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Highlights

• Recovery with multiple prior information via solving n-l1 minimization is proposed

• Theoretical measurement bounds required by the n-l1 minimization are established

• The derived bounds of the n-l1 minimization are sharper

• The proposed n-l1 minimization outperforms the state-of-the-art algorithms
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aMultimedia Communications and Signal Processing, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
bDepartment of Electronics and Informatics, Vrije Universiteit Brussel, 1050 Brussels, and imec, B3001 Leuven,

Belgium
cDTU Fotonik, Technical University of Denmark, 2800 Lyngby, Denmark

Abstract

We address the problem of reconstructing a sparse signal from compressive measurements with the

aid of multiple known correlated signals. We propose a reconstruction algorithm with multiple side

information signals (RAMSI), which solves an n-`1 minimization problem by weighting adaptively

the multiple side information signals at every iteration. In addition, we establish theoretical bounds

on the number of measurements required to guarantee successful reconstruction of the sparse sig-

nal via weighted n-`1 minimization. The analysis of the derived bounds reveals that weighted n-`1

minimization can achieve sharper bounds and significant performance improvements compared to clas-

sical compressed sensing (CS). We evaluate experimentally the proposed RAMSI algorithm and the

established bounds using numerical sparse signals. The results show that the proposed algorithm

outperforms state-of-the-art algorithms—including classical CS, `1-`1 minimization, Modified-CS, reg-

ularized Modified-CS, and weighted `1 minimization—in terms of both the theoretical bounds and the

practical performance.

Keywords: Compressed sensing, prior information, weighted n-`1 minimization, measurement

bounds

1. Introduction

Compressed sensing (CS) [1–15] states that sparse signals can be recovered in a computationally

tractable manner from a limited set of measurements by minimizing the `1-norm. The CS performance

can be improved by replacing the `1-norm with a weighted `1-norm [8, 9, 16–18]. The studies in [11, 12]

provide bounds on the number of measurements required for successful signal recovery based on convex5
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optimization. Furthermore, distributed compressed sensing [13, 14] allows a correlated ensemble of

sparse signals to be jointly recovered by exploiting the intra- and inter-signal correlations.

We consider the problem of reconstructing a signal given side or prior information, gleaned from a

set of known correlated signals. Initially, this problem was studied in [16, 19–28], where the modified-

CS method [19, 21] considered that a part of the support is available from prior knowledge and tried10

to find the signal that satisfies the measurement constraint and is sparsest outside the known support.

Prior information on the sparsity pattern of the data was also considered in [23] and information-

theoretic guarantees were presented. The studies in [24, 25] introduced weights into the `1 minimization

framework that depend on the partitioning of the source signal into two sets, with the entries of each

set having a specific probability of being nonzero.15

Alternatively, the studies in [29–32] incorporated side information on CS by means of `1-`1 mini-

mization and derived bounds on the number of Gaussian measurements required to guarantee perfect

signal recovery. It was shown that `1-`1 minimization can dramatically improve the reconstruction

performance over CS subject to a good-quality side information [29, 30]. The study in [33] proposed

a weighted-`1 minimization method to incorporate prior information—in the form of inaccurate sup-20

port estimates—into CS. The work also provided bounds on the number of Gaussian measurements

for successful recovery when sufficient support information is available. Furthermore, recent stud-

ies proposed CS with side information in practical applications, i.e., compressive video foreground

extraction [34–36], magnetic resonance imaging (MRI) [17], and synthetic aperture radar imaging [37].

The problem of sparse signal recovery with prior information also emerges in the context of recon-25

structing a sequence of time-varying sparse signals from low-dimensional measurements [23, 38–42].

The study in [42] reviewed a class of recursive algorithms for recovering a sequence of time-varying

sparse signals from a small number of measurements. The problem of estimating a time-varying, sparse

signal from streaming measurements was studied in [38, 42], while the work in [23] addressed the recov-

ery problem in the context of multiple measurement vectors. The problem also appears in the context30

of robust PCA and online robust PCA [39–41], a framework that finds important application in video

background subtraction. The studies in [39–41] used the modified-CS [21, 22] method to leverage prior

knowledge under the condition of slow support and signal value changes.

1.1. Motivation

Emerging applications require reconstructing a sequence of signals from compressive measurements;35

for example, dynamic MRI [43] involves the acquisition of moving cardiovascular, abdominal, or larynx

images. Related research questions are also encountered in the context of compressive video sensing [44,

45]. Alternative applications [46–48] follow a distributed sensing scenario, where a plethora of tiny

heterogeneous devices collect information from the environment, and require sensing and processing
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under time and resource constraints. These challenges can be addressed by leveraging the distributed40

sparse representation of the multiple sources [48–50]. The problem in this setup is to reconstruct

the sparse sources along with exploiting the correlation among them; alias, a key question is how to

reconstruct a signal from a small number of measurements, by leveraging efficiently the redundancy

gleaned from multiple correlated signals.

Existing attempts to incorporate prior information in compressed sensing are typically considering45

one known prior information signal of good quality; see for example [17, 29, 30, 34, 35]. Conversely, we

are aiming at reconstructing a sparse signal from a small set of measurements with the aid of multiple

prior signals, which change in time; that is, there are arbitrary prior information qualities and varying

correlations among them. This raises key interesting questions:

• How can we leverage efficiently the correlation across multiple prior information signals? This50

implies a strategy to exploit the useful information from the multiple signals and alleviate negative

effects due to low quality prior information.

• How many measurements are required to successfully reconstruct the sparse signal given multiple

prior signals? This calls for bounds on the number of measurements required to guarantee

successful signal recovery.55

1.2. Contributions

To address these questions, we contribute in a twofold way. Firstly, we propose a novel sparse signal

Reconstruction Algorithm that leverages Multiple Side Information (RAMSI). Secondly, we establish

lower bounds on the number of measurements required by RAMSI to recover the sparse signal.

The RAMSI algorithm solves a (re-)weighted n-`1 minimization problem: Per iteration of the recov-60

ery process, the algorithm weights adaptively the n prior information signals. As such, unlike existing

works [17, 29, 30, 34, 35], which exploit only one prior information signal, RAMSI can efficiently lever-

age the correlations among multiple signals and adapt on-the-fly to changes of the correlations. We

show experimentally that RAMSI leads to higher recovery performance than state-of-the-art meth-

ods [7, 21, 22, 25, 29].65

We also establish measurement bounds for the weighted n-`1 minimization problem, which serve

as lower bounds for the RAMSI algorithm. The bounds depend on the support of the source signal

to be recovered and the correlations between the target signal and the multiple prior information

signals. The correlations are expressed via the supports of the differences between the source and prior

information signals. We will show that the weighted n-`1 minimization bounds are sharper compared70

to those of the classical CS [1, 3, 5] and the `1-`1 reconstruction [29, 30] methods. These bounds

depict the advantage of RAMSI to deal with heterogeneous side information signals including possible
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poor prior information signals. Furthermore, we show—both theoretically and practically—that the

performance of the method is improved with the number of available prior information signals.

1.3. Outline75

The rest of this paper is as follows: Section 2 reviews the background on CS and CS with side

information. The RAMSI algorithm is proposed in Section 3, whereas our measurement bounds and

their analysis are presented in Section 4. The bounds and the performance of RAMSI are assessed in

Section 5 and Section 6 concludes the work.

2. Background80

2.1. Compressed Sensing

Let x ∈ Rn be a signal that is sparse in a domain or learned set of basis. The signal can be reduced

to a vector y = Φx ∈ Rm by sampling with a measurement matrix Φ ∈ Rm×n (m � n) whose

elements are sampled from an i.i.d. Gaussian distribution. The signal can be recovered by solving the

Basis Pursuit problem [3, 5, 52]:

min
x
‖x‖1 subject to y = Φx, (1)

where ‖x‖1 :=
∑n
i=1 |xi| is the `1-norm of x wherein xi is an element of x. Problem (1) becomes an

instance of finding a general solution:

min
x
{H(x) = f(x) + g(x)}, (2)

where f := Rn → R is a smooth convex function and g := Rn → R is a continuous convex function,

possibly non-smooth. Specifically, in Problem (1) we have g(x) = λ‖x‖1 and f(x) = 1
2‖Φx − y‖22,

where ‖ · ‖2 denotes `2-norm, with Lipschitz constant L∇f [7]. Using proximal gradient methods [7],

x(k) at iteration k is computed as

x(k) = Γ 1
L g

(
x(k−1) − 1

L
∇f(x(k−1))

)
, (3)

where L ≥ L∇f , and Γ 1
L g

(x) is the proximal operator:

Γ 1
L g

(x) = arg min
v∈Rn

{ 1

L
g(v) +

1

2
‖v − x‖22

}
. (4)

The classical `1 minimization problem in CS [1, 3, 5] requires m`1 measurements [11, 29, 30] for

successful reconstruction, bounded as

m`1 ≥ 2s0 log
n

s0
+

7

5
s0 + 1, (5)

where s0 := ‖x‖0 = |{i : xi 6= 0}| denotes the number of nonzero elements in x as the support of x,

with |.| denoting the cardinality of a set and ‖ · ‖0 being the `0-pseudo-norm.
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2.2. CS with Support Knowledge

The modified-CS method in [19, 21] considered prior knowledge in the form of knowing a part

of the signal’s support. Furthermore, the study in [33] proposed a weighted-`1 minimization method

to incorporate prior support information and provided bounds on the number of measurements—we

denote this number by mω`1—for successful recovery. It is worth noting that the bound of the number

of measurements required by modified-CS, mmodCS, is a special case of the bound on mω`1 . Namely,

without considering weights on the prior support, it holds that [33, Corrollary 8] mω`1 ≡ mmodCS ≥
s0 + (1 + C−2)se log(en/se), where C < 1 and se is the size of the support estimate error defined by

|(T̃ ∩ T c) ∪ (T ∩ T̃ c)| ≤ se, where T is the support, T̃ is the support estimate and T c and T̃ c their

respective complements. In [33], it is assumed that s0 ≤ n/2 and se ≤ s0. Due to C < 1, we can write

mω`1 ≡ mmodCS ≥ 2se log(n/se) + 2se + s0. (6)

2.3. CS with `1-`1 Minimization85

The `1-`1 minimization approach [29, 30, 34] reconstructs x given a signal z ∈ Rn as prior infor-

mation by solving the following problem:

min
x

{1

2
‖Φx− y‖22 + λ(‖x‖1 + ‖x− z‖1)

}
. (7)

The bound on the number of measurements required by Problem (7) to successfully reconstruct x

depends on the quality of the side information signal z as [29, 30, 34]

m`1-`1 ≥ 2h log
( n

s0 + ξ/2

)
+

7

5

(
s0 +

ξ

2

)
+ 1, (8)

where

ξ : = |{i : zi 6= xi = 0}| − |{i : zi = xi 6= 0}|, (9a)

h̄ : = |{i : xi > 0, xi > zi} ∪ {i : xi < 0, xi < zi}|, (9b)

wherein xi, zi are corresponding elements of x, z. It has been shown that the solution of Problem (7)

improves over the solution of Problem (1) provided that the prior information has good enough qual-

ity [29, 30]. The quality is expressed by a high number of elements zi that are equal to xi, thereby

leading to ξ in (9a) being small.

3. Recovery With Multiple Prior Information90

3.1. Problem Statement

We consider the problem of recovering x from a low-dimensional measurement vector y given prior

information. Classical CS methods can be used to recover x from y; however, these methods do

6
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(d) Frame no. 1284

Figure 1: Illustration of a compressive video sensing setup in (a), and the vectorized wavelet transform coefficients of

(b) frame no. 1286, (c) frame no. 1285, and (d) frame no. 1284 in the Bootstrap video sequence. In the considered

scenario, the representation of frame no. 1286 can be reconstructed using the recovered representations of the frames

no. 1285 and 1284 as prior information.

not leverage the correlations across multiple different data vectors. Examples of practical applications

that motivate our work include compressive video sensing and analysis [35, 51, 53] and dynamic MRI95

reconstruction [45]. For instance, consider the compressive video sensing setup illustrated in Fig. 1(a):

an incoming video frame is sensed using compressive measurements at the encoder and reconstructed at

the decoder with the aid of multiple prior information, gleaned from at set of previously reconstructed

frames. Fig. 1(b) depicts the vectorized wavelet transform coefficients (a.k.a. sparse representation)

of frame no. 1286 in the Bootstrap video sequence—which corresponds to the target signal x in100

our scenario—and the wavelet representations of the two previous reconstructed frames1 no. 1285

[Fig. 1(c)] and 1284 [Fig. 1(d)]—which respectively correspond to z1 and z2 in our scenario. It

is clear that the sparse representation x is highly correlated with z1 and z2; this correlation can

be leveraged to improve the reconstruction of x. Other application scenarios include compressive

foreground extraction [35] and compressive online robust principle component analysis [53], where a105

foreground frame x can be reconstructed from previously reconstructed foregrounds z1 and z2.

1Alternatively, the prior information could be gleaned from motion-compensated versions of the reconstructed

frames [54].
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The `1-`1 minimization framework in Problem (7) can be used to recover x from y given either z1

or z2, that is, only one prior information vector. Moreover, it can be that `1-`1 minimization performs

worse than the `1 minimization method due to low correlation between the target signal and the

prior information signal, e.g., z2. To address these two limitations, we propose a new reconstruction

algorithm with multiple side information (RAMSI). The input of RAMSI is the measurement vector y =

Φx and J prior information signals z1, . . . ,zJ ∈ Rn. The objective function is constructed by using

an n-`1-norm function in Problem (2):

g(x)= λ
J∑

j=0

‖Wj(x−zj)‖1, (10)

where z0 = 0 and Wj are diagonal weight matrices, Wj = diag(wj1, wj2, ..., wjn), wherein wji > 0

is the weight in Wj at index i. Namely, the objective function of the proposed n-`1 minimization

problem is given by

min
x

{
H(x) =

1

2
‖Φx− y‖22 + λ

J∑

j=0

‖Wj(x− zj)‖1
}
. (11)

3.2. The Proposed RAMSI Algorithm

We solve Problem (11) by iteratively computing x and updating Wj based on the proximal gra-

dient method [7]. The question is then how to determine the weight values in order to improve the

reconstruction by effectively leveraging the multiple side information signals. This also calls for a110

method that avoids recovery performance degradation when the correlation among the prior informa-

tion signals and the target signal decreases. As such, unlike prior studies [29, 30, 34], our method

distributes weights across multiple side information signals. We propose to solve the problem in (11)

such that at every iteration k we iterate over (i) a weight update step (i.e., updating Wj given x) and

(ii) a data computation step (i.e., computing x given Wj).115

Updating Wj given x and zj . Fixing x and zj , j = 1, . . . , J , we determine the weights {wji}
so as to improve the reconstruction of x, where j indexes the side information signal and i = 1, . . . , n

iterates over the data elements. To normalize the contribution of each side information signal during

the iterative process, we impose a constraint on the weights. We may have different strategies to

update the weights {wji}; in this work, use the constraint
∑J
j=0 Wj = In, where In is the identity

matrix with dimensions n × n. Consider the i-th element in x in Problem (11): we want to assign

wji > 0 to the related term xi − zji, where zji is the i-th element in zj . We aim at assigning to each

element xi−zji a weight wji that is high when |xi−zji| is low; in this way, we can favor xi components

that are closer to zji. To ensure that zero-valued elements |xi − zji| do not cause a breakdown of the

method, we add a small parameter ε > 0 and we set

wji =
ηi

|xi − zji|+ ε
, (12)

8
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where ηi > 0. Under the constraint
∑J
j=0 Wj = In, we obtain

ηi =
( J∑

j=0

1

|xi − zji|+ ε

)−1

. (13)

Using (13), we can rewrite each weight wji as

wji =
(|xi − zji|+ ε)−1

J∑
l=0

(|xi − zli|+ ε)−1

. (14)

Computing x given Wj . Given Wj , RAMSI computes x(k) at iteration k using (3), where the

proximal operator Γ1
L g

(xi) is computed as follows.

Proposition 3.1. The proximal operator Γ1
L g

(x) in (4) for the problem of signal recovery with multiple

side information, for which g(x) = λ
∑J
j=0 ‖Wj(x− zj)‖1, is given by

Γ 1
L g

(xi) =





xi − λ
L

J∑
j=0

wji(−1)b(r<j), if (16a)

zli, if (16b)

(15)

where

zri +
λ

L

J∑

j=0

wji(−1)b(r<j) <xi<z(r+1)i+
λ

L

J∑

j=0

wji(−1)b(r<j), (16a)

zri+
λ

L

J∑

j=0

wji(−1)b(r−1<j)≤ xi≤ zri+
λ

L

J∑

j=0

wji(−1)b(r<j), (16b)

and where, without loss of generality, we have assumed that −∞ = z(−1)i ≤ z0i ≤ z1i ≤ . . .≤ zJi ≤
z(J+1)i =∞, and we have defined a boolean function

b(r < j) =





1, if r < j

0, otherwise.
(17)

with r ∈ {−1, . . . , J}.

Proof. The proof is given in Appendix B.

We summarize RAMSI in Algorithm 1 (the Matlab code is provided in [55]), which is based on the120

fast iterative soft-thresholding algorithm (FISTA) algorithm [7]. The Stopping criterion (cf. Line 2 of

Algorithm 1) can be a maximum iteration number kmax, a relative variation of the objective function

H(x) in (11), or a change of the number of nonzero components of the estimate x(k). In this work,

the relative variation of H(x) is chosen as stopping criterion.

4. Bounds For Weighted n-`1 Minimization125

We now establish measurement bounds for weighted n-`1 minimization, serving as lower bounds

for RAMSI.

9
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Algorithm 1: The proposed RAMSI algorithm.

Input: y, Φ, z1, z2, ..., zJ ;

Output: x̂;

1 Initialization : W
(1)
0 = I; W

(1)
j = 0 ∀ 1 ≤ j ≤ J ; u(1) = x(0) = 0; L = L∇f ; λ > 0; ε > 0;

t1 = 1; k = 0;

2 while Stopping criterion is false do

3 k = k + 1;

4 ∇f(u(k)) = ΦT(Φu(k) − y);

5 x(k) = Γ 1
L g

(
u(k) − 1

L∇f(u(k))
)

; where Γ 1
L g

(.) is given by (15);

// Updating weights.

6 w
(k+1)
ji =

(|x(k)
i −zji|+ε)−1

J∑
l=0

(|x(k)
i −zli|+ε)−1

;

// Updating values for next iteration.

7 tk+1 = (1 +
√

1 + 4t2k)/2;

8 u(k+1) = x(k) + tk−1
tk+1

(x(k) − x(k−1));

9 end

10 return x(k);

4.1. Measurement Bound

4.1.1. Signal Traits

We begin our analysis by stating Definitions 4.1, 4.2, and 4.3, which do not limit the generality of130

our analysis but help us formalizing our bounds. Let sj denote the support of each difference vector

x−zj ; namely, ‖x− zj‖0 = sj , where j ∈ {0, . . . , J} and z0 = 0.

Definition 4.1. There are 0 ≤ p < n indices for which the values in all {x − zj}Jj=0 vectors are

nonzero and there are n − q indices, with 0 < q ≤ n, for which the values in all {x − zj}Jj=0 vectors

are equal to zero.135

By rearranging the elements of all difference vectors in the same ordering, we can write the difference

vectors as

x−z0 = (x1 , ..., xp , xp+1 , ..., xq , 0, ..., 0),

x−z1 = (x1−z11, ..., xp−z1p, xp+1−z1(p+1), ..., xq−z1q, 0, ..., 0),

· · ·
x−zJ = (x1−zJ1, ..., xp−zJp, xp+1−zJ(p+1), ..., xq−zJq, 0, ..., 0).

(18)

10
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Consider the following example:

x = (3, 0, 0,−2, 0, 0, 4, 0, 0, 0, 7),

x− z1 = (0, 0, 3, 0, 0, 0, 2, 0, 0,−1, 0),

x− z2 = (4, 0, 6, 0, 0, 3,−1, 0, 0, 0, 8).

In this example, n = 11, s0 = 4, s1 = 3, and s2 = 5. Since at index i = 7 the elements of all {x−zj}2j=0

vectors are nonzero, we have p = 1. Moreover, the elements of all vectors are zero at index i = 2, 5, 8, 9,

hence q = 7. After rearranging the elements in the same ordering of the vectors as in (18), we obtain

x = ( 4, 3, 0,−2, 0, 0, 7, 0, 0, 0, 0),

x− z1 = ( 2, 0, 3, 0, 0,−1, 0, 0, 0, 0, 0),

x− z2 = (−1, 4, 6, 0, 3, 0, 8, 0, 0, 0, 0).

(19)

It is evident that p ≤ min{sj} and q ≥ max{sj}. As such, p and q can be seen as parameters that

express the common part of the support and of the zero positions across the difference vectors. It can

be noted that if q = 0, x = zj = 0 and if p = n, ‖x‖0 = n, where x is not a sparse source as our

consideration.

Definition 4.2. Following the rearrangement in (18), at any given position i ∈ {p + 1, . . . , q}, we140

define di as the number of zero elements out of the J + 1 elements {xi− zji}Jj=0. Under Definition 4.1,

we have that di ∈ {1, . . . , J}.

In the example in (19), at i = 3 we have one zero element across the vectors, thus d3 = 1. At i = 5

there are two zero elements, hence, d5 = 2.

Using Definitions 4.1 and 4.2, we can express the total number of zero elements in (18) as

(J + 1)(n− q) +

q∑

i=p+1

di = (J + 1)n−
J∑

j=0

sj . (20)

145

Definition 4.3. Let i be a given position at the signal and multiple side information vectors. For

any index i, without loss of generality, rearrange the J + 1 elements {xi − zji}Jj=0 in order given by

increasing-values order into {xi − zj′i}Jj′=0, i.e., −∞ = z(−1)i ≤ z0i ≤ z1i ≤ . . .≤ zJi ≤ z(J+1)i = ∞,

where, for convenience, we introduced z(−1)i and z(J+1)i to denote −∞ and ∞, respectively. It can

be noted that we rearrange for each individual index i. Under Definitions 4.1 and 4.2, we define150

ri ∈ {−1, . . . , J} such that xi ∈ (zrii, z(ri+1)i], or alias, sign(xi − zj′i) = (−1)b(ri<j
′), where b(ri < j′)

is defined in (17).

At the example in (19), at index i = 1, x1 = 4 and {zj′1}3j′=−1 = {−∞, 0, 2, 5,∞}. Thus x1 ∈
(z11, z21], i.e., r1 = 1. For convenience, in the rest of the paper, we use notation j instead of j′ denoting

the reordered indices.155
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4.1.2. The Measurement Bound

Based on Definitions 4.1, 4.2, and 4.3, we shall derive a bound on the number of measurements

required by weighted n-`1 minimization to successfully recover the target signal. Our generic bound

is defined by Theorem 4.4, while a simpler but looser bound is described in Section 4.2.

Theorem 4.4. The number of measurements mn-`1 required by weighted n-`1 minimization to recover

the signal x, given measurements y = Φx and J side information signals zj , is bounded as

mn-`1 ≥ 2ān-`1 log
n

s̄n-`1

+
7

5
s̄n-`1 + δn-`1 + 1, (21)

where ān-`1 , s̄n-`1 , and δn-`1 are defined as

ān-`1 =

p∑

i=1

a2
i , (22a)

s̄n-`1 = p+

q∑

i=p+1

(1− ci), (22b)

δn-`1 = (κn-`1 − 1)(s̄n-`1 − p), (22c)

wherein ai =
J∑
j=0

wji(−1)b(ri<j), ci = di

( J∑
j=0

ε
|xi−zji|+ε

)−1

with ε > 0, and

κn-`1 =
2 ·min{ci}√

π log(n/s̄n-`1)(2 ·min{ci} − 1)
. (23)

160

Proof. The proof is given in Appendix Appendix C.

The code computing the quantities is provided in [55].

4.2. Further Analysis and Comparison with Known Bounds

We now relate the derived bound in Theorem 4.4 with the bounds of compressed sensing and165

compressed sensing with prior information, which are reported in Sec. 2.

Corollary 4.4.1 (Relations with the known bounds). The bound mn-`1 for weighted n-`1 minimization

in (21) becomes

(a) the `1-minimization bound m`1 in (5), when W0 = In and Wj = 0 for j ∈ {1, . . . , J}, that is,

mn-`1 ≡ m`1 ≥ 2s0 log
n

s0
+

7

5
s0 + 1, (24)

(b) the `1-`1 minimization bound m`1-`1 in (8), when W0 = W1 = 1
2In and Wj = 0 for j ∈ {2, . . . , J},

that is,

mn-`1 ≡ m`1-`1 ≥ 2h̄ log
n

s̄`1-`1

+
7

5
s̄`1-`1 + 1, (25)

where h̄ is given by (9b) and s̄`1-`1 = s0+s1
2 .
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170

Proof. The proof is given in Appendix Appendix C.

We now compare our bound for weighted n-`1 minimization with the `1-`1 minimization [29, 30, 34]

bound in (8). To this end, we derive a simplified bound in (26), which approximates our bound in

(21). Furthermore, we introduce two simplicified bounds, which are looser bounds—one for each

method—that are independent from the values of x, zj .175

The simplified bound. Our bound for weighted n-`1 minimization in (21) becomes approximately

m̃n-`1 ≥ 2ān-`1 log
n

p
+

7

5
p+ 1. (26)

Our approximation has the following reasoning: Firstly, Lemma Appendix D.1 in Appendix Ap-

pendix D proves that the δn-`1 term in (21) is negative; hence, the bound in (26) is looser. Secondly,

since ε > 0 is very small, we have ci → 1− [see Lemma Appendix D.1 for a quick explanation].

Consequently, s̄n-`1 ≈ p and δn-`1 ≈ 0 from (22b) and (22c), respectively; thereby, leading to our

approximation. This simple bound is easier to evaluate compared to the bound in (21), as we only180

need to compute ān-`1 and p. Furthermore, according to (22a) and Definition 4.1, we can write that

ān-`1 ≤ p ≤ min{sj}, that is, p in (26) is smaller than s0 in (5) and s̄`1-`1 in (25). Consequently, the

simple bound in (26) for weighted n-`1 minimization is sharper than the `1 minimization and the `1-`1

minimization bounds, which means that the bound in (21) is even sharper. For the special case that

p = 0, ān-`1 = 0 from (22a), s̄n-`1 ≈ p, δn-`1 ≈ 0, consequently, from (21) m̃n-`1 ≥ 1.185

The simplified bounds with element-value independence. Weighted n-`1 minimization and

`1-`1 minimization have looser bounds that are independent from the values of x, zj , as given by

m̂n-`1 ≥ 2p log
n

p
+

7

5
p+ 1, (27)

m̂`1-`1 ≥ 2ρ log
n

s̄`1-`1

+
7

5
s̄`1-`1 + 1, (28)

where p is defined in Definition 4.1, ρ = min{s0, s1}, and s̄`1-`1 = s0+s1
2 . We obtain these bounds as

follows: The bounds in (26) and (25) depend on the values of x and zj , with j ∈ {1, . . . , J}, via the

quantities ān-`1 and h̄, respectively. From (22a) and (9b), we observe that ān-`1 ≤ p ≤ min{sj} and

h̄ ≤ min{s0, s1}. Hence, by replacing ān-`1 and h̄ with their maximum value leads to the looser bounds

in (27) and in (28).190

The bounds in (27) and (28) reveal the advantage of using multiple side information signals in

compressed sensing: It is evident that, by definition, p ≤ ρ; hence, m̂n-`1 ≤ m̂`1-`1 showing that the

n-`1 bound is better than the `1-`1 bound. Moreover, the higher the number of side information signals

the smaller the bound is expected to become (because p ≤ min{sj}).
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Furthermore, according to (28), if the side information signal z1 is not good enough, i.e., if s1 � s0,195

then m̂`1-`1 > m`1 because of s̄`1-`1�s0, thereby highlighting the limitations of the `1-`1 minimization

method compared to the proposed weighted n-`1 minimization approach.

Finally, we compare our bound to the existing bound of the weighted `1 minimization with the

prior support, mω`1 in (6). This bound depends on the support s0 and the support estimate’s error

se from prior information that reveals that mω`1 in (6) is worse than m̂n-`1 in (26). If we do not have200

good support for the estimate, i.e., high values of se, then mω`1 in (6) is worse than m`1 in (5), which

is illustrated in Sec. 5.

5. Experimental Results

5.1. Experimental Setup

We consider the reconstruction of a synthetic sparse signal x given known prior signals zj , j =205

1, 2, 3. We generate x from the i.i.d. zero-mean, unit-variance Gaussian distribution, with n = 1000 and

s0 = 128. Firstly, we consider the scenario where the side information signals zj are highly correlated

with the signal x; in this case, zj , j = 1, 2, 3, are generated such that they satisfy sj = ‖x−zj‖0 = 64

similar to the generation in [29, 30]. Moreover, a parameter is controlling the number of positions of

nonzeros for which both x and x − zj coincide. Let us denote this number by ζj . For instance, if210

ζj = 51, x has 51 nonzero positions that coincide with 51 nonzero positions of x − zj . This incurs a

significant error between the source and the side information, given by ‖zj−x‖2/‖x‖2 ≈ 0.56. We also

generate prior information signals that are poorly correlated with x; in this case, we have sj = 256 and

sj = 352. Furthermore, we set ζj = 128, namely, 128 nonzero positions of x coincide with 128 nonzero

positions out of the total 256 or 352 nonzero positions of the side information signals, zj , j = 1, 2, 3.215

This leads to very high errors, e.g., ‖zj −x‖2/‖x‖2 ≈ 1.12 for sj = 256, and the supports sj of x− zj

are much higher than that of x. To constrain the number of cases, we set all sj equal.

5.2. Performance Evaluation

5.2.1. Signal Recovery Accuracy

We now assess the performance of RAMSI against state-of-the-art methods. Furthermore, we220

evaluate the bounds for weighted n-`1 minimization [cf. (21)] against the bounds for classical CS

[cf. (5)], `1-`1 minimization [cf. (8)], weighted-`1 and Modified-CS [cf. (6)]. For a fixed number

of measurements m, the probability of successful recovery Pr(success) is the number of times x is

recovered as x̂ with an error ‖x̂−x‖2/‖x‖2 ≤ 10−2, divided by the total number of 100 Monte-Carlo

iterations (trials), where each trial considers different generated x, z1, z2, z3, Φ.225

Let RAMSI-J-`1 denote the RAMSI algorithm that uses J side information signals, that is, one

(z1), two (z1, z2), or three (z1, z2, z3), where we set ε = 10−5, λ = 10−5. The existing FISTA
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Figure 2: Successful probabilities of the original 1000-D x vs. number of measurements m for RAMSI using one, two,

three side information signals.

[7], FISTA-`1-`1 [30], Mod-CS [21], Reg-Mod-CS [22], and Weighted-`1 [25] algorithms are used for

comparison, where FISTA-`1-`1 denotes the `1-`1 method that uses only one side information (z1).

The support estimate of x that is considered as prior information by the Mod-CS, Reg-Mod-CS, and230

Weighted-`1 algorithms is given by the support of z1. Let m3-`1 , m2-`1 , m1-`1 , m`1-`1 , mω`1 , mmodCS,

and m`1 denote the bounds of RAMSI-3-`1, RAMSI-2-`1, RAMSI-1-`1, FISTA-`1-`1, Weighted-`1,

Mod-CS, and FISTA.

Fig. 2(a) depicts the Pr(success) versus the number of measurements and Table 1 [Column 2]

depicts the bounds for sj = 64. The results show clearly that RAMSI-3-`1 gives the sharpest bound235

and the highest recovery performance. For such good quality of side information, the accurate support
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Table 1: Measurement bounds for s0 = 128 and different sj = 64, 256, 352 values of s1 = s2 = s3 = sj

Bound sj = 64 sj = 256 sj = 352

m3-`1 208 414 414

m2-`1 229 451 451

m1-`1 272 520 519

m`1-`1 [30] 259 485 523

mω`1 ≡ mmodCS [21, 25] 253 911 NA

m`1 [7] 713 713 713

estimate leads to that the bound mω`1 ≡ mmodCS is better than m1-`1 , m`1-`1 , and m`1 [see Column

2 in Table 1]. Furthermore, the performance of RAMSI-2-`1 is higher than those of RAMSI-1-`1 and

FISTA-`1-`1. In this scenario, where the side information is of high quality, FISTA-`1-`1 outperforms

our RAMSI-1-`1 method. Furthermore, Reg-Mod-CS outperforms RAMSI-1-`1, FISTA-`1-`1, Mod-240

CS, and Weighted-`1. In addition, the weighted-`1 method performs better than FISTA but worse

than the remaining schemes. Hence, in this case, the use of equal weights—as in FISTA-`1-`1—leads

to a higher performance than using adaptive weights with only one side information signal, as it is the

case for RAMSI-1-`1. This can be explained by comparing the m1-`1 and the m`1-`1 bounds: It is clear

that ā1-`1 [see (22a)] is greater than h̄ [see (9b)]. By combining this observation with the small value245

of s1—due to the good-quality side information signal z1—, which in turn results in a small s̄`1-`1

value, explains why the bound as well as the recovery performance of FISTA-`1-`1 are better than

those of RAMSI-1-`1 [see magenta and black lines in Fig. 2(a)]. We can conclude that by exploiting

multiple side information signals we can obtain the best performance and when dealing with only one

good-quality side information signal we may choose to reconstruct using equal weights.250

Figs. 2(b) and 2(c) present the reconstruction performance versus the number of measurements

and Table 1 [Columns 3 and 4] present the bounds when the side information signals are less correlated

with the signal of interest, that is, sj = 256 and sj = 352. In this scenario, all RAMSI configurations

outperform the FISTA, FISTA-`1-`1, Weighted-`1, Reg-Mod-CS, and Mod-CS methods. The perfor-

mance of RAMSI-1-`1 is better than those of FISTA-`1-`1, Weighted-`1, Reg-Mod-CS, and Mod-CS.255

In Table 1 [Column 3], we also see that the bound mω`1 ≡ mmodCS in (6) is the worst since the support

estimate se in (6) is high. In Table 1 [Column 4] the bound for Modified-CS is not available since the

support estimate’s error se > s0 is out of the consideration of the bound mω`1 in (6). Interestingly,

in Fig. 2(c), we observe that the accuracy of FISTA-`1-`1 is worse than that of FISTA, i.e., the side

information z1 does not help, however, RAMSI-1-`1 still outperforms FISTA. These results highlight260

the drawback of the `1-`1 minimization method when the side information is of poor quality. Despite
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using poor side information signals, all RAMSI versions achieve better results than FISTA due to the

proposed re-weighted n-`1 minimization algorithm. We observe that the performance of RAMSI-2-`1

and RAMSI-3-`1 is slightly worse than that of RAMSI-1-`1. These small penalties are due to the poor

quality of the side information signals, which has an impact on the iterative update process.265

5.2.2. Side Information Quality-Dependence Analysis

We now assess the impact of the side information quality on the number of measurements required

to successfully reconstruct the target signal. We consider different values for s1 = s2 = s3, ranging

from 20 to 400 (where sj is the support size of the difference vector x−zj). The signal x has s0 = 128

and it is generated as in Sec. 5.1. For a fixed value of s1 = s2 = s3, we report the number of270

measurements required by RAMSI-3-`1, RAMSI-2-`1, RAMSI-1-`1, FISTA-`1-`1, FISTA to achieve a

probability of successful recovery bounded as Pr(success) ≥ 0.98.

Fig. 3 shows that the recovery performance is clearly improved when leveraging side information;

and the more signals are considered the better the performance. However, when the support size

of x − zj meets that of the target signal, the side information does not improve the performance275

anymore. When sj > s0, the performance and the measurement bound of FISTA-`1-`1 are increasing

with the value of s1. Specifically, when s1 > 315, the performance of FISTA-`1-`1 is worse than

that of FISTA, thereby illustrating the limitations of `1-`1 minimization when the side information

is of poor quality. As shown in Fig. 3, the performance of RAMSI—both in terms of the bounds

and the practical results—is robust against poor-quality side information. The bounds are sharper280

when the number of side information signals increases and remain approximately constant when sj

increases after a threshold (indicating increasing-poor side information quality). When sj > 300, the

number of measurements of RAMSI-3-`1 and RAMSI-2-`1 are slightly worse than those of RAMSI-

1-`1, approaching the number of measurements of FISTA [this behavior was also observed in Fig.

2(c)]. To address this issue, we can adaptively select the best among the RAMSI configurations. For285

instance, when one side information is available, we can choose to use equal weights in case of good

side information. Furthermore, we can ensure that RAMSI’s performance is not worse than FISTA

by weighing dominantly on the signal rather than on the side information signals. To do so, we need

to make an estimate of the quality of the side information signals, which is left as a topic for future

research.290

6. Conclusion

We proposed the RAMSI algorithm and established measurement bounds for the problem of signal

recovery under a weighted n-`1 minimization framework. RAMSI incorporates multiple side informa-

tion signals in the problem of sparse signal recovery and iteratively weights them so as to optimize the
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Figure 3: Number of measurements vs. number of nonzeros s1 = s2 = s3 of side information signals given the source

s0 = 128 for RAMSI using one, two, three side information signals.

reconstruction performance. The bounds confirm the advantage of RAMSI in utilizing multiple side in-295

formation signals to significantly reduce the number of measurements and to deal with variations in the

quality of the side information. We experimentally assessed the bounds and the performance of RAMSI

against state-of-the-art methods using numerical sparse signals. The results showed that our bounds

are sharper than existing bounds and that RAMSI outperforms the conventional CS method, the re-

cent `1-`1 minimization method as well as the Modified-CS, regularized Modified-CS, and weighted `1300

minimization methods.

Appendix A. Background on Measurement Bounds

We summarise some key definitions and conditions in convex optimization and linear inverse prob-

lems [11, 12], which are used in the derivation of the measurement bounds for the proposed weighted

n-`1 minimization approach.305

Appendix A.0.1. Convex Cone

A convex cone C ⊂ Rn is a convex set that satisfies C = τC, ∀τ ≥ 0 [12]. For the cone C ⊂ Rn, a

polar cone C◦ is the set of outward normals of C, defined by

C◦ := {u ∈ Rn : uTx ≤ 0, ∀x ∈ C}. (A.1)

A descent cone [12, Definition 2.7] D(g,x), alias tangent cone [11], of a convex function g := Rn → R

at a point x ∈ Rn—at which g is not increasing—is defined as

D(g,x) :=
⋃

τ≥0

{y ∈ Rn : g(x + τy) ≤ g(x)}, (A.2)
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where
⋃

denotes the union operator.

Appendix A.0.2. Gaussian Width

The Gaussian width [11] is a summary parameter for convex cones; it is used to measure the

aperture of a convex cone. For a convex cone C ⊂ Rn, considering a subset C∩Sn−1 where Sn−1 ⊂ Rn

is a unit sphere, the Gaussian width [11, Definition 3.1] is defined as

ω(C) := Eg [ sup
u∈C∩Sn−1

gTu]. (A.3)

where g ∼ N(0, In) is a vector of n independent, zero-mean, and unit-variance Gaussian random

variables and Eg [·] denotes the expectation with respect to g . The Gaussian width [11, Proposition

3.6] can further be bounded as

ω(C) ≤ Eg

[
dist(g , C◦)], (A.4)

where dist(g , C◦) denotes the Euclidean distance of g with respect to the set C◦, which is in turn

defined as

dist(g , C◦) := min
u
{‖g − u‖2 : u ∈ C◦}. (A.5)

Recently, a summary parameter called the statistical dimension δ(C) of the cone C [12] is used to

estimate the convex cone [12, Theorem 4.3]. The statistical dimension is expressed in terms of the

polar cone C◦ as [12, Proposition 3.1]

δ(C) := Eg

[
dist2(g , C◦)]. (A.6)

From (A.4) and (A.6), we can derive the following inequality

ω2(C) ≤ δ(C), (A.7)

which gives a convenient bound for the Gaussian width that will be used in our computations.

Appendix A.0.3. Measurement Condition310

An optimality condition [11, Proposition 2.1], [12, Fact 2.8] for linear inverse problems states that

x0 is the unique solution of (2) if and only if

D(g,x0) ∩ null(Φ) = {0}, (A.8)

where null(Φ) :={x ∈ Rn :Φx=0} is the null space of Φ. We consider the number of measurements

m required to successfully recover a given signal x0 ∈ Rn. Corollary 3.3 in [11] states that, given a

measurement vector y = Φx0, x0 is the unique solution of (2) with probability at least 1−exp(− 1
2 (
√
m−

ω(D(g,x0)))2) provided that m ≥ ω2(D(g,x0)) + 1. Using (A.7), we can write this condition as

m ≥ δ(D(g,x0)) + 1. (A.9)

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix A.0.4. Bound on the Measurement Condition

Using (A.6), the statistical dimension δ(D(g,x)) of a descent cone D(g,x) is

δ(D(g,x)) = Eg

[
dist2(g ,D(g,x)◦)

]
, (A.10)

where D(g,x)◦ is the polar cone of D(g,x) defined in (A.1). Let us consider that the subdifferential

∂g [56] of a convex function g at a point x ∈ Rn is given by ∂g(x) := {u∈Rn : g(y)≥ g(x)+uT(y−
x) for all y∈Rn}. From (A.10) and [12, Proposition 4.1], we obtain a lower bound on δ(D(g,x)) as

δ(D(g,x)) = Eg

[
min
τ≥0

dist2(g , τ ·∂g(x))
]
≤ min

τ≥0
Eg

[
dist2(g , τ ·∂g(x))

]
. (A.11)

In short, we conclude the following proposition.

Proposition Appendix A.1 (Measurement bound for a convex norm function). In order to obtain

the measurement bound for the recovery condition, m ≥ Ug +1, we calculate the quantity Ug given a

convex norm function g :=Rn→R by

Ug = min
τ≥0

Eg

[
dist2(g , τ · ∂g(x))

]
. (A.12)

Appendix B. Proof of Proposition 3.1

Replacing g(x) = λ
∑J
j=0 ‖Wj(x−zj)‖1 in the definition of the proximal operator in (4), we obtain

Γ 1
L g

(x) = arg min
v∈Rn

{λ
L

J∑

j=0

‖Wj(v − zj)‖1 +
1

2
‖v − x‖22

}
. (B.1)

Both terms in (B.1) are separable in v and thus, we can minimize each element vi of v individually as

Γ1
L g

(xi) = arg min
vi∈R

{
h(vi) =

λ

L

J∑

j=0

wji|vi−zji|+
1

2
(vi−xi)2

}
. (B.2)

To solve (B.2) we need to derive ∂h(vi)
∂vi

. Recall from Definition 4.3 that, without loss of generality,

we assume that −∞ = z(−1)i ≤ z0i ≤ z1i ≤ · · · ≤ zJi ≤ z(J+1)i = ∞. When vi ∈ (zri, z(r+1)i) with

r ∈ {−1, . . . , J}, h(vi) is differentiable and ∂h(vi)
∂vi

is calculated as

∂h(vi)

∂vi
=
λ

L

J∑

j=0

wjisign(vi − zji) + (vi − xi), (B.3)

where sign(.) is the sign function. Using the definition of the b(.) function in (17), we have that

sign(vi − zji) = (−1)b(r<j) and thus, we can rewrite (B.3) as

∂h(vi)

∂vi
=
λ

L

J∑

j=0

wji(−1)b(r<j) + (vi − xi). (B.4)
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By setting ∂h(vi)
∂vi

= 0, we obtain:

vi = xi −
λ

L

J∑

j=0

wji(−1)b(r<j). (B.5)

Since vi ∈ (zri, z(r+1)i), via (B.5) we have that

zri +
λ

L

J∑

j=0

wji(−1)b(r<j) <xi<z(r+1)i+
λ

L

J∑

j=0

wji(−1)b(r<j). (B.6)

In the following Lemma Appendix B.1, we prove that, in the remaining range value of xi, namely,

in the case that

zri+
λ

L

J∑

j=0

wji(−1)b(r−1<j)≤ xi≤ zri+
λ

L

J∑

j=0

wji(−1)b(r<j), (B.7)

the minimum of h(vi) is obtained when vi = zri.

Lemma Appendix B.1. Given that xi is bounded as in (B.7), the function h(vi) defined in (B.2) is315

minimized when vi = zri.

Proof. Let us express h(vi) as

h(vi) =
λ

L

J∑

j=0

wji|(vi−zri)− (zji−zri)|+
1

2
[(vi−zri)− (xi−zri)]2. (B.8)

Applying the inequality |a− b| ≥ |a| − |b|, with a, b ∈ R, on the first summation term and expanding

the second term, we obtain:

h(vi) ≥
λ

L

J∑

j=0

wji|vi−zri| −
λ

L

J∑

j=0

wji|zji−zri|+
1

2
(vi − zri)2−(vi−zri) · (xi − zri)+

1

2
(xi−zri)2. (B.9)

Using the basic inequality −(vi − zri) · (xi − zri) ≥ −|vi − zri| · |xi − zri|, we can express (B.9) as

h(vi)≥ |vi−zri|
λ

L

J∑

j=0

wji−|vi−zri| · |xi−zri|+
1

2
(vi−zri)2 − λ

L

J∑

j=0

wji|zji−zri|+
1

2
(xi−zri)2. (B.10)

At this point, via (B.7) we obtain

− λ

L

J∑

j=0

wji ≤ xi − zri ≤
λ

L

J∑

j=0

wji ⇒ |xi − zri| ≤
λ

L

J∑

j=0

wji. (B.11)

We now observe that the part including vi in the right hand side of (B.10) can be written as

|vi − zri|
(λ
L

J∑

j=0

wji − |xi − zri|
)

+
1

2
(vi − zri)2. (B.12)

Taking into account (B.11), the expression in (B.12) and, in turn h(vi), are minimized when vi =

zri.
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In summary, via (B.5) and Lemma Appendix B.1, we obtain

Γ 1
L g

(xi) =





xi − λ
L

J∑
j=0

wji(−1)b(r<j), if (B.6)

zri, if (B.7).

(B.13)

Appendix C. Proof of Theorem 4.4 and Corollary 4.4.1320

We begin by stating some important results that help us proving Theorem 4.4 and Corollary 4.4.1.

Recall that the probability density of the normal distribution N(0, 1) with zero-mean and unit

variance ψ(x) is given by

ψ(x) :=
1√
2π
e−x

2/2. (C.1)

Our formulations consider the following inequality, which is stated in [30], that is

(1− x−1)√
π log(x)

≤ 1√
2π
≤ 2

5
, (C.2)

for all x > 1. Moreover, adhering to the formulations in [30], we use the following expressions in our

derivations:

A(x) :=
1√
2π

∫ ∞

x

(v − x)2e−v
2/2dv, (C.3a)

B(x) :=
1√
2π

∫ x

−∞
(v − x)2e−v

2/2dv, (C.3b)

for which we have that

A(0) = B(0) = 1/2. (C.4)

When x 6= 0, the following inequalities have been derived in [30]:

A(x) ≤





ψ(x)/x, x > 0

x2 + 1, x < 0
(C.5a)

B(x) ≤




−ψ(x)/x, x < 0

x2 + 1, x > 0.
(C.5b)

Lemma Appendix C.1. Given x ∈ (0, 1] and τ > 0 for ψ(x) given in (C.1), we have

ψ(τx)

τx
≤ 1√

2π

1− x2

τx
+ x

ψ(τ)

τ
. (C.6)

Proof. Using (C.1) the left hand side of (C.6) becomes

ψ(τx)

τx
=

1√
2π

e−τ
2x2/2

τx
. (C.7)

Applying Bernoulli’s inequality on e−τ
2x2/2 leads to

e−τ
2x2/2 =

(
1 + (e−τ

2/2 − 1)
)x2

≤ 1 + x2(e−τ
2/2 − 1), (C.8)

where 0<x≤1 and (e−τ
2/2−1)>−1 given that τ >0. Combining (C.7) and (C.8) leads to the proof.
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Proof of Theorem 4.4. We derive the bound based on Proposition Appendix A.1 by firstly computing

the subdifferential ∂g(x) and then the distance between the standard normal vector g to ∂g(x). Under

Definitions 4.2 and 4.3, let us recall that there are di consecutive zero elements at any i ∈ {p+1, . . . , q},
namely, {xi − zji}li+di−1

j=li
= 0, with li ∈ {0, . . . , J} being an auxiliary index indicating the start of the

zero positions. Under Definitions 4.1, 4.2, 4.3, and the weights in (14), the elements of the vectors u

in the subdifferential ∂g(x) are expressed as

ui = ai, i ∈ {1, . . . , p},
ui ∈ [bi − ci, bi + ci], i ∈ {p+ 1, . . . , q},

ui ∈
[
−

J∑
j=0

wji,
J∑
j=0

wji
]

= [−1, 1], i ∈ {q + 1, . . . , n}.
(C.9)

where

ai =

J∑

j=0

wji(−1)b(ri<j), (C.10a)

bi =
∑

j /∈{li,...,li+di−1}
wji(−1)b(ri<j), (C.10b)

ci =

li+di−1∑

j=li

wji = di
ηi
ε
. (C.10c)

Using (A.5) and (C.9), we can compute the distance from the standard normal vector g to the

subdifferential ∂g(x) as

dist2(g , τ · ∂g(x))=

p∑

i=1

(gi−τai)2+

q∑

i=p+1

(
P2(gi−τ(bi+ci))+P2(−gi+τ(bi−ci))

)
+

n∑

i=q+1

P2(|gi|−τ),

(C.11)

where P(a) := max{a, 0} returns the maximum value between a ∈ R and 0. Taking the expectation of

(C.11) with respect to g delivers

Eg [dist2(g , τ · ∂g(x))] = p+ τ2

p∑

i=1

a2
i +

1√
2π

q∑

i=p+1

∫ ∞

τ(bi+ci)

(v − τ(bi + ci))
2e−v

2/2dv

+
1√
2π

q∑

i=p+1

∫ τ(bi−ci)

−∞
(v − τ(bi − ci))2e−v

2/2dv +

√
2

π

n∑

i=q+1

∫ ∞

τ

(v − τ)2e−v
2/2dv. (C.12)

Replacing the expressions in (C.3a), (C.3b) in (C.12) gives

Eg [dist2(g , τ · ∂g(x))]=p+τ2

p∑

i=1

a2
i+

q∑

i=p+1

A
(
τ(bi+ci)

)
+

q∑

i=p+1

B
(
τ(bi − ci)

)
+ 2

n∑

i=q+1

A(τ). (C.13)

At this point, it is worth emphasizing the advantage of the adaptive weights [see (14)] in the

proposed method, the values of which depend on the correlation of the side information with the
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target signal. Focusing on a given index i ∈ {p + 1, . . . , q}, let us observe the weight contribution in

the expressions of bi and ci, defined in (C.10b) and (C.10c), respectively. The weights wji in ci are

considerably higher than those in bi, as in the former case the side information signals zji are equal to

the source xi. Moreover, we recall that a small positive parameter ε is introduced in the denominator

of the weights so as to avoid division by zero when xi = zji. The ε parameter can ensure that ci in

(C.10c) is always greater than |bi| in (C.10b). Hence, we always have bi + ci > 0 and bi− ci < 0. With

these observations we conclude that the arguments of A(·) and B(·) in (C.13) are respectively positive

and negative. Applying inequality (C.5a) for x > 0 on the expression of A(·) as well as inequality

(C.5b) for x < 0 on the expression of B(·), we obtain the following bound for the Ug quantity [which

is defined in (A.12)]:

Ugn-`1
≤ min

τ≥0

{
p+ τ2

p∑

i=1

a2
i +

q∑

i=p+1

(ψ(τ(bi + ci))

τ(bi + ci)
+
ψ(τ(ci − bi))
τ(ci − bi)

)
+ 2

n∑

i=q+1

ψ(τ)

τ

}
, (C.14)

where ψ(·) is the zero-mean, unit-variance normal distribution defined in (C.1). Applying (C.6) on the

second sum in (C.14) gives

Ugn-`1
≤ min

τ≥0

{
p+τ2

p∑

i=1

a2
i+

q∑

i=p+1

( 1− (bi+ci)
2

τ
√

2π(bi+ci)
+

1− (ci − bi)2

τ
√

2π(ci − bi)
+ci

2ψ(τ)

τ

)
+2(n− q)ψ(τ)

τ

}
. (C.15)

⇒ Ugn-`1
≤min
τ≥0

{
p+ τ2

p∑

i=1

a2
i +

q∑

i=p+1

1√
2π

2ci
τ

( 1

c2i − b2i
− 1
)

+
(

(n− q) +

q∑

i=p+1

ci

)
2
ψ(τ)

τ

}
. (C.16)

From the definitions of bi and ci in (C.10b) and (C.10c), respectively, we have

bi ≤
∑

j /∈{li,...,li+di−1}
wji = 1− ci, (C.17)

where we used the constraint
∑J
j=0 wji = 1. Hence, the second summation term in (C.16) is bounded

as
q∑

i=p+1

1√
2π

2ci
τ

( 1

c2i − b2i
− 1
)
≤

q∑

i=p+1

4√
2πτ

ci
2ci − 1

(1− ci) (C.18)

≤ 4 ·min{ci}√
2πτ(2 ·min{ci} − 1)

q∑

i=p+1

(1− ci), (C.19)

where (C.18) is obtained by using that bi ≤ 1− ci and (C.19) holds from the fact that the term ci
2ci−1

is maximized when ci is minimized (recall that ci > 0). For simplicity, let us denote

ān-`1 =

p∑

i=1

a2
i , (C.20a)

κn-`1 =
4 ·min{ci}√

2πτ(2 ·min{ci} − 1)
, (C.20b)

s̄n-`1 = q −
q∑

i=p+1

ci = p+

q∑

i=p+1

(1− ci). (C.20c)
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Substituting the quantities of (C.20a), (C.20b), (C.20c), and using inequality (C.19) in (C.16) gives

Ugn-`1
≤ min

τ≥0

{
p+ ān-`1τ

2 + κn-`1(s̄n-`1 − p) + (n− s̄n-`1)
2ψ(τ)

τ

}
,

which using the definition of ψ(·) can be written as

Ugn-`1
≤ min

τ≥0

{
ān-`1τ

2 + (n− s̄n-`1)
2√
2π

e−
τ2

2

τ
+ s̄n-`1 + (κn-`1 − 1)(s̄n-`1 − p)

}
. (C.21)

To derive a bound as a function of the source signal x, we need to select a parameter τ > 0. Setting

τ =
√

2 log(n/s̄n-`1) yields

Ugn-`1
≤ 2ān-`1 log

n

s̄n-`1

+
s̄n-`1(1− s̄n-`1/n)√
π log(n/s̄n-`1)

+ s̄n-`1 +δn-`1 , (C.22)

where

δn-`1 = (κn-`1 − 1)(s̄n-`1 − p), (C.23)

and where we have replaced the selected value of τ in (C.20b), thereby obtaining the κn-`1 definition
reported in (23).

Applying inequality (C.2) on the second term of the right hand side of (C.22) gives

Ugn-`1
≤ 2ān-`1 log

n

s̄n-`1

+
7

5
s̄n-`1 + δn-`1 . (C.24)

Bearing in mind that mn-`1 ≥ Ugn-`1
+ 1 and by combining (C.24) with (C.20), (C.10), and (C.23)325

leads to the proof.

Proof of Corollary 4.4.1. We start with Relation (a). Under the conditions that W0 = In and Wj = 0

for j ∈ {1, . . . , J}, we have that s̄n-`1 = p = s0 and ān-`1 = p = s0, where we used the definitions in

(C.20a), (C.20c). Consequently, from (C.23), δn-`1 = 0. Replacing these values of ān-`1 , s̄n-`1 , δn-`1 in

our bound, defined in (21), leads to the `1 minimization bound in (5).330

To reach Relation (b), given that W0 = W1 = 1
2In and Wj = 0 for j ∈ {2, . . . , J}, let us first

denote two subsets, I1 and I2, as

I1 :=
{
i ∈ {p+ 1, . . . , q} : bi + ci = 1, bi − ci = 0

}
, (C.25a)

I2 :=
{
i ∈ {p+ 1, . . . , q} : bi + ci = 0, bi − ci = −1

}
. (C.25b)

Via the definitions of bi and ci—see (C.10b) and (C.10c), respectively—and since i ∈ {p + 1, . . . , q},
we observe that i ∈ I1 or i ∈ I2.

Replacing (C.25a) and (C.25b) in (C.13) leads to

Eg [dist2(g , τ ·∂g(x))]=p+τ2

p∑

i=1

a2
i+
∑

i∈I1
A(τ)+

∑

i∈I1
B(0)+

∑

i∈I2
A(0)+

∑

i∈I2
B(−τ)+2

n∑

i=q+1

A(τ). (C.26)
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By combining (C.4), (C.5a), and (C.5b) with (C.26), we obtain the following bound for the Ug quantity

[defined in (A.12)]:

Ug`1-`1
≤ min

τ≥0

{
p+ τ2

p∑

i=1

a2
i +

q∑

i=p+1

1

2
+

q∑

i=p+1

ψ(τ)

τ
+ 2

n∑

i=q+1

ψ(τ)

τ

}
, (C.27)

which can further be elaborated to

Ug`1-`1
≤ min

τ≥0

{
τ2

p∑

i=1

a2
i +

1

2
(p+ q) + (2n− (p+ q))

e
−τ2
2√

2πτ

}
. (C.28)

In the `1-`1 minimization case, there is a single side information signal and no weights, that is, di = 1

and J = 1 in (20) under Definitions 4.1 and 4.2; thus, we have p+ q= s0 + s1. Combining this result

with (9b) gives
∑p
i=1 a

2
i = h̄.335

Let us now denote s̄`1-`1 = s0+s1
2 and set τ =

√
2 log(n/s̄`1-`1); thus, we have

Ug`1-`1
≤ 2h̄ log

n

s̄`1-`1

+ s̄`1-`1 +
s̄`1-`1(1− s̄`1-`1

n )√
2π log( n

s̄`1-`1
)
. (C.29)

Applying (C.2) on the third term of the right hand side of (C.29) gives

Ug`1-`1
≤ 2h̄ log

n

s̄`1-`1

+
7

5
s̄`1-`1 . (C.30)

Finally, we obtain the `1-`1 minimization bound [29, 30, 34] in (8) as

m`1-`1 ≥ 2h̄ log
n

s̄`1-`1

+
7

5
s̄`1-`1 + 1, (C.31)

where s̄`1-`1 = s0+s1
2 = s0 + ξ

2 , with ξ defined in (9a).

Appendix D. Supporting Lemmas

Lemma Appendix D.1. The value of δn-`1 in the definition of the bound for weighted n-`1 minimization—

given in (21)—is negative.

Proof. Recall the definition of δn-`1 given in (C.23). By the definition of s̄n-`1 in (C.20c), it is clear

that (s̄n-`1−p) > 0; this is because ci < 1 [see (C.10c)]. Hence, the sign of δn-`1 depends on the term

(κn-`1 − 1). From (C.20b), it is clear that κn-`1 depends on ci, which is defined as

ci = di

(
di +

∑

j /∈{li,...,li+di−1}

ε

|xi − zji|+ ε

)−1

. (D.1)

As ε > 0 and very small, we can say that ci → 1−. As a result, κn-`1 is approximately given by

κn-`1 ≈
4√
2πτ

≈ 2√
π log(n/s̄n-`1)

, (D.2)
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where in the proof of Theorem 4.4 we have set that τ =
√

2 log(n/s̄n-`1). We observe that κn-`1 < 1340

if
s̄n-`1

n < 0.28, where s̄n-`1≈p ≤ min{sj} [see (C.20c) and Definition 4.1]. In Lemma Appendix D.2,

we prove that when p
n < 0.23 then m̂n-`1 in (27) is less than the source dimension, n. Otherwise,

the required number of measurements m̂n-`1 is higher than n, signifying the failure of the algorithm2.

Hence, we get that (κn-`1 − 1) < 0, thereby proving that δn-`1 < 0.

Lemma Appendix D.2. Given a sparse signal x∈Rn with ‖x‖0 = s0 and side information signals345

zj ∈ Rn with ‖x−zj‖0 = sj , ∀j ∈ {1, . . . , J}, the number of measurements required for weighted n-`1

minimization to recover x—given in (27)—is less than the source dimension n when p
n < 0.23.

Proof. Let us assume that the number of measurements in the bound of (27) satisfies the condition

m̂n-`1 < n, namely, we have

2p log
n

p
+

7

5
p < n. (D.3)

By substituting γ = n
p , γ ∈ R, in (D.3) we get

2 log γ +
7

5
< γ. (D.4)

By setting f(γ) = γ − 2 log γ − 7
5 and using calculus we can show that f(γ) > 0 when γ > 4.33, or

else, p
n < 0.23.
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