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A B S T R A C T

Governments and consumers are paying more attention to environmental protection. China, Korea, and several
European countries have implemented market-based cap-and-trade systems to reduce carbon emissions. At the
same time, consumers are willing to pay more for low-carbon products. The decisions of manufacturers and
retailers may be impacted by these factors. This paper considers a scenario with a model economy under the
effects of a cap-and-trade policy, with consumers who prefer low-carbon products, and develops an evolutionary
game (EG) model to examine the evolution of behaviors for powerful retailers (such as Amazon, Gome, Walmart,
etc.) and manufacturers in a retailer-led supply chain. In such a supply chain, the retailers can choose whether or
not to promote low-carbon products and manufacturers can choose whether or not to reduce carbon emissions. A
Stackelberg game structure is used to identify the optimal decisions for manufacturers and retailers. A model is
developed to investigate the stability of the equilibrium solutions of the evolutionary game. System dynamics is
used to simulate and analyze dynamic and transient behaviors, and is used to simulate the evolutionary game in
a Chinese appliance industry. The simulation results show that the emissions cap, the market price of carbon
credits, and the consumers’ preferences for low-carbon products are key factors influencing the retailers’ and
manufacturers’ behavior. To increase long-term profits for both retailers and manufacturers, the retailers and the
manufacturers should make sustainable decisions in tandem.

1. Introduction

With the rapid development of industrial capabilities in China and
other parts of the world, more greenhouse gasses (GHGs) have been
emitted due to industrial production processes, which damage the en-
vironment. After implementing the Kyoto Protocol in 1997 and the
Paris Climate Agreement in 2015, Europe, China, and Korea have at-
tempted to enact a variety of policies and legislation to reduce carbon
emissions (Goulder and Schen, 2013; Zhang and Xu, 2013). For ex-
ample, in China, the National Development and Reform Commission
(NDRC) instructed Beijing, Shanghai, Guangdong, and four other cities
to implement a carbon emissions trading mechanism. According to
NDRC statistics, between the implementation of the program and Sep-
tember 2017, 197 million tons and more than 4.5 billion RMB of carbon
credits were exchanged in these seven cities.

Under this cap-and-trade system, the government allocates a free
limit on carbon emissions to an individual enterprise. If an enterprise
produces a larger amount of carbon emissions than the emissions cap, it

has to buy credits for the extra carbon emissions; otherwise, it can earn
additional revenue by selling the unused carbon credits at the market
price (Benjaafar et al., 2013). For example, in 2013, Foxconn invested
less than 50 million RMB in energy-saving retrofits but gained 10
million RMB in profit (an increase of 60 million RMB in revenue) by
selling the surplus carbon credits; this set of transactions accounted for
nearly 30% of the annual surplus credits in Shenzhen. Therefore, the
carbon trading market has created a new cost mechanism (Alhaj et al.,
2016) for enterprises and could influence the enterprises’ production
planning and ordering strategies (Cheng et al., 2017; Drake et al.,
2010).

Many customers are also concerned about environmental issues (Du
et al., 2017; Manohar and Kumar, 2016; Xu and Wang, 2017) and are
willing to pay more for low-carbon products (Du et al., 2015; Luo et al.,
2014). Low-carbon products have lower embodied greenhouse gas
emissions and are generally considered to have lower environmental
impact (Janssen and Jager, 2002). A report by the AliResearch Institute,
a non-profit agency in China, states that the total number of consumers

https://doi.org/10.1016/j.resconrec.2018.11.005
Received 24 April 2018; Received in revised form 6 November 2018; Accepted 7 November 2018

⁎ Corresponding author at: Beijing Jiaotong University, Beijing, 100044, PR China.
E-mail address: dmu@bjtu.edu.cn (D. Mu).

Resources, Conservation & Recycling 142 (2019) 88–100

0921-3449/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/09213449
https://www.elsevier.com/locate/resconrec
https://doi.org/10.1016/j.resconrec.2018.11.005
https://doi.org/10.1016/j.resconrec.2018.11.005
mailto:dmu@bjtu.edu.cn
https://doi.org/10.1016/j.resconrec.2018.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resconrec.2018.11.005&domain=pdf


who prefer low-carbon products increased by a factor of 14 in the past
four years and reached 65 million in 2015.

In view of these factors mentioned above, manufacturers may be
incentivized to invest in sustainable/low-carbon technology to reduce
carbon emissions, and use cleaner energy and eco-friendly materials
(Swami and Shah, 2013). In response to these changing market con-
ditions, several companies have adjusted their behavior. In 2016, Sie-
mens adopted cleaner technologies and helped its upstream and
downstream enterprises reduce carbon emissions by 521 million tons,
which accounted more than 60% of the annual carbon emissions in
Germany. Meanwhile, as market power (e.g., pricing power) has gra-
dually shifted from manufacturers to powerful retailers (e.g. Walmart,
Gome, Amazon) (Pu et al., 2007), some supply chains have become
retailer-led. These powerful retailers are increasingly expected to take
more responsibility for environmental damages (Lai and Tang, 2010;
Styles et al., 2012). To this end, retailers promote their eco-friendly
products by labeling products with carbon footprint information, and
discounting the low-carbon products (Tuten, 2013). For instance, in
recent years, Gome, the largest home appliances retailer in China, has
actively popularized environmental knowledge and promoted energy-
saving products to consumers.

However, each since stakeholder is concerned about maximizing its
own profit, and does not act for the benefits of the overall supply chain.
When one company invests in sustainable production technologies, all
companies along the supply chain benefit from the ability to market
their product as “sustainable”. This is a classic free rider problem, and
as a result, supply chain spillover emerges. In fact, the supply chain
members who act in an environmentally friendly manner do not receive
all of the benefits of their strategies. Some of the supply chain en-
terprises will take a free ride and earn profits from other agents’ sus-
tainability efforts. Over time, competitors will need to implement sus-
tainable strategies to compete, and the market will evolve (Kusi-
Sarpong and Sarkis, 2017).

In order to understand the expected changes to the market, methods
are needed to predict the behavior of retailers and manufacturers. This

market evolution can be modelled as a dynamic game (Liu et al., 2012).
The equilibrium strategies for a dynamic game may not remain stable
over time, similar to biological evolution. Thus, evolutionary game
theory is an important method that can be used to investigate the dy-
namic impact of government incentive policies to reduce carbon
emissions (Wu et al., 2017) on the strategies and behaviors of en-
terprises. Evolutionary game theory is based on the assumption of
bounded rationality, which supposes that players have the ability to
keep learning and adapt to the market environment (Du et al., 2017;
Smith, 1976; Zhou and Deng, 2006). Barari et al. (2012) established an
evolutionary game model between producers and retailers to analyze
their strategies to incentivize sustainable practices and to maximize
economic profits. (Naini et al., 2011) proposed a mixed performance
measurement system using a combination of evolutionary game theory
and a balanced score card method to solve environmental supply chain
management (ESCM) problems. They found that the adoption of ESCM
is limited by organizational factors and strategic myopia. Ji et al.
(2015) developed an evolutionary game model to observe the long-term
tendency for multiple stakeholders to cooperate in green purchasing.
Zhao et al. (2016) proposed an evolutionary game model to investigate
the responses of enterprises to a carbon reduction labeling scheme. Tian
et al. (2014) utilized evolutionary game theory and system dynamics to
explore the diffusion of sustainable supply chain management ideas
between manufacturers.

By analyzing these existing studies, we conclude that prior research
has mainly focused on investigating the influence of regulatory actions
and macroeconomic policies on the evolution of the behavior of man-
ufacturers and retailers. It is still unknown how carbon policies and
consumer behavior impacts the selection of strategies and the evolution
of the behavior of both the retailers and the manufacturers in an actual
evolutionary game process. To address this gap, we consider cap-and-
trade mechanism and the consumers’ preference for low-carbon pro-
ducts to develop an evolutionary game model to understand the evo-
lutionary behavior of the retailers and the manufacturers in a retailer-
led supply chain. As shown in Fig. 1, in such a retailer-led supply chain,

Fig. 1. Framework of this paper.
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the retailers have two strategies: a low-carbon promotion strategy
(LCPS) and a non-promotion strategy (NPS) and the manufacturers can
choose between a carbon emissions-reduction strategy (CERS) and a
non-reduction strategy (NRS). Both LCPS and CERS cost more than their
corresponding alternative strategies, but potentially can result in higher
sales or more carbon credits in the long term. Since payoff analysis is
very important in establishing an evolutionary game model, under each
strategy combination, a Stackelberg game structure is applied to find
optimal solutions for each manufacturer and each retailer to maximize
their profits in the short term. In a Stackelberg game structure, the
retailer moves first and the manufacturers adjust behavior based upon
retailer actions. This is used to determine the optimal solutions for the
various permutations of the two strategies available to retailers and the
two strategies available to manufacturers. As these strategies can be
chosen by retailers and manufacturers, and can be modelled using the
relative probabilities of each choice, the EG model can be used to in-
vestigate the stability of the various equilibrium strategies and observe
the interactions among stockholders and the effects of short-term op-
timal strategies on the long-term optimal solution.

One way that these evolutionary games are modelled is through
system dynamics (SD) (Forrester, 1961). SD is a technique to simulate
and analyze dynamic and transient behavior (Yang and Du, 2016), so
many scholars have combined system dynamics with evolutionary
game methods to study supply chain operations and management issues
(Cai et al., 2009; Kim and Kim, 1997; Zhu et al., 2014). In this study, the
system dynamics model for an evolutionary game is applied to a case
study of the Chinese refrigerator industry to simulate the dynamic game
process and investigate how the factors mentioned above influence
their selection of a strategy and their evolving behavior. In particular,
the evolutionary tendency of the enterprises’ behavior when the emis-
sions cap decreases has been observed and analyzed. The framework of
this paper is shown in Fig. 1; the evolutionary game structure is out-
lined in Section 2 and the system dynamics model is discussed in Sec-
tion 3.

2. The evolutionary game model

In this section, we develop an evolutionary game model to analyze
the supply chain stakeholders’ behavior while considering a cap-and-
trade system and the consumers’ preferences for low-carbon products.
In a retailer-led supply chain, upstream manufacturers sell products to
downstream retailers, who sell the products to the customers, as pre-
sented in Fig. 2. Specially, the enterprises’ behavior is driven by carbon
policies and the demand for low-carbon products (Tian et al., 2014;
Zhao et al., 2016). The agents may also influence each other in the
supply chain system, that is, organizational behavior may be influenced
by competition between the manufacturers and the retailers.

As depicted in Figs. 1 and 2, each retailer acts as a leader in the
Stackelberg game. The retailer first decides whether to adopt the LCPS
or NPS strategy, then decides the retail margin and amount of promo-
tional effort needed. Specifically, the promotional measures include
increasing advertising investment, improving a salesmen’s professional
skills or displaying goods in the best locations; all of these measures
require investment. In such a supply chain, each manufacturer acts as a
follower in the game. According to the retailers’ decisions, manu-
facturers decide whether to implement a CERS or NRS strategy, and

then decide on the wholesale price and amount of investment in carbon
emissions reduction technologies. If the manufacturer does not make
effort to reduce carbon emissions, it only needs to decide on the optimal
wholesale price.

We construct four strategy combinations for the promotion (P), re-
duction (R) and non-promotion/reduction (N) scenarios: NN (NPS,
NRS), PN (LCPS, NRS), NR (NPS, CERS), and PR (LCPS, CERS). The
profits of both retailers and manufacturers are summarized in the
payoff matrix, as shown in Table 1.

To develop the proposed model, we make the following assump-
tions.

Retailers, manufacturers, and customers exist in an oligopoly
market.

The numbers of manufacturers and retailers are constant.
The manufacturers produce products based on make-to-order pro-

duction, so that demand is considered to be equal to production
quantity.

When utilizing a certain emissions reduction technology, the unit
carbon emission is fixed and measurable.

Carbon credits that are allocated by the government for free cannot
be transferred to the next production period. The manufacturers can
trade carbon credits in the carbon market.

Customers can learn about the embodied carbon emissions of a
product from “carbon labels” or other channels.

These assumptions are both useful and tenable in real domains, and
enable the model to be analyzed. The parameters used in the model are
shown below.

Δw Retail margin set by the retailer
τr Level of promotional effort decided by the retailer
w Wholesale price set by the manufacturer
τm Level of carbon emissions reduction decided by the manufacturer
a Potential market demand
b Price elasticity of demand
β Promotional effectiveness parameter
γ Emissions reduction effectiveness parameter
p Retail price per unit of product
q Production quantity
cr Retail cost per unit of product
cm Production costs per unit of product
hr Promotion cost coefficient
hm Emissions reduction investment coefficient
em Initial carbon emissions per unit of product
pe Market price of carbon credits
Cg Emissions cap

= =i NN PN NR PR j γ mπ , , , , ; ,j
i Profit of j in i strategy combina-

tion

Fig. 2. Supply chain network structure.

Table 1
Payoff matrix for retailer and manufacturer.

Strategies of the retailer Strategies of the manufacturer

CERS NRS

LCPS πr
PR, πm

PR πr
PN , πm

PN

NPS πr
NR, πm

NR πr
NN , πm

NN
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2.1. The model development

In the evolutionary game, each player chooses its strategy based on
the probability to obtain evolutionary advantages for long-term devel-
opment. According to Kim and Kim (1997), the probability of the
players’ behavior can be estimated as the proportion of retailers who
promote low-carbon products and the proportion of manufacturers who
reduce carbon emissions. We denote ≤ ≤x x(0 1) as probability of that
the retailers adopt the LCPS and y ≤ ≤y(0 1) as the probability of that
the manufacturers adopt the LCPS. The expected profits of the retailers
that choose LCPS and NPS are set as Er

P and Er
N , which are described by

Eqs. (1) and (2), respectively,

= + −E yπ y π(1 )r
P

r
PR

r
PN (1)

= + −E yπ y π(1 )r
N

r
NR

r
NN (2)

The average expected payoff of the retailers is

= + −E xE x E¯ (1 )r r
P

r
N (3)

Similarly, the expected profits of the manufacturers that choose
CERS and NRS are given as follows, respectively,

= + −E xπ x π(1 )m
R

m
PR

m
NR (4)

= + −E xπ x π(1 )m
N

m
PN

m
NN (5)

and the average expected payoff of the manufacturers is:

= + −E yE y E¯ (1 )m m
R

m
N (6)

To describe the evolutionary game, replicator dynamic equations
are used (Fudenberg and Maskin, 1990; Kim and Kim, 1997; Taylor,
1978). The replicator dynamic equations for the retailers who promote
low-carbon products and the manufacturers who reduce carbon emis-
sions are given as follows, respectively:

= = − = − −

+ − −

F x dx
dt

x E E x x y π π

y π π

( ) ( ¯ ) (1 )[ ( )

(1 )( )]

r
P

r r
PR

r
NR

r
PN

r
NN (7)

= = − = − −

+ − −

F y dy
dt

y E E y y x π π

x π π

( ) ( ¯ ) (1 )[ ( )

(1 )( )]

m
R

m m
PR

m
PN

m
NR

m
NN (8)

These systems of equations enable the simulation of manufacturer
and retailer behavior.

2.2. Payoffs analysis

As mentioned above, in a retailer-led supply chain, the retailers and
the manufacturers will attempt to maximize their economic profits
under each one of the four strategy combinations. Therefore,
Stackelberg game structure is applied to find the optimal solutions of
the retailer and the manufacturer under each one of the four strategy
combinations that are shown in Table 1.

(1) Strategy combination NN

In this combination, retailers do not promote low-carbon products
and manufacturers do not reduce carbon emissions. As the leader in the
game, each retailer first decides the retail margin per unit of product
and then its upstream manufacturers decide the optimal wholesale
price. According to Choi (1991), the product price is equal to the
wholesale price plus the retail margin, that is, = +p w Δw. The de-
mand function is given as

= = − +q w Δw D a b w Δw( , ) ( ) (9)

where Δw characterizes the retail margin that is decided by retailers. a
and b denote the base market demand and price elasticity of demand,

respectively. Based on the above description, by maximizing the
players’ profits, we formulate an unconstrained optimization model.
Here, the profit function for each retailer is presented as:

= − −p w c qπ ( )r
NN

r (10)

and the profit function for each manufacturer is shown as:

= − − −w c q e q C pπ ( ) ( )m
NN

m m g e (11)

where cr and cm represent the retail cost and production cost, respec-
tively. em is the initial carbon emissions per unit of product when the
reduction of carbon emissions is not incentivized (normal market con-
ditions). Cg indicates the carbon emissions cap, as imposed by govern-
ment policy.

(2) Strategy combination PN

In strategy combination PN, the manufacturers will not earn addi-
tional profits from reducing carbon emissions in the short term. These
manufacturers prefer to buy carbon credits rather than invest in carbon
emissions reduction technology. Thus, low-carbon products will not
appear in the market and cannot be promoted by retailers. Under these
circumstances, the sequence of decision making and the optimal solu-
tions in PN are the same as the strategy combination NN.

(3) Strategy combination NR

In this case, the manufacturers provide themselves with surplus
carbon credits through investment in emissions reduction technologies
or carbon trading. Many retailers will have a strong tendency to be “free
riders”. These retailers contribute nothing toward the cost of the carbon
emissions reduction technologies and the promotion of the low-carbon
products, while enjoying their benefits as fully as manufacturers who
invest (Kim and Walker, 1984). Therefore, demand is affected by the
retail price per unit of product and the level of carbon emissions re-
duction. The demand function is given by Eq. (12).

= = − + +q w Δw τ D a b w Δw γτ( , , ) ( )m m (12)

where γ indicates an emissions reduction effectiveness parameter which
represents the increase in consumer demand for a low carbon product
for a given reduction in emissions by the manufacturer. In this case,
after the retailer decides the retail margin, its upstream manufacturers
will decide the wholesale price and level of carbon emissions reduction.
The profit functions for each retailer and each manufacturer are pre-
sented in Eqs. (13) and (14).

= − −p w c qπ ( )r
NR

r (13)

= − − − − −w c q e τ q C p h τπ ( ) [ (1 ) ] 1
2m

NR
m m m g e m m

2
(14)

where τm is the level of carbon emissions reduction, and hm is the
carbon emissions investment coefficient. Since the investment required
to reduce carbon emissions has an increasing marginal cost, we assume
that the investment costs can be modelled as a quadratic function, that
is, = >I h γ h( 0)m m m m

1
2

2 (Gurnani and Erkoc, 2008; Petruzzi and Dada,
1999; Savaskan and Van Wassenhove, 2006). After investing in carbon
emissions reduction technologies, the current emissions per unit of
product is −e τ(1 )m m . If carbon emissions exceed the emissions cap, the
manufacturer has to buy carbon credits in the carbon market; other-
wise, it can sell its surplus credits to balance carbon reduction costs or
gain additional revenue. If the manufacturer's carbon emissions in the
production process exceeds the emissions cap Cg , the term

− −e τ q C p[ (1 ) ]m m g e denotes the carbon trading cost; otherwise, the
manufacturer will earn additional revenue.

(4) Strategy combination PR
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When retailers sell products to customers, the retailers can quickly
respond to the demand for low-carbon products and take measures to
promote low-carbon products to further increase profits. The manu-
facturers are pushed by a cap-and-trade system and pulled by consumer
demand for low-carbon products. Therefore, in strategy combination
PR, the demand is affected by emissions reduction effort and promo-
tional effort. The demand function is shown as follows:

= = − + + +q w τ Δw τ D a b w Δw γτ βτ( , , , ) ( )m r m r (15)

where β represents the promotional effectiveness parameter, which
represents the increase in demand from customers in response to the
promotional effort of retailers. The profit functions for each manu-
facturer and each retailer are provided as follows:

= − − −p w c q h τπ ( ) 1
2r

PR
r r r

2
(16)

= − − − − −w c q e τ q C p h τπ ( ) [ (1 ) ] 1
2m

PR
m m m g e m m

2
(17)

The promotional cost follows a quadratic function based on results
from Laffont and Tirole (1993) and D’Aspremont and Jacquemin
(1988), i.e. = >I h τ h( 0)r r r r

1
2

2 , where τγ is the level of promotional ef-
fort. In strategy combination PR, the retailer first decides the retail
margin per unit Δw and the level of promotional effort, τr . The up-
stream manufacturers decide the optimal wholesale price w and the
level of carbon emissions reduction τm.

Based on these profit functions established for each manufacturer
and each retailer, the optimal solutions from the Stackelberg game
structure are summarized in the following theorems.

Theorem 1. There exists a unique optimal solution to each
combination.

See Appendix A for proof. The optimal solutions and important re-
sults in each case are shown in Appendix B. Note that there are only
optimal solutions based on NR and PR if

− + > >bh γ be p2 ( ) 0m m e
β h

h
2

2
m
r

2
.

Theorem 1. allows us to calculate the unique optimal solutions for each
strategy combination under specific conditions. A comparison of results
between the optimal profits of the four strategy combinations are
shown in theorem 2.

Theorem 2. If − + > >bh γ be p2 ( ) 0m m e
β h

h
2

2
m
r

2
, then

= < <∗ ∗ ∗ ∗(π ) (π ) (π ) (π )m
NN

m
PN

m
NR

m
PR and = <∗ ∗ ∗(π ) (π ) (π )r

NN
r
PN

r
NR

< ∗(π )r
PR .

Proof. According to Theorem 1, we can determine the optimal so-
lutions for the retailers’ and the manufacturers’ profits in each case:

The optimal profits for the retailer are:

= =
− + +a b c e p c

b
(π )* (π )*

[ ( )]
8r

NN
r
PN m m e r

2

=
− + +

−
=

− + +

− −+ +

a b c e p c

b

a b c e p c

b
(π )*

[ ( )]

8
, (π )*

[ ( )]

8
r
NR m m e r

γ be p
h

r
PR m m e r

γ be p
h

β
h

2

4( )

2

4( ) 2m e
m

m e
m r

2 2 2

The profit functions will be greater than zero only when
− + > >bh γ be p2 ( ) 0m m e

β h
h

2
2

m
r

2
.

Since > 0β
h

2
r

2
, >+ 0γ be p

h
4( )m e

m

2
, and − + + >a b c e p c[ ( )] 0m m e r

2 , we

have > − > − −+ +b b b8 8 8γ be p
h

γ be p
h

β
h

4( ) 4( ) 2m e
m

m e
m r

2 2 2
.

Therefore, = < <π π π πr
NN

r
YN

r
NY

r
YY .

Similarly, we can get = < <π π π πm
NN

m
PN

m
NR

m
PR.

Theorem 2. indicates that the most profitable strategy is PR, followed
by NR. The least two profitable strategies are NN and PN. It is obvious
that + = + < + < +π π π π π π π πm

NN
r
NN

m
PN

r
PN

m
NR

r
NR

m
PR

r
PR, which

indicates that the total supply chain profit in PR will be significantly

greater than that in any other combination. Therefore, if supply chain
enterprises take measures to promote low-carbon products and reduce
carbon emissions, the profit of the company and the rest of the supply
chain will increase.

However, as the retailers and the manufacturers update their stra-
tegies based on the perceived probability of changes in market cir-
cumstances (e.g., customers’ preferences for low-carbon products,
market price of carbon credits), the optimal solutions may not be
constant or the time required to reach the optimal solutions may
change. Thus, it is meaningful to analyze the stability of the evolu-
tionary game.

2.3. Stability analysis of evolutionary game

As mentioned above, the evolutionary game process of the retailer-
led supply chain system can be characterized by the replicator dynamic
Eqs. (7) and (8). The following lemma is useful to derive the equili-
brium points for this evolutionary game.

Lemma 1. With the dynamic evolution of the supply chain system,
there are four Nash equilibrium points (0, 0), (0, 1), (1, 0) and (1, 1).

Proof. Since =π πr
PN

r
NN and =π πm

PN
m
NN , then we can get

⎧
⎨⎩

= − −
= − − + −

F x x x π π y
F y y y x π π π π

( ) (1 )( )
( ) (1 )[ ( ) ( )]

r
PR

r
NR

m
PR

m
NR

m
NR

m
NN

Let⎧
⎨⎩

=
=

F x
F y

( ) 0
( ) 0

, the equilibrium points of the supply chain system are

(0,0), (0,1), (1,0), (1,1), (x0, y0), where

⎧

⎨
⎪

⎩⎪

= = <

= =

−
− + −

−
−

−
− − +

x

y

0

0

π π
π π π π

π π
π π

π π
π π π π

0

0

m
NR

m
NN

m
NR

m
NN

m
PN

m
PR

m
NR

m
NN

m
NR

m
PR

r
PN

r
NN

r
PN

r
NN

r
PR

r
NR

It is obvious that <x 00 is

contrary to the assumption that the values of all equilibrium points are

greater than zero. Therefore, point = −
−( )x y( , ) , 0π π

π π0 0
m
NR

m
NN

m
NR

m
PR does not

exist and there are only four equilibrium points of this system, that is
(0, 0), (0, 1), (1, 0) and (1, 1).

Lemma 1. allows us to derive the four Nash equilibrium points of this
supply chain system. The stabilities of these points are stated in the next
theorem.

Theorem 3. Based on the system given by replicator dynamic Eqs. (7)
and (8), it follows that

(a) The equilibrium (1, 1) is a unique ESS.
(b) The equilibrium (0, 1) is a saddle point.
(c) The equilibrium point (0, 0) and (1, 0) are unstable.
Proof. Friedman (1991) and Hofbauer and Sigmund (1998) put

forward a local stability analysis method that utilizes a Jacobian matrix
to analyze the stability of equilibrium points. The Jacobian matrix of
the retailer-led supply chain system is

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

− −

+ −

− −

− +

− − −

+

−

− +

− −

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

J

x y π π

y π π

x x π π

π π

y y π π π

π

y x π

π

x π π

(1 2 )[ ( )

(1- )( )]

(1 )(

)

(1 )(

)

(1 2 )[ (

) (1

)( )]

dF x
dx

dF x
dy

dF y
dx

dF y
dy

r
PR

r
NR

r
PN

r
NN

r
PR

r
NR

r
PN

r
NN

m
PR

m
PN

m
NR

m
NN

m
PR

m
PN

m
NR

m
NN

( ) ( )

( ) ( )

(18)

When the determinant of the Jacobian matrix is greater than 0
( >Det J( ) 0) and the trace of the Jacobian matrix is less than 0
( <tr J( ) 0), the equilibrium point that tends to a local asymptotic sta-
bility point is the evolutionary stability strategy (ESS) of the system.
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According to Lemma 1 and the Jacobian matrix of the system, the re-
sults are summarized in Table 2.

From Lemma 1 and Theorem 3, it can be seen that the system cannot
reach a steady state when the manufacturers do not reduce carbon
emissions or the retailers do not promote low-carbon products. In ad-
dition, from any point in the closed area of [0, 1] × [0, 1], the system
converges to the (1, 1) point. The supply chain will then reach an
evolutionary steady state. This means that all manufacturers will
choose CERS and all retailers will select LCPS given time. However, the
time the system takes to reach an evolutionary steady state depends on
the changes in key factors such as the emissions cap, the market price of
carbon credits, and the customers’ preference for low-carbon products.
These issues will be addressed in next section.

3. System dynamics model for an evolutionary game

3.1. The framework of system dynamics model

Based on the analysis of the manufacturers’ and retailers’ evolu-
tionary behavior, we establish a system dynamics (SD) model for an
evolutionary game using Vensim_DSS software. The SD model is a
useful tool to simulate the dynamic game process and predict the dy-
namic evolution of a system using a convenient visual description
(Wang et al., 2011). We established the SD model’s stock-flow diagram
for the supply chain system, as shown in Fig. 3. The subsystem mod-
elling for the payoff of retailers and manufacturers in the SD model is
shown in Fig. 4.

According to the Lyapunov function (Kelly et al., 1998) and Eqs.
(16) and (17), the key equations in the system dynamics model are
given as follows:

=NMR INTEG AR initial( , ) (19)

=NRP INTEG AP initial( , ) (20)

= +x NRP NRP NRN/( ) (21)

= +y NMR NMR NMN/( ) (22)

= +
−

UMR y
y

*Manufacturer's profit in strategy combination PR
(1 )*Manufacturer's profit in strategy combination NR (23)

= +
−

UMN y
y

*Manufacturer's profit in strategy combination PN
(1 )*Manufacturer's profit in strategy combination NN (24)

= + −URP x x*Retailer's profit in strategy combination PR (1 )

*Retailer's profit in strategy combination NR (25)

= + −URN x x*Retailer's profit in strategy combination PN (1 )

*Retailer's profit in strategy combination NN (26)

= = − −AP dx
dt

x x URP URN*(1 )*( )
(27)

= = − −AR dy
dt

y y UMR UMN*(1 )*( )
(28)

where NMR represents the number of manufacturers that invest in
carbon emissions reduction technologies, NMN represents the number
of manufacturers that do not invest in carbon emissions reduction
technologies, NRP represents the number of retailers that promote low-
carbon products, NRN represents the number of retailers that do not
promote low-carbon products, AR represents the adoption rate of the
manufacturers that choose CERS, AP represents the adoption rate of the
retailers that choose LCPS, UMR represents the expected profits when
the manufacturers select CERS, UMN represents the expected profit
when the manufacturers select NRS, URP represents the expected profit
when the retailers select LCPS, URN represents the expected profit
when the retailers select NPS. As shown in Figs. 3 and 4, there are four
levels of variables: NRN, NRP, NMN and NMR; two rate variables: AR
and AP; two intermediate variables: A Multiplier and B Multiplier; and
eleven exogenous variables.

To apply the SD model to a real world case, we examine the Chinese
refrigerator industry. The initial parameters of the system dynamics
model are mainly derived from information from the National Bureau
of Statistics of the People’s Republic of China (NBS), the China’s
National Development and Reform Commission (NDRC) and the China
Household Electrical Appliances Association (CHEAA). In 2016, sales of
sustainable refrigerators with a price of 4,000–6,000 RMB and over
6000 RMB were over 87,000 (CHEAA, 2016). Since China has launched
the cap-and-trade system in Beijing, the unit market price of carbon
credits in Beijing’s Carbon Trading Center is 50 RMB/Ton (CHEAA,

Table 2
Stability of Equilibrium points.

Equilibrium point Det (J) tr (J) Stability

(0, 0) 0 + Unstable point
(0, 1) – + Saddle point
(1, 0) 0 uncertain Unstable point
(1, 1) + – ESS

Fig. 3. The SD model for the evolutionary game.
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2016) and the emissions cap is calculated by using the baseline method
(GFC and CBEEX, 2016). The emissions cap of each manufacturer that is
regulated by the government is set as 1 million ton. According to Zhang
et al. (2016), the production of each refrigerator consumes about
14 kWh. Thus, the initial carbon emissions of each refrigerator during
manufacturing (kg) is equal to the power consumption (14 kg) multi-
plied by 0.785 (Calculation of carbon emissions, 2014). According to
Zhang et al. (2016), the price of a refrigerator compressor is about 300
RMB, which accounts for one-third of the total manufacturing cost.
Therefore, we set the production cost to be 900 RMB. Similar to Tian
et al. (2014), the investment factors for carbon emissions reduction and
promotion are set as 50 and 60, respectively. The values of these input
parameters of the SD model are shown in Table 3. In the initial simu-
lations, these numbers are used as benchmarks for the behavior of the
retailers and manufacturers. The numbers are varied within reasonable
limits (e.g., increases of 2x or 3x and a decrease of 2x) to understand the
sensitivity of the behaviors to external forces.

3.2. Model validation of system dynamics

Model validation can help us build confidence in the inferences used
to approximate the behavior of real system (Barlas, 1996). We conduct
model validation from a structural validity and behavioral validity
perspective by using Vensim_DSS software. We verified that this SD
model does not have any mechanical or dimensional consistency errors.

Behavioral validity is important in SD model validation, and re-
presents how consistently the model outputs match real world behavior
(Barlas, 1996). In order to evaluate behavioral validity, we carry out a
Monte-Carlo sensitivity test by using the Vensim_Dss software. A Monte-
Carlo sensitivity test explores the expected behaviors of the model for a
selected output variable, and estimates the probability of an action
through repeated simulations (Musango et al., 2011). In this paper, the
uncertain parameters include price elasticity of demand, a promotional
effectiveness parameter, an emissions reduction effectiveness para-
meter, a promotion cost coefficient, and an emissions reduction in-
vestment coefficient. We assume that each parameter i can be modelled
using a normal distribution. That is i∼N (μi, σi), where μi, is the mean
value in the range [ai, bi] and σi is the variance. The values of these
parameters are shown in Table 4. The number of simulations was set at
200 scenarios.

Fig. 5 and Fig. 6 present the simulation-based confidence bounds for
the probability of that the retailers adopt the LCPS (x) and the prob-
ability of that the manufacturers adopt the CERS (y), respectively. In
the Monte-Carlo simulation, test cases were used to develop confidence

Fig. 4. The payoff of retailers and manufacturers.

Table 3
Input parameters of the simulation.

Variables Type Value Unit

NRP Level 0.01
NRN Level 0.99
NMR Level 0.01
NMN Level 0.99
a Constant 87 Thousand
b Constant 0.8
γ Constant 0.8
β Constant 0.6
cm Constant 0.9 Thousand RMB
cr Constant 0.6 Thousand RMB
em Constant 0.01 Ton
hm Constant 50
hr Constant 60
pe Constant 50 RMB/Ton
Cg Constant 1000 Thousand Ton

Table 4
Parameters used in sensitivity test.

Parameter (i) Mean (μi) Variance (σi) Range

Price elasticity of demand (b) 0.8 0.1 [0.1, 1]
Emissions reduction effectiveness

parameter (γ)
0.8 0.1 [0.1, 1]

Promotional effectiveness parameter (β) 0.6 0.1 [0.1, 1]
Emissions reduction investment

coefficient (hm)
50 10 [10, 100]

Promotion cost coefficient (hr) 60 10 [10, 100]
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bounds and illustrate behavioral validity. In the simulations, if the
confidence level is 50%, all the test cases are located within the yellow
area. Similarly, all of the retailer’s promotion test cases and all of the
manufacturer emissions reduction test cases are located within the
100% confidence bounds represented by the gray area.

In summary, the system dynamics model for the evolutionary game
is valid to simulate the evolution of behaviors between manufacturers
and retailers and to investigate the influences of key parameters on the
behavior of enterprises.

3.3. System dynamics simulation results

Based on the background of the refrigerator industry mentioned
above, a system dynamics model is developed to simulate the evolu-
tionary game process of a supply chain system and to investigate the
impacts of key parameters (such as the market price of carbon credits
and the elasticity coefficients related to demand) on the decisions of the
manufacturers and retailers. The initial values of the simulation are
shown in Table 3.

3.3.1. Simulation of evolutionary game process
The simulation of the evolutionary game was set up using a number

of default parameters. The simulation interval is [0,120], that is,
INITIAL TIME=0, FINAL TIME=120 Month, with a TIME
STEP=0.03125 months. The results of the simulation are shown in
Table 3. In order to compare the simulation results with other scenarios,
the initial simulation results of the model are set as benchmarks, which
are shown in Fig. 7.

In the refrigerator industry situation, we simulate the behavioral
evolution of supply chain stakeholders based on a random subset of
initial strategies from the [0, 1] × [0, 1] space. For example, (0.2, 0.75)
means the probability that a manufacturer adopts CERS is 0.2 and the

probability that a retailer adopts LCPS is 0.75. The evolutionary si-
mulation is shown in Fig. 8. We can see that the supply chain system
eventually evolves to an equilibrium point (1, 1) and then stabilizes.
Therefore, no matter how the initial strategies of the retailers and the
manufacturers change, the system will eventually stabilize at the (1, 1)
equilibrium point. Thus, the simulation results of the SD model are
consistent with the theoretical proof of the evolutionary game model.
To investigate the impacts of the environmental parameters of the
system on the evolution of the behavior of the supply chain stake-
holders, we will conduct a sensitivity analysis on these parameters.

3.3.2. Parameters related to customers’ behavior
As consumer behavior is a key driver of market demand, we choose

the price elasticity of demand, the emissions reduction effectiveness
parameter, and the promotional effectiveness parameter to investigate
the impacts of consumer behavior on the evolution of the manu-
facturers’ and retailers’ behavior over time.

(1) Price elasticity of demand
It is well known that different customers have different sensitivities

to product prices. The price elasticity of demand is usually used to
quantify the price sensitivity of consumers. In order to investigate the
influence of the price elasticity of demand on the decision-making of
the enterprises and observe the evolution of the game between the two
stakeholders over time, we set values of price elasticity of demand as
0.4, 0.8, 1.6, and 2.4.

As shown in Fig. 9, increasing the price elasticity of demand does
not linearly increase the probability that a retailer will promote low-
carbon products. For example, when the price elasticity of demand is
doubled from 0.4 to 0.8, the time required for the probability of LCPS
adoption to reach 0.875 increases by 3.2 times (from 10.7 months to
34.3 months). Therefore, if consumers are price-insensitive, the fluc-
tuation of product prices will have less impact on demand, and retailers
will quickly promote low-carbon products. Otherwise, when the price

Fig. 5. A sensitivity analysis of the probability of that the retailers adopt the
LCPS.

Fig. 6. A sensitivity analysis of the probability of that the manufacturers adopt
the CERS.

Fig. 7. The probability of that the retailers adopt the LCPS and that manu-
facturers adopt the CERS.

Fig. 8. The evolution and game process of the manufacturers and the retailers.
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elasticity of demand is large, retailers will take longer to implement
LCPS. Similarly, if the price elasticity of demand is low, the manu-
facturers do not need to care about the high cost of emissions reduction
technologies. Therefore, the greater the price elasticity of demand, the
more likely it is that a manufacturer will reduce carbon emissions.

From Fig. 9 and Fig. 10, it is seen that, compared to the probability
of CERS adoption, the probability of LCPS adoption is more sensitive to
variation in the price elasticity of demand. This is mainly because the
retailers locate downstream of the supply chain and interact with
consumers directly. When the price elasticity of demand changes, re-
tailers are able to understand the movements of the market more
quickly and can adapt their strategies first.

(2) Emissions reduction effectiveness parameter
In order to observe the impact of consumer preferences for low

carbon products on the adoption of CERS by manufacturers, we set the
emissions reduction effectiveness parameter as 0.4, 0.8, 1.6, and 2.4.

As can be seen from Fig. 11, the consumers’ preferences for low-
carbon products will affect the enthusiasm of manufacturers to reduce
carbon emissions. The higher the emissions reduction effectiveness
parameter is, the faster manufacturers choose CERS. When customers
are highly sensitive to the embodied carbon emissions of a product, the
amount of investment from the manufacturer in carbon emissions re-
duction technology will increase the demand accordingly. Therefore,
many manufacturers may choose to invest in carbon emissions reduc-
tion to increase revenue.

(3) Promotional effectiveness parameter
With increasing numbers of low-carbon products in the market,

more large supermarkets, shopping malls, and other powerful retailers
hope to use a variety of promotional methods to increase demand
(Familmaleki et al., 2015; Krishnamurthi and Raj, 1985). In this si-
mulation, in order to observe the effects of consumer sensitivity to a
retailer’s promotional effort for low-carbon products, the promotional

effectiveness parameter is set as 0.3, 0.6, 1.2, and 1.8.
Fig. 12 shows that the less receptive the customers are to product

promotion, the more time it will take for the probability of retailer
adoption of the LCPS to reach a certain value. Under these experimental
circumstances, all retailers will eventually invest in promoting low-
carbon products. If customers are sensitive to the level of promotional
effort, there will be an increase in the number of customers buying the
low-carbon products once the retailers choose LCPS. In contrast, when
the parameter is small, the retailers are less likely to promote low-
carbon products. Therefore, when the promotional effectiveness para-
meter is large, it is beneficial for the retailers to promote their low-
carbon products. Fig. 13

3.3.3. Emissions cap
According to GFC and CBEEX (2016), the emissions cap is calculated

Fig. 9. The probability of that the retailers adopt the LCPS responses to the
different values of price elasticity of demand.

Fig. 10. The probability of that the manufacturers adopt the CERS (y) responses
to the different values of price elasticity of demand (b).

Fig. 11. The probability of that the manufacturers adopt the CERS (y) responses
to the different values of emissions reduction effectiveness parameter (γ).

Fig. 12. The probability of that the retailers adopt the LCPS (x) responses to the
different values of emissions reduction effectiveness parameter (β).

Fig. 13. Emissions cap in each strategy combination.
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by using the baseline method, where the baseline value for the average
carbon emissions of a unit of product is multiplied by the production
quantity. When the emissions reduction technologies are improved, the
baseline value will decrease, which indirectly leads to a decrease of the
emissions cap. Thus, the relationship between the emissions cap (set by
the government) and the quantity of products produced has changed.
Based on these circumstances, the stock-flow diagram of the module for
the emissions cap in each strategy is established to observe and analyze
the evolution of the enterprises’ behavior when the baseline value de-
creases. This module is connected to the module for the payoff of re-
tailers and manufacturers (see Fig. 14).

We assume that the baseline value of embodied carbon is normal-
ized from 0 to 1. To facilitate the sensitivity analysis, average carbon
emissions during the production per unit of product in an industry is set
at 1, 0.2, 0.04, and 0.008 to examine a range of possible industry be-
haviors. The simulation results are shown in Fig. 14.

From Fig. 14, we see that when the average carbon emissions of a
given product are higher, the manufacturers are incentivized to adopt
carbon emissions reduction strategies more quickly. At high product
emissions values, all manufacturers adopt carbon emissions reduction
strategies within 36 months, but at low carbon emissions values,
manufacturers respond in twice the time.

This response indicates that there is a linear relationship between
the emissions cap and the baseline value, if the product quantity re-
mains unchanged, the level of carbon emissions reduction of an in-
dustry can be improved by reducing the free carbon credits that are
allocated by the government. Under extreme situations, if the baseline
is very high, the government will reduce the emissions cap to control
carbon emissions. In this circumstance, all manufacturers will choose
CERS. In contrast, when the baseline value is low, many manufacturers
find it more difficult to reduce carbon emissions because the effects are
small. All of the manufacturers will adopt NRS even if the market price
of carbon credits is very high.

3.3.4. Market price of carbon credits
According to CHEAA (2016), the unit market price of carbon credits

in Beijing’s Carbon Trading Center is 50 RMB/Ton. In order to under-
stand the behavior of manufacturers in markets with different carbon
credit prices, we set the market price of carbon credits to 10, 30, 50,
and 70. As shown in Fig. 15, we can see that the higher the market price
of carbon credits is, the faster the manufacturers choose to shift to
lower emissions technologies, as emphasized by sharper, earlier peaks
in high credit cost situations. Due to the high investment cost for carbon
emissions reduction technologies, it will take a long time for the
manufacturers to realize the benefits from carbon emissions reduction
technologies. If the price of carbon credits is low, the manufacturers
will choose to buy carbon credits to comply with carbon policies. If the
trading cost is high, the manufacturers will choose to invest in emis-
sions reduction technologies and sell surplus credits at a higher carbon

credit price to realize higher profits. Based on a shortage of free carbon
credits allocated by the government and an increased market price of
carbon credits, the manufacturers will implement carbon reduction
technologies quickly. The simulation results indicate that when the
government allocates few free carbon credits, the carbon trading
market plays a major role in regulating the supply chain system; if more
free carbon credits are allocated, the government will play a larger
regulatory role.

However, as motioned above, the market price of carbon credits is
not constant. To simulate this, we determine the market price of carbon
credits using a normal distribution with a mean value of 50 and a
covariance of 10, that is ∼p N (50, 10)e .

Fig. 16 shows that when carbon price fluctuates around 50, the
adoption rate of the number of manufacturers choosing to reduce
carbon emissions will fluctuate in response to the price difference and
the rate will approach zero. During the initial stage of carbon trading,
manufacturers hesitate to invest in reducing carbon emissions to meet
the carbon limits provided by the government because the carbon price
is uncertain. Companies are likely to wait and understand how the
market evolves rather than make a large initial investment. With the
development of a carbon trading mechanism, manufacturers will sell
surplus carbon credits to earn higher profits after investing in emissions
reduction technologies.

Through the use of sensitivity analysis, the influence of several
variables on the behavior of the manufacturers and retailers is ex-
amined. The evolution of the stakeholders’ behavior is affected by the
emissions cap, the market price of carbon credits, and consumer pre-
ferences for low-carbon products. There are several implications:

(1) If consumers are sensitive to the market price of the product and
their purchasing preferences can be influenced by promotional activ-
ities (the promotional effectiveness parameter), the retailers will earn
higher profits when they promote low-carbon products, as they have
influenced the demand for those products. When customers are

Fig. 14. Manufacturers adopt CERS at different rates based on the embodied
carbon emissions of the products.

Fig. 15. The adoption rate of the manufacturers that choose CERS responses to
the different values of market price of carbon credits.

Fig. 16. The adoption rate of CERS in response to pe.
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sensitive to the embodied carbon of the product, it is beneficial for
manufacturers to invest in emissions reduction technologies to earn
higher profits.

(2) If there is a shortage of carbon credits, the manufacturers will
only benefit by selling the carbon credits that are offset by im-
plementing carbon emissions reduction technologies. However, as the
investment costs for these technologies are high, it takes a long time for
the manufacturers to realize the benefits from the reduction in carbon
emissions. We also find that there are still many manufacturers who
choose to reduce carbon emissions when the market price of carbon
credits is high, even when there are sufficient carbon credits available
on the market. Therefore, manufacturers should adjust their strategies
based on the emissions cap and the market price of carbon credits.

4. Conclusions and limitations

In recent years, governments, enterprises, and consumers have
given more attention to environmental issues, such as carbon emissions
from the manufacturing of products. Specifically, among other strate-
gies, the cap-and-trade system has incentivized the reduction of carbon
emissions. Consumers are also willing to pay more for low-carbon
products. In this study, we considered the cap-and-trade system and
consumer preferences for low-carbon products to develop an evolu-
tionary game model which demonstrates the simulated behaviors of
manufacturers and retailers in a retailer-led supply chain. We find that
the supply chain system will eventually reach an evolutionary steady
state, which means that eventually manufacturers will choose to reduce
emissions and retailers will promote low-carbon products, given ap-
propriate market incentives. In particular, this will increase the benefits
for both stakeholders and for enterprises of the supply chain.

By applying a system dynamics model to the sensitivity analysis, we
find that the cap-and-trade system and the demand-related elasticity
coefficients can influence the evolution of the behavior of manu-
facturers and retailers. When customers are sensitive to promotional

effort and carbon emissions reduction technologies, more manu-
facturers will invest in carbon emissions reduction technologies and
retailers may quickly adopt promotional strategies for low-carbon
products to increase revenue. Furthermore, simulation results show that
manufacturers are willing to invest in the reduction of carbon emissions
when the market price of carbon credits is high. However, with a de-
crease of the emissions cap, it will take time for all manufacturers to
adopt a strategy which reduces emissions. These findings can be useful
for both the retailers and the manufacturers of low-carbon products.

There are a number of interesting extensions to this work. First, we
assume that (1) all low-carbon products have the same carbon emis-
sions and have the same effects on the market, (2) the customers are
homogeneous with regard to their environmental preference, (3)
carbon emissions reduction incurs the same investment cost for all
manufacturers and (4) all retailers pay for the same amount to effect the
promotion cost coefficient. However, since the stakeholders and con-
sumers are heterogeneous, more nuanced models can be developed to
understand market behavior. Second, in a real market, carbon credits
can be saved and can be transferred for use in the next production
period. Another set of models could be developed to identify how a
manufacturer should choose between selling carbon credits, saving
carbon credits, or investing in additional reduction technology. These
methods can help governments and industries understand how market
conditions can change and make better long-term decisions.
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Appendix A

For ease of reference, Equation (x) in the paper is referred to as (E.x) in this appendix.

Theorem 1. We use the Stackelberg game approach to present the optimal solutions. The calculation process for the optimal solutions based on
strategy NN is shown below. We first determine the best response function of the manufacturers from the first derivative of πm

NN . Then πm
NN and w are

the functions of △w. Eq. (11) and can be rewritten as

= − − + − − + −w c a b w Δw e a b w Δw C pπ ( )[ ( )] { [ ( )] }m
NN

m m g e (A.1)

For (A.1), the second derivative for w is = − <∂
∂

b2 0π
w
m
NN2

2 (1) is a concave function ofw. The first-derivative for πm
NN then yields optimal values of

w, that is, let = − + − − − =∂
∂ a b w Δw b w c e p( ) ( ) 0π

w m m e
m
NN

We can get

=
− − −

w
a b Δw c e p
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( )

2
m m e

(A.2)

Then the retailer’s profit function can be rewritten as

= −
− + +

Δw c
a b c Δw e p

π ( )
( )

2r
NN

r
m m e

(A.3)

Then the best response function of the retailers from the first derivative of πr
NN is shown as follows:

∂
∂

=
− + − −π

Δw
a b c e p c bΔw( ) 2

2
r
NN

m m e r

(A.4)

For (A.3), the second derivative for △w is = − <∂
∂

b 0π
Δw

r
NN2

2 . Then (A.3) is a concave function of △w.
We can then determine that the optimal retail margin is

=
− + +

+Δw
a b c e p c

b
c( )*

( )
2

NN m m e r
r (A.5)

Then we can determine the optimal wholesale price and production, respectively, as

=
− + +

+ +w
a b c e p c

b
c e p( )*

( )
4

NN m m e r
m m e (A.6)
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=
− + +

q
a b c e p c

( )*
( )

4
NN m m e r

(A.7)

After the optimal retail margin, the wholesale price and production have been inserted in equations (A.1) and (A.2), we can determine the
optimal profits of retailers and manufacturers respectively:

=
− + +

=
− + +

+
a b c e p c

b
a b c e p c

b
C p(π )*

[ ( )]
8

, (π )*
[ ( )]

16r
NN m m e r

m
NN m m e r

g e

2 2

Since analogous proofs leads to optimal solutions for the different combination strategies we omit the details of the derivations, and the results
are shown in Appendix B.

Appendix B

Optimal solutions Strategy NN and Strategy PN Strategy NR Strategy PR
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Optimal solutions for different combination strategies
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