
Accepted Manuscript

Real-time scheduling for a smart factory using a reinforcement learning ap-
proach

Yeou-Ren Shiue, Ken-Chun Lee, Chao-Ton Su

PII: S0360-8352(18)30130-X
DOI: https://doi.org/10.1016/j.cie.2018.03.039
Reference: CAIE 5143

To appear in: Computers & Industrial Engineering

Please cite this article as: Shiue, Y-R., Lee, K-C., Su, C-T., Real-time scheduling for a smart factory using a
reinforcement learning approach, Computers & Industrial Engineering (2018), doi: https://doi.org/10.1016/j.cie.
2018.03.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cie.2018.03.039
https://doi.org/10.1016/j.cie.2018.03.039
https://doi.org/10.1016/j.cie.2018.03.039

1

Real-time scheduling for a smart factory using a reinforcement learning

approach

Yeou-Ren Shiue
1
, Ken-Chun Lee

2
and Chao-Ton Su

2

1
 Department of Information Management, Huafan University, Shiding, New Taipei

City,Taiwan R.O.C.

2
 Department of Industrial Engineering and Engineering Management, National Tsing Hua

University, Hsinchu, Taiwan R.O.C.

yrshiue@gmail.com (Yeou-Ren Shiue)

kinwind@gmail.com (Ken-Chun Lee)

ctsu@mx.nthu.edu.tw (Chao-Ton Su)

Corresponding Author: Chao-Ton Su

 Address: Chao-Ton Su

Department of Industrial Engineering and Engineering Management

National Tsing Hua University

No. 101, Section 2, Kuang-Fu Road

Hsinchu, Taiwan 30013, R.O.C.

Email: ctsu@mx.nthu.edu.tw

Fax: +886 3 572-2204

Tel: +886 3 574-2936

mailto:yrshiue@gmail.com
../../../../AppData/Roaming/Microsoft/Word/kinwind@gmail.com
../../../../AppData/Roaming/Microsoft/Word/ctsu@mx.nthu.edu.tw

2

Real-time scheduling for a smart factory using a reinforcement learning

approach

Abstract

Previous studies of the real-time scheduling (RTS) problem domain indicate that

using a multiple dispatching rules (MDRs) strategy for the various zones in the system

can enhance the production performance to a greater extent than using a single dispatching

rule (SDR) over a given scheduling interval for all the machines in the shop floor control

system. This approach is feasible but the drawback of the previously proposed MDRs

method is its inability to respond to changes in the shop floor environment. The RTS

knowledge base (KB) is not static, so it would be useful to establish a procedure that

maintains the KB incrementally if important changes occur in the manufacturing system.

To address this issue, we propose reinforcement learning (RL)-based RTS using the

MDRs mechanism by incorporating two main mechanisms: (1) an off-line learning module

and (2) a Q-learning-based RL module. According to various performance criteria over a

long period, the proposed approach performs better than the previously proposed MDRs

method, the machine learning-based RTS using the SDR approach, and heuristic individual

dispatching rules.

Keywords: Machine learning; Q-learning; Real-time scheduling; Reinforcement learning;

Shop floor control.

3

1. Introduction

Industry 4.0, also called “Smart Factory,” aims to increase factory productivity and the

efficient utilization of resources in real time (Herrmann, Pentek, & Otto, 2015; Wang, Wan,

Li, & Zhang, 2016). These objectives are achieved via flexible event-driven reactions to

changes in the factory environment, resource allocation, scheduling, optimization, and

control in real time. Most of the “Smart Factory” concepts share the attributes of

cyber-physical systems (CPS) for monitoring physical processes by creating a virtual copy

of the physical world and making decentralized decisions (Lee, Bagheri, & Kao, 2015).

CPS is defined as a transformative technology for managing interconnected systems

according to their physical assets and computational capabilities, and recent developments

have improved the availability and affordability of sensors, data acquisition systems, and

computer networks (Lee, 2008; Wolf, 2009). The competitive nature of current industry is

forcing more factories to implement high-tech methods. Thus, the increasing use of sensors,

RFID, and networked machines has resulted in the continuous generation of high volume

data known as Big Data (Lee, Lapira, Bagheri, & Kao, 2013; Lee, Kao, & Yang, 2014). In

this environment, CPS can be developed further to manage Big Data and exploit the

interconnectivity among machines to fulfill the goal of producing intelligent, resilient, and

self-adaptable machines. Furthermore, by integrating CPS with production, logistics, and

services in current industrial practices, it will be possible to transform current factories into

Industry 4.0 factories with significant economic potential. This is why it is timely and

crucial to consider adaptive scheduling and control (i.e., real-time scheduling; RTS) for

dynamic manufacturing environments as key research issues in CPS production

management (Goryachev et al., 2013; Kück et al., 2016).

RTS employs different scheduling rules in a dynamic and multi-pass manner in order

to select the best scheduling strategy among the feasible alternatives at each decision point

over a series of scheduling periods, thereby meeting the shop floor performance criteria

http://www.scientific.net/author/Mirko_K%C3%BCck

4

(Son, Rodriguez-Rivera, & Wysk, 1999). According to previous studies, RTS involves two

main approaches (Priore, Gómez, Pino, & Rosillo, 2014): the multi-pass simulation

approach (Ishii & Talavage, 1994; Wu & Wysk, 1989) and machine learning approach

(Metan, Sabuncuoglu, & Pierreval, 2010; Olafsson & Li 2010; Shiue, 2009; Shiue, Guh,

&Tseng, 2012). Multi-pass simulations are used to evaluate candidate scheduling rules and

select the best strategy based on simulated information, such as the current system status

and the management goals for each scheduling period. However, the multi-pass simulation

approach is inappropriate for shop floor control because it requires intensive computational

effort to select the best scheduling rule for each scheduling period. In the machine learning

approach for RTS, a set of training examples generated by system simulations are used to

determine the best scheduling rule for each possible system state. However, the machine

learning approach employed for collecting training examples and learning processes in

order to acquire an RTS knowledge base (KB) tends to be time consuming and relatively

slow. A KB has the advantage of yielding fast and acceptable solutions to allow the system

to make decisions in real time, and it can conform to the operational characteristics of a

dynamic manufacturing environment (Priore, Gómez, Pino, & Rosillo, 2014). Previous

studies (Shiue, Guh, & Lee, 2012) defined three major machine learning approaches for

constructing an RTS system KB: artificial neural networks (ANNs) (Rumelhart, Hinton,

& Williams, 1986), decision tree (DT) learning (Quinlan, 1993), and support vector

machines (SVMs) (Vapnik, 2000).

According to previous studies, two strategies can be used to determine the scheduling

rules in an RTS system: a single dispatching rule (SDR) and multiple dispatching rules

(MDRs) for a manufacturing cell. The SDR usually assigns an individual heuristic

scheduling rule to all machines in a system during a given scheduling interval (i.e.,

scheduling period), whereas the MDRs assign different scheduling rules (i.e., scheduling

decision variables) to all machines in a system. In the following, we refer to this method as

5

an intelligent multi-controller. Fig. 1 illustrates the role of the RTS MDRs mechanism in a

flexible manufacturing system (FMS) case study. For the F1, F2, F3, and load/unload

stations, the MDRs method selects the SPT, SRPT, DS, and EDD dispatching rules,

respectively, as the scheduling decision variables for job selection in the next scheduling

period. Ishii and Talavage (1994) proposed a search algorithm that employs MDRs in

bottleneck machines by using predictions based on a multi-pass simulation. Their results

showed that the MDRs strategy can improve the performance of an FMS by up to 15.9%

compared with the best result obtained using the SDR strategy. However, their approach is

not highly suitable an RTS system that uses the machine learning approach.

[Insert Fig. 1 about here]

The classical machine learning approach builds a RTS KB via the MDRs mechanism,

and its main disadvantage is that the classes (dispatching decision rules) to which the

training examples are assigned must be predefined. For example, for a given set of system

attributes, the best dispatching decision rule for each decision variable can be determined

after a simulation is run for each dispatching rule. The resulting MDRs are considered as a

class. However, this process becomes intolerably time consuming because the rules must be

determined for each period (Kim, Min, & Yih, 1998). Furthermore, the local approach,

such as using DT learning or SVMs, does not satisfy the global objective function (i.e., the

overall production performance of the shop floor). Thus, although the best decision rule can

be determined for each scheduling decision variable, the combination of all the decision

rules may not simultaneously satisfy the global objective function.

Guh, Shiue, and Tseng (2011) constructed an RTS KB using an MDRs selection

mechanism based on a self-organizing map (SOM) neural network (Kohonen, 2001), which

can overcome the long training time problem that affects the classical machine learning

6

approach in the training example generation phase. They showed that over a long period,

this approach provides better system performance than machine learning-based RTS using

the SDR approach and heuristic individual dispatching rules according to various

performance criteria. This approach is feasible but the main drawback of this method is its

inability to respond to changes in the shop floor environment. However, the RTS KB is not

static, so it would be useful to establish a procedure that maintains the KB incrementally if

important changes occur in the manufacturing system.

A possible solution may incorporate a reinforcement learning (RL) mechanism that

can learn to select appropriate actions for achieving its goals via interactions with the

system environment and by responding to receipts for rewards or penalties based on the

impact of each action (Stutton & Barto, 1998; Shahrabi, 2017). Q-learning (Watkins &

Dayan, 1992) is a form of model-free RL that provides agents with the capacity to learn to

act optimally in Markovian domains by experiencing the consequences of actions, but

without requiring them to build maps of the domains. Wang and Usher (2015) found that

Q-learning works well for a single machine dispatching rule selection problem when used

by a learning agent to select various dispatching rules according to different system criteria,

and the results of their study may inspire future applications of RL techniques to the RTS

problem.

Based on the studies mentioned above, in order to develop the MDRs mechanism

in RTS, the RTS should be capable of updating and maintaining the KB via RL

during operations to allow responses to change in the system operating conditions.

Hence, using a Q-learning RL agent to refine the RTS KB is an important research

issue. In this study, we develop an RL-based RTS using the MDRs mechanism.

Implementation results of a study case experiment showed that the production

performance has been greatly improved compared with classical SDR.

7

The remainder of this paper is divided into six sections. In Section 2, we present

the theoretical background related to our proposed off-line learning module for

determining the system state number for a Q-learning RL agent using the

Self-Organizing Map (SOM) algorithm (Kohonen, 2001), and we also introduce an

RL module that uses a Q-learning algorithm. In Section 3, we formulate the RTS

problem using the MDRs mechanism and state the research objectives. In Section 4,

we describe the method for the proposed RL-based RTS using the MDRs mechanism.

In Section 5, we present the results of a study case experiment as well as analyzing the

proposed RL approach and other approaches. Finally, in Section 6, we give our

conclusions as well as providing a summary of this study and some suggestions for

future research.

2. Theoretical background

2.1. SOM neural networks

SOM networks (Kohonen, T. (2001) are used widely for data mining because they are

a convenient visual tool. Unlike other ANN approaches, the SOM network performs

unsupervised learning, i.e., the processing units in the network adjust their weights through

lateral feedback connections. The more common approach to ANNs requires supervised

learning, i.e., a set of training samples is provided as the input and the output is compared

with a known result. Deviations from the correct result lead to adjustments of the weights

attached to the processing units. The networks are considered to have been trained when

they work satisfactorily for the test cases. By contrast, an SOM network does not require

prior knowledge of the expected result. The nodes in the network converge to form clusters

or groups of entities with similar properties. The number and composition of the clusters

can be represented graphically based on the output distribution generated by the learning

8

process.

Three basic steps involved in the application of the SOM algorithm after initialization

comprise sampling, similarity matching, and updating. These three steps are repeated until

the feature map is completed. The SOM algorithm is summarized as follows.

1. Initialization. Choose random values for the initial weight vectors)0(jw , which must

be different for j = 1, 2, …, J, where J is the number of neurons in the lattice. Low

weight values are generally preferable.

Another way of initializing the algorithm is to select the weight vectors

 J

jj 1
)0(

w randomly from the available set of input vectors N

ii 1
x .

2. Sampling. Select a training example x from the input space with a certain probability,

where the vector x represents the activation pattern applied to the lattice.

3. Similarity Matching. Find the best-matching (winning) neuron i(x) at time step n by

using the minimum-distance Euclidean criterion:

Jjni j
j

,...,2,1,)(min arg)(wxx . (1)

4. Updating. Adjust the synaptic weight vectors for all the neurons by using the updating

formula:

))()()(()()()1()(, nnnhnnn jijjj wxww x , (2)

where)(n is the learning rate parameter and)()(, nh ij x is the neighborhood function centered

around the winning neuron i(x). Both)(n and)()(, nh ij x are varied dynamically during this

learning process to achieve the best results.

5. Continuation. Continue with step 2 until no noticeable changes in the feature map are

observed.

The graphical representation obtained by the SOM approach only provides qualitative

information, but quantitative information can be obtained by focusing on interesting

9

regions of the map, although not the overall map. The overall map certainly has interesting

properties, but more can be learned if the SOM (and thus the data) contains distinguishable

regions that can be considered separately. Another option involves considering each map

unit individually, but this is inconvenient for large maps. Thus, the efficient use of SOMs

requires methods for identifying map unit clusters. It should be emphasized that the goal is

not necessarily to optimize the clustering process, but instead the aim is to obtain insights

into the cluster structure for the purpose of data mining. Therefore, the clustering method

should be fast, robust, and visually efficient.

Vesanto and Alhoniemi (2000) proposed a two-level SOM involving K-means and the

Davies–Bouldin (DB) index (Davies & Bouldin, 1979) for solving these problems (Fig. 2).

This approach uses the SOM to determine the number of clusters and starting point, and

then uses K-means to find the best cluster. In a single-level SOM, a large set of prototypes

is formed initially instead of a data cluster. These prototypes can then be interpreted as

proto-clusters, which are combined to form the actual clusters in the next phase. The

benefit of using this SOM is that it can effectively reduce the computational time and noise,

whereas higher abstraction levels yield greater distortion. The prototypes are less sensitive

to random variations than the original data because the prototypes are local averages of the

data (Vesanto & Alhoniemi, 2000).

 [Insert Fig. 2 about here]

The DB index is a function of the ratio of the total scatter within a cluster relative to

the separation between the clusters. The best clustering of a two-level SOM is achieved by

minimizing the following DB index, which is expressed as:

),(

)()(
max

1

1 lkce

lckc
K

k
kl QQd

QSQS

K
, (3)

10

where Sc is the distance between nodes within a cluster, dce is the distance between clusters,

and K is the number of clusters.

2.2.Reinforcement learning (RL) and Q-learning

RL addresses the problem of how an autonomous agent can learn to select appropriate

actions to achieve its goals by interacting with its environment. In the RL framework, a

learning agent must be able to perceive information in its environment in order to

determine the current state of the environment. The agent then chooses an action to perform

based on the perceived state. The action taken may result in a change in the state of the

environment. Immediate reinforcement occurs based on the new state, which is used to

reward or penalize the selected action. These interactions between the agent and its

environment continue until the agent learns a decision-making strategy that maximizes the

total reward. Stutton and Barto (1998) defined four key elements for addressing RL

problems: a policy, reward function, value function, and model of the environment. The

policy defines the agent’s behavior for each of a number of given states. The reward

function specifies the overall goal of the agent, which guides the agent while learning to

achieve the goal. The value function specifies the value of a state or a state–action pair,

thereby indicating its quality (the state or the state–action pair) in the long term. The model

of the environment predicts the next state given the current state and a proposed action.

In addition to these four elements, a key assumption in the RL framework is that the

definition of the current state used by each agent to make its decision should summarize

everything important about the complete sequence of past states leading to it. Some of the

information about the complete sequence may be lost, but it is only important that the

future state should be contained within the current state signal. Therefore, the application

environment should satisfy the Markovian property so the environment’s next state can be

predicted given the current state and action. Under this assumption, the interaction between

an agent and its environment can be called a Markov decision process.

11

The original Q-learning algorithm was proposed by Watkins and Dayan (1992), and

the goal of this algorithm is to learn the state–action pair value, Q(s, a), which represents

the long-term expected reward for each state and action pair (denoted by s and a,

respectively). It has been proved that the Q values learned using this algorithm converge to

the optimal state–action values, Q*. The optimal state–action values for a system represent

the optimal policy that the agent aims to learn. The standard procedure for the Q-learning

algorithm is given in Table 1.

Each iteration of steps 2–7 represents a learning cycle, which is also called an episode.

The parameter α is the step size parameter and it influences the learning rate. The parameter

γ is called the discount-rate parameter, 0 ≤ γ ≤ 1, and it affects the present value of future

rewards. The Q(s, a) values can be initialized arbitrarily. If no actions are preferred for any

specific states, then all the Q(s, a) values in the policy table can be initialized with the same

value when starting the Q-Learning procedure. If some prior knowledge of the benefit of

certain actions is available, the agent may prefer taking these actions at the beginning by

initializing the Q(s, a) values as larger than the others. These actions will then be selected

initially, which can shorten the learning period. Step 3 involves a tradeoff between

exploration and exploitation, and many state–action pair selection methods may be used in

this step.

 [Insert table 1 here]

3. Formulation of the problem

3.1. Real-time scheduling (RTS) using the MDRs mechanism

The status of a manufacturing system changes continuously, and previous studies have

confirmed that it is possible to improve the system performance by implementing a

multi-pass scheduling policy rather than using a single heuristic dispatching rule over an

12

extended planning horizon. The policy is based on the system status at each decision point

over a series of short-term scheduling period horizons. RTS based on machine learning has

the advantage of rapidly yielding acceptable solutions for the operation of manufacturing

systems.

RTS systems that use the MDRs mechanism can be represented by SLDO ,,, ,

where S is the set of possible system states given by Tsss ,,, 21 and it is described by

a conjunction of system features f. At ts , the MDRs for the following scheduling period

next
do is implemented by the Ll machine learning approach based on the current

MDRs denoted as current
do , the system features f, and the given performance criterion

Oo . The vector ,,...,,
T

21

next

mo dddd Did ,,...,2,1 mi D is the candidate

dispatching rule used in RTS, and m is the number of machine cells on the shop floor.

Therefore, the objective function for RTS using the MDRs mechanism can be defined

as follows:

minmax

ll OOO l (5)

where

o

o

t

l lf ,,Max currentmax
dfO

o

o

t

l lf ,,Min currentmin
dfO

and

lOOO minmax

ll , and minmax

ll OO .

3.2. Description of a study case

The study case involves a modification of the model used by Montazeri and Van

Wassenhove (1990). This model is a true FMS involving: (i) three machine families

(denoted as F1, F2, and F3), (ii) three load/unload stations, (iii) three automated

13

guided vehicles, (iv) an input buffer and a central buffer with sufficient capacity to

avoid deadlock, and (v) a computer-controlled local area network. The first two

machine families have two machines each, whereas the third has a single machine.

Fig. 1 shows the role of RTS using the MDRs mechanism in this study case. Eleven

different types of parts are obtained by this model, and their routing and processing

times are identical to those used by Montazeri and Van Wassenhove (1990).

3.3. Specification of the training examples

In the KB based on an RTS mechanism, let Xo denote the set of training examples and

the given performance criterion o is obtained using the training sample generation

mechanism. A training example Xx oo can be denoted by {f, current
do ,

*next
do }, where

*next
do are the acceptable (not necessarily optimal) MDRs for the following scheduling

period under performance criterion o. Three types of performance criteria are typically

studied in scheduling problems: throughput-based, flow-time-based, and due-date-based

criteria. Table 2 lists the three performance criteria used in this study.

[Insert Table 2 here]

In this study, we consider the essential system attributes that satisfy various

performance criteria. Therefore, all the possible system attributes are examined

exhaustively. Table 3 lists 30 candidate attributes. The criteria for their selection are based

on an earlier study (Arzi & Iaroslavitz, 2000; Chen, Yih, & Wu, 1999; Park, Raman, &

Shaw, 1997; Su & Shiue, 2003), which considered machine learning and the features of the

case study environment.

 [Insert Table 3 here]

14

Dynamic dispatching rules are required because no optimal dispatching rule has yet

been found for a variety of shop configurations and operating conditions (Baker, 1984;

Blackstone, Philips, & Hogg, 1982; Montazeri and Van Wassenhove, 1990; Sabuncuoglu,

1998). Thus, excessive effort is not required to study the best dispatching heuristics in

various environments. Table 4 summarizes five dispatching rules, which were shown to be

effective in earlier studies (Montazeri and Van Wassenhove, 1990; Arzi & Iaroslavitz, 2000;

Park, Raman, & Shaw, 1997) in terms of the three types of performance criteria mentioned

above.

 [Insert Table 4 about here]

3.4. Research objective

As noted above, RTS plays an important role in the complex, dynamic, and highly

stochastic operation of the shop floor environment. Hence, the proposed RTS using the

MDRs mechanism must be capable of generating acceptable (if not optimal) MDRs in real

time in order to enhance productivity by fully exploiting the dynamic nature of RTS, where

this is essentially the concept of agile manufacturing. Therefore, the objective of this

study is to develop an RTS using the MDRs strategy to greatly improve the

production performance compared with classical SDR based on machine learning and

by employing heuristic individual dispatching rules based on various performance

criteria.

4. Development of RL-based RTS using the MDRs mechanism

The proposed RL-based RTS using the MDRs mechanism shown in Fig. 3 comprises

two major modules. An off-line learning module runs a simulation to generate training

examples to determine the system state number (built using a two-level SOM). Next, the

system state number is sent to construct the initial state–action pair table for the RL module.

15

During this operation, the Q-learning based agent is assumed to have the ability to perceive

information from all the machines on the shop floor,

Finally, the Q-learning-based RL module updates the value function and determines

the most appropriate MDRs for the next scheduling period. Each of these functions is

discussed in detail in the following.

[Insert Fig. 3 about here]

4.1. Simulation-based training example generation mechanism

A discrete event simulation model is used to generate the training examples to verify

the proposed method. This approach is a modified version of that proposed by Arzi and

Iaroslavitz (2000), and it involves a simulation based on some MDRs (using a random seed

for each pass) for the same initial state of the system attributes and arriving job streams. In

addition, in order to provide comprehensive training examples that represent a wide range

of possible system states, the multi-pass simulation technique (Wu & Wysk, 1989) is used

for collecting the training examples. The state variables of the system attributes are

recorded as well as the MDRs at a decision point. At the end of the scheduling period, the

16

MDRs are selected that yield the best performance measures as the action (i.e., decision)

MDRs for a subset of the candidate MDRs (i.e., not including all of the MDRs) for the state

recorded at the beginning of the scheduling period. Fig. 4 illustrates the multi-pass

simulation technique used in this study for generating the training examples. The training

example collection method has the advantage of being able to provide various job arrival

patterns, which represent a wide range of possible system states, in order to learn the MDRs

for the RTS KB in this study. Moreover, it can reduce the time required to generate the

training examples.

[Insert Fig. 4 about here]

4.2. Data preprocessing mechanism

In this study, the data preprocessing mechanisms comprise feature selection and data

normalization, as described below.

4.2.1. Las Vegas filter (LVF) feature selection

Previous studies (Chen, Yih, & Wu, 1999; Su & Shiue, 2003) selected suitable system

information based on various production requirements for constructing a RTS KB in

machine learning-based RTS, and this is a crucial research issue because of the existence of

a large amount of shop floor information in a manufacturing system. Using an excessive

number of attributes may lead to overfitting of the training data and degrade the ability of

the RTS system to generalize the KB. However, omitting even one important system

attribute may strongly affect the learning process and the ability of the RTS system to

classify knowledge.

Two general approaches are used for feature selection: the filter approach and wrapper

approach (Liu & Motoda, 1998). In the filter approach, the selection process is conducted

independently of the learning algorithm before applying the classifier to the selected feature

17

subset. This is computationally more efficient than the wrapper approach, where the

classifier system is given a feature subset as the input and the classification error is

estimated using an unseen dataset. As mentioned above, RTS systems that use the MDRs

mechanism cannot be developed with a machine learning algorithm using classifiers in

order to construct the KB. Hence, we cannot apply the wrapper approach based on the

predictive accuracy of a classifier for feature selection in our method.

The LVF feature selection algorithm is shown in Table 5 (Liu & Setiono, 1996). LVF

generates a random feature subset (denoted as RF, where RF F) from the feature subset

space during each iteration. If RF contains fewer features than the current best subset, then

the inconsistency rate of the dimensionally reduced data described by RF is compared with

the inconsistency rate of the best subset. If RF is at least as consistent as the best subset,

then RF replaces the best subset. The inconsistency rate of the training data prescribed by a

given feature subset is defined over all groups of matching instances. Within a group of

matching instances, the inconsistency count is the number of instances in the group minus

the number of instances in the group with the most frequent class value. The overall

inconsistency rate is the sum of the inconsistency counts for all groups of matching

instances divided by the total number of instances.

 [Insert Table 5 about here]

4.2.2. Data normalization

A feature is normalized by scaling its values so they fall within a small specified range,

such as –1.0 to +1.0. Normalization is particularly appealing with distance-based classifiers

because after normalizing the attribute values, we can avoid attributes with large values,

which would dominate those with smaller values. The three widely used normalization

methods are min-max normalization, z-scores normalization, and normalization by decimal

18

scaling (Han & Kamber, 2006).

Min-max normalization is most suitable for cases where the upper and lower bounds

of the scores are known. The minimum and maximum scores are mapped to 0 and 1,

respectively. The z-scores normalization method is useful when the actual minimum and

maximum values of a feature are unknown, or when outliers dominate the min-max

normalization. Decimal scaling can be applied when the values of different training

examples are distributed on a logarithmic scale. For example, if one training example has

values in the range of [0, 1] and another is in the range of [0, 1000], then decimal scaling

normalization can be applied. The values of the system attributes change continually on the

shop floor. Hence, the z-scores normalization method is suitable for attribute data

normalization in this study.

During z-scores normalization, the values for a feature f are normalized using the

mean and standard deviation of f. A value v of f is normalized to 'v by the following

equation:

f

fv
v

' , (6)

where f and f are the mean and standard deviation, respectively, of feature f.

4.3. Criterion for system state number determination

In RL, the agent perceives the current system states in the environment and then

selects the most appropriate action to be performed. In the classical machine RTS approach,

the number of system states is infinite. However, state–action tables are constructed to

represent the knowledge that the RL agent perceives by investigating the results of actions

taken in each states, so infinite system states are not feasible for an RL agent.

Thus, the training examples obtained by LVF feature selection under performance

19

criterion o are denoted as LVFXo (i.e., LVFXo is the tuple { LVFf , current
do ,

*next
do }), where the

system features obtained by LVF feature selection for the training examples are denoted as

LVFf . By using two-level SOM clustering analysis, LVFXo can be classified into various

system state class. If the training data are in the same class, they can be assigned the same

system state number labels. A training example with the same system state number label i (i

= 1,….. k) denoted as i

o

i

o LVFLVF Xx becomes a four-tuple { LVFf , current
do , i

o s
*next

do }, where

i

o LVFX represents the subset of i (i.e., assign class label i) in LVFXo obtained by clustering

analysis under performance criterion o, and i

o s is the system state number label i. Fig. 5

shows the training examples for the two-level SOM process. The specific system state class

number is assigned in each training example.

[Insert Fig. 5 about here]

4.4. Q-learning-based agent

4.4.1. State–action table refinement mechanism

For the Q-learning-based agent, state–action tables are constructed to represent the

knowledge that the Q-learning-based agent learns by investigating the results of actions

taken in every state. In this study, an action)(ij
a is defined as the Q-learning-based agent’s

choice weight vector next
do based on perceived state i

o s of the shop floor, where)(ij
a is the

i-th state class in the j-th (j = 1,2,...,ni) training example’s (i.e.,)(i
jn

x) action. Each

state–action pair is associate with a Q value: Q (i

o s ,)(ij
a). A sample of a state–action table

for the TP performance criterion is shown in Table 6.

20

[Insert Table 6 about here]

The initial determination of the state–action value Q (i

o s ,)(ij
a) is based on the

performance measures for a set of training examples and the given performance criterion o

(Xo), where it is calculated by Equation (7), and the Q value for a state–action pair is

updated by the Q-learning-based agent using Equation (11).

 (7)

where)(PM ijo is training sample)(i
jn

x at the scheduling decision point for the performance

measure under performance criterion o, i

o minPM is the minimum value of the performance

measure in state class number i, and i

o maxPM is the maximum value of the performance

measure in state class number i.

4.4.2. MDRs selection mechanism

The following problem must be addressed after establishing a state–action table

refinement mechanism. A specific system state class number can be determined by using

the two-level SOM, but it is not clear how to choose the most appropriate MDRs for the

next scheduling period among the many candidate MDRs in a KB class label. Thus, we

propose a method for selecting MDRs to solve this problem according to two types of key

strategies: the policy for selecting an action (i.e., MDRs) and the reward function in MDRs

selection mechanism must conform with the RL framework concept.

In RL, MDRs are selected via the exploration and exploitation of two types of

strategies for choosing an action. Exploration requires that the agent tries something

{TP} ,
PMPM

PMPM
) ,(

minmax

min)(

)(

 oasQ

i

o

i

o

i

ojo

j

i

o

i

i

}NT,MCT{,
PMPM

PMPM
1) ,(

minmax

min)(

)(

 oasQ

i

o

i

o

i

ojo

j

i

o

i

i

21

different in order to obtain a greater reward, whereas the agent favors actions taken

previously and rewarded during exploitation. Exploitation may have the advantage of

guaranteeing a good expected reward in one play, whereas exploration provides more

opportunities for finding the maximum total reward in the long term. A popular approach

for addressing this trade-off issue is the -greedy policy. The -greedy policy involves

selecting the action with the best value (exploitation) with probability 1– ; otherwise, an

action is selected randomly with a small probability ,.

After the agent has been trained, all state–action pair values have been updated and

each state has a dominated action. The greedy policy is then used to select an action, which

is defined as follows.

),(maxarg),()(

)(

)(i

ij

i j

i

o
a

j

i

ot asas (8)

The goal of the RL module is to learn the best choice from the MDRs at each decision

point, where the agent learns by interacting directly with the system and responding to the

receipt of rewards or penalties defined by a reward function, which is based on the impact

each action has on the system. The reward function defines the goal for the learning agent

and determines the value of the immediate action based on the perceived state of the

environment. The learning agent tries to maximize the total reward, so the reward function

is essentially used to guide the learning agent toward its goal.

In the study case based on the TP criterion, the system’s objective is to maximum the

throughput. After the one-step scheduling period is finished, the online simulation output is

compared with the mean performance in state class label i. If the performance measure for

the one-step scheduling period output denoted as i

SPTP PM is greater than the one sigma

upper confidence limit (i.e., 68.27%) for the mean performance in state class label i

denoted as i

1TP UCL , then the learning agent receives a reward of +1. In addition, if

22

i

SPTP PM is less than the one sigma lower confidence limit (i.e., 31.73%) for the mean

performance in state class label i denoted as i

1TP LCL , then the learning agent receives a

reward of –1. Otherwise, the learning agent receives a reward of 0. The detailed reward

function employed in this study is shown in Table 7.

[Insert Table 7 about here]

The overall proposed Q-learning-based agent operating procedure is shown in Table 8.

The state–action table associated with the Q value is update and the most appropriate

MDRs are determined for the next scheduling period.

[Insert Table 8 about here]

5. Experiment

5.1. Construction of a simulation model and generation of a training example

To verify the proposed method, a discrete event simulation model was used to

generate training examples. The simulation model was built and executed using Tecnomatix

Plant Simulation (2006), an object-oriented simulation language, and it was run on a Core

i7-4790 3.6 GHz CPU with the Windows 7 operating system.

It was expected that the proposed approach would achieve the desired dynamic

dispatching performance. Several parameters were determined based on a preliminary

simulation run. The time between jobs followed an exponential distribution with a

mean of 31 min. The due date for each job was randomly assigned from six to 10 times

the total processing time and it was uniformly distributed. The maximum number of

pallets (jobs) permitted in the FMS system was 100. Table 9 shows the five

product-mix ratios used to generate the training examples. The proportions of part

23

types varied continually every 20,000 min.

[Insert Table 9 about here]

In order to generate a large number of different training examples, we used 100

different random seeds to generate 100 different job arrival patterns. The warm-up

period for each run was 10,000 min and it was followed by 60 multi-pass scheduling

periods. The time window for the multi-pass simulation was 2000 min. In total, 6000

training samples were collected.

5.2. Development of the off-line learning module

According to Figure 3, it was necessary to choose the system features to construct the

RL system state class number (build using the two-level SOM) in advance. The LVF

feature selection algorithm was encoded in MATLAB 7.1 (MathWorks 2005), where the

inconsistency rate was set to 0.5. Table 10 shows the results obtained by LVF feature

selection.

[Insert Table 10 about here]

In this study, the two-level SOM was used for clustering the training samples and it

assigned a system state class number label to each performance criterion. The two-level

SOM algorithm was encoded using the MATLAB Neural Network Toolbox (MathWorks

2007). Some experimental parameters used in the two-level SOM are shown in Table 11.

Table 12 shows the DB index, which used a K-mean value (i.e., the number of clusters) that

ranged from 2–10 for each performance criterion. Thus, the minimum DB indexes in TP,

MCT, and NT were nine, 10, and six, respectively. Fig. 6 shows the best clustering SOM

U-matrix (unified distance matrix) obtained for the TP performance criterion. According to

the results in Table 12, in order to meet the TP, MCT, and NT performance criteria, we

24

required 9, 10, and 6 system state class number labels, respectively. Next, the system state

class number for each performance criterion was established as described in Section 4.3.

[Insert Table 11 about here]

[Insert Table 12 about here]

[Insert Fig. 6 about here]

5.3. Experimental verification by online simulation

A Q-learning-based agent encoded using the Tecnomatix Plant SimTalk simulation

object-oriented programming language (2006) was linked to a C program (by employing a

two-level SOM coded using MATLAB for determining the system state class number) to

examine the effectiveness of the proposed RL-based RTS using the MDRs mechanism in

various system scenarios.

A stream of arriving jobs was generated in a simulation over 400,000 min by using

different sets of random seeds to investigate whether the proposed RL-based RTS using the

MDRs mechanism was more effective over a long period than the RTS using the previously

proposed SOM-based MDRs method (Guh, Shiue, & Tseng, 2011), as well as SDR

approaches based on machine learning, i.e., GA+DT (Su & Shiue, 2003) and GA+SVM

(Shiue, 2009). In addition, a single heuristic dispatching rule was compared in various

scenarios based on three performance criteria. Table 13 shows the mean and standard

deviation based on 30 simulation runs using 30 random seeds with different scheduling

strategies. The proposed approach was capable of obtaining better results according to all

the performance criteria because of its superior effectiveness.

[Insert Table 13 about here]

25

A paired-samples t-test was used to determine whether the proposed RL-based

MDRs approach was significantly better than the SOM-based MDRs, the GA+DT and

GA+SVM approaches, and heuristic dispatching strategies. The null hypothesis was

that the mean values obtained by all the scheduling strategies were equal. As shown in

Table 14, the null hypothesis was rejected at a significance level of 95% for all the

control strategies. Therefore, the proposed RL-based MDRs approach was

significantly better than the SOM-based MDRs, SDR approaches, and other

dispatching strategies.

 [Insert Table 14 about here]

6. Conclusion and future work

In this study, we proposed an RL-based MDRs selection mechanism for constructing

an RTS for FMS control. We provide the following conclusions based on the results of this

study.

 The proposed RL-based approach using the MDRs selection mechanism

responds efficiently to changes in the shop floor environment and it is

suitable for incorporating in the operation of an RTS system for a smart

factory.

 The proposed RL-based approach employs an intelligent and dynamic

method for selecting MDRs, which is based on the status of a manufacturing

system at the end of a given scheduling period, where it then determines the

appropriate MDRs for the following period. Our results showed that over a

long period, according to various performance criteria, this approach

performed better than a previously proposed SOM-based MDRs selection

mechanism, the machine learning-based RTS using the SDR approach, and

26

heuristic individual dispatching rules.

Some potential issues for future research can be identified based on the results of this

study, as follows.

 The FMS model used for the experimental verification in this study is a

relatively simple manufacturing system. Thus, it is necessary to apply the

proposed approach to large and complex manufacturing systems, such as

semiconductor wafer fabrication systems. The effectiveness of the RL-based

MDRs selection mechanism might differ in more complex semiconductor

wafer fabrication systems that incorporate input-order wafer lot release

control and the selection of a wafer lot via an intrabay by a stocker.

Investigating and examining proposed RL-based approach using the MDRs

selection mechanism feasibility through various manufacturing systems

would be a potential topic for future research.

 Recently, deep learning, which is a type of machine learning approach, has

attracted much attention in academic and commercial research (Bengio, 2009),

where it has been applied successfully to classification tasks, automatic speech

recognition, image recognition, and self-driving cars (LeCun, Bengio, & Hinton,

2015). Deep learning algorithms use a deep architecture to extract the inherent

features of data from the lowest level to the highest level, and they can discover

large amounts of structure in data. Due to the existence of a large amount of shop

floor information in CPS, deep learning algorithms can represent CPS features

without prior knowledge. These characteristics may inspire future studies of RTS

for smart factories by employing deep learning algorithms.

27

References

1. Arzi, Y., & Iaroslavitz, L. (2000). Operating an FMC by a decision-tree-based adaptive

production control system. International Journal of Production Research, 38(3),

675-697.

2. Baker, K. R. (1984). Sequencing rules and due-date assignments in a job shop.

Management Science, 30(9), 1093-1104.

3. Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends® in

Machine Learning, 2(1), 1-127.

4. Blackstone, J. H., Philips, D. T. Jr., & Hogg, G. L. (1982). A state-of-the-art survey of

dispatching rules for manufacturing job shop operations. International Journal of

Production Research, 20(1), 27–45.

5. Chen, C. C., Yih, Y., & Wu, Y. C. (1999). Auto-bias selection for learning-based

scheduling systems. International Journal of Production Research, 37(9), 1987-2002.

6. Davies, F. D., & Bouldin, D. W. (1979). A cluster separation measure. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224–227.

7. Goryachev, A., Kozhevnikov, S., Kolbova, E., Kuznetsov, O., Simonova, E., Skobelev,

P., Tsarev, A., & Shepilov, Y. (2013). Smart Factory: Intelligent System for Workshop

Resource Allocation, Scheduling, Optimization and Controlling in Real Time.

Advanced Materials Research, 630, 508–513.

8. Guh, R. S., Shiue, Y. R., & Tseng, T. Y. (2011). The study of real time scheduling by

an intelligent multi-controller approach. International Journal of Production Research,

49(10), 2977–2997.

9. Han, J., & Kamber, M. (2006). Data Mining Concepts and Techniques (2nd ed.). San

Francisco, CA: Morgan Kaufmann.

10. Herrmann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0

scenarios. 49th Hawaii International Conference on System Sciences, Koloa, HI, USA

(pp. 3928-3937).

11. Ishii, N. & Talavage, J. J. (1994). A mixed dispatching rule approach in FMS

scheduling. International Journal of Flexible Manufacturing Systems, 6(1), 69-87.

12. Kim, C. O., Min, H. S., & Yih, Y. (1998). Integration of inductive learning and neural

networks for multi-objective FMS scheduling. International Journal of Production

Research, 36(9), 2497–2509.

28

13. Kohonen, T. (2001). Self-Organizing Map (3rd ed.). Verlag, NY: Springer.

14. Kück, M., Ehm, J., Freitag, M., Frazzon, E. M., & Pimentel, R. (2016). A Data-Driven

Simulation-Based Optimisation Approach for Adaptive Scheduling and Control of

Dynamic Manufacturing Systems. Advanced Materials Research, 1140, 449–456.

15. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),

436–444.

16. Lee, E. A. (2008). Cyber physical systems: Design challenges. 11th IEEE Symposium

on Object Oriented Real-Time Distributed Computing, Orlando, FL, USA (pp.

363-389).

17. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for

industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.

18. Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for

industry 4.0 and big data environment. Procedia CIRP, 16, 3–8.

19. Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in

predictive manufacturing systems in big data environment. Manufacturing Letters, 1,

38-41.

20. Liu, H., & Setiono, R. (1996). A probabilistic approach to feature selection—a filter

solution. In Proceedings of the 13th International Conference on Machine Learning,

Bari, Italy (pp. 319–327).

21. Liu H., & Motoda, H. (1998). Feature selection for knowledge discovery and data

mining. Boston, MA: Kluwer Academic Publishers.

22. MathWorks (2005). Matlab version 7.1 user’s guide. Natick, MA: MathWorks Inc.

23. MathWorks (2007). Matlab neural network toolbox version 5 user’s guide. Natick,

MA: MathWorks Inc.

24. Metan, G., Sabuncuoglu, I., & Pierreval, H. (2010). Real time selection of scheduling

rules and knowledge extraction via dynamically controlled data mining. International

Journal of Production Research, 48(23), 6909–6938.

25. Olafsson, S., & Li, X. (2010). Learning effective new single machine dispatching rules

from optimal scheduling data. International Journal of Production Economics, 128(1),

118–126.

26. Park, S. C., Raman, N., & Shaw, M. J. (1997). Adaptive scheduling in dynamic

flexible manufacturing systems: a dynamic rule selection approach. IEEE

http://www.scientific.net/author/Mirko_K%C3%BCck
http://www.scientific.net/author/Jens_Ehm
http://www.scientific.net/author/Michael_Freitag
http://www.scientific.net/author/Enzo_M_Frazzon
http://www.scientific.net/author/Ricardo_Pimentel

29

Transactions on Robotics and Automation, 13(4), 486-502.

27. Priore, P., Gómez, A., Pino, R., & Rosillo, R. (2014). Dynamic scheduling of

manufacturing systems using machine learning: an updated review. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 28(1), 83–97.

28. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan

Kaufman.

29. Sabuncuoglu, I. (1998). A study of scheduling rules of flexible manufacturing

systems: a simulation approach. International Journal Production Research, 36(2),

527–546.

30. Shahrabi, J., Adibi, M. A., & Mahootchi, M. (2017). A reinforcement learning

approach to parameter estimation in dynamic job shop scheduling. Computers &

Industrial Engineering, 110, 75-82.

31. Shiue, Y. R. (2009). Data mining-based dynamic dispatching rule selection

mechanism for shop floor control systems using support vector machine approach.

International Journal of Production Research, 47(13), 3669–3690.

32. Shiue, Y. R., Guh, R. S. & Lee, K. C. (2012). Development of machine learning-based

real time scheduling systems: using ensemble based on wrapper feature selection

approach, International Journal of Production Research, 50(20), 5887–5905.

33. Shiue, Y. R., Guh, R. S. & Tseng, T. Y. (2012). Study on shop floor control system in

semiconductor fabrication by self-organizing map-based intelligent multi-controller,

Computer & Industrial Engineering, 62(4), 1119–1129.

34. Son, Y., Rodriguez-Rivera, H., & Wysk, R. A. (1999). A multi-pass simulation-based

real-time scheduling and shop floor control system. Transactions of the Society for

Computer Simulation International, 16(4), 159–172.

35. Stutton, R. S., & Barto, G. B. (1998). Reinforcement learning: An introduction.

Cambridge, MA: MIT Press.

36. Su, C. T., & Shiue, Y. R. (2003). Intelligent scheduling controller for shop floor

control systems: a hybrid genetic algorithm/decision tree learning approach.

International Journal of Production Research, 41(12), 2619-2641.

37. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal

representations by error propagation. Parallel distributed processing. Cambridge,

MA: MIT Press.

30

38. Tecnomatix Plant Simulation, 2006. Tecnomatix Plant Simulation 7.6 User Guide.

Plano: Tecnomatix Technologies Ltd.

39. Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed.). New York,

NY:Springer.

40. Vesanto, J., & Alhoniemi, E. (2000). Clustering of the Self-organizing map. IEEE

Transactions on Neural Networks, 11(3), 586-600.

41. Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3),

279–292.

42. Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of

Industrie 4.0: An outlook. International Journal of Distributed Sensor Networks, 12(1),

Art. ID 3159805, doi: 10.1155/2016/3159805.

43. Wolf, W. (2009). Cyber-physical systems. IEEE Computer, 42(3), 88–89.

44. Wu, S. D., & Wysk, R. A. (1989). An application of discrete-event simulation to

online control and scheduling in flexible manufacturing. International Journal of

Production Research, 27(9), 1603–1623.

31

F1 Machine F2 Machine F3 Machine load/unload

stations

SPT SRPT DS EDD

Fig. 1. The role of RTS MDRs mechanism in this study

RTS MDRs mechanism

FMS system

 N samples M prototypes C clusters

Fig. 2. A two-level SOM approach

SOM

training

SOM

clustering

32

Fig. 3 The proposed RL-based RTS using the MDRs mechanism.

 Warm up

Time

00000000

d1,t
d2,t

 d3,t

d20,t

d1,2t
d2,2t

d3,2t

d20,2t

d1,3t d2,3t

d3,3t

d20,3t

•••••••••••

Candidate multiple

dispatching rules

Simulation
end

 •••••••

•••
Time

Window

 2t

Time

Window

 3t

Random select one multiple

dispatching rules for next time

window starting point

Fig. 4. The multi-pass technique to generate the training samples procedure

Time

Window

0 t

Off-line learning module

Simulation-based

training example

generation mechanism

Data preprocessing mechanism

1. LVF feature selection

2. Data normalization

System state number

determination (using two-level

SOM)

Q-learning-based reinforcement learning module

Q-learning-based agent

State-action table

Refinement mechanism

MDRs selection

mechanism

Shop floor

manufacturing cell

Action

At
rt+1

st+1

reward

rt

state

st

33

Fig. 6 Shows the best clustering SOM U-matrix in TP criterion

LVFXo

Two-level SOM approach

Assign state class number

……..
2so

Fig. 5 Assignment of specific system state class number using two-level SOM in training examples.

1so
k

o s

oSXLVF

Subset # 1

oSXLVF

Subset # 2

oSXLVF

Subset # k
……..

34

Table 1
 Q-learning algorithm.

1. Initialize the Q(s, a) value functions arbitrarily.

2. Perceive the current state, s

3. Following a certain policy (e.g.ε-greedy), select an appropriate action (a) for the given

state (s)

4. Execute the selected action (a), receive immediate reward (r), and perceive the next state 's

5. Update the value function as follows:

),(-),(max),(),(''
' asQasQasQasQ

a
 (4)

6. Let s←
's

7. Go to 3 until s state represents terminal state

Table 2

Performance criteria used in this study.

 Performance criteria Description

TP Throughput

MCT Mean cycle time

NT Number of tardy parts

35

Table 3

System attribute used in this study.

System attribute

ID

Description

1 Number of the jobs in the system

2 The mean utilization of machines

3 The standard deviation of machine utilization

4 The mean utilization of load/unload stations

5 The mean utilization of pallet buffers

6 The mean utilization of AGVs

7 The minimum imminent operation time of candidate jobs within

the system

8 The maximum imminent operation time of candidate jobs within

the system

9 The mean imminent operation time of candidate jobs within the

system

10 The standard deviation of the imminent operation time of

candidate jobs within the system

11 The minimum total processing time of candidate jobs within the

system

12 The maximum total processing time of candidate jobs within the

system

13 The mean total processing time of candidate jobs within the

system

14 The standard deviation of the total processing time of candidate

jobs within the system

15 The minimum remaining processing time of candidate jobs

within the system

16 The maximum remaining processing time of candidate jobs

within the system

17 The mean remaining processing time of candidate jobs within the

system

18 The standard deviation of the remaining processing time of

candidate jobs within the system

19 The minimum slack time of candidate jobs within the system

20 The mean slack time of candidate jobs within the system

21 The standard deviation of the slack time of candidate jobs within

the system

36

22 The maximum tardiness of candidate jobs within the system

23 The mean tardiness of candidate jobs within the system

24 The standard deviation of the tardiness of candidate jobs within

the system

25 The maximum workload in front of any machine/station within

the system

26 The total workload in front of any machine/station within the

system

27 The mean sojourn time of candidate jobs within the system

28 The standard deviation of the sojourn time of candidate jobs

within the system

29 The mean time now until due date of candidate jobs within the

system

30 The standard deviation of the time now until due date of

candidate jobs within the system

Table 4

Dispatching rules used in this study.

Dispatching Rule Description

 DS Select the job with minimum slack time

 EDD Select the job with the earliest due-date

 SIO Select the job with the shortest imminent operation time

SPT Select the job with the shortest processing time

SRPT Select the job with the shortest remaining processing time

37

Table 5

LVF algorithm.

LVF algorithm.Input: Max-TRIES,

 D-dataset,

 n-number of features,

 r-allowable inconsistency rate;

initialize: Cbestn;

for Max-TRIES loops

begin

 RFrandomFeatureSet (seed);

 CnumberOfFeatures (RF);

 if (C< Cbest)

 if (InconCheck (RF,D) <r ;

 RFbestRF; CbestC ;

 Print_Current_Best (RF)

 Else if ((Cbest = C) and (InconCheck (RF,D)<r))

 Print_ Current_Best (RF)

end

Output: sets of m features satisfying the inconsistency criterion

38

Table 6

State–action table for the TP performance criterion.

State class number Training sample number Q value

1

TP s)1(1
x Q(1

TP s ,)1(1
a)

1

TP s)1(2
x Q(1

TP s ,)1(2
a)

… … …

1

TP s
)1(

1n
x Q(1

TP s ,)1(
1n

a)

… … …

ksTP)(1 kx Q(ksTP ,)(1 ka)

ksTP)(2 kx Q(ksTP ,)(2 ka)

… … …

ksTP)(k
kn

x Q(ksTP ,
)(k

kn
a)

39

Table 7

Reward function.

TP criterion MCT and NT criteria

if i

SPTP PM > i

1TP UCL

 Reward = +1

else if i

SPTP PM < i

1TP LCL (9)

 Reward = –1

else

Reward = 0

end if

if i

SPMCT PM > i

1MCT UCL or i

SPNT PM > i

1NT UCL

 Reward = –1

else if i

SPMCT PM < i

1MCT UCL or i

SPNT PM < i

1NT UCL (10)

 Reward = +1

else

Reward = 0

end if

Table 8
Proposed Q-learning based agent operating procedure.

Step 1 Input: performance criterion o, current system status and MDRs

Step 2 initialize: Q (
i

o s ,)(ij
a) // calculate by equation (7) and 𝐝𝑜

next ∗
 ;

Step 3 Determine matching state class no. i by two-level SOM approach

Step 4 Select an appropriate MDRs 𝐝𝑜
next ∗

(i.e., action)(ij
a) for next scheduling interval by

 -greedy policy.

Step 5 Execute the selected action ()(ij
a), receive immediate reward (r) by equation (9) or (10), and

 perceive the next state
's

Step 6 Update the Q value of state-action pair as follows:

),(),(max),(),()(
)(

)(')()(

''
i

i
ij

ii j
j

ajj
asQasQrasQasQ (11)

Step 7 s 's

Step 8 Go Back to Step 3 until s state represents terminal state.

40

Table 9

Five part mix ratios generate training examples and training examples KB.

Part ID

Part Mix Ratios (%)

 Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

 1 11.00 14.00 6.00 9.00 14.00

 2 11.00 14.00 6.00 9.00 14.00

 3 11.00 15.00 6.00 9.00 14.00

 4 12.00 10.00 15.00 8.00 15.00

 5 6.00 12.00 15.00 13.00 7.00

 6 8.00 8.00 9.00 12.00 5.00

 7 8.00 5.00 8.00 3.00 5.00

 8 7.00 3.00 8.00 9.00 4.00

 9 7.00 3.00 7.00 8.00 4.00

10 2.50 1.00 4.00 1.00 6.00

11 16.50 15.00 16.00 19.00 12.00

Table 10

The result of selected system feature for each performance criterion.

Performance criterion selected system feature ID No. of feature

selected

TP {1, 9, 13, 17, 26} 5

MCT {1, 2, 17, 18, 26} 5

NT {1, 2, 10, 13, 18} 5

Table 11

SOM parameters used in this study.

Map size 10×10

Lattice hexagonal

Shape sheet

Neighborhood function Gaussian

41

Table 12

DB index of each performance criterion

Performance

criterion

No. of cluster

2 3 4 5 6 7 8 9 10

TP 0.8935 1.0368 0.9520 0.9548 0.7694 0.8258 0.8415 0.7597 0.8147

MCT 0.8359 0.9965 0.8714 0.9630 0.8828 0.8664 0.8415 0.8383 0.8347

NT 0.9765 1.1976 0.9756 0.9034 0.8532 1.2367 1.0395 0.8765 0.9266

Table 13

Results obtained using the RL-based MDRs approach and other scheduling strategies according

to three production criteria.

Scheduling

strategy

TP MCT (minutes) NT

Mean SD Mean SD Mean SD

RL 13122.66 33.47 947.98 206.81 1442.80 338.22

SOM 13085.57 25.64 1155.95 270.37 1450.13 499.89

GA+DT 13067.90 40.71 1327.98 314.22 1601.77 649.02

GA+SVM 13078.56 37.51 1417.50 273.40 1588.77 668.74

DS 13048.60 78.36 1569.73 395.94 3189.90 1855.20

EDD 12978.17 91.22 2065.82 437.31 8021.40 2226.72

SPT 13061.00 49.00 1440.84 297.91 1759.10 713.56

SIO 13017.37 80.55 1673.51 336.97 3076.73 1575.75

SRPT 13056.77 43.30 1536.91 346.79 1630.60 750.74

SD, standard deviation

42

Table 14

Results of the paired-sample t-tests to compare the performance of the RL-based MDRs

approach and other scheduling strategies according to three production criteria.

Performance

criterion

P-value

SOM GA+DT GA+SVM DS EDD SPT SIO SRPT

TP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MCT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

NT 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000

43

Real-time scheduling for a smart factory using a reinforcement learning approach

Highlights

 We proposed an RL-based MDRs selection mechanism for the RTS problem.

 A two-level SOM is used to determine the system state class.

 A Q-learning algorithm is used as a reinforcement learning agent.

 Our approach performs better than a previously proposed MDRs and SDR

approach.

