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a b s t r a c t 

In this paper, we propose an image encryption algorithm based on the memristive chaotic system, ele- 

mentary cellular automata (ECA) and compressive sensing (CS). Firstly, the original image is transformed 

by discrete wavelet transform, and the sparse coefficient matrix is obtained. Next, a zigzag scrambling 

method and the ECA are adopted to scramble the sparse coefficient matrix successively, and this pro- 

cess may effectively improve the scrambling degree. And then, the measurement matrix produced by the 

memristive chaotic system is used to compress and perceive the scrambled image, and the final cipher 

image is obtained. In addition, SHA-512 hash function value of the original image is generated to calculate 

the parameters for zigzag confusion, the initial values of the chaotic system and the initial configurations 

of the ECA, which enhances the correlation between the algorithm and the plain image and makes the 

proposed encryption scheme resist the known-plaintext and chosen-plaintext attacks. Moreover, our algo- 

rithm can compress and encrypt the image simultaneously by use of CS, which may reduce the amount 

of data and storage space. Simulation results and performance analyses demonstrate the security and 

robustness of the proposed scheme. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the advent of the Internet era, the vast majority of infor-

mation in our lives cannot be separated from the support of the In-

ternet. We use it for video conferencing, sending some information

and so on. Some image information may be involved in personal

privacy, trade secrets, military secrets and even national security,

thus it will be very serious that attackers copy, malicious spread

and tamper with the images in the transmission process through

the network [1–3] . Therefore, in order to protect the image infor-

mation over the network, many image encryption algorithms have

been presented by use of optical transformations [4,5] , DNA com-

puting [6–9] , Arnold transform [10,11] , Latin squares [12] , bit-level

permutation [13–15] and other methods. These algorithms can en-

crypt image information effectively and ensure data security. 

Recently, with the arrival of big data era, the volume of infor-

mation is constantly increasing, the amount of data that needs to

be transmitted is generally larger and the information redundancy

is high. In order to reduce the amount of data transmitted through
∗ Corresponding author. 
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he network, the image needs to be compressed and then entered

nto transmission channel. At present, it has become a hotspot of

nformation security research to encrypt images with compressive

ensing (CS) and other encryption methods, which has great appli-

ation potential and high practical value. The theory of CS points

ut that: by developing the sparse characteristic of the signal, the

iscrete sample of the signal is obtained by random sampling un-

er the condition of far less than the Nyquist sampling rate, and

hen the reconstruction signal is perfect by the nonlinear recon-

truction algorithm. In 2006, Candes and Donoho formally pro-

osed the concept of CS [16,17] , and after that many compression

nd encryption algorithms have also been presented based on CS

18–21] . 

The chaotic system has the characteristics of high sensitivity

o initial conditions and control parameters, and is widely used

n the field of image encryption to further enhance the random-

ess of the algorithm and keys [22–25] . Currently, the chaotic

ap can be divided into two categories: one-dimensional (1D) and

igh-dimensional (HD) chaotic map. In recent years, researchers

ave combined the 1D chaotic map and CS to design many im-

ge encryption algorithms [18–20,26–29] . For example, Zhou et al.

27] used the logistic chaotic map to generate two measurement

atrices for CS, next the original image was compressed and en-

https://doi.org/10.1016/j.sigpro.2018.02.007
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C  
rypted simultaneously from two directions, and then re-encrypted

he obtained image by non-linear fractional Merlin transform to

btain the final cipher image. Xiao et al. [28] adopted Arnold trans-

orm to scramble the transform domain coefficients of the origi-

al image, and then the watermark was adhered to the scrambled

ata. By CS, a set of watermarked measurements was obtained as

he watermarked cipher image. In his algorithm, the measurement

atrices were controlled by the chaotic map. In contrast, the HD

haotic map, especially the hyper-chaotic map, has more variables

nd parameters, with more complex structure and better chaotic

erformance [30] . Hence, some researchers put forward some

mage encryption algorithms based on HD chaotic map and CS

30–34] . For instance, Zhou et al. [31] firstly compressed and

ncrypted the plain image, then the resulting image was re-

ncrypted by the cyclic shift operation controlled by a hyper-

haotic system, the cyclic shift operation can effectively change the

alues of the pixel. Tong et al. [32] used the hyper-chaotic system

o obtain three keys, and then utilized them to encrypt and com-

ress the color image. 

Cellular automata (CA) can produce complex and random pat-

erns out of simple rules, and it has been widely used in encryp-

ion field [35–38] . Many image encryption algorithms used CA in

iffusion phase, which enhances the security of cryptographic sys-

em. Such as, in Ref. [35] , two-dimensional reversible memory cel-

ular automata was associated with quadtree decomposition strat-

gy and applied to the diffusion process. In addition, CA may be

sed in the confusion process. For example, Abdel et al. presented

wo encryption algorithms based on CA, one using elementary cel-

ular automata (ECA) [36] , and the other using two-dimensional CA

37] , and these algorithms both achieved a good scrambling effect.

owever, the above proposed algorithms had small key spaces;

hat’s more, the cipher image has the same size with the plain

mage, and the image redundancy information was not reduced.

n recent years, researchers have combined cellular automata with

ompressive sensing [39,40] . Among them, Chen et al. [39] adopted

CA to scramble the sparsely transformed image. And in the sec-

nd stage of encryption, Kronecker compressive sensing (KCS) was

dopted to encrypt and compress the scrambled image. The ex-

erimental results showed that the proposed scrambling method

ased on ECA had great performance in terms of scrambling and

niformity of sparsity levels. But the algorithm has low correlation

ith the plain image and it is easy to attack by known-plaintext

nd chosen-plaintext attacks. Thus, increasing the correlation be-

ween the encryption scheme and the plain image is necessary to

pgrade the security level of the encryption algorithm. 

Based on the above analyses, in the premise of guaranteeing in-

ormation security, we introduce an image encryption algorithm

ased on the memristive chaotic system, elementary cellular au-

omata and compressive sensing. Our contributions are as follows.

irst of all, the original image can be effectively encrypted and

he image information is protected. In the scrambling phase, the

igzag path and ECA are used. Using ECA, we can obtain complex

lobal activities through simple cellular rules to realize fast scram-

ling process. It has good scrambling effect and high security. Sec-

ndly, after the plain image is scrambled, CS is utilized to com-

ress and encrypt the confused image to minimize data and save

he transmission time over the network. And the adoption of ran-

om zigzag and ECA confusion scheme in scrambling phase can

ffectively enhance the compression performance. Moreover, the

HA-512 hash function value of the original image is used to com-

ute the parameters for encryption, thus, the proposed algorithm

s highly sensitive to the plain image. In addition, a new kind of

agnetic-controlled memristive chaotic system is applied to pro-

uce the measurement matrix for CS, and the measurement ma-

rix may be obtained by some parameters. When the receivers get
a  
hem, they can easily recover the plain image. So from this point,

ur algorithm is easy to manipulate in real condition. 

The rest of the paper is organized as follows. In Section 2 , some

elated knowledge is given. In Section 3 , the proposed encryp-

ion and decryption scheme is described. Numerical simulations

re presented in Section 4 . Performance analyses of the proposed

lgorithm are demonstrated in Section 5 . And the last section con-

ludes our work. 

. Preliminaries 

.1. The magnetic-controlled memristive chaotic system 

In recent years, the general chaotic system has been developed

ore comprehensively. Besides the classical chaotic systems such

s Chen system and Lorenz system, there are some improved sys-

ems with more superior non-linear characteristics. Among them,

in et al. [41] proposed a new magnetic-controlled memristive

haotic system. They analyzed the relationship between voltage

nd current of a new type of magnetic-controlled memristor model

ased on hyperbolic sine function, found its typical characteris-

ic of memristor, and then proposed the new chaotic system. The

emristive chaotic system is defined as 
 

 

 

 

 

˙ x = −ax + by + yz 
˙ y = −0 . 5 xz + cx − dxW ( ϕ ) 
˙ z = 0 . 8 xy − rz 
˙ w = gx 

(1) 

here W (ϕ) = cosh ( 0 . 02 w ) , x, y, z, w represent the state variables

f the chaotic system, a, b, c, d, g, r are the control parameters of

he chaotic system and are real constant, when a = 10, b = 8, c = 15,

 = 5.2, g = 5 and r ∈ (1.21, 3.14), r ∈ (2.96, 4.05) or r ∈ (4.25, 5.82),

he system is in a state of chaos, in particular, when r = 1.5, the

ystem has a typical chaotic attractor, as shown in Fig. 1 . 

The experiment result shows that the memristive chaotic sys-

em has strong aperiodicity, strong sensitivity to initial values,

arge parameter space, and can be easily realized in physics [41] .

pplying it to image encryption, some secure encryption algo-

ithms can be designed. 

.2. Cellular automata and elementary cellular automata 

Cellular automata (CA) are a kind of discrete dynamical systems

35] . In general, a CA consists of a certain number of identical cells,

ach of which can take a finite number of states. A state is the

alue of a cell in a discrete time step, especially the first state is

alled the initial state (the initial configuration) [39] , usually we

ill write it as {0, 1}. The cells are distributed in space in one or

ore dimensions. At every time step, all cells update their states

ynchronously by applying rules (also called transition function),

nd we call this process an evolution [36] . Evolution is the process

f transferring the state of all cells to the next state according to

he rules [39] . At the time of evolution, the state of a cell and the

tate of its neighbor used as input determine its next state, where

he rule defines the deterministic way to update the synchroniza-

ion state of all cells. In theory, the cellular space can be extended

ndefinitely, but in the actual process, it is difficult to realize this

deal condition on the computer, so we need to define different

oundary conditions. The existing boundary conditions are mainly

hree types: periodic type, reflective type and fixed value type. The

eriodic boundary means that the left (right) neighborhood of the

eftmost (rightmost) cell is the rightmost (leftmost) cell, as shown

n Fig. 2 . 

Since there are a lot of parameters that need to be determined,

A differ in dimension, possible states, neighborhood relationships

nd rules. CA has many types and these types differ in terms of
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Fig. 1. Chaotic attractor. (a) ( x - y ) plane, (b) ( x - z ) plane, (c) ( y - z ) plane, (d) ( x - y - z ) plane. 

B A C ... B

Fig. 2. Periodic boundary conditions. 

Table 1 

The map of the rule 170. 

111 110 101 100 011 010 001 0 0 0 

1 0 1 0 1 0 1 0 
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complexity and behavior. Elementary cellular automata (ECA) are

the simplest class of one-dimensional CA. Its state set S has only

two elements, that is, the number of states k = 2, and the neighbor

radius r = 1. Therefore, the evolution of ECA can be described en-

tirely by each cell and its neighboring cells [42] , i.e., states of a cell

and its two neighbor cells (left neighborhood and right neighbor-

hood) determine the next state of the cell and it may be shown as

stat e r+1 ( i ) = f ( stat e r ( i − 1 ) , s tat e r ( i ) , s tat e r ( i + 1 ) ) (2)

where f ( •) represents map rule, and state r ( i ) denotes the state of

the i th cell for the r th round evolution [39] . It has two possible

values for each cell (usually 0 or 1) and the rules only depend on

the values of the nearest neighbors. Consequently, the evolution of

an elementary cellular automaton can completely be described by

a table of the possible combination of each cell and its neighbors

(8 possible states). The ECA are usually referenced based on this

table as there are only 256 elementary cellular automata (2 8 ), each

of which can be indexed with an 8-bit binary number. For ex-

ample, the rule 170 (binary: 10,101,010) is that stat e r+1 (i ) = 0

for stat e r ( i − 1 ) , s tat e r (i ) , s tat e r ( i + 1 ) ∈ { 110 , 100 , 010 , 0 0 0 }
and stat e r+1 (i ) = 1 for stat e r ( i − 1 ) , s tat e r (i ) , s tat e r ( i + 1 ) ∈
{ 111 , 101 , 011 , 001 } as shown in Table 1 . 

2.3. Compressive sensing (CS) 

Compressive sensing theory asserts that if the signal is natu-

rally sparse or sparse in some transform domains, the high dimen-

sional signal can be projected into a low dimensional space by a

measurement matrix unrelated to the sparse base, and these few

projections contain enough information about the reconstructed

signal, so that the original signal can be reconstructed with high

probability by solving the optimization problem with these projec-

tions [43] . 

Suppose that a signal x of length N is K -sparse and it can be

expressed as 

x = �s (3)
here s is the transform coefficient vector that contains at most K

 K << N ) important nonzero entries, � is an orthogonal transform

atrix (also called sparse basis matrix). A measurement matrix �

f length M × N (M < N) , which is unrelated to the � , is adopted

o perform a compression measurement of the signal and shown

s 

 = �x (4)

It is possible to obtain M linear observation y , which contains

nough information about the reconstructed signal x . Based on

qs. (3) and (4) , the whole process can be represented as 

 = �x = ��s = �s (5)

Then x can be recovered by solving the optimization problem.

he optimization problem can be regarded as the solution of p -

orm problem, which is based on 1-norm optimization problem,

nd it can be denoted as 

in ‖ 

s ‖ 1 s . t . y = �s (6)

The K -sparse signal s can be accurately recovered, and the orig-

nal signal can be reconstructed exactly as long as M ≥ K log 2 ( 
N 
K )

18] . 

The basic model of CS theory mainly includes three major as-

ects: the sparse representation of signals, compression measure-

ent and signal reconstruction [44] . Common sparse representa-

ions include: curvelet transform, discrete cosine transform (DCT)

nd discrete wavelet transform (DWT) [21] , etc. Signal reconstruc-

ion is the process of accurately reconstructing the original sig-

al or high-dimensional image by using the low dimensional data

f the compression measurement [44] , common reconstruction al-

orithms are: orthogonal matching pursuit (OMP) algorithm, sub-

pace pursuit (SP) algorithm and smooth l 0 norm (SL 0 ) algorithm

29] , and here, the SL 0 algorithm will be adopted. In the compres-

ion measurement, the linear projection of the signal needs a mea-

urement matrix unrelated to the sparse transformation matrix. At

resent, according to the restricted isometry property (RIP) condi-

ion of the measurement matrix, some scholars have proposed a

umber of measurement matrices, such as Gaussian random ma-

rix, partial orthogonal matrix, Hadamard matrix and circular ma-

rix [44] . 

In this paper, the measurement matrix � is constructed as a

ircular matrix, and each row of the circular matrix is produced by

ts previous row moving to the right. Therefore, the circular matrix

equires less independent variables, fast computation speed and

asy hardware implementation, and has good performance [45] .

nd, the original row vector of the circular matrices is controlled

y the memristive chaotic map. 
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(a) The original matrix A (b) A zigzag path for confusion

(c) The matrix after zigzag confusion with starting pixel (1, 1)

(d) The matrix after zigzag confusion with starting pixel (2, 3)

Fig. 3. A zigzag path for confusion. 
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The measurement matrix � with the size of m × N is

onstructed as follows: Suppose that the original row vector

( 1 , N ) = U , and U is a 1 × N vector generated by the memristive

haotic map. To reduce the relevance among the column vectors,

he first element of the vector �( j , 1) is set as λ�( j − 1 , N ) , where

 ≤ j ≤ m, λ> 1, and then � may be generated as [29] 

�( j, 1 ) = λ · �( j − 1 , N ) 
�( j, 2 : N ) = �( j − 1 , 1 : N − 1 ) 

(7) 

The following conclusions can be drawn from the generation

rocess of the measurement matrix: first of all, some key param-

ters can be used to generate the measurement matrix for com-

ressive sensing. In real-time communication networks, we just

eed to transfer these parameters instead of the entire matrix. The

mount of data transferred is largely reduced. Secondly, measure-

ent matrix is produced by the memristive chaotic system, which

s highly sensitive to the parameters and initial values. Once the

arameters are changed, we can get different measurement matri-

es, and further obtain different compression results. 

.4. Zigzag confusion 

A zigzag path shown in Fig. 3 (b) is used to confuse the sparse

oefficient matrix of the plain image, and it can disturb the high

orrelation among image pixels to increase the security level of

he encryption algorithm [46] . For zigzag confusion, location of the

tarting pixel in the matrix is very important, different locations

an generate different confusion effects. For instance, for the origi-

al matrix as shown in Fig. 3 (a), if the location of the starting pixel

s (1, 1), that means we start traversing the path from the first

ixel, and the matrix after zigzag confusion is shown in Fig. 3 (c).

f the location is (3, 4), which means that we start traversing the

ath of the matrix from pixel number 3 × 4 = 12, and the matrix

fter zigzag confusion is illustrated in Fig. 3 (d), and in Fig. 3 (d),

he 12th pixel is 6. In this paper, in order to improve the depen-

ence of the encryption algorithm on the original image, we calcu-

ate the starting location of zigzag confusion according to the SHA

12 hash value of the plain image, and then different plain images

ave different confusion effects, which can upgrade the capabil-
ty of the proposed encryption algorithm to resist known-plaintext

nd chosen-plaintext attacks [46] . 

. The proposed encryption and decryption scheme 

.1. The generation of initial values of the chaotic system 

In the paper, in order to increase the relationship between the

ncryption scheme and the plain image, the SHA-512 hash function

alue of the original image is utilized to compute the parameters

or encryption. Before encrypting the plain image, its 512-bit hash

alue is calculated as the secret key K, then it is divided into 8-bit

locks, so it can be converted to 64 decimal digits k 1 , k 2 , ..., k 64 .

hen the initial values of the memristive chaotic system x 0 , y 0 , z 0 
nd w 0 may be calculated. The specific steps are as follows: 

Step 1: Regard every 8 bits as a set, convert 512-bit secret key

 to 64 decimal numbers k 1 , k 2 , ..., k 64 , and then get h 1 , h 2 , h 3 , h 4 
ia 
 

 

 

 

 

 

 

 

 

h 1 = 

1 
256 ( k 1 � k 2 � k 3 � ...... � k 16 ) + t 2 

h 2 = 

1 
256 ( k 17 � k 18 � k 19 � ...... � k 32 ) × t 3 

h 3 = 

1 
256 ( k 33 � k 34 � k 35 � ...... � k 48 ) 

h 4 = 

sum ( k 49 , k 50 ,..., k 64 ) 
max ( k 49 , k 50 ,..., k 64 ) 

× t 4 

(8) 

here sum( k 49 , k 50 , ..., k 64 ) denotes the sum of k 49 , k 50 , ..., k 64 ,

ax( k 49 , k 50 , ..., k 64 ) means the maximum value of k 49 , k 50 , ..., k 64 ,

 �y is the XOR operation of x and y , t 2 , t 3 , t 4 are part of secret

eys. 

Step 2: h 1 , h 2 , h 3 , h 4 are utilized to compute the initial values

 x 0 , y 0 , z 0 and w 0 ) of the chaotic system by 

 

 

 

 

 

x 0 = abs ( h 1 ) − floor ( h 1 ) 

y 0 = abs ( h 2 ) − floor ( h 2 ) 
z 0 = mod ( h 3 + h 4 , 1 ) 

w 0 = mod 

(
h 4 
7 

, 1 

) (9) 

here abs( x ) is the absolute value of x , mod( a, b ) returns the re-

ainder of a divided by b. And floor( x ) represents the largest inte-

er that is smaller than x . 
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Ordinal of 512-bit hash value

Fig. 4. The order for the initial configurations selection of ECA. 
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3.2. The computation of the initial position of zigzag confusion 

The location ( x 0 ’, y 0 ’ ) of the starting pixel for zigzag confusion

is computed by {
x ′ 0 = ( h 1 + h 2 ) × 10 

15 mod N 

y ′ 0 = ( h 3 × t 5 + h 4 ) × 10 

15 mod N 

(10)

where h 1 , h 2 , h 3 and h 4 are four parameters gotten in Section 3.1 ,

t 5 is part of secret keys, and N is the size of the plain image. 

The computed x 0 ’ and y 0 ’ may be zero. In order to remove this

problem, we need to modify x 0 ’ and y 0 ’ , and the final initial loca-

tion ( x 0 ’, y 0 ’ ) is obtained by {
x 0 

′ = x 0 
′ , x 0 ′ � = 0 

x 0 
′ = 	 N/ 3 
 + 2 , x 0 

′ = 0 

(11)

and {
y 0 

′ = y 0 
′ , y 0 ′ � = 0 

y 0 
′ = 	 N/ 6 
 + 2 , y 0 

′ = 0 

(12)

where 	 x 
 represents the largest integer that is smaller than x , and

N is the size of the plain image. 

3.3. The generation of the initial configurations of elementary cellular

automata 

From the 512-bit hash value of the image, we can get two se-

quence strings of length N . They are used as the initial configura-

tions C row 

0 
and C col 

0 
of the elementary cellular automata (ECA), and

they are also utilized as the row and column coordinates of the

scrambling. The methods of producing C row 

0 
and C col 

0 
are as follows:

Step 1: The method of selecting C row 

0 
is as follows: when

1 ≤ N ≤ 512, select N values as the initial configuration C row 

0 
from

the 512-bit hash value in the direction of reverse order shown in

Fig. 4 (i.e., from the back to the front). When 512 〈 N ≤ 1024, firstly

choose 512 values in the direction of reverse order, then choose

( N -512) values in the direction of positive order. When N 〉 1024,

firstly, pick up values in reverse order, then positive order, and

then reverse order, and so on, until you select a sequence with

length N as shown in Fig. 5 . 

Step 2: The method of selecting C col 
0 

is as follows: when

1 ≤ N ≤ 512, select N values as the initial configuration C col 
0 

from the

512-bit hash value in the direction of positive order illustrated in

Fig. 4 (i.e., from the front to the back). When 512 〈 N ≤ 1024, firstly

choose 512 values in the direction of positive order, then choose

( N -512) values in the direction of reverse order. When N 〉 1024,

firstly select the values in positive order, then reverse order, and

then positive order, and so on, until you get a sequence with length

N , as illustrated in Fig. 5 . 

Finally, we can obtain two initial configurations C row 

0 
and C col 

0 
.

 

row 

0 
is the initial row configuration, while C col 

0 
is the initial column

configuration. In the encryption and decryption process, each evo-

lution result of C row 

0 
and C col 

0 
of ECA represents the row and column

coordinate value of the matrix, respectively. 

3.4. The generation of measurement matrix for CS 

In this paper, the measurement matrix � used in compressive

sensing (CS) is constructed as a circular matrix, and each row of
he circular matrix is produced by its previous row moving to the

ight. Assuming the size of the measurement matrix is m × N , the

onstruction steps may be described as follows: 

Step 1: Use x 0 , y 0 , z 0 and w 0 produced in Section 3.1 to iterate

he memristive chaotic system ( n 0 + N ) times (Here, n 0 ≥ 500 and it

s part of secret keys). In order to eliminate transient effect of the

haotic sequence and enhance their sensitivity to initial conditions,

e get rid of the first n 0 group value of the chaotic sequence, and

hen obtain the sequence X, Y, Z and W, and X = [ x 1 , x 2 , ……, x N ],

 = [ y 1 , y 2 , ……, y N ], Z = [ z 1 , z 2 , ……, z N ], W = [ w 1 , w 2 , ……, w N ]. 

Step 2: Three matrices X_1, Y_1 and Z_1 are gotten through

odifying the elements of the X, Y and Z by 

 

X _ 1 ( i ) = mod (( abs ( x i ) − floor ( x i )) × 10 

8 , px ) 
Y _ 1 ( i ) = mod (( abs ( y i ) − floor ( y i )) × 10 

8 , py ) 
Z _ 1 ( i ) = mod (( abs ( z i ) − floor ( z i )) × 10 

8 , pz) 
(13)

here x i , y i and z i are the corresponding elements of X, Y and Z,

espectively. X_1( i ), Y_1( i ) and Z_1( i ) are the i th element of X_1,

_1 and Z_1, respectively, i = 1, 2, …, N. px, py and pz are three

espective parameters to modifying x i , y i and z i such that the re-

ulting values X_1( i ), Y_1( i ) and Z_1( i ) have stronger randomness

nd the proposed encryption has higher security level, and px ∈ (0,

], py ∈ (0, 1], pz ∈ (0, 1]. In this paper, we set px = 0.5, py = 0.7 and

z = 1 . 

Step 3: According to Eq. (14) , use sequence X_1, Y_1 and Z_1 to

et three sequences U 1 , U 2 and U 3 with size of 1 × N. 

 

U 1 ( i ) = [ X _ 1 ( i ) + Y _ 1 ( i ) − Z _ 1 ( i ) ] 
U 2 ( i ) = [ X _ 1 ( i ) + Z _ 1 ( i ) − Y _ 1 ( i ) ] 
U 3 ( i ) = [ Y _ 1 ( i ) + Z _ 1 ( i ) − X _ 1 ( i ) ] 

(14)

here X_1( i ), Y_1( i ), Z_1( i ), U 1 ( i ), U 2 ( i ) and U 3 ( i ) are the i th ele-

ent of X_1, Y_1, Z_1, U 1 , U 2 and U 3 , respectively, and i = 1, 2, …,

 . 

Step 4: Calculate the variance var of the plain image and modify

t according to the following equations, and then var 1 is gotten,

ar 1 = 1, 2, 3. 

ean = 

1 

N 

2 

N ∑ 

i =1 

N ∑ 

j=1 

I ( i, j ) (15)

 ar = 

1 

N 

2 

N ∑ 

i =1 

N ∑ 

j=1 

( I ( i, j ) − Mean ) 

2 

(16)

nd 

 ar1 = floor 
(

mod 

(
v ar × 10 

3 
, 3 

))
+ 1 (17)

here I( i, j ) is the gray value of the pixel located at ( i, j ) of plain

mage I, N is the size of the plain image. 

Step 5: Choose one sequence from the three sequences U 1 , U 2 

nd U 3 according to var 1, and then modify the selected sequence.

fter that we may obtain one sequence U with size of 1 × N by the

ollowing rules 

if var 1 = 1, then U( i ) = mod(U 1 ( i ), 1); 

if var 1 = 2, then U( i ) = mod(U 2 ( i ), 1); 

if var 1 = 3, then U( i ) = mod(U 3 ( i ), 1); 

here U( i ), U 1 ( i ), U 2 ( i ) and U 3 ( i ) are the i th element of U, U 1 , U 2

nd U 3 , respectively, and i = 1, 2, …, N . 

Step 6: Use sequence U to construct measurement matrix �

ith size of m × N . And here the original row vector is �( 1 , N ) = U ,

s described in Section 2.3 , � may be obtained according to

q. (7) . 
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C0col:

C0row:

C0col:

C0row:

C0row:

C0col:

(b) 512< N ≤ 1024

(c) N >1024

(a) 1 ≤ N ≤ 512

1 2 3 ... N-1 N

N

512 511 510 ... 512-N+2 512-N+1

N

1 2 ... 511 512 512 511 ... 1 1 2 ...

N

512 511 ... 2 1 1 2 ... 512 512 511 ...

N

1 2 ... 511 1024-N+2 1024-N+1512 512 511 ...

N

512 511 ... 2 N-512-1 N-5121 1 2 ...

N

Fig. 5. The method for generating the initial configurations of ECA. 
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.5. The proposed encryption algorithm 

The proposed image encryption scheme is illustrated in Fig. 6 ,

nd the detailed encryption steps are as follows: 

Step 1: Assume the size of the plain image I is N × N , then it

s sparsified by use of discrete wavelet transform (DWT), and the

parse coefficient matrix I 1 with the same size of N × N is obtained.

Step 2: Calculate the initial values x 0 , y 0 , z 0 and w 0 of the mem-

istive chaotic system as described in Section 3.1 . 

Step 3: Get the initial configurations C row 

0 
and C col 

0 
of the ECA as

hown in Section 3.3 . 

Step 4: Perform zigzag confusion on I 1 with ( x 0 ’, y 0 ’ ) as dis-

ussed in Section 2.4 , and the 1-D vector p 1 (1 × N 

2 ) is gotten.

here, the initial location ( x 0 ’, y 0 ’ ) is obtained as illustrated in

ection 3.2 . 

Step 5: Select a certain rule of ECA to evolve the initial row

onfiguration C row 

0 
and initial column configuration C col 

0 
e times,

espectively. And here, we adopt periodic boundaries and the ra-

ius is set as 1. Then, we can get each evolution result of the

ow configuration: C row 

1 
, C row 

2 
, . . . , C row 

d 
, . . . , C row 

e and column configu-

ation: C col 
1 

, C col 
2 

, . . . , C col 
d 

, . . . , C col 
e , where d = 1, 2, …, e and the total

umber e of evolution of ECA is a part of secret keys. 

Step 6: Firstly, construct an N × N blank matrix I 2 , then perform

 w round scrambling operation on p 1 (1 × N 

2 ). In each round of

crambling, the elements in the vector p 1 are filled into the blank

atrix I 2 according to the value of ( C row 

d 
( i ) , C col 

d 
( j) ) , the matrix I 3 

 N × N ) is obtained after a round of scrambling. After that, convert

 3 to 1-D vector p 1 (1 × N 

2 ) by column precedence, and continue to

erform the next round operation, finally carry on w round scram-

ling and the final permutated matrix I 4 is gotten. And here, i = 1,

, …, N , j = 1, 2, …, N , d = 1, 2, …, e , C row 

d 
and C col 

d 
denote the d th
ound results of the evolution of ECA, and e is the total number

f evolution of ECA, w is the total number of scrambling rounds.

hat’s more, e and w are part of secret keys. The detailed proce-

ures may be described as follows. 

Step 6.1: Set s = 1, where, s is the number of scrambling rounds.

Step 6.2: Construct an N × N blank matrix I 2 and set d = 1, d is

he number of evolution of ECA. 

Step 6.3: Then, the elements in p 1 (1 × N 

2 ) are sequentially in-

erted into the matrix I 2 in row-major. The insertion coordinates

re (1, 1), that is ( C row 

d 
( i ) , C col 

d 
( j) ) = ( 1 , 1 ) , until all the coordinates

( C row 

d 
(i ) , C col 

d 
( j) ) = ( 1 , 1 ) in p 1 are filled with elements. In particu-

ar, if there is an element at the position of the coordinate (1, 1) in

 2 , do not insert the element and continue to look for the next co-

rdinate (1, 1) until all (1, 1) positions in matrix I 2 are filled with

he elements. i = 1, 2, …, N , j = 1, 2, …, N , and C row 

d 
and C col 

d 
denote

he d th round results of the evolution of ECA. 

Step 6.4: Set d = d + 1, then loop executes Step 6.3 and Step 6.4

 times, d = 1, 2, …, e , and e is the total number of evolution of

CA and part of secret keys. 

Step 6.5: After e time evolution, if there are elements in p 1 ,

hen put them into I 2 . Particularly, sequentially put the remaining

lements of p 1 into the blank space of the matrix I 2 in row-major.

fter that, one round scrambling process is completed and the per-

utated matrix I 3 ( N × N ) is gotten. 

Step 6.6: Set s = s + 1, then transform I 3 ( N × N ) to 1-D vector p 1 

1 × N 

2 ). Next, loop executes Step 6.2 to Step 6.6 w times, and the

nal permutated matrix I 4 ( N × N ) is obtained. s = 1, 2, …, w , and w

s part of secret keys and the total number of scrambling rounds. 

Step 7: Construct measurement matrix � with a size of m × N

s described in Section 3.4 , m = CR × N , and CR is compression ratio

f the plain image. 
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Fig. 6. The flow chart of the proposed encryption algorithm. 
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Step 8: Compress and encrypt the final permutated matrix I 4 
( N × N ) using compressive sensing technology denoted as C = �I 4 .

Finally, the cipher image C with size of m × N is obtained. 

3.6. The decryption algorithm 

The decryption process is depicted in Fig. 7 , which is the in-

verse operation of the encryption process. Before the decryption,

secret keys including 512-bit hash value K, abandoning number

n 0 of chaotic sequences, the total number e of evolutions, the to-

tal number w of scrambling rounds, five parameters: λ, t 2 , t 3 , t 4 ,

t 5 , and intermediate key var 1 are transmitted to the receiver. And

the four parameters x 0 , y 0 , z 0 , w 0 , initial location ( x 0 ’, y 0 ’ ) and

the measurement matrix � are firstly computed as described in

Section 3 . What’s more, get the initial configurations C row 

0 
and C col 

0 
of the ECA according to Section 3.3 , then evolve them to obtain

row configuration C row 

1 
, C row 

2 
, . . . , C row 

d 
, . . . , C row 

e and column configu-

ration C col 
1 

, C col 
2 

, . . . , C col 
d 

, . . . , C col 
e as illustrated in Section 3.5 . 

The cipher image C ( m × N ) is reconstructed with the SL 0 algo-

rithm and the reconstructed image F 1 ( N × N ) is gotten. Then, per-

form inverse scrambling on F 1 , and the detailed procedures are as

follows. 

Step 1: Set s = 1. 

Step 2: Construct an 1 × N 

2 blank vector p and set d = 1. 
3 
Step 3: The elements at the position of coordinates (1, 1) in F 1 
re sequentially taken out in row-major, and put into vector p 3 one

y one. The coordinates are (1, 1), that is ( C row 

d 
(i ) , C col 

d 
( j) ) = ( 1 , 1 ) ,

ntil all the elements at coordinates (1, 1) in F 1 are taken out. In

articular, if the position of a coordinate (1, 1) in F 1 is empty, then

ontinue to look for the next coordinate (1, 1) until all (1, 1) posi-

ions in matrix F 1 are empty. i = 1, 2, …, N , j = 1, 2, …, N , C row 

d 
and

 

col 
d 

denote the d th round results of the evolution of ECA. 

Step 4: Set d = d + 1, then loop executes Step 3 and Step 4 e

imes, d = 1, 2, …, e . 

Step 5: After e round execution, if there are elements in F 1 , take

hem out sequentially, and then put them into the blank place

n vector p 3 one by one. After that, complete one round inverse

crambling process and get inverse permutated vector p 3 (1 × N 

2 ). 

Step 6: Set s = s + 1, then transform p 3 (1 × N 

2 ) to matrix F 1
 N × N ). Next, loop manipulates Step 2 to Step 6 w times, and the

nal inverse permutated vector p 4 (1 × N 

2 ) is obtained. And, s = 1,

, …, w . 

Step 7: Transform p 4 (1 × N 

2 ) to matrix F 2 ( N × N ), then oper-

te inverse zigzag confusion and inverse DWT to F 2 . Finally, the

ecrypted image Y ( N × N ) are gotten. 

.7. Discussion 

The proposed image encryption scheme has some advantages. 
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Fig. 7. The flow chart of the decryption algorithm. 
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Firstly, two scrambling methods, that is zigzag confusion and

he scrambling based on ECA, are utilized. Wavelet coefficients of

he plain image are confused by a zigzag path, and then they are

e-scrambled by the ECA. The scrambling scheme of the combina-

ion of zigzag confusion and ECA confusion may make the pixels

f the confused images distributed evenly, and improve the image

crambling degree. 

Secondly, compressive sensing (CS) is used to compress and en-

rypt the confused images for reducing the transmission band-

idth of the dada, so that the cipher images can be sent and

tored quickly and efficiently. What’s more, the random zigzag

onfusion and ECA confusion scheme are adopted to confuse the

parse coefficient matrix of the plain image, which can relax the

estricted isometry property (RIP) of CS, effectively promote the

ompression performance and reconstruction effect. In addition,

he measurement matrix � is constructed as a circular matrix. And

t can be obtained by some key parameters. There is no need to de-

iver the whole measurement matrix to the receiver for decryption,

hich can save a lot of transmission bandwidth and storage space.

Thirdly, the proposed encryption scheme is highly sensitive to

he plain image. The SHA 512 hash function of the original image

s used to compute four important parameters h 1 , h 2 , h 3 and h 4 .

hen the parameters are utilized for calculating the initial values

 0 , y 0 , z 0 , w 0 of the chaotic system and the initial location ( x 0 ’, y 0 ’ )

or zigzag confusion. Moreover, the initial configurations C row 

0 
and

 

col 
0 

of ECA are controlled by the 512-bit hash value, that is to say,

ifferent scrambling effects are obtained for different plain images.

herefore, the algorithm has a close relationship with the plain im-

ge, it can resist against known-plaintext and chosen-plaintext at-

acks effectively. 

Lastly, the measurement matrix is generated by a new kind of

agnetic-controlled memristive chaotic system, which has strong

ensitivity to initial values and system parameters. By modifying

he parameters and initial values of the chaotic system, we can
enerate different measurement matrices to realize “one time, one

ey” . And thus our algorithm has high security level. 

. Simulation results 

In this section, we have employed Matlab R2016a to verify

he encryption and decryption effects of the proposed algorithm

n a personal computer with 3.3 GHz CPU and 4 GB memory,

he operating system is Microsoft Windows 7. The four different

12 × 512 images “Lena”, “Pepper”, “brone”, “aerial” and five differ-

nt 256 × 256 images “Lena256”, “finger”, “Cameraman”, “Baboon”,

Peppers256” are all used as the plain images. 

.1. Encryption results and decryption results for different images 

The parameters we used are as follows: a = 10, b = 8, c = 15,

 = 5.2, g = 5 and r = 1.5, scrambling rounds w = 3, evolution

ounds e = 9, λ= 2.3, t 2 = 33.2418, t 3 = 3.5609, t 4 = 2.67, t 5 = 1.0314,

 0 = 800, and the ECA rule is 170. 

The three different plain images Lena (512 × 512), finger

256 × 256) and brone (512 × 512) are shown in Figs. 8 (a), (b) and

c), respectively. Figs. 9-11 are the respective encryption and de-

ryption results with different compression ratios. The compres-

ion ratio CR is computed by [32] , 

R = 

C _ height × C _ width 

I _ height × I _ width 

(18) 

here I_height and I_width denote the height and width of the

riginal image, respectively. And C_height and C_width are the cor-

esponding height and width of the cipher image. 

Fig. 9 is the encryption and decrypted results for Lena (shown

n Fig. 8 (a)) with different CR. As can be seen from the figure that

he compression ratio CR varies from 0.25, 0.5 to 0.75. Similarly,

he results of finger (256 × 256) and brone (512 × 512) are illus-

rated in Figs. 10 and 11 . 
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Fig. 8. The plain images: (a) Lena, (b) finger, (c) brone. 

Fig. 9. Encryption and decryption results of Lena (512 × 512): (a)–(c) are the cipher images when CR is 0.25, 0.5, and 0.75, respectively, (d)–(f) are the corresponding 

decrypted images. 

Fig. 10. Encryption and decryption results of finger (256 × 256): (a)–(c) are the cipher images when CR is 0.25, 0.5, and 0.75, respectively, (d)–(f) are the corresponding 

decrypted images. 
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Fig. 11. Encryption and decryption results of brone (512 × 512): (a)–(c) are the cipher images when CR is 0.25, 0.5, and 0.75, respectively, (d)–(f) are the corresponding 

decrypted images. 
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As shown in Figs. 9-11 , at different com pression ratios, the im-

ges can be effectively encrypted and the information of the plain

mages is not available in the cipher images, which preserve im-

ge information available. In addition, from the visual point of

iew, the decrypted images illustrated in Figs. 9–11 are just the

ame as the respective plain images shown in Figs. 8 (a)–(c). So

t can be seen that the algorithm has better encryption and de-

ryption effect. Moreover, the compressed cipher image is smaller

han the respective original image, which may save the transmis-

ion bandwidth and storage space. And when the compression ra-

io decreases, the cipher image becomes smaller. 

.2. The effect of the compression ratio on simulation results 

In this part, we adopt Mean Structural Similarity (MSSIM) and

eak Signal to Noise Ratio (PSNR) to evaluate the performance of

he proposed compression and encryption algorithm at different

ompression ratios. 

1) Mean Structural Similarity (MSSIM) 

Structural Similarity (SSIM) is a new index for measuring the

imilarity between two images. It can improve the traditional met-

ics such as PSNR by considering human visual system (HVS) [32] .

he mean SSIM (denoted as MSSIM) is often used to evaluate the

erformance of the encryption algorithm, and it is defined as 

 ( X , Y ) = 

2 μX μY + C 1 

μ2 
X 

+ μ2 
Y 

+ C 1 
(19) 

 ( X , Y ) = 

2 σX σY + C 2 

σ 2 
X 

+ σ 2 
Y 

+ C 2 
(20) 

 ( X , Y ) = 

σXY + C 3 
σX σY + C 3 

(21) 

SIM ( X , Y ) = l ( X , Y ) × c ( X , Y ) × s ( X , Y ) (22) 

nd 

SSIM ( X , Y ) = 

1 

M 

M ∑ 

k =1 

SSIM ( x k , y k ) (23) 
here μX and μY represent the average values of plain image X

nd decrypted image Y, σ X and σ Y denote the variance values of

 and Y, respectively, σ XY is the covariance of X and Y and C 1 , C 2 ,

 3 are constants, M indicates the total number of image blocks. The

arameters we used are as follows: C 1 = ( K 1 × L ) 2 , C 2 = ( K 2 × L ) 2 ,

 3 = 

C 2 
2 , k 1 = 0.01, k 2 = 0.03, M = 64, L is the gray level of plain im-

ges and L = 255. 

Table 2 lists the MSSIM results for different images at different

ompression ratios. The smaller the MSSIM is, the greater the dif-

erence of two images is. From Table 2 , we can watch that: (1) for

ecrypted images, the MSSIM > 0.96, among them, the decrypted

mage of Lena image and aerial image are more than 0.99. And

or finger (256 × 256), when CR = 0.5 and CR = 0.75, their MSSIM

re more than 0.99, too. That is to say, regardless of the size of

he original image, the similarity between the original image and

he reconstructed image is high, and the image distortion is small,

hus, the algorithm can achieve better recovery effect. (2) In the

imulation, when the compression ratio is changing, the value of

he MSSIM will be changed correspondingly, but the change is not

ig. The results listed in Table 2 reflect that we can effectively

ompress and encrypt images according to the different require-

ents. 

2) Peak Signal to Noise Ratio (PSNR) 

In order to compare our algorithm with other methods, we also

ompute the PSNR. PSNR is usually used to judge the quality of re-

onstructed image after image processing, which is calculated us-

ng the following formula [38] 

SE = 

1 

N × N 

N ∑ 

i = 1 

N ∑ 

j = 1 
( X ( i, j ) − Y ( i, j ) ) 

2 (24) 

SNR = 10 × log 10 

(
255 × 255 

MSE 

)
(25) 

here X( i, j ) and Y( i, j ) are the pixel values of the original image

nd the decrypted image, respectively. MSE represents the mean

ariance of the original image and decrypted image, and N is the

ize of the image. 
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Table 2 

MSSIM values of different images under different compression ratios. 

Images Lena brone Peppers aerial finger Baboon 

Size 512 × 512 512 × 512 512 × 512 512 × 512 256 × 256 256 × 256 

CR = 0.25 0.9956 0.9802 0.9740 0.9904 0.9817 0.9693 

CR = 0.5 0.9964 0.9777 0.9727 0.9959 0.9901 0.9823 

CR = 0.75 0.9957 0.9675 0.9696 0.9962 0.9936 0.9892 

Table 3 

The compression performance of different algorithms. 

Images (256 × 256) CR Ours Ref. [47] 

Lena 256 CR = 0.25 26.06dB 25.93dB 

CR = 0.5 29.82dB 29.82dB 

CR = 0.75 29.56dB 34.19dB 

Cameraman CR = 0.25 25.23dB 22.64dB 

CR = 0.5 29.43dB 26.71dB 

CR = 0.75 28.93dB 30.85dB 
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The larger the value of the PSNR, the higher the similarity be-

tween the original image and the reconstructed image. Table 3 lists

the compression performance of our method and other algorithm.

From Table 3 , one can see that the proposed algorithm has al-

most the same PSNR values as Ref. [47] . And the PSNR of our algo-

rithm is close to 30 dB for CR > 0.5. Moreover, it can achieve a bet-

ter reconstruction result when the image is sampled with a small

amount of compression. 

4.3. The effect of different parameters on gray difference degree 

(GDD) 

Before compression, using the lightweight encryption method

to encrypt the images can achieve a good encryption effect [18] . In

the proposed encryption, lightweight encryption may have a high

scrambling effect. The scrambling method based on zigzag and ECA

is one phase of our proposed compression and encryption scheme.

Therefore, it is necessary to evaluate scrambling degree. To eval-

uate the effect of image scrambling, we introduce gray difference

degree (GDD) [37] , which is defined as 

GDD = 

E ′ ( GD ( i, j ) ) − E ( GD ( i, j ) ) 

E ′ ( GD ( i, j ) ) + E ( GD ( i, j ) ) 
(26)

where 

GD ( i, j ) = 

1 

4 

∑ 

i ′ , j ′ 

[
I ( i, j ) − I 

(
i ′ , j ′ 

)]2 
(27)
Fig. 12. GDDs of the Lena image (512 × 512) with different num
 ( GD ( i, j ) ) = 

M−1 ∑ 

i =2 

N−1 ∑ 

j=2 

GD ( i, j ) 

( M − 2 ) × ( N − 2 ) 
(28)

here ( i ′ , j ′ ) = {( i –1, j ), ( i + 1, j ), ( i, j –1), ( i, j + 1)}, and I( i, j ) denotes

he gray value at position ( i, j ) of the original image I. M and N rep-

esent the size of the image. E ( GD ( i, j )) and E ′ ( GD ( i, j )) denote the

orresponding average neighborhood gray difference of the plain

mage and permutated image. 

The GDD value will be a number between −1 and 1. Better

crambling effect corresponds to an absolute value near 1 [37,39] . 

.3.1. The influence of the number of evolutions and the number of 

crambling rounds on GDD 

In this paper, e is the total number of evolutions of ECA, and

 is the total number of scrambling rounds. The number of evo-

utions is important as it reflects the characteristics of the ECA

volution, and different evolution rounds generate different con-

using effect. Thus, in simulation, we compute GDDs of Lena image

512 × 512) at different e when w = 1, 2, 3, 4, and GDDs of brone

mage (512 × 512) at different e when w = 1, 2, 3, 4, 5, respectively.

nd the ECA rule is 170. The results are shown in Figs. 12 and 13 . 

From Figs. 12 and 13 , it is clear that: (1) the encryption method

sed in this algorithm has better scrambling effect, and the GDDs

f some images are more than 0.95. So the security of data in-

ormation can be effectively protected. (2) When the number w

f scrambling rounds is constant, with the number e of ECA evo-

utions increases, GDD also increases correspondingly, but when e

ncreases to a certain value, the GDD changes little. The relation is

lose, although the influence gradually decreases when the number

f evolutions is greater than 7. Therefore, the more the number of

volutions, the better the scrambling effect. (3) Similarly, when e

s constant, along with the increasing of w , the GDD also increases

orrespondingly, while when w increases to a certain value, the

DD changes rarely. It can be concluded that the number of evo-

utions and the number of scrambling rounds have a certain effect

n GDD, but both tend to be a stable value. (4) For the two fig-

res, when w = 1, the GDD of Lena image is between 0.9422 and
bers of evolutions when scrambling rounds w = 1, 2, 3, 4. 
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Fig. 13. GDDs of the brone image (512 × 512) with different numbers of evolutions when scrambling rounds w = 1, 2, 3, 4, 5. 

Fig. 14. GDD of the Lena image (512 × 512) with different numbers of evolutions and ECA rules. 
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Table 4 

Comparison of key space of the proposed method and other methods. 

Algorithm Proposed Ref. [40] Ref. [51] Ref. [52] Ref. [53] 

Key Space > 2 232 2 96 10 48 10 44 × 5 2 78 
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.9502, the GDD of brone image is between 0.9458 and 0.9626,

he scrambling effect is poor and the change is greatest. Hence, it

s best to set w ∈ (1, 5) and e ∈ (5, 10). This can not only get better

crambling effect and improve security, but also can save time and

pgrade encryption efficiency. And we will use w = 3 and e = 9 in

he following experiments. 

.3.2. The influence of different ECA rules on GDD 

The evolution rule of ECA defines the deterministic way to up-

ate the synchronization state of all cells, and simply, the rule in-

uences the scrambling process in our algorithm. Thus, it is impor-

ant to analyze its effect on the confusion results. In this simula-

ion, we select ECA rule 69th, 101th, 170th and 214th to test the

DDs of Lena image and brone image with different numbers of

volutions, respectively. The results are shown in Figs. 14 and 15 . 

It can be seen from Figs. 14 and 15 that the GDDs are greater

han 0.95 when different ECA rules are used. When the total num-

er e of evolutions is constant, the GDD is different and the cor-

esponding scrambling encryption effect is different, too. That is to

ay, different evolution rules have a different impact on scrambling

ffect, and in practical application, it can upgrade security level by

hanging rules. Similarly, we can know that when e > 3, the GDDs

re high and will gradually stabilized. Therefore, the best number

 of ECA evolution is greater than 3 and no more than 10, which

an improve encryption efficiency. 
. Performance analyses 

.1. Key space analysis 

In cryptography, the key space of an algorithm is one of the

ost important attributes that determines the strength of a cryp-

osystem [29,48] . The key space of an ideal cryptographic system

hould be large enough to make brute-force attack infeasible, and

n general, the key space should more than 2 100 [49,50] . 

The secret key of the proposed encryption algorithm mainly in-

ludes: (1) 512-bit hash value K from the SHA-512 hash function

f the original image; (2) the given parameters: λ, t 2 , t 3 , t 4 , t 5 . Be-

ides, the abandoning number n 0 of chaotic sequences, the total

umber e of evolutions, the total number w of scrambling rounds,

nd intermediate key var 1 can also be taken as secret keys. If the

omputational precision of the computer is 10 −14 , the key space

s about (10 14 ) 5 = 10 70 > 2 232 . If the 512-bit hash value K is con-

idered, the overall key space is much larger than 2 100 . Hence,

he key space of our method is large enough to resist all kinds of

rute-force attacks. In addition, as shown in Table 4 , the proposed
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Fig. 15. GDD of the brone image (512 × 512) with different numbers of evolutions and ECA rules. 

Fig. 16. Key sensitivity test results in encryption and decryption process. 
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scheme has the largest key space than the encryption schemes in

Ref. [40,51–53] . 

5.2. Key sensitivity analysis 

A good image encryption algorithm should have a high sensi-

tivity to secret keys in encryption and decryption process. It means

that a tiny change in the keys would cause a great distortion in the

encrypted and decrypted image [7] . 

In encryption process, Lena image (shown as Fig. 8 (a)) is used

as the plain image and the correct encrypted image and decrypted

images are shown in Fig. 9 (b) and (e), respectively. We change t 4 
by adding 10 −14 and change t 2 by subtracting 10 −14 . We also mod-

ify a bit of 512-bit hash value K, and a new K1 is obtained. K and
1 are illustrated as follows: 

 = [ 7 C 2 3 4 4 A C 5 6 8 A E F B D B 8 7 D A 3 3 D C E 5 E D 4
C C 8 6 6 4 D F D 0 3 7 3 0 B 5 3 F 8 5 4 5 B D 3 1 B F 9 9 0 F 1
 E A 7 3 2 B 5 D 7 4 0 F 3 C E 2 3 0 1 3 3 1 6 0 F 7 C 8 4 5 2 4

F F 5 4 2 1 5 9 4 9 5 7 4 9 4 5 1 2 D C 2 F C D 6 6 A D 4 0 9 1 ]

1 = [ 6 C 2 3 4 4 A C 5 6 8 A E F B D B 8 7 D A 3 3 D C E 5 E D 

 C C 8 6 6 4 D F D 0 3 7 3 0B 5 3 F 8 5 4 5 B D 3 1 B F 9 9 0 F
 C E A 7 3 2 B 5 D 7 4 0 F 3 C E 2 3 0 1 3 3 1 6 0 F 7 C 8 4 5 2

4 F F 5 4 2 1 5 9 4 9 5 7 4 9 4 5 1 2 D C 2 F C D 6 6 A D 4 0 9 1 ]

These changed secret keys are used to encrypt the origi-

al image and every time one parameter is changed and oth-

rs are constant, the corresponding encrypted images are shown

n Figs. 16 (a)–(c). In order to visually observe the change of ci-

her images, we get the subtractions of cipher images ( Figs. 16 (a)–

c)) and correct cipher image ( Fig. 9 (b)), the results are shown in

igs. 16 (d)–(f). 
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Fig. 17. Histogram analysis results. 

Table 5 

The NPCR between cipher images generated 

with slightly different keys and correct cipher 

image ( Fig. 9 (b)). 

Secret keys NPCR 

Encrypted image with t 4 + 10 −14 0.9676 

Encrypted image with t 2 - 10 −14 0.9634 

Encrypted image with K1 0.9724 
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The number of pixel change rate (NPCR) is used to measure the

issimilitude between two encrypted images, and it stands for the

ercentage of different pixel numbers between two encrypted im-

ges [4,7] . The NPCR is defined by Eq. (29) [54] . And Table 5 lists
he obtained NPCR between cipher images generated with slightly

ifferent keys and the correct cipher image ( Fig. 9 (b)). 

PCR = 

∑ 

i, j 

D ( i, j ) 

N × N 

× 100% (29) 

here D( i, j ) is the difference value of the cipher images C 1 ( i,

 ) and C 2 ( i, j ) produced with slightly different keys. When C 1 ( i,

 ) = C 2 ( i, j ), then D( i, j ) = 0, when C 1 ( i, j ) � = C 2 ( i, j ), then D( i, j ) = 1. 

Next, we also change t 3 by adding 10 −14 and modify each of

 and var 1 to get new w 0 and var 1 0 . That is to say, the right

nes are w = 3 and var 1 = 1, while the changed ones are w 0 = 2

nd var 1 0 = 2. Similarly, these changed secret keys are used to de-

rypt the cipher image ( Fig. 9 (b)) to test the key sensitivity in the

ecryption process, the corresponding decrypted images are illus-



138 X. Chai et al. / Signal Processing 148 (2018) 124–144 

Fig. 17. Continued 
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trated in Figs. 16 (g)–(i). It can be seen that the decrypted images

cannot show any information of the original image even if a very

small error occurs to secret keys. 

From Fig. 16 and Table 5 , it is clear that (1) a tiny change in the

keys would cause a great change in the encrypted image and the

NPCR is more than 0.96. (2) From Fig. 16 (c) and Fig. 16 (f), the tiny

change of SHA-512 hash value of the original image has a great ef-

fect on the image encryption result and the NPCR is 0.9724, that

is to say, when the original image changes slightly, the cipher im-

age is different. The presented image compression–encryption al-

gorithm is sensitive to the plain images. (3) The decryption images

with incorrect keys in Fig. 16 (g)–Fig. 16 (i) are distorted greatly and

show no visual information about the original image. In short, the

algorithm is sensitive to keys. In the encryption phase, the encryp-
 [
ion result changes greatly after the key is altered. In the decryp-

ion phase, it is difficult to recover the original image after the key

s changed. 

.3. Histogram analysis 

Histogram is an important statistical feature of the images,

hich is often used to evaluate the performance of image encryp-

ion schemes. It would be the best that the histogram of the en-

rypted image is fairly uniformed in distribution and that the his-

ogram of the cipher image is flat [55] or the second best when

istograms of different encrypted images are similar to each other

27,31,47] . 
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Fig. 18. Cipher and decrypted images under Gaussian noise with different levels of noise. 
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Figs. 17 (a), (c), (e) and (g) are the histograms of four origi-

al images with size of 512 × 512: “Lena”, “brone”, “aerial” and

Peppers”, respectively. Figs. 17 (b), (d), (f) and (h) are the his-

ograms of their corresponding encrypted images. It is clear that

he histograms of the four original images are obviously different

rom each other, while the histograms of their corresponding en-

rypted images are similar. Besides, Fig. 17 (i) and (k) are the his-

ograms of two original images with size of 256 × 256: “finger”

nd “Cameraman”, respectively. Fig. 17 (j) and (l) are the histograms

f their corresponding encrypted images. For images with size of

56 × 256, the histograms of cipher images are similar, too. Con-

lusively, when the hackers obtain the cipher image, he may not

ecover the plain image through analyzing the histogram, and thus

he proposed scheme can make the statistical analysis attack infea-

ible to some extent. 

.4. Robustness analysis 

.4.1. Noise attack 

During the transmission, the cipher images are easily affected

y all kinds of noises, such as Gaussian noise (GN), Salt & Pepper

oise (SPN) and Speckle noise (SN). It is necessary to discuss the

erformance of the proposed scheme against the noise attack [56] .

In the simulation, different levels of noise are added to the ci-

her image of Lena (shown in Fig. 9 (b)), and other parameters are

et as Section 4.1 . We will evaluate the ability of the proposed al-

orithm to resist the noise attack. Figs. 18–20 are the correspond-

ng test results. Among them, Fig. 18 illustrates the cipher image
 Fig. 9 (b)) that is affected by Gaussian noise with different vari-

nces and the corresponding decrypted images, and the variances

f the noise are 0.0 0 0 0 01, 0.0 0 0 0 03, 0.0 0 0 0 05 and 0.0 0 0 0 07. Sim-

larly, the results affected by Salt & Pepper noise and Speckle noise

re shown in Figs. 19 and 20 , respectively. And the PSNRs of the

oisy decrypted images and plain image Lena are illustrated in

ig. 21 . 

From the above Figs. 18–21 , we can watch that: (1) GN noise

as the largest effect on the decryption results, when the variances

f the noise changes from 0.0 0 0 0 01 to 0.0 0 0 0 07, the PSNR values

ary from 30.10 dB to 25.39 dB, and the corresponding recovered

mages are all clear. (2) As the PSNR values are almost the same

uring the whole process, our encryption scheme has the strongest

esisting capability to SN and the PSNR values are changing from

1.05 dB to 30.99 dB; (3) The proposed encryption algorithm has

 certain withstanding ability to SPN, the PSNR values vary from

1.05 dB to 27.93 dB, it is shown that the major information of the

mage can be recognized, although the quality of decrypted im-

ges decreases with the increasing of noise intensity. Thus, in the

resence of noise, the recovered images are shown clearly, and the

roposed encryption scheme has good robustness to noise attacks. 

.4.2. Cropping attack 

The robustness of a cryptosystem against data loss is also an

mportant requirement in image communication. It is necessary to

iscuss the performance of the proposed scheme against the crop-

ing attack. The encrypted image (shown in Fig. 9 (b)) with five dif-

erent data losses are shown in Figs. 22 (a)–(e) and the correspond-
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Fig. 19. Cipher and decrypted images under Salt & Pepper noise with different levels of noise. 

Table 6 

MSSIM between the decrypted image and the plain 

image with different data losses. 

Data loss intensity MSSIM 

1/4 data loss 0.6410 

1/8 data loss 0.7605 

1/16 data loss 0.8161 

1/32 data loss in the upper left corner 0.8919 

1/32 data loss in the middle part 0.8840 
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ing recovered images are illustrated in Figs. 22 (f)–(j), respectively.

The MSSIM of the decrypted image and plain image Lena are listed

in Table 6 . 

As can be seen from Fig. 22 and Table 6 that even if the cipher

image is cropped off, the recovered image retains important infor-

mation contained in the plain image. When the data loss size is

varying from 1/32 to 1/4, the quality of recovered image decreases,

and MSSIM values are changing from 0.8919 to 0.6410. Besides, dif-

ferent cutting positions get different results, cropping the 1/32 in

the upper left corner of the cipher image, and the MSSIM is 0.8919,

while the MSSIM of cropping the 1/32 in the middle part is 0.8840.

In a word, our scheme could resist data loss attack to a certain de-

gree. 

In conclusion, the algorithm proposed in this paper has good

robustness, and it can withstand noise attack and cropping attack

to a certain degree. And it is more suitable for real applications. 
.5. Analysis of resisting known-plaintext and chosen-plaintext 

ttacks 

Plaintext attack is one of the most common attacks for a mul-

imedia cryptosystem [57–59] . In the paper, we take some meth-

ds to improve the resistance of the proposed encryption algo-

ithm to known-plaintext and chosen-plaintext attacks. Firstly, the

nitial values of chaotic maps, the parameters used in the zigzag

onfusion process, the initial configurations C row 

0 
and C col 

0 
of the

CA are all generated by using SHA-512 hash function value of the

lain image. In addition, the variance value of the original image

s used to select the chaotic sequence group, and then the mea-

urement matrix is generated by the sequence group, which fur-

her enhances the correlation between the algorithm and the plain

mage. Thus, when different plain images are encrypted, the corre-

ponding key stream changes, too, and the different cipher images

re obtained. Hence, the proposed system is robust or invulnerable

o the known-plaintext and chosen-plaintext attacks. 

.6. Time complexity analysis 

1) Effects of different compression ratios on the encryption and

decryption process 

Regardless of the security considerations, encryption speed is

lso important, especially in real-time internet applications. In this

aper, we analyze the encryption and decryption time of different

ize images at different compression ratios (CR), and the results are

isted in Tables 7 and 8 ( w = 3 and e = 9). 
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Fig. 20. Cipher and decrypted images under Speckle noise with different levels of noise. 
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From Tables 7 and 8 , we can watch that (1) for the same plain

mage, the change of CR has a slight impact on the encryption

ime. When CR varies from 0.25 to 0.75, the encryption time of

12 × 512 images is changing from 0.75 s to 1.0 s, the encryption

ime for 256 × 256 images is about 0.46 s. (2) For the same origi-

al image, the decryption time under different compression ratios

s different. And with the increasing of CR, the decryption time

lso increases. As shown in Table 8 , when CR changes from 0.25

o 0.75, the time of decrypting Lena image is varying from 5.0 s
Fig. 21. PSNR between the decrypted image a
o 22 s. The reason lays in solving the optimal solution in the re-

onstruction process, and the larger the measurement matrix, the

ore time needs. (3) As you can see, when CR = 0.25 and the im-

ge sizes vary from 256 × 256 to 512 × 512, the encryption time is

arying from 0.45 s to 1 s, but the decryption time is changing from

.1 s to 5.1 s. Similarly, when CR = 0.5 or CR = 0.75, the 512 × 512

mages take more time than 256 × 256. In short, the times of en-

ryption and decryption process are both affected by the size of

he image. The bigger the image, the more time it takes. (4) In
nd the plain image with different noise. 
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Fig. 22. Resisting cropping attack results of the encryption scheme. 

Table 7 

Encryption time (second). 

Images finger Baboon Lena brone Peppers 

Size 256 × 256 256 × 256 512 × 512 512 × 512 512 × 512 

CR = 0.25 0.4536 0.4607 0.7472 0.7921 0.9934 

CR = 0.5 0.4605 0.4682 0.7742 0.8166 0.9925 

CR = 0.75 0.4545 0.4852 0.7830 0.8225 1.0085 

Table 8 

Decryption time (second). 

Images finger Baboon Lena brone Peppers 

Size 256 × 256 256 × 256 512 × 512 512 × 512 512 × 512 

CR = 0.25 1.1374 1.1413 5.0167 4.8581 5.0698 

CR = 0.5 1.9577 2.0958 14.0266 13.6796 13.4131 

CR = 0.75 2.8476 2.8635 21.8731 21.4699 22.0483 
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the simulation, in order to ensure the encryption quality of the

proposed algorithm, we set the parameters w = 3 and e = 9. When

CR = 0.25, the total time for encryption and decryption one image
s about 1.58 s (for finger of 256 × 256), and 6.06 s (for Peppers of

12 × 512). When CR = 0.5, the total time is about 2.51 s (for fin-

er of 256 × 256), and 14.41 s (for Peppers of 512 × 512), and when

R = 0.75, the total time is about 3.29 s (for finger of 256 × 256),

nd 23.04 s (for Peppers of 512 × 512). Thus, in practical applica-

ion, we should carry out the comprehensive selection of encryp-

ion time and CR according to the actual situation. 

Consequently, the encryption time of the proposed algorithm is

hort, while the greater the compression ratio, the longer the de-

ryption time requires, therefore, the algorithm performs better in

mall compression ratio. The decryption speed of the proposed al-

orithm is slow, in the following work, block compression sensing

r other reconstruction algorithms can be considered to improve

he encryption and decryption speed. 

2) Comparisons with other typical image encryption schemes 

Table 9 shows the comparison results of encryption time be-

ween our algorithm and other algorithms, and the size of the

lain image is 256 × 256 and CR is changing from 0.25 to 0.75.

s shown in Table 9 , when the same plain image is encrypted,

ur scheme has the shortest running time than other algorithms
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Table 9 

The encryption time comparison results with other algorithms (second). 

Images Lena256 finger Baboon Cameraman Peppers256 

Size 256 × 256 256 × 256 256 × 256 256 × 256 256 × 256 

Proposed 0.58 0.46 0.47 0.71 0.66 

Ref. [60] 2.25 2.18 2.55 2.66 2.76 

Ref. [61] 3.23 3.44 3.53 3.51 3.68 

Ref. [62] 11.12 11.30 11.45 11.19 12.13 
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n Refs. [60–62] , and it can be applicable in real-time image en-

ryption conditions. 

. Conclusions 

In the paper, an image encryption algorithm based on the mem-

istive chaotic system, elementary cellular automata and compres-

ive sensing is introduced. First of all, the wavelet coefficients of

he plain image are scrambled by the zigzag path and ECA. The

ovel scrambling method leads to a higher scrambling degree.

ext, we take advantage of the CS theory to compress and encrypt

he scrambled image, and obtain the final cipher image. For CS, a

ircular measurement matrix produced by a new kind of magnetic-

ontrolled memristive chaotic system is adopted, which further de-

rease the energy consumption of data transmission. And what’s

ore, the adoption of the memristive chaotic system generates the

arge key space, and makes the proposed encryption algorithm re-

ist against the brute force attack. Besides, the SHA-512 hash value

f the original image is utilized to get some parameters used in

he encryption process, thus the algorithm has a high relationship

ith the plain image. And it can withstand the known-plaintext

nd chosen-plaintext attacks effectively. 

Simulation results and performance analyses demonstrate that

ur proposed scrambling method based on zigzag path and ECA

as significant scrambling performance, and our scheme has good

ncryption and decryption effect for different plain images. Fur-

hermore, the presented algorithm has large key space, high key

ensitivity, and good robustness to noise and occlusion attacks, and

t can be effectively applied in the grayscale and color image se-

ure communication. However, the decryption time of our encryp-

ion is a bit longer, and it may not work efficiently in real-time

ncryption fields, and thus in the future work, we intend to im-

rove the processing speed and make it more proper for reliable

nd practical cryptographic applications. 

cknowledgments 

All the authors are deeply grateful to the editors for smooth

nd fast handling of the manuscript. The authors would also like

o thank the anonymous referees for their valuable suggestions

o improve the quality of this paper. This work is supported

y the National Natural Science Foundation of China (Grant nos.

1571417 , U1604145 and U1404618 ), National Science Foundation

f the United States (Grant nos. CNS-1253424 and ECCS-1202225 ),

cience and Technology Foundation of Henan Province of China

Grant nos. 182102210027 and 172102210186 ), China Postdoctoral

cience Foundation (Grant No. 2016M602235 ) and the Research

oundation of Henan University (Grant No. xxjc20140 0 06 ). 

eferences 

[1] J.X. Chen , Z.L. Zhu , C. Fu , H. Yu , L.B. Zhang , An efficient image encryption

scheme using gray code based permutation approach, Opt. Lasers Eng. 67

(2015) 191–204 . 
[2] Z.Y. Hua , Y.C. Zhou , Design of image cipher using block-based scrambling and

image filtering, Inf. Sci. 396 (2017) 97–113 . 
[3] Y.C. Zhou , Z.Y. Hua , C.M. Pun , Cascade chaotic system with application, IEEE

Trans. Cybern. 45 (9) (2015) 2001–2012 . 
[4] S.M. Pan , R.H. Wen , Z.H. Zhou , N.R. Zhou , Optical multi-image encryption
scheme based on discrete cosine transform and nonlinear fractional Mellin

transform, Multimedia Tools Appl. 76 (2) (2017) 2933–2953 . 
[5] W. Zamrani , E. Ahouzi , A. Lizana , J. Campos , M.J. Yzuel , Optical image encryp-

tion technique based on deterministic phase masks, Opt. Eng. 55 (10) (2016)
103108 . 

[6] X.Y. Wang , Y.Q. Zhang , X.M. Bao , A novel chaotic image encryption scheme us-
ing DNA sequence operations, Opt. Lasers Eng. 73 (2015) 53–61 . 

[7] T. Hu , Y. Liu , L.H. Gong , S.F. Guo , H.M. Yuan , Chaotic image cryptosystem using

DNA deletion and DNA insertion, Signal Process. 134 (2017) 234–243 . 
[8] R. Guesmi , M.A.B. Farah , A. Kachouri , M. Samet , A novel chaos-based image

encryption using DNA sequence operation and Secure Hash Algorithm SHA-2,
Nonlinear Dyn. 83 (3) (2015) 1123–1136 . 

[9] Y.Q. Zhang , X.Y. Wang , J. Liu , Z.L. Chi , An image encryption scheme based on
the MLNCML system using DNA sequences, Opt. Lasers Eng. 82 (2016) 95–13 . 

[10] S. Kumar , R.K. Sharma , Securing color images using Two-square cipher associ-

ated with Arnold map, Multimedia Tools Appl. 76 (6) (2017) 8757–8779 . 
[11] H. Zhu , C. Zhao , X. Zhang , L. Yang , An image encryption scheme using gener-

alized Arnold map and affine cipher, Optik 125 (55) (2014) 6672–6677 . 
[12] G.Q. Hu , D. Xiao , Y.S. Zhang , An efficient chaotic image cipher with dynamic

lookup table driven bit-level permutation strategy, Nonlinear Dyn. 87 (2)
(2017) 1359–1375 . 

[13] Y.P. Li , C.H. Wang , H. Chen , A hyper-chaos-based image encryption algorithm

using pixel-level permutation and bit-level permutation, Opt. Lasers Eng. 90
(2017) 238–246 . 

[14] X.L. Chai , An image encryption algorithm based on bit level Brownian motion
and new chaotic systems, Multimedia Tools Appl. 76 (1) (2017) 1159–1175 . 

[15] C.Q. Li , D.D. Lin , J.H. Lu , Cryptanalyzing an image-scrambling encryption algo-
rithm of pixel bits, IEEE. Multimedia 24 (2017) 64–71 . 

[16] D.L. Donoho , Compressive sensing, IEEE Trans. Inf. Theory 52 (2006)

1289–1360 . 
[17] E.J. Candes , J. Romberg , T. Tao , Robust uncertainty principles: Exact signal re-

construction from highly incomplete frequency information, IEEE Trans. Inf.
Theory 52 (2) (2006) 489–509 . 

[18] Y.S. Zhang , Study on the Coordination of Data Compression and Encryption,
Chongqing University, 2014 . 

[19] D. Xiao , M.M. Deng , X.Y. Zhu , A reversible image authentication scheme based

on compressive sensing, Multimedia Tools Appl. 74 (18) (2015) 7729–7752 . 
20] N. Rawat , B. Kim , R. Kumar , Fast digital image encryption based on compres-

sive sensing using structurally random matrices and Arnold transform tech-
nique, Optik 127 (4) (2016) 2282–2286 . 

[21] D. Xiao , L. Wang , T. Xiang , Y. Wang , Multi-focus image fusion and robust
encryption algorithm based on compressive sensing, Opt. Laser Technol. 91

(2017) 212–225 . 

22] X.Y. Wang , C.M. Liu , D.H. Xu , C.X. Liu , Image encryption scheme using chaos
and simulated annealing algorithm, Nonlinear Dyn. 84 (3) (2016) 1417–

1429 . 
23] Z.Y. Hua , S. Yi , Y.C. Zhou , Medical image encryption using high-speed scram-

bling and pixel adaptive diffusion, Signal Process. 144 (2018) 134–144 . 
[24] R. Guesmi , B. Farah , A. Kachouri , M. Samet , Hash key-based image encryp-

tion using crossover operator and chaos, Multimedia Tools Appl. 75 (8) (2016)
4753–4769 . 

25] X.W. Li , C.Q. Li , I.K. Lee , Chaotic image encryption using pseudo-random masks

and pixel mapping, Signal Process. 125 (2016) 48–63 . 
26] Y.S. Zhang , J.T. Zhou , F. Chen , L.Y. Zhang , K.W. Wong , X. He , D. Xiao , Em-

bedding cryptographic features in compressive sensing, Neurocomputing 205
(2016) 472–480 . 

[27] N.R. Zhou , H.L. Li , D. Wang , S.M. Pan , Z.H. Zhou , Image compression and en-
cryption scheme based on 2D compressive sensing and fractional Mellin trans-

form, Opt. Commun. 343 (2015) 10–21 . 

28] D. Xiao , H.K. Cai , H.Y. Zheng , A joint image encryption and watermarking al-
gorithm based on compressive sensing and chaotic map, Chin. Phys. B 24 (6)

(2015) 198–206 . 
29] N.R. Zhou , J.P. Yang , C.F. Tan , S.M. Pan , Z.H. Zhou , Double-image encryption

scheme combining DWT-based compressive sensing with discrete fractional
random transform, Opt. Commun. 354 (2015) 112–121 . 

30] W.H. Liu , K.H. Sun , C.X. Zhu , A fast image encryption algorithm based on

chaotic map, Opt. Lasers Eng. 84 (2016) 26–36 . 
[31] N.R. Zhou , S.M. Pan , S. Chen , Z.H. Zhou , Image compression–encryption scheme

based on hyper-chaotic system and 2D compressive sensing, Opt. Laser Tech-
nol. 82 (2016) 121–133 . 

32] X.J. Tong , M. Zhang , Z. Wang , J. Ma , A joint color image encryption and com-
pression scheme based on hyper-chaotic system, Nonlinear Dyn. 84 (4) (2016)

2333–2356 . 

[33] H. Liu , D. Xiao , R. Zhang , S. Bai , Robust and hierarchical watermarking of en-
crypted images based on compressive sensing, Signal Process. Image Commun.

45 (C) (2016) 41–51 . 
34] Y. Zhang , B. Xu , N.R. Zhou , A novel image compression-encryption hybrid algo-

rithm based on the analysis sparse representation, Opt. Commun. 392 (2017)
223–233 . 

[35] A. Souyah , K.M. Faraoun , An image encryption scheme combining chaos-mem-

ory cellular automata and weighted histogram, Nonlinear Dyn. 86 (1) (2016)
639–653 . 

36] A .L.A . Dalhoum , A . Madain , H. Hiary , Digital image scrambling based
on elementary cellular automata, Multimedia Tools Appl. 75 (24) (2016)

17019–17034 . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/501100006407
http://dx.doi.org/10.13039/501100002858
http://dx.doi.org/10.13039/501100004773
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0036


144 X. Chai et al. / Signal Processing 148 (2018) 124–144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[37] A .A . Dalhoum , B.A . Mahafzah , A .A . Awwad , I. Aldamari , A . Ortega , M. Alfonseca ,
Digital image scrambling using 2D cellular automata, IEEE. Multimedia 19 (4)

(2012) 28–36 . 
[38] X.L. Chai , Z.H. Gan , K. Yang , Y.R. Chen , X.X. Liu , An image encryption algorithm

based on the memristive hyperchaotic system, cellular automata and DNA se-
quence operations, Signal Process. Image Commun. 52 (2017) 6–19 . 

[39] T.H. Chen , M. Zhang , J.H. Wu , C. Yuen , Y. Tong , Image encryption and com-
pression based on kronecker compressed sensing and elementary cellular au-

tomata scrambling, Opt. Laser Technol. 84 (2016) 118–133 . 

[40] S.N. George , N. Augustine , D.P. Pattathil , Audio security through compres-
sive sampling and cellular automata, Multimedia Tools Appl. 74 (23) (2015)

10393–10417 . 
[41] F.H. Min , Z.L. Wang , E.R. Wang , Y. Cao , New memristor chaotic circuit and

its application to image encryption, J. Electron. Inf. Technol. 38 (10) (2016)
26 81–26 88 . 

[42] C. Xu , C.Q. Li , J.H. Lv , S. Shu , On the network analysis of the state space of

discrete dynamical systems, Int. J. Bifurc. Chaos 27 (4) (2017) . 
[43] Y.M. Ren , Y.N. Zhang , Y. Li , Advances and perspective on compressed sens-

ing and application on image processing, Acta Autom. Sin. 40 (8) (2014)
1563–1575 . 

[44] H.P. Yin , Z.D. Liu , Y. Chai , X.G. Jiao , Survey of compressed sensing, Control De-
cis. 28 (10) (2013) 1441–1445 . 

[45] J.B. Guo , R. Wang , Construction of a circulant compressive measurement ma-

trix based on chaotic sequence and RIPless theory, Acta Phys. Sin. 63 (19)
(2014) 373–382 . 

[46] X.L. Chai , Z.H. Gan , Y.R. Chen , Y.S. Zhang , A visually secure image encryption
scheme based on compressive sensing, Signal Process. 134 (2017) 35–51 . 

[47] N.R. Zhou , A.D. Zhang , F. Zheng , L.H. Gong , Novel image compression–encryp-
tion hybrid algorithm based on key-controlled measurement matrix in com-

pressive sensing, Opt. Laser Technol. 62 (10) (2014) 152–160 . 

[48] H. Liu , A. Kadir , Asymmetric color image encryption scheme using 2D discrete–
time map, Signal Process. 113 (2015) 104–112 . 

[49] B. Norouzi , S.M. Seyedzadeh , S. Mirzakuchaki , M.R. Mosavi , A novel image en-
cryption based on row-column, masking and main diffusion processes with

hyper chaos, Multimedia Tools Appl. 74 (3) (2015) 781–811 . 
[50] G. Alvarez , S. Li , Some basic cryptographic requirements for chaos-based cryp-
tosystems, Int. J. Bifurc. Chaos 16 (8) (2006) 2129–2151 . 

[51] X.Y. Wang , K. Guo , A new image alternate encryption algorithm based on
chaotic map, Nonlinear Dyn. 76 (4) (2014) 1943–1950 . 

[52] A. Bakhshandeh , Z. Eslami , An authenticated image encryption scheme based
on chaotic maps and memory cellular automata, Opt. Lasers Eng. 51 (6) (2013)

665–673 . 
[53] S.N. George , D.P. Pattathil , A secure LFSR based random measurement matrix

for compressive sensing, Sensing Imaging 15 (1) (2015) 1–29 . 

[54] R. Enayatifar , A.H. Abdullah , I.F. Isnin , A. Altameem , M. Lee , Image encryp-
tion using a synchronous permutation-diffusion technique, Opt. Lasers Eng. 90

(2017) 146–154 . 
[55] Chanil Pak , L.L. Huang , A new color image encryption using combination of the

1D chaotic map, Signal Process. 138 (2017) 129–137 . 
[56] S. Yi , Y.C. Zhou , Binary-block embedding for reversible data hiding in en-

crypted images, Signal Process. 133 (2017) 40–51 . 

[57] L.L. Yao , C.J. Yuan , J.J. Qiang , S.T. Feng , S.P. Nie , Asymmetric image encryption
method based on gyrator transform and vector operation, Acta Phys. Sin. 65

(21) (2016) 214203 . 
[58] Y. Xie Eric , C.Q. Li , S.M. Yu , J.H. Lu , On the cryptanalysis of Fridrich’s chaotic

image encryption scheme, Signal Process. 132 (2017) 150–154 . 
[59] C.Q. Li , T. Xie , Q. Liu , G. Cheng , Cryptanalyzing image encryption using chaotic

logistic map, Nonlinear Dyn. 78 (2014) 1545–1551 . 

[60] J. Ahmad , S.O. Hwang , A secure image encryption scheme based on chaotic
maps and affine transformation, Multimedia Tools Appl. 75 (21) (2015)

13951–13976 . 
[61] F. Ahmed , A. Anees , V.U. Abbas , M.Y. Siyal , A noisy channel tolerant image en-

cryption scheme, Wireless Pers. Commun. 77 (4) (2014) 2771–2791 . 
[62] A . Anees , A .M. Siddiqui , F. Ahmed , Chaotic substitution for highly autocorre-

lated data in encryption algorithm, Commun. Nonlinear Sci. Numer. Simul. 19

(9) (2014) 3106–3118 . 

http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0046
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0046
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0046
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0046
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0046
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0047
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0047
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0047
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0047
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0047
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0048
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0048
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0048
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0049
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0049
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0049
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0049
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0049
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0050
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0050
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0050
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0051
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0051
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0051
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0052
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0052
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0052
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0053
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0053
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0053
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0054
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0054
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0054
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0054
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0054
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0054
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0055
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0055
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0055
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0056
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0056
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0056
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0057
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0057
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0057
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0057
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0057
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0057
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0058
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0058
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0058
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0058
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0058
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0059
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0059
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0059
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0059
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0059
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0060
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0060
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0060
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0061
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0061
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0061
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0061
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0061
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0062
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0062
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0062
http://refhub.elsevier.com/S0165-1684(18)30054-9/sbref0062

	An image encryption algorithm based on chaotic system and compressive sensing
	1 Introduction
	2 Preliminaries
	2.1 The magnetic-controlled memristive chaotic system
	2.2 Cellular automata and elementary cellular automata
	2.3 Compressive sensing (CS)
	2.4 Zigzag confusion

	3 The proposed encryption and decryption scheme
	3.1 The generation of initial values of the chaotic system
	3.2 The computation of the initial position of zigzag confusion
	3.3 The generation of the initial configurations of elementary cellular automata
	3.4 The generation of measurement matrix for CS
	3.5 The proposed encryption algorithm
	3.6 The decryption algorithm
	3.7 Discussion

	4 Simulation results
	4.1 Encryption results and decryption results for different images
	4.2 The effect of the compression ratio on simulation results
	4.3 The effect of different parameters on gray difference degree (GDD)
	4.3.1 The influence of the number of evolutions and the number of scrambling rounds on GDD
	4.3.2 The influence of different ECA rules on GDD


	5 Performance analyses
	5.1 Key space analysis
	5.2 Key sensitivity analysis
	5.3 Histogram analysis
	5.4 Robustness analysis
	5.4.1 Noise attack
	5.4.2 Cropping attack

	5.5 Analysis of resisting known-plaintext and chosen-plaintext attacks
	5.6 Time complexity analysis

	6 Conclusions
	 Acknowledgments
	 References


