

so that the dimension of ω (i) is greater than w (i). The error generated by the system is given by

e (i) = d (i)− ωT (i)ϕ (i) . (7)

The main idea behind set-membership algorithms is to model a function ω (i), such that the magnitude of the

estimated error defined by (7) is upper bounded by a quantity γ. Assuming that the value of γ is appropriately

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

chosen, there exist several functions that satisfy the error requirement. In other words, any function leading to an

estimation error smaller than the defined threshold is an adequate solution, resulting in a set of solutions. Otherwise

if the value of γ is not properly chosen (if it is too small for example), then there might be no solution.

Consider a set S̄ containing all the possible input-desired signal pairs {ϕ (i) , d (i)} of interest. Now we can

define a set θ with all the possible functions leading to an estimation error bounded in magnitude by γ. This set

is known as the feasibility set and is expressed by

θ =
⋂

{ϕ,d}∈S̄

{
ω ∈ F / |d− ωTϕ| ≤ γ

}
. (8)

Suppose now that we consider only the case in which only measured data are available. Let us define a new set

H (i) with all the functions such that the estimation error is upper bounded by γ . The set is called the constraint

set and is mathematically defined by

H (i) =
{
ω ∈ F / |d (i)− ωTϕ (i) | ≤ γ

}
. (9)

It follows from (9) that, for each data pair, there exists an associated constraint set. The set containing the

intersection of the constraint sets over all available time instants is called exact membership set and is given by

the following equation:

ψ (i) =

i⋂

k=0

H (i) . (10)

The exact membership set, ψ (i), should become small as the data containing new information arrives. This means

that, assuming stationary, at some point the adaptive algorithm will reach a state where ψ (i+ 1) = ψ (i), so that

there is no need to update ω. This happens because ψ (i) is already a subset of H (i+ 1). As a result, the update

of any set-membership based algorithm is data dependent, saving resources, a fact that is crucial in kernel-based

adaptive algorithms because of the growing structure that they create.

III. PROPOSED CENTROID-BASED SET-MEMBERSHIP KERNEL NORMALIZED LEAST-MEAN-SQUARE

ALGORITHM

In this section, we detail the derivation of the proposed C-SM-KNLMS algorithm, which is motivated by the

possibility of of saving resources by not storing the zero coefficients in the parameter vector. In order to derive the

C-SM-KLNMS algorithm, we check first if the previous solution is outside the constraint set, i.e.,

|d (i)− ωT (i)ϕ (i) | > γ.

If the error exceeds the bound established, the algorithm performs an update so that the a posteriori estimated error

lies in H (i).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6

The derivation of the C-SM-KNLMS algorithm corresponds to solving the following optimization problem:

min
ω(i+1)

||ω (i+ 1)− ω (i) ||2

subject to ω (i+ 1) ∈ H (i) ,

(11)

where the a posteriori error ξp (i) used to build the constraint set H (i) is given by

ξp (i) = d (i)− ωT (i+ 1)ϕ (i) = ±γ. (12)

As mentioned in [1], the KNLMS update equation is given by

ω (i+ 1) = ω (i) +
µ (i)

ε+ ||ϕ (i) ||2 e (i)ϕ (i) , (13)

where µ (i) is the step-size that should be chosen to satisfy the constraints and ε is a small constant used to avoid

numerical problems. Substituting (13) in (12) we arrive at:

ξp (i) = d (i)− ωT (i)ϕ (i)− µ (i)

ε+ ||ϕ (i) ||2 e (i)ϕ
T (i)ϕ (i) (14)

Using (7) and replacing the dot products by kernel evaluations, the previous equation turns into:

ξp (i) = e (i)− µ (i) e (i) κ (x (i) ,x (i))

ε+ κ (x (i) ,x (i))
= ±γ. (15)

Assuming that the constant ε is sufficiently small to ensure that

κ (x (i) ,x (i))

ε+ κ (x (i) ,x (i))
≈ 1, (16)

then from Equation (15), we have

γ = |e (i) (1− µ (i)) |. (17)

If µ (i) takes values between 0 and 1, it follows that:

|e (i) | (1− µ (i)) = γ, (18)

µ (i) = 1− γ

|e (i) | . (19)

Taking into account that the update only occurs if the error is greater than the specified bound then µ (i) is described

by

µ (i) =





1− γ
|e(i)|

0

|e (i) | > γ,

otherwise.
(20)

We can then compute ω recursively as follows:

ω (i+ 1) =ω (i− 1) +
µ (i− 1) e (i− 1)

ε+ ||ϕ (i− 1) ||2ϕ (i− 1)

+
µ (i) e (i)

ε+ ||ϕ (i) ||2ϕ (i)

...

ω (i+ 1) =ω (0) +

i∑

k=1

µ (k)

ε+ ||ϕ (k) ||2 e (k)ϕ (k) (21)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7

Setting ω (0) to zero leads to:

ω (i+ 1) =

i∑

k=1

µ (k)

ε+ ||ϕ (k) ||2 e (k)ϕ (k) . (22)

The output f (ϕ (i+ 1)) = ωT (i+ 1)ϕ (i+ 1) of the filter to a new input ϕ (i+ 1) can be computed as:

f (ϕ (i+ 1)) =

[
i∑

k=1

µ (k)

ε+ ||ϕ (k) ||2 e (k)ϕ
T (k)

]
ϕ (i+ 1) ,

=

i∑

k=1

µ (k)

ε+ ||ϕ (k) ||2 e (k)ϕ
T (k)ϕ (i+ 1) . (23)

Using the kernel trick we obtain

f (ϕ (i+ 1)) =

i∑

k=1

µ (k) e (k)

ε+ κ (x (k) ,x (k))
κ (x (k) ,x (i+ 1)) , (24)

where µ (k) is given by (20). Let us define a coefficient vector a (i) to store in each of its elements the following

product:

[a (i)]k = µ (k) e (k) , (25)

so that (24) becomes:

f (ϕ (i+ 1)) =

i∑

k=1

ak (i)

ε+ κ (x (k) ,x (k))
κ (x (k) ,x (i+ 1)) . (26)

Eqs. (7), (20),(25), and (26) summarize the proposed C-SM-KNLMS algorithm. We set the initial values of a to

zero. As new inputs arrive we can calculate the output of the system with (26). Then the error may be computed

with (7) and if it exceeds the bound we compute the step-size with (20). The vector a (i) are updated with (25).

Note that some coefficients may be zero due to the data selectivity of C-SM-KNLMS. We do not need to store

the zero coefficients as they do not contribute to the output, resulting in saving of resources. This means that the

dictionary at time instant i, denoted by C (i), has only m elements, with m < i. Each column of the dictionary,

denoted by cj , contains the input that is used in the kth update. We can now rewrite (26) as follows:

ωT (i+ 1)ϕ (i+ 1) =

m∑

k=1

ak (i)

ε+ κ (ck, ck)
κ (x (i) ,ck) (27)

This is an important result because it controls the growing network created by the algorithm [30]. In stationary

environments the algorithm will limit the growing structure. Algorithm 1 summarizes the proposed C-SM-KNLMS

algorithm. In particular, the computational complexity of C-SM-KNLMS grows over time with the increase of m,

as illustrated by step 7 in Algorithm 1. However, we also note that the standard KNLMS algorithm exhibits such

behavior with regards to the computational complexity. Unlike the standard KNLMS the proposed C-SM-KNLMS

algorithm only performs an update when there is innovation according to the error bound, which limits the increment

of m and consequently the increase in computational complexity.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

Algorithm 1 Proposed C-SM-KNLMS algorithm
Initialization

1.Choose γ , ε and κ.

2.C (1) = {x (1)}
3.µ (1) = 1− γ

|d(1)|

4.a1 (1) = µ (1) d (1)

5.m = 1

Computation

6.while {x (i) , d (i)} available do:

%Compute the output

7. fi−1(x (i)) =
∑m

k=1
ak(i)

ε+κ(ck,ck)
κ (x (i) ,ck)

%Compute the error

8. e (i) = d (i)− fi−1(x (i))

9. if |e (i) | > γ

%Compute the step-size

10. µ (i) = 1− γ
|e(i)|

%Update the coefficients

11. a (i+ 1) =


 a (i)

0


+


 0

µ (i) e (i)




%Store the new center

12. C (i+ 1) = {C (i) ,x (i)}
13. m = m+ 1

14. else

15. µ (i) = 0

16. a (i+ 1) = a (i)

17. C (i+ 1) = C (i)

18. end if

19.end while

IV. PROPOSED NONLINEAR REGRESSION-BASED SM-KNLMS ALGORITHM

In this section, we follow a nonlinear regression approach as described in [5], [31], to develop an alternative

SM-KNLMS algorithm, denoted NLR-SM-KNLMS algorithm.

Let us define a function ψ (·) on a feature space which, given an input vector x (i) generates the model output

ψ (x (i)). Our problem is now reduced to finding the function ψ (·) that minimizes the sum of the square error

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

between the desired response and the model output as described by

min
ψ∈H

i∑

k=1

|d (k)− ψ (x (k)) |2 (28)

The representer theorem [32] states that the function ψ (·) can be expressed as a kernel expansion which depends

on the available data, so that:

ψ (·) =
i∑

k=1

akκ (· ,x (k)) . (29)

In order to derive the NLR-SM-KNLMS algorithm we need to solve the following optimization problem:

min
a
‖ d−Ka ‖2, (30)

where a ∈ Rm is the parameter vector to be computed, d ∈ Rm is the vector with the desired signal and K ∈ Rm×m

is the Gram matrix containing at each row i and each column j the kernel evaluations of the input data denoted

by κij , where we have

[K]ij = κij = κ (x (i) ,x (j)) . (31)

Let us now consider the case where we have a dictionary of size m so that K ∈ Rm×m. Consider also a vector

κδ (i) that contains the kernel evaluations between the input data at time i and every input stored in the dictionary

at time i > m with cj 6= x (i) for j = 1, · · · ,m, given by

κδ (i) =




κ (x (i) , c1)

κ (x (i) , c2)
...

κ (x (i) , cm+1)



, (32)

where κδ (i) is used in the computation of an inner product with a(i + 1) ∈ Rm+1. Using the minimum norm

approach to obtain the NLR-SM-KNLMS algorithm, the constrained optimization problem becomes:

min
a
‖ a (i+ 1)− a (i) ‖2

subject to

| d (i)− κδT (i)a (i+ 1) |= 0. (33)

Using the method of Lagrange multipliers, we have

L(a,λ) =‖ a (i+ 1)− a (i) ‖2 +λ
(
d (i)− κδT (i)a (i+ 1)

)
. (34)

Calculating the gradient with respect to to a (i+ 1)) and λ, we obtain

∂L(a,λ)
∂a (i+ 1)

= (a (i+ 1)− a (i))− λκδ (i) = 0, (35)

∂L(a,λ)
∂λ

= d (i)− κδT (i)a (i+ 1) = 0. (36)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

From equation (35) we obtain:

λκδ (i) = (a (i+ 1)− a (i)) , (37)

λκδ
T (i)κδ (i) = κδ

T (i) (a (i+ 1)− a (i)) . (38)

Substituting (36) in the equation above we get:

λ ‖ κδ (i) ‖2=
(
d (i)− κδT (i)a (i)

)
, (39)

λ =
1

‖ κδ (i) ‖2
(
d (i)− κδT (i)a (i)

)
. (40)

Finally, replacing λ in equation (35) we obtain the NLR-SM-KNLMS update recursion for the coefficients, which

is expressed as follows:

a (i+ 1) = a (i) +
1

‖ κδ (i) ‖2
(
d (i)− κδT (i)a (i)

)
κδ (i) . (41)

When using the NLR-SM-KNLMS algorithm, the update only occurs when the error represented by d (i) −
κδ (i)

T a (i) exceeds the threshold γ. In this case, the dictionary size should be increased by one as well as

the length of the vector a. The update recursion is given by

a (i+ 1) =


 a (i)

0


+

µ (i)

ε+ ‖ κδ (i) ‖2
e (i)κδ (i) , (42)

where e (i) = d (i)− κδT (i)


 a (i)

0


 .

Let us now define the a posteriori error as follows:

ξp (i) = d (i)− κδT (i)a (i+ 1) = ±γ. (43)

Substituting equation (42) in the last equation and assuming that ‖κδ(i)‖2
ε+‖κδ(i)‖2 ≈ 1, we have

d (i)− κδT (i)


 a (i)

0


− µ (i) e (i) = ±γ. (44)

Simplifying the terms, we obtain

γ =e (i)− µ (i) e (i) ,

=e (i) (1− µ (i)) . (45)

From the last equation we obtain an expression for the step-size, which is given by

µ (i) =





1− γ
|e(i)|

0

| e (i) |> γ,

otherwise.
(46)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11

If the error does not exceed the threshold γ, the size of the dictionary remains the same and no coefficients update is

performed, only the output of the model is calculated for the new input. The pseudo-code for the NLR-SM-KNLMS

algorithm is shown in Algorithm 2.

Algorithm 2 Nonlinear Regression SM-KNLMS Algorithm
Initialization

1.Choose γ , ε and κ.

2.µ (1) = 1− γ
|d(1)|

3.a (1) = 0

4.m = 1

5.κδ (1) = κ (x (1) ,x (1))

Computation

6.while {x (i) , d (i)} available do:

%Compute vector κδ (i)

7. κδ (i) = {κ (x (i) ,x (δ1)) , . . . , κ (x (i) ,x (δm))}
%Compute the output

8. y (i) = κδ
T (i)a (i)

%Compute the error

9. e (i) = d (i)− y (i)
10. if |e (i) | > γ

%Store the new center

11. κδ (i) = {κ (x (i) ,x (δ1)) , . . . , κ (x (i) ,x (δm+1))}
%Store the step-size

12. µ (i) = 1− γ
|e(i)|

%Update the coefficients

13. a (i+ 1) =


 a (i)

0


+ µ(i)

ε+‖κδ(i)‖2 e (i)κδ (i)

14. m = m+ 1

15. else

16. µ (i) = 0

17. a (i+ 1) = a (i)

18. end if

19.end while

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

V. ANALYSIS

In this section, we consider a statistical analysis of the NLR-SM-KNLMS algorithm along with a computational

complexity comparison among the proposed and existing algorithms.

A. Computational complexity

The computational complexity of the proposed algorithms and the KLMS algorithm is detailed in Table I. We

consider real-valued data and the cost is given in terms of the number of multiplications and additions per iteration

as a function of N , m and the update rate (UR). Moreover, the algorithms use a maximum fixed size for the

dictionary, which means that the computational complexity only varies before reaching steady-state.

TABLE I

COMPUTATIONAL COST PER UPDATE ITERATION

Algorithm Additions (+) Multiplications (x)

KLMS m(N + 1) + 1 m(N + 1)

KNLMS (Regression) m(2N + 1) + 2 m(2N + 1) + 1

C-SM-KNLMS (Algorithm 1) m(2N) + 1 + UR(1) m(2N + 1) + UR(1)

NLR-SM-KNLMS (Algorithm 2) (m+ 1)(N − 1) + 1 + UR(N + 2m+ 1) (m+ 1)(2N) + UR(N +m+ 2)

B. Statistical Analysis

In this section, we consider a statistical analysis of the NLR-KNLMS algorithm with a Gaussian kernel in a

stationary environment, which means that ϕ (x (i)) is stationary for x (i) stationary [33]. We focus on the analysis

of the NLR-SM-KNLMS algorithm rather than C-SM-KNLMS because the former lends itself to statistical analysis,

as explained in [33].

Several nonlinear systems used to model practical situations, such as Wiener and Hammerstein systems, satisfy

this assumption. The system inputs are N-dimensional, independent and identically distributed Gaussian vectors

x (i) with zero-mean and variance equal to σ2x. Let us denote the autocorrelation matrix of the input vectors by

Rxx = E
[
x (i)xT (i)

]
, so that E

[
x (i− k)xT (i− l)

]
= 0 for k 6= l. However the components of the input vector

can be correlated. Let us also consider a dictionary of fixed size M and the vector κδ (i) previously defined in

equation (32). We assume that the vectors constituting the dictionary may change at each iteration following some

dictionary updating scheme. The vectors composing the dictionary are statistically independent because x (δj) 6=
x (δk) for j 6= k.

The estimated output of the system is described by

y (i) = aT (i)κδ (i) . (47)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13

The corresponding estimation error is given by

e (i) = d (i)− y (i) . (48)

Squaring the equation above and taking the expected value results in the MSE:

Jms (i) =E
[
e2 (i)

]

=E
[
d2 (i)

]
− 2pT

kda (i) + a
T (i)Rkka (i) , (49)

where Rkk = E
[
κδ (i)κδ

T (i)
]

represents the correlation matrix of the kernelized input, and pkd = E [d (i)κδ (i)]

is the cross-correlation vector between κδ (i) and d (i). In [34], [35] it is shown that Rkk is positive definite. Thus,

the Wiener solution and the minimum MSE are obtained as follows:

ao = R−1kk pkd (50)

Jmin = E
[
d2 (i)

]
− pT

kdR
−1
kk pkd, (51)

The entries of the correlation matrix Rkk are given by

[Rkk]jl =




E
[
κ2 (x (i) ,x (δj))

]
j = l

E [κ (x (i) ,x (δj))κ (x (i) ,x (δl))] j 6= l

(52)

Let us define the following products:

‖x (i)− x (δj)‖2 = yT
2Q2y2 (53)

‖x (i)− x (δj)‖2 + ‖x (i)− x (δl)‖2 = yT
3Q3y3, (54)

where

y2 =
[

xT (i) xT (δj)
]T
, (55)

y3 =
[

xT (i) xT (δj) xT (δl)
]T
, (56)

Q2 =


 I −I

−I I


 , (57)

Q3 =




2I −I −I

−I I 0

−I 0 I


 . (58)

We know from [36], [34] that the moment generating function of the quadratic form z = yTQy, where y is a

zero-mean Gaussian vector with covariance matrix Ry is given by

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

E [esz] = det {I− 2sQRy}−
1

2 . (59)

The last equation allows us to compute the entries of the correlation matrix Rkk for the Gaussian kernel. Each

element is given by

[Rkk]jl =




rmd = det

{
I2 − 2Q2R2/ν

2
}− 1

2 j = l

rod = det
{
I3 −Q3R3/ν

2
}− 1

2 j 6= l

. (60)

Let us define the coefficients-error vector defined by

v (i) = a (i)− ao. (61)

The second-order moments of the coefficients are related to the MSE through [37]

Jms (i) = Jmin + tr {RkkCv (i)} , (62)

where Cv (i) = E
[
v (i)vT (i)

]
. This means that for studying the MSE behavior we need a model for Cv (i). In this

section, we derive an analytical model that describes the behavior of Cv (i) for the proposed NLR-SM-KNLMS

algorithm.

The update equation for the coefficients of the system is given by

a (i+ 1) = a (i) + µ (i) e (i)κδ (i) , (63)

where

µ (i) =




1− γ

|e(i)| |e (i)| > γ,

0 otherwise.

(64)

Subtracting ao from equation (63), we obtain the weight error vector update equation:

v (i+ 1) = v (i) + µ (i) e (i)κδ (i) . (65)

The estimation error may now be rewritten as follows:

e (i) =d (i)− κT
δ (i)a (i)

=d (i)− κT
δ (i)v (i)− κT

δ (i)ao. (66)

The optimum error is given by

eo (i) = d (i)− κT
δ (i)ao. (67)

It follows that

e (i) = eo (i)− κT
δ (i)v (i) . (68)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15

We may represent equation (63) by

a (i+ 1) = a (i) + Pup

(
1− γ

|e (i)|

)
e (i)κδ (i) , (69)

where Pup = Pr(|e(i)| > γ) = 2Q
(
γ
σe

)
denotes the probability of update of the set-membership algorithm [28]

and σe is the standard deviation of a Gaussian random variable associated with the error.

Subtracting ao from the last equation yields

v (i+ 1) =v (i) + Pup

(
1− γ

|e (i)|

)
e (i)κδ (i)

=v (i) + Pupe (i)κδ (i)

− γPupsgn (e (i))κδ (i) , (70)

Replacing (68) in the equation above we obtain

v (i+ 1) =v (i) + Pup

(
eo (i)− κT

δ (i)v (i)
)
κδ (i)

− γPupsgn (e (i))κδ (i)

=v (i) + Pupeo (i)κδ (i)

− Pupκδ (i)κ
T
δ (i)v (i)

− γPupsgn (e (i))κδ (i) . (71)

Post-multiplying equation (71) by its transpose and taking the expected value leads to:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16

Cv (i+ 1) =Cv (i) + PupE
[
eo (i)v (i)κ

T
δ (i)

]

− PupE
[
v (i)vT (i)κδ (i)κ

T
δ (i)

]

− PupγE
[
sgn (e (i))v (i)κT

δ (i)
]

+ PupE
[
eo (i)κδ (i)v

T (i)
]

+ P 2
upE

[
e2o (i)κδ (i)κ

T
δ (i)

]

− P 2
upE

[
eo (i)κδ (i)v

T (i)κδ (i)κ
T
δ (i)

]

− 2P 2
upγE

[
eo (i) sgn (e (i))κδ (i)κ

T
δ (i)

]

− PupE
[
κδ (i)κ

T
δ (i)v (i)v

T (i)
]

− P 2
upE

[
eo (i)κδ (i)κ

T
δ (i)v (i)κ

T
δ (i)

]

+ P 2
upE

[
κδ (i)κ

T
δ (i)v (i)v

T (i)κδ (i)κ
T
δ (i)

]

+ P 2
upγE

[
sgn (e (i))κδ (i)κ

T
δ (i)v (i)κ

T
δ (i)

]

− PupγE
[
sgn (e (i))κδ (i)v

T (i)
]

+ P 2
upγE

[
sgn (e (i))κδ (i)v

T (i)κδ (i)κ
T
δ (i)

]

+ P 2
upγ

2E
[
sgn2 (e (i))κδ (i)κ

T
δ (i)

]
. (72)

Let us define T (i) = E
[
κδ (i)κ

T
δ (i)v (i)v

T (i)κδ (i)κ
T
δ (i)

]
to simplify the notation. Assuming that the inputs

and the coefficients are statistically independent, then the following expected values are reduced to

E
[
κδ (i)κ

T
δ (i)v (i)v

T (i)
]
=RkkCv (i) , (73)

E
[
v (i)vT (i)κδ (i)κ

T
δ (i)

]
=Cv (i)Rkk. (74)

Let us also suppose that the optimum error is independent from the kernelized inputs. This assumption leads us

to:

E
[
e2o (i)κδ (i)κ

T
δ (i)

]
≈E

[
e2o (i)

]
E
[
κδ (i)κ

T
δ (i)

]

≈JminRkk, (75)

and

E
[
sgn2 (e (i))κδ (i)κ

T
δ (i)

]
≈E

[
sgn2 (e (i))

]
E
[
κδ (i)κ

T
δ (i)

]

≈Rkk. (76)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

By the orthogonality principle, we obtain:

E
[
eo (i)κδ (i)v

T (i)
]
≈E [eo (i)κδ (i)]E

[
vT (i)

]

≈0, (77)

Let us also apply the orthogonality principle in the following expected value:

E
[
eo (i)κδ (i)v

T (i)κδ (i)κ
T
δ (i)

]

= E
[
vT (i) eo (i)κδ (i)κδ (i)κ

T
δ (i)

]

≈ E
[
vT (i)

]
E [eo (i)κδ (i)]E

[
κδ (i)κ

T
δ (i)

]

≈ 0. (78)

With the results of equations (73),(74), (75), (76), (77) and (78), equation (72) is reduced to:

Cv (i+ 1) =Cv (i)− PupCv (i)Rkk

− PupγE
[
sgn (e (i))v (i)κT

δ (i)
]

+ P 2
upJminRkk

− 2P 2
upγE

[
eo (i) sgn (e (i))κδ (i)κ

T
δ (i)

]

− PupRkkCv (i) + P 2
upT (i)

+ P 2
upγE

[
sgn (e (i))κδ (i)κ

T
δ (i)v (i)κ

T
δ (i)

]

− PupγE
[
sgn (e (i))κδ (i)v

T (i)
]

+ P 2
upγE

[
sgn (e (i))κδ (i)v

T (i)κδ (i)κ
T
δ (i)

]

+ P 2
upγ

2Rkk, (79)

The remaining expected values of (79) can be computed using Price’s theorem [38]. For the ninth term, the expected

value may be approximated as follows:

E
[
sgn (e (i))κδ (i)v

T (i)
]

≈
√

2

πσ2e
E
[
e (i)κδ (i)v

T (i)
]

≈
√

2

πσ2e
E
[(
eo (i)− κT

δ (i)v (i)
)
κδ (i)v

T (i)
]

≈ −
√

2

πσ2e
E
[
κδ (i)κ

T
δ (i)v (i)v

T (i)
]

≈ −
√

2

πσ2e
RkkCv (i) . (80)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18

Calculating the third term of equation (79), we obtain

E
[
sgn (e (i))v (i)κT

δ (i)
]
≈
√

2

πσ2e
E
[
e (i)v (i)κT

δ (i)
]

≈−
√

2

πσ2e
Cv (i)Rkk. (81)

The sixth term of equation (79) is given by

E
[
eo (i) sgn (e (i))κδ (i)κ

T
δ (i)

]

≈
√

2

πσ2e
E
[
eo (i) e (i)κδ (i)κ

T
δ (i)

]

≈
√

2

πσ2e
E
[
e2o (i)κδ (i)κ

T
δ (i)

]

−
√

2

πσ2e
E
[
eo (i)κ

T
δ (i)v (i)κδ (i)κ

T
δ (i)

]

≈
√

2

πσ2e
JminRkk. (82)

Finally, the eighth and the tenth terms can be computed by

E
[
sgn (e (i))κδ (i)κ

T
δ (i)v (i)κ

T
δ (i)

]

≈
√

2

πσ2e
E
[
e (i)κδ (i)κ

T
δ (i)v (i)κ

T
δ (i)

]

≈ −
√

2

πσ2e
T (i) . (83)

The results obtained in (80), (81), (82) and (83) shall turn (79) into:

Cv (i+ 1) =Cv (i)− PupCv (i)Rkk

+ Pupγ

√
2

πσ2e
Cv (i)Rkk

+ P 2
upJminRkk − 2P 2

upγ

√
2

πσ2e
JminRkk

− PupRkkCv (i) + P 2
upT (i)

− 2P 2
upγ

√
2

πσ2e
T (i)

+ Pupγ

√
2

πσ2e
RkkCv (i)

+ P 2
upγ

2Rkk. (84)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

Factorizing the common terms of the last equation, we get the following recursion for Cv (i+ 1):

Cv (i+ 1) =Cv (i) + P 2
up

(
1− 2γ

√
2

πσ2e

)
(JminRkk + T (i))

+ Pup

(
γ

√
2

πσ2e
− 1

)
(Cv (i)Rkk + RkkCv)

+ P 2
upγ

2Rkk. (85)

The authors of [34] proved that the elements of T (i) are given by

[T (i)]jj =

M∑

l=1
l 6=j




2µ2 [Cv (i)]jl + µ3 [Cv (i)]ll + µ4

M∑

p=1

p 6={j,l}

[Cv (i)]lp





+ µ1 [Cv (i)]jj , (86)

for the main diagonal elements and

[T (i)]jk =µ2

(
[Cv (i)]jj + [Cv (i)]kk

)
+ 2µ3 [Cv (i)]jk

+

M∑

l=1
l 6={j,k}

{
2µ4 [Cv (i)]kl + 2µ4 [Cv (i)]jl + µ4 [Cv (i)]ll

+µ5

M∑

p=1

p 6={j,k,l}

[Cv (i)]lp




, (87)

for the off-diagonal entries, where µi is defined by

µ1 =det
{
I2 − 4Q2R2/ν

2
}− 1

2 , (88)

µ2 =det
{
I3 −Q3′R3/ν

2
}− 1

2 , (89)

µ3 =det
{
I3 − 2Q3′R3/ν

2
}− 1

2 , (90)

µ4 =det
{
I4 − 2Q4R4/ν

2
}− 1

2 , (91)

µ5 =det
{
I5 − 2Q5R5/ν

2
}− 1

2 , (92)

and the matrices Qi are defined by

Q3′ =




4I −3I −I

−3I 3I 0

−I 0 I


 , (93)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

Q4 =




4I −2I −I −I

−2I 2I 0 0

−I 0 I 0

−I 0 0 I



, (94)

Q5 =




4I −I −I −I −I

−I I 0 0 0

−I 0 I 0 0

−I 0 0 I 0

−I 0 0 0 I




. (95)

Replacing equations (86) and (87) into equation (85) leads us to a recursive expression for the entries of the

autocorrelation matrix Cv (i):

[Cv (i+ 1)]jj =
(
1 + 2Puparmd + P 2

upbµ1
)
[Cv (i)]jj

+ P 2
upbµ3

M∑

l=1
l 6=j

[Cv (i)]ll

+
(
2P 2

upµ2b+ 2Puparod
) M∑

l=1
l 6=j

[Cv (i)]jl

+ P 2
upµ2bµ4

M∑

l=1
l 6=j

M∑

p=1

p 6={j,l}

[Cv (i)]lp

+
(
P 2
upbJmin + P 2

upγ
2
)
rmd, (96)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21

and for j 6= k

[Cv (i+ 1)]jk =
(
1 + 2Pupαrmd + 2P 2

upβµ3
)
[Cv (i)]jk

+ P 2
upβµ4

M∑

l=1
l 6={j,k}

[Cv (i)]ll +

(
P 2
upβµ2

+ Pupαrod

)(
[Cv (i)]jj + [Cv (i)]kk

)

+

(
2P 2

upβµ4 + Pupαrod

)
M∑

l=1
l 6={j,k}

(
[Cv (i)]il

+ [Cv (i)]jl

)
+ P 2

upβµ5

M∑

l=1
l 6={j,k}

M∑

p=1

p 6={j,k,l}

[Cv (i)]lp

+
(
P 2
upβJmin + P 2

upγ
2
)
rmd, (97)

where

α =γ

√
2

πσ2e
− 1, (98)

β =1− 2γ

√
2

πσ2e
. (99)

The entries of the autocorrelation matrix Cv (i) are then plugged in the MSE expression in (62).

VI. SIMULATIONS

In this section we assess the performance of the SM-KNLMS algorithms proposed. The Gaussian kernel was

used in all the algorithms to perform all the experiments. We have structured this section into two parts: the first

part deals with the identification of nonlinear systems, whereas the second part examines time series prediction

problems.

A. System identification

In the first example, we consider a system identification application to compare the performance of the proposed

SM-KNLMS algorithms and to verify the theory developed in Section V. Let us consider the nonlinear problem

studied in [39], [40], [34] described by the recursion

d (i) =
d (i− 1)

1 + d (i− 1)
+ x3 (i− 1) . (100)

We compare the performance of the proposed algorithms with the KLMS algorithm. The desired signal d (i) was

corrupted by additive white Gaussian noise with zero-mean and variance σ2n = 10−4 and the SNR was set to 20

dB. We have also considered a fixed dictionary of length of 16 in order to focus solely on the performance of the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22

gradient learning rules used by the analyzed algorithms. At each iteration, the dictionary elements were updated so

that the oldest element added is replaced. To compute the learning curve, a total of 500 simulations were averaged,

each one with 1500 iterations. The bandwidth of the Gaussian kernel was set to 0.025. The threshold for the

SM-KNLMS algorithms was set to γ =
√
5σn. The result of this experiment is presented in Fig. 1. The results

show that the C-SM-KNLMS algorithm slightly outperforms in learning rate the NLR-SM-KNLMS algorithm and

the nonlinear regression-based KLMS (NLR-KLMS) algorithm. At steady state C-SM-KNLMS and NLR-KNLMS

tend to produce comparable results, which means that the analytical formulas to predict the results of NLR-KNLMS

can be useful to have a prediction of the performance of C-SM-NKLMS at steady state. For this reason we will

consider the C-SM-KNLMS algorithm for most examples except for those that show analytical results and employ

the NLR-SM-KNLMS algorithm, which is the only one suitable for statistical analysis.

0 500 1000 1500
10

−3

10
−2

10
−1

10
0

10
1

Iteration

M
S

E

NLR−KLMS
C−SM−KNLMS
NLR−SM−KNLMS

Fig. 1. Performance comparison of SM-KNLMS algorithms.

In the second example we evaluate the transient behavior of the NLR-SM-KNLMS. The input sequence x (i)

is independent and identically Gaussian distributed with variance σ2x = 0.15. We have also considered a fixed

dictionary of length 16. At each iteration, the dictionary elements were updated so that the oldest element added is

replaced. To compute the learning curve, a total of 500 simulations were averaged, each one with 3000 iterations.

The bandwidth of the Gaussian kernel was set to 0.025 for Fig. 2 and the threshold was set to γ =
√
10σn to

obtain the results in Fig. 2.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23

0 500 1000 1500 2000 2500 3000
−25

−20

−15

−10

−5

0

5

Iterations

M
S

E
 (

d
B

)

MSE (Experimental)
MSE (Theory)

Fig. 2. Transient behaviour of the SM-KNLMS algorithm. Bandwidth=0.025

In the third example, we assess the performance of the NLR-SM-KNLMS algorithm in a non-stationary environ-

ment. Particularly, we investigate the case when a sudden change occurs the system model, resulting in a different

value of αo. The two systems studied are given by

d1 (i) =
d (i− 1)

1 + d (i− 1)
+ x3 (i− 1) , (101)

d2 (i) = x2(i). (102)

In particular, a total of 8000 iterations were made, where the first 4000 iterations correspond to system d1. Then,

the system becomes unstable for 50 iterations where d(i) = d(i − 1) + 0.1. The remaining iterations correspond

to system d2. The output is corrupted by AWGN with standard deviation equal to σn = 0.01. The input follows a

Gaussian distribution with i.i.d samples and standard deviation given by σx = 0.15.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24

0 1000 2000 3000 4000 5000 6000 7000 8000

iterations

-30

-20

-10

0

10

20

30

M
S

E
 (

d
B

)

MSE (Simulation)
MSE (Theory)

Fig. 3. Performance of the NLR-SM-KNLMS algorithm in a non-stationary environment.

From Fig. 3 we note that NLR-SM-KNLMS is capable of tracking changes on the system and of converging to

a new solution in few iterations. The solution obtained for system d2 achieves a lower MSE because the correlation

between the mapped input and the desired signal is higher for this system. It is also important to mention that the

simulation result matches the theoretical result.

In the fourth experiment we assess the performance of NLR-SM-KNLMS for correlated inputs. Let us consider

two inputs, xc1 and xc2 each one with three different components i.e. xc (i) =
[
xc,1 (i) xc,2 (i) xc,3 (i)

]T
. The

correlation of the inputs satisfies

xc1,2 (i) = 0.5xc1,1 (i) + δx (i) (103)

xc2,2 (i) = 0.5xc2,1 (i) + δx (i) (104)

xc2,3 (i) = 0.2xc2,1 (i) + 0.4xc2,2 (i) + δx (i) (105)

Both signals pass through a linear system with memory where the output is given by

y (i) = rTxc (i)− 0.3y (i− 1) + 0.35y (i− 2) (106)

with r =
[
1 0.5 0.3

]
. A nonlinear function is then applied to y (i)

d (i)





y(i)

3(0.1+0.9y2(i))1/2
y (i) ≥ 0

−y2(i)[1−e0.7y(i)]
3 y (i) < 0

(107)

The desired signal is corrupted by AWGN with σn = 0.001. Fig. 4 illustrates the performance of NLR-KNLMS.

The results show that the convergence speed for both inputs is similar. However, the correlation between the

elements of the second input is stronger than that of the first input. This affects directly the performance of the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25

NLR-SM-KNLMS as shown in Fig. 4, where we can see that the first input achieves a lower MSE than the second

input.

0 500 1000 1500 2000 2500 3000

iterations

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4
M

S
E

 (
d

B
)

MSE (Simulation),R
1

MSE (Theory),R
1

MSE (Simulation),R
2

MSE (Theory),R
2

Fig. 4. Performance of the NLR-SM-KNLMS algorithm with correlated inputs.

In the last experiment of this section, we consider the identification of a Hammerstein system [41]. The input

vector x(i) ∈ R1×24 where each element has σ2x = 4 × 10−4 and the noise variance is σn = 10−6 . The kernel

bandwidth was set to 0.048. The input goes through a nonlinear function to form the vector x̃(i), where each

element is given by

x̃j (i) = x3j (i) (108)

The desired signal is obtained from a linear system expressed by

d (n) = sT x̃ (i) (109)

with s1 = 1, s2 = 0.5, s3 = 0.3, s4 = s5 = s9 = s13 = s15 = s19 = s22 = 0.1, s6 = s7 = −0.2, s8 = s10 =

s14 = −0.15, s18 = 0.15, s9 =, s11 = 0.12, s12 = −0.09, s16 = 0.05, s17 = −0.05, s20 = 0.03, s21 = −0.12,

s23 = −0.02, s24 = −0.01.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26

0 500 1000 1500 2000 2500 3000

iterations

-60

-50

-40

-30

-20

-10

0

10

M
S

E
 (

d
B

)

MSE (Simulation)
MSE (Theory)

Fig. 5. Performance of the NLR-SM-KNLMS algorithm for a Hammerstein system.

The results shown in Fig. 5 indicate that the learning speed of the proposed NLR-SM-KNLMS is lower than

that for the identification of other nonlinear systems. This is because the Hammerstein system considered here has

a larger number of parameters, which requires more iteration for the identification. The curves in Fig. 5 also show

that the theoretical results agree well with those obtained by simulations.

B. Time series prediction

Let us now consider the performance of the proposed algorithms for a time series prediction task. We have

used two different time series to perform the tests, the Mackey Glass time series [42] and a laser generated time

series. First, we separate the data into two sets, one for training and the other for testing as suggested in [1]. The

time-window was set to seven and the prediction step was set to one so that the last seven inputs of the time series

were used to predict the value one step ahead. Additionally, both time series were corrupted by additive Gaussian

noise with zero mean and standard deviation equal to 0.04. Using the Silverman rule and after several tests, the

bandwidth of the kernel was optimized and the optimum value found was one.

First we evaluate the performance of the adaptive algorithms over the Mackey-Glass time series, which is

generated by a nonlinear time difference equation that can be used to model nonlinear dynamics including chaos

and represents a challenging time series for prediction tasks [42]. A total of 1500 sample inputs were used to

generate the learning curve and the prediction was performed over 100 test samples. For the KLMS algorithm the

step size was set to 0.05. The error bound for the C-SM-KNLMS algorithm was set to
√
5σ. The final results of

the algorithms tested are shown in Table II where the last 100 data points of each learning curve were averaged to

obtain the MSE. The learning curves of the algorithms based on kernels is presented in Fig. 6. From the curves,

we see that the proposed C-SM-KNLMS algorithm outperforms conventional algorithms in convergence speed.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27

0 500 1000 1500
10

−3

10
−2

10
−1

Iteration

M
S

E

LMS
KLMS
C−SM−KNLMS

Fig. 6. Learning Curve of the Kernel Adaptive Algorithms for the Mackey-Glass Time Series prediction

TABLE II

PERFORMANCE ON MACKEY-GLASS TIME SERIES PREDICTION

Algorithm Test MSE Standard Deviation

LMS 0.023 +/-0.0002

NLMS 0.021 +/-0.0001

SM-NLMS 0.020 +/-0.0008

KLMS 0.007 +/-0.0003

C-SM-KNLMS 0.005 +/-0.0004

In the second example of this section, we consider the performance of the proposed algorithms over a laser

generated time series, which is generated by chaotic intensity pulsations of a laser and also represents a challenging

time series for prediction tasks [1]. In this case, 3500 sample inputs were used to generate the learning curves and

the prediction was performed over 100 test samples. The setup used in the previous experiment was considered.

Table III summarizes the MSE obtained for every algorithm tested. The learning curves are shown in Fig. 7.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

Iteration

M
S

E

LMS
KLMS
C−SM−KNLMS

Fig. 7. Learning curves for the Laser Time Series prediction

TABLE III

PERFORMANCE ON LASER GENERATED TIME SERIES PREDICTION

Algorithm Test MSE Standard Deviation

LMS 0.021 +/-0.0003

NLMS 0.019 +/-0.001

SM-NLMS 0.024 +/-0.006

KLMS 0.009 +/-0.0006

C-SM-KNLMS 0.003 +/-0.0005

In the third experiment of this section we study the size of the dictionary generated by the conventional KLMS

algorithm using different criteria to limit the size and by the proposed C-SM-KNLMS algorithm. The result is

presented in Fig. 8. We notice that the proposed C-SM-KNLMS algorithm naturally limits the size of the dictionary.

We also compare the performance of the C-SM-KNLMS with the performance obtained by the KLMS algorithm

with different criteria. Fig. 9 summarizes the results, which shows that the proposed C-SM-KNLMS algorithm

outperforms the existing algorithms by a significant margin.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Iteration

N
et

w
o

rk
 S

iz
e

KLMS
KLMS−NC
KLMS−CC
KLMS−SC
C−SM−NKLMS

Fig. 8. Dictionary Size vs Iterations

0 500 1000 1500
10

−3

10
−2

10
−1

Iteration

M
S

E

KLMS
NC−KLMS
SC−KLMS
CC−KLMS
C−SM−NKLMS

Fig. 9. Performance comparison C-SM-KNLMS vs KLMS over time iterations.

In the last experiment, we have assessed the robustness of the proposed and existing algorithms for Gaussian

noise with different values of standard deviation. Fig. 10 shows the results in terms of MSE performance against

the noise standard deviation. The curves obtained in Fig. 10 indicate that the proposed C-SM-KNLMS algorithm

outperforms the other algorithms for all the range of values of noise standard deviation considered. As expected

the performance of all algorithms evaluated gradually degrade as the noise standard deviation increases.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

30

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

σ

M
S

E

LMS
NLMS
SM−NLMS
APA
SM−APA
KLMS
C−SM−KNLMS

Fig. 10. Robustness performance of the studied algorithms versus standard deviation of noise.

VII. CONCLUSIONS

In this paper, we have devised data-selective kernel-type algorithms, namely, the centroid-based and the nonlinear

regression SM-KNLMS algorithms. The proposed SM-KNLMS algorithms have a faster convergence speed and a

lower computational cost than the existing kernel-type algorithms in the same category. The proposed SM-KNLMS

algorithms also have the advantage of naturally limiting the size of the dictionary created by kernel based algorithms

and a satisfactory noise robustness. These features allow the proposed SM-KNLMS algorithms to solve nonlinear

filtering and estimation problems with a large number of parameters without requiring a much longer training

or computational cost. Simulations have shown that the proposed SM-KNLMS algorithms outperform previously

reported techniques in examples of nonlinear system identification and prediction of a time series originating from

a nonlinear difference equation.

ACKNOWLEDGMENT

The authors would like to thank the CNPq, and FAPERJ Brazilian agencies for funding.

REFERENCES

[1] W. Liu, J. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction., S. Haykin, Ed. John Wiley & Sons,

2010.

[2] J. M. Gil-Cacho, M. Signoretto, T. van Waterschoot, M. Moonen, and S. Jensen, “Nonlinear acoustic echo cancellation based on a

sliding-window leaky kernel affine projection algorithm.” IEEE Transactions on Audio, Speech and Language Processing, vol. 21, no. 9,

pp. 1867 – 1878, April 2013.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

31

[3] J. M. Gil-Cacho, T. van Waterschoot, M. Moonen, and S. Jensen, “Nonlinear acoustic echo cancellation based on a parallel-cascade

kernel affine projection algorithm.” IEEE International Conference on Acoustics, Speech and Signal Processing, 2012.

[4] Y. Nakijama and M. Yukawa, “Nonlinear channel equalization by multi-kernel adaptive filter.” IEEE 13th International Workshop on

Signal Processing Advances in Wireless Communications, 2012.

[5] C. Richard, J. Bermudez, and P. Honeine, “Online prediction of time series data with kernels.” IEEE Transactions on Signal Processing,

vol. 57, no. 3, pp. 1058–1067, Feb. 2009.

[6] W. Liu, P. Pokharel, and J. Prı́ncipe, “The kernel least-mean-squares algorithm.” IEEE Transactions on Signal Processing, vol. 56,

no. 2, pp. 543–554, February 2008.

[7] P. Boboulis and S. Theodoridis, “Extension of wirtinger’s calculus to reproducing kernel hilbert spaces and the complex kernel LMS.”

IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 964–978, March 2011.

[8] W. Liu and J. Prı́ncipe, “Kernel affine projection algorithms.” EURASIP Journal on Advances in Signal Processing, vol. 2008, February

2008.

[9] K. Slavakis and S. Theodoridis, “Sliding window generalized kernel affine projection algorithm using projection mappings,”

EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 1, p. 735351, Apr 2008. [Online]. Available:

https://doi.org/10.1155/2008/735351

[10] K. Slavakis, S. Theodoridis, and I. Yamada, “Online kernel-based classification using adaptive projection algorithms,” IEEE Transactions

on Signal Processing, vol. 56, no. 7, pp. 2781–2796, July 2008.

[11] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a world of projections,” IEEE Signal Processing Magazine, vol. 28,

no. 1, pp. 97–123, Jan 2011.

[12] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm.” IEEE Transactions on Signal Processing, vol. 52,

no. 8, pp. 2275–2285, August 2004.

[13] W. Liu, Y. Wang, and J. Prı́ncipe, “Extended kernel recursive least squares algorithm.” IEEE Transactions on Signal Processing, vol. 57,

no. 10, pp. 3801–3814, May 2009.

[14] R. Pokharel, S. Seth, and J. Prı́ncipe, “Mixture kernel least mean square.” The 2013 International Joint Conference on Neural Networks,

2013.

[15] M. Yukawa, “Multikernel adaptive filtering.” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4672 – 4682, August 2012.

[16] S. Van Vaerenbergh, J. Via, and I. Santamaria, “A sliding-window kernel RLS algorithm and its application to nonlinear channel

identification.” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2006.

[17] S. Van Vaerenbergh, I. Santamaria, W. Liu, and J. Prı́ncipe, “Fixed-budget kernel recursive least-squares.” IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2010.

[18] F. Sheikholeslami, D. Berberidis, and G. B. Giannakis, “Kernel-based low-rank feature extraction on a budget for big data streams.”

IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2015.

[19] J. Platt, “A resource-allocating network for function interpolation.” Neural Computation, vol. 3, no. 3, pp. 213–225, 1991.

[20] W. Liu and J. Prı́ncipe, “An information theoretic approach of designing sparse kernel adaptive filters.” IEEE Transactions on Neural

Networks, vol. 20, no. 12, pp. 1950 – 1961, November 2009.

[21] A. Flores and R. C. de Lamare, “Set-membership kernel adaptive algorithms,” in Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), March 2017, pp. 2676–2680.

[22] E. Fogel and Y. F. Huang, “On the value of information in system identification-bounded noise case.” Automatica, vol. 18, pp. 229–238,

March 1982.

[23] S. Gollamudi, S. Nagaraj, S. Kapoor, and Y. F. Huang, “Set-membership filtering and a set-membership normalized LMS algorithm

with an adaptive step size.” IEEE Signal Processing Letters, vol. 5, no. 5, pp. 111–114, May 1998.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

32

[24] S. Werner and P. Diniz, “Set-membership affine projection algorithm.” IEEE Signal Processing Letters, vol. 8, no. 8, pp. 231–235,

August 2001.

[25] P. Diniz and S. Werner, “Set-membership binormalized data-reusing LMS algorithms.” IEEE Transactions on Signal Processing, vol. 51,

no. 1, pp. 124–134, January 2003.

[26] R. C. de Lamare and P. Diniz, “Set-membership adaptive algorithms based on time-varying error bounds for CDMA interference

suppression.” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 644 – 654, February 2009.

[27] T. Wang, R. C. de Lamare, and P. D. Mitchell, “Low-complexity set-membership channel estimation for cooperative wireless sensor

networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2594–2607, July 2011.

[28] R. C. de Lamare and P. Diniz, “Blind adaptive interference suppression based on set-membership constrained constant-modulus

algorithms with dynamic bounds.” IEEE Transactions on Signal Processing, vol. 61, no. 5, pp. 1288 – 1301, November 2012.

[29] K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. a. Scholkopf, “An introduction to kernel-based learning algorithms.” IEEE Transactions

on Neural Networks, vol. 12, no. 2, pp. 181 – 201, March 2001.

[30] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank processing based on joint and iterative interpolation, decimation, and

filtering,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2503–2514, July 2009.

[31] R. Coelho, V. H. Nascimento, R. Queiroz, J. Romano, and C. Cavalcante, Eds., Signals and Images: Advances and Results in Speech,

Estimation, Compression, Recognition, Filtering, and Processing. CRC Press, 2015.

[32] B. Schölkopf, R. Herbrich, and J. Smola, “A generalized representer theorem.” 14th Annual Conference on Computational Learning

Theory and 5th European Conference on Computational Learning Theory, pp. 416–426, 2001.

[33] J. Chen, W. Gao, C. Richard, and J. C. Bermudez, “Convergence analysis of kernel LMS algorithm with pre-tuned dictionary.” IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[34] W. Parreira, J. C. Bermudez, C. Richard, and J. Tourneret, “Stochastic behavior analysis of the Gaussian kernel least-mean-square

algorithm.” IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2208 – 2222, January 2012.

[35] ——, “Steady-state behavior and design of the Gaussian KLMS algorithm.” European Signal Processing Conference (EUSIPCO), April

2011.

[36] J. Omura and T. Kailath, “Some useful probability distributions.” Stanford University, Tech. Rep. 7050-6, 1965.

[37] A. Sayed, Adaptive Filters. John Wiley & Sons, 2008.

[38] R. Price, “A useful theorem for nonlinear devices having gaussian inputs,” IRE Transactions on Information Theory, vol. 4, no. 2, pp.

69–72, June 1958.

[39] K. S. Narendra and K. Parthasarathy, “Identification and control of synamical systems using neural networks,” IEEE Transactions on

Neural Networks, vol. 1, no. 1, pp. 3–27, March 1990.

[40] D. P. Mandic, “A generalized normalized gradient descent algorithm,” IEEE Signal Processing Letters, vol. 2, pp. 115–118, February

2004.

[41] W. Greblicki and M. Pawlak, “Identification of discrete hammerstein systems using kernel regression estimates,” IEEE Transactions

on Automatic Control, vol. 31, no. 1, pp. 74–77, January 1986.

[42] L. Glass and M. C. Mackey, “Pathological physiological conditions resulting from instabilities in physiological control systems,” Ann.

NY. Acad. Sci, vol. 316, pp. 214–235, 1979.

