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Abstract 

Previous studies of the real-time scheduling (RTS) problem domain indicate that 

using a multiple dispatching rules (MDRs) strategy for the various zones in the system 

can enhance the production performance to a greater extent than using a single dispatching 

rule (SDR) over a given scheduling interval for all the machines in the shop floor control 

system. This approach is feasible but the drawback of the previously proposed MDRs 

method is its inability to respond to changes in the shop floor environment. The RTS 

knowledge base (KB) is not static, so it would be useful to establish a procedure that 

maintains the KB incrementally if important changes occur in the manufacturing system. 

To address this issue, we propose reinforcement learning (RL)-based RTS using the 

MDRs mechanism by incorporating two main mechanisms: (1) an off-line learning module 

and (2) a Q-learning-based RL module. According to various performance criteria over a 

long period, the proposed approach performs better than the previously proposed MDRs 

method, the machine learning-based RTS using the SDR approach, and heuristic individual 

dispatching rules. 

 

Keywords: Machine learning; Q-learning; Real-time scheduling; Reinforcement learning; 

Shop floor control. 
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1. Introduction  

Industry 4.0, also called “Smart Factory,” aims to increase factory productivity and the 

efficient utilization of resources in real time (Herrmann, Pentek, & Otto, 2015; Wang, Wan, 

Li, & Zhang, 2016). These objectives are achieved via flexible event-driven reactions to 

changes in the factory environment, resource allocation, scheduling, optimization, and 

control in real time. Most of the “Smart Factory” concepts share the attributes of 

cyber-physical systems (CPS) for monitoring physical processes by creating a virtual copy 

of the physical world and making decentralized decisions (Lee, Bagheri, & Kao, 2015). 

CPS is defined as a transformative technology for managing interconnected systems 

according to their physical assets and computational capabilities, and recent developments 

have improved the availability and affordability of sensors, data acquisition systems, and 

computer networks (Lee, 2008; Wolf, 2009). The competitive nature of current industry is 

forcing more factories to implement high-tech methods. Thus, the increasing use of sensors, 

RFID, and networked machines has resulted in the continuous generation of high volume 

data known as Big Data (Lee, Lapira, Bagheri, & Kao, 2013; Lee, Kao, & Yang, 2014). In 

this environment, CPS can be developed further to manage Big Data and exploit the 

interconnectivity among machines to fulfill the goal of producing intelligent, resilient, and 

self-adaptable machines. Furthermore, by integrating CPS with production, logistics, and 

services in current industrial practices, it will be possible to transform current factories into 

Industry 4.0 factories with significant economic potential. This is why it is timely and 

crucial to consider adaptive scheduling and control (i.e., real-time scheduling; RTS) for 

dynamic manufacturing environments as key research issues in CPS production 

management (Goryachev et al., 2013; Kück et al., 2016).  

RTS employs different scheduling rules in a dynamic and multi-pass manner in order 

to select the best scheduling strategy among the feasible alternatives at each decision point 

over a series of scheduling periods, thereby meeting the shop floor performance criteria 

http://www.scientific.net/author/Mirko_K%C3%BCck
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(Son, Rodriguez-Rivera, & Wysk, 1999). According to previous studies, RTS involves two 

main approaches (Priore, Gómez, Pino, & Rosillo, 2014): the multi-pass simulation 

approach (Ishii & Talavage, 1994; Wu & Wysk, 1989) and machine learning approach 

(Metan, Sabuncuoglu, & Pierreval, 2010; Olafsson & Li 2010; Shiue, 2009; Shiue, Guh, 

&Tseng, 2012). Multi-pass simulations are used to evaluate candidate scheduling rules and 

select the best strategy based on simulated information, such as the current system status 

and the management goals for each scheduling period. However, the multi-pass simulation 

approach is inappropriate for shop floor control because it requires intensive computational 

effort to select the best scheduling rule for each scheduling period. In the machine learning 

approach for RTS, a set of training examples generated by system simulations are used to 

determine the best scheduling rule for each possible system state. However, the machine 

learning approach employed for collecting training examples and learning processes in 

order to acquire an RTS knowledge base (KB) tends to be time consuming and relatively 

slow. A KB has the advantage of yielding fast and acceptable solutions to allow the system 

to make decisions in real time, and it can conform to the operational characteristics of a 

dynamic manufacturing environment (Priore, Gómez, Pino, & Rosillo, 2014). Previous 

studies (Shiue, Guh, & Lee, 2012) defined three major machine learning approaches for 

constructing an RTS system KB: artificial neural networks (ANNs) (Rumelhart, Hinton, 

& Williams, 1986), decision tree (DT) learning (Quinlan, 1993), and support vector 

machines (SVMs) (Vapnik, 2000). 

According to previous studies, two strategies can be used to determine the scheduling 

rules in an RTS system: a single dispatching rule (SDR) and multiple dispatching rules 

(MDRs) for a manufacturing cell. The SDR usually assigns an individual heuristic 

scheduling rule to all machines in a system during a given scheduling interval (i.e., 

scheduling period), whereas the MDRs assign different scheduling rules (i.e., scheduling 

decision variables) to all machines in a system. In the following, we refer to this method as 
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an intelligent multi-controller. Fig. 1 illustrates the role of the RTS MDRs mechanism in a 

flexible manufacturing system (FMS) case study. For the F1, F2, F3, and load/unload 

stations, the MDRs method selects the SPT, SRPT, DS, and EDD dispatching rules, 

respectively, as the scheduling decision variables for job selection in the next scheduling 

period. Ishii and Talavage (1994) proposed a search algorithm that employs MDRs in 

bottleneck machines by using predictions based on a multi-pass simulation. Their results 

showed that the MDRs strategy can improve the performance of an FMS by up to 15.9% 

compared with the best result obtained using the SDR strategy. However, their approach is 

not highly suitable an RTS system that uses the machine learning approach. 

[Insert Fig. 1 about here]  

The classical machine learning approach builds a RTS KB via the MDRs mechanism, 

and its main disadvantage is that the classes (dispatching decision rules) to which the 

training examples are assigned must be predefined. For example, for a given set of system 

attributes, the best dispatching decision rule for each decision variable can be determined 

after a simulation is run for each dispatching rule. The resulting MDRs are considered as a 

class. However, this process becomes intolerably time consuming because the rules must be 

determined for each period (Kim, Min, & Yih, 1998). Furthermore, the local approach, 

such as using DT learning or SVMs, does not satisfy the global objective function (i.e., the 

overall production performance of the shop floor). Thus, although the best decision rule can 

be determined for each scheduling decision variable, the combination of all the decision 

rules may not simultaneously satisfy the global objective function. 

Guh, Shiue, and Tseng (2011) constructed an RTS KB using an MDRs selection 

mechanism based on a self-organizing map (SOM) neural network (Kohonen, 2001), which 

can overcome the long training time problem that affects the classical machine learning 
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approach in the training example generation phase. They showed that over a long period, 

this approach provides better system performance than machine learning-based RTS using 

the SDR approach and heuristic individual dispatching rules according to various 

performance criteria. This approach is feasible but the main drawback of this method is its 

inability to respond to changes in the shop floor environment. However, the RTS KB is not 

static, so it would be useful to establish a procedure that maintains the KB incrementally if 

important changes occur in the manufacturing system. 

A possible solution may incorporate a reinforcement learning (RL) mechanism that 

can learn to select appropriate actions for achieving its goals via interactions with the 

system environment and by responding to receipts for rewards or penalties based on the 

impact of each action (Stutton & Barto, 1998; Shahrabi, 2017). Q-learning (Watkins & 

Dayan, 1992) is a form of model-free RL that provides agents with the capacity to learn to 

act optimally in Markovian domains by experiencing the consequences of actions, but 

without requiring them to build maps of the domains. Wang and Usher (2015) found that 

Q-learning works well for a single machine dispatching rule selection problem when used 

by a learning agent to select various dispatching rules according to different system criteria, 

and the results of their study may inspire future applications of RL techniques to the RTS 

problem. 

Based on the studies mentioned above, in order to develop the MDRs mechanism 

in RTS, the RTS should be capable of updating and maintaining the KB via RL 

during operations to allow responses to change in the system operating conditions. 

Hence, using a Q-learning RL agent to refine the RTS KB is an important research 

issue. In this study, we develop an RL-based RTS using the MDRs mechanism. 

Implementation results of a study case experiment showed that the production 

performance has been greatly improved compared with classical SDR. 
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The remainder of this paper is divided into six sections. In Section 2, we present 

the theoretical background related to our proposed off-line learning module for 

determining the system state number for a Q-learning RL agent using the 

Self-Organizing Map (SOM) algorithm (Kohonen, 2001), and we also introduce an 

RL module that uses a Q-learning algorithm. In Section 3, we formulate the RTS 

problem using the MDRs mechanism and state the research objectives. In Section 4, 

we describe the method for the proposed RL-based RTS using the MDRs mechanism. 

In Section 5, we present the results of a study case experiment as well as analyzing the 

proposed RL approach and other approaches. Finally, in Section 6, we give our 

conclusions as well as providing a summary of this study and some suggestions for 

future research. 

 

2. Theoretical background  

2.1. SOM neural networks 

SOM networks (Kohonen, T. (2001) are used widely for data mining because they are 

a convenient visual tool. Unlike other ANN approaches, the SOM network performs 

unsupervised learning, i.e., the processing units in the network adjust their weights through 

lateral feedback connections. The more common approach to ANNs requires supervised 

learning, i.e., a set of training samples is provided as the input and the output is compared 

with a known result. Deviations from the correct result lead to adjustments of the weights 

attached to the processing units. The networks are considered to have been trained when 

they work satisfactorily for the test cases. By contrast, an SOM network does not require 

prior knowledge of the expected result. The nodes in the network converge to form clusters 

or groups of entities with similar properties. The number and composition of the clusters 

can be represented graphically based on the output distribution generated by the learning 
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process.  

Three basic steps involved in the application of the SOM algorithm after initialization 

comprise sampling, similarity matching, and updating. These three steps are repeated until 

the feature map is completed. The SOM algorithm is summarized as follows. 

1. Initialization. Choose random values for the initial weight vectors )0(jw , which must 

be different for j = 1, 2, …, J, where J is the number of neurons in the lattice. Low 

weight values are generally preferable. 

Another way of initializing the algorithm is to select the weight vectors 

 J

jj 1
)0(


w  randomly from the available set of input vectors N

ii 1
x . 

2. Sampling. Select a training example x from the input space with a certain probability, 

where the vector x represents the activation pattern applied to the lattice.  

3. Similarity Matching. Find the best-matching (winning) neuron i(x) at time step n by 

using the minimum-distance Euclidean criterion: 

Jjni j
j

,...,2,1,)(min arg)(  wxx .                             (1) 

4. Updating. Adjust the synaptic weight vectors for all the neurons by using the updating 

formula: 

))()()(()()()1( )(, nnnhnnn jijjj wxww x   ,                        (2) 

where )(n is the learning rate parameter and )()(, nh ij x is the neighborhood function centered 

around the winning neuron i(x). Both )(n and )()(, nh ij x are varied dynamically during this 

learning process to achieve the best results. 

5. Continuation. Continue with step 2 until no noticeable changes in the feature map are 

observed. 

The graphical representation obtained by the SOM approach only provides qualitative 

information, but quantitative information can be obtained by focusing on interesting 
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regions of the map, although not the overall map. The overall map certainly has interesting 

properties, but more can be learned if the SOM (and thus the data) contains distinguishable 

regions that can be considered separately. Another option involves considering each map 

unit individually, but this is inconvenient for large maps. Thus, the efficient use of SOMs 

requires methods for identifying map unit clusters. It should be emphasized that the goal is 

not necessarily to optimize the clustering process, but instead the aim is to obtain insights 

into the cluster structure for the purpose of data mining. Therefore, the clustering method 

should be fast, robust, and visually efficient. 

Vesanto and Alhoniemi (2000) proposed a two-level SOM involving K-means and the 

Davies–Bouldin (DB) index (Davies & Bouldin, 1979) for solving these problems (Fig. 2). 

This approach uses the SOM to determine the number of clusters and starting point, and 

then uses K-means to find the best cluster. In a single-level SOM, a large set of prototypes 

is formed initially instead of a data cluster. These prototypes can then be interpreted as 

proto-clusters, which are combined to form the actual clusters in the next phase. The 

benefit of using this SOM is that it can effectively reduce the computational time and noise, 

whereas higher abstraction levels yield greater distortion. The prototypes are less sensitive 

to random variations than the original data because the prototypes are local averages of the 

data (Vesanto & Alhoniemi, 2000). 

 [Insert Fig. 2 about here] 

The DB index is a function of the ratio of the total scatter within a cluster relative to 

the separation between the clusters. The best clustering of a two-level SOM is achieved by 

minimizing the following DB index, which is expressed as: 







 




 ),(

)()(
max

1

1 lkce

lckc
K

k
kl QQd

QSQS

K
,                                           (3) 
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where Sc is the distance between nodes within a cluster, dce is the distance between clusters, 

and K is the number of clusters. 

2.2.Reinforcement learning (RL) and Q-learning 

RL addresses the problem of how an autonomous agent can learn to select appropriate 

actions to achieve its goals by interacting with its environment. In the RL framework, a 

learning agent must be able to perceive information in its environment in order to 

determine the current state of the environment. The agent then chooses an action to perform 

based on the perceived state. The action taken may result in a change in the state of the 

environment. Immediate reinforcement occurs based on the new state, which is used to 

reward or penalize the selected action. These interactions between the agent and its 

environment continue until the agent learns a decision-making strategy that maximizes the 

total reward. Stutton and Barto (1998) defined four key elements for addressing RL 

problems: a policy, reward function, value function, and model of the environment. The 

policy defines the agent’s behavior for each of a number of given states. The reward 

function specifies the overall goal of the agent, which guides the agent while learning to 

achieve the goal. The value function specifies the value of a state or a state–action pair, 

thereby indicating its quality (the state or the state–action pair) in the long term. The model 

of the environment predicts the next state given the current state and a proposed action. 

In addition to these four elements, a key assumption in the RL framework is that the 

definition of the current state used by each agent to make its decision should summarize 

everything important about the complete sequence of past states leading to it. Some of the 

information about the complete sequence may be lost, but it is only important that the 

future state should be contained within the current state signal. Therefore, the application 

environment should satisfy the Markovian property so the environment’s next state can be 

predicted given the current state and action. Under this assumption, the interaction between 

an agent and its environment can be called a Markov decision process. 
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The original Q-learning algorithm was proposed by Watkins and Dayan (1992), and 

the goal of this algorithm is to learn the state–action pair value, Q(s, a), which represents 

the long-term expected reward for each state and action pair (denoted by s and a, 

respectively). It has been proved that the Q values learned using this algorithm converge to 

the optimal state–action values, Q*. The optimal state–action values for a system represent 

the optimal policy that the agent aims to learn. The standard procedure for the Q-learning 

algorithm is given in Table 1.  

Each iteration of steps 2–7 represents a learning cycle, which is also called an episode. 

The parameter α is the step size parameter and it influences the learning rate. The parameter 

γ is called the discount-rate parameter, 0 ≤ γ ≤ 1, and it affects the present value of future 

rewards. The Q(s, a) values can be initialized arbitrarily. If no actions are preferred for any 

specific states, then all the Q(s, a) values in the policy table can be initialized with the same 

value when starting the Q-Learning procedure. If some prior knowledge of the benefit of 

certain actions is available, the agent may prefer taking these actions at the beginning by 

initializing the Q(s, a) values as larger than the others. These actions will then be selected 

initially, which can shorten the learning period. Step 3 involves a tradeoff between 

exploration and exploitation, and many state–action pair selection methods may be used in 

this step.  

 [Insert table 1 here] 

3. Formulation of the problem 

3.1. Real-time scheduling (RTS) using the MDRs mechanism 

The status of a manufacturing system changes continuously, and previous studies have 

confirmed that it is possible to improve the system performance by implementing a 

multi-pass scheduling policy rather than using a single heuristic dispatching rule over an 
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extended planning horizon. The policy is based on the system status at each decision point 

over a series of short-term scheduling period horizons. RTS based on machine learning has 

the advantage of rapidly yielding acceptable solutions for the operation of manufacturing 

systems. 

RTS systems that use the MDRs mechanism can be represented by SLDO ,,, , 

where S is the set of possible system states given by  Tsss ,,, 21  and it is described by 

a conjunction of system features f. At ts , the MDRs for the following scheduling period

next
do is implemented by the Ll  machine learning approach based on the current 

MDRs denoted as current
do , the system features f, and the given performance criterion

Oo . The vector   ,,...,,
T

21

next

mo dddd Did ,,...,2,1 mi   D is the candidate 

dispatching rule used in RTS, and m is the number of machine cells on the shop floor. 

Therefore, the objective function for RTS using the MDRs mechanism can be defined 

as follows: 

minmax

ll OOO l                                                     (5) 

where 

  
o

o

t

l lf ,,Max currentmax
dfO   

  
o

o

t

l lf ,,Min currentmin
dfO   

and 

lOOO minmax

ll  , and minmax

ll OO  . 

3.2. Description of a study case 

The study case involves a modification of the model used by Montazeri and Van 

Wassenhove (1990). This model is a true FMS involving: (i) three machine families 

(denoted as F1, F2, and F3), (ii) three load/unload stations, (iii) three automated 
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guided vehicles, (iv) an input buffer and a central buffer with sufficient capacity to 

avoid deadlock, and (v) a computer-controlled local area network. The first two 

machine families have two machines each, whereas the third has a single machine. 

Fig. 1 shows the role of RTS using the MDRs mechanism in this study case. Eleven 

different types of parts are obtained by this model, and their routing and processing 

times are identical to those used by Montazeri and Van Wassenhove (1990).  

3.3. Specification of the training examples  

In the KB based on an RTS mechanism, let Xo denote the set of training examples and 

the given performance criterion o is obtained using the training sample generation 

mechanism. A training example Xx oo  can be denoted by {f, current
do ,

*next
do }, where 

*next
do are the acceptable (not necessarily optimal) MDRs for the following scheduling 

period under performance criterion o. Three types of performance criteria are typically 

studied in scheduling problems: throughput-based, flow-time-based, and due-date-based 

criteria. Table 2 lists the three performance criteria used in this study. 

[Insert Table 2 here] 

In this study, we consider the essential system attributes that satisfy various 

performance criteria. Therefore, all the possible system attributes are examined 

exhaustively. Table 3 lists 30 candidate attributes. The criteria for their selection are based 

on an earlier study (Arzi & Iaroslavitz, 2000; Chen, Yih, & Wu, 1999; Park, Raman, & 

Shaw, 1997; Su & Shiue, 2003), which considered machine learning and the features of the 

case study environment. 

 [Insert Table 3 here] 
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Dynamic dispatching rules are required because no optimal dispatching rule has yet 

been found for a variety of shop configurations and operating conditions (Baker, 1984; 

Blackstone, Philips, & Hogg, 1982; Montazeri and Van Wassenhove, 1990; Sabuncuoglu, 

1998). Thus, excessive effort is not required to study the best dispatching heuristics in 

various environments. Table 4 summarizes five dispatching rules, which were shown to be 

effective in earlier studies (Montazeri and Van Wassenhove, 1990; Arzi & Iaroslavitz, 2000; 

Park, Raman, & Shaw, 1997) in terms of the three types of performance criteria mentioned 

above.  

 [Insert Table 4 about here] 

3.4. Research objective 

As noted above, RTS plays an important role in the complex, dynamic, and highly 

stochastic operation of the shop floor environment. Hence, the proposed RTS using the 

MDRs mechanism must be capable of generating acceptable (if not optimal) MDRs in real 

time in order to enhance productivity by fully exploiting the dynamic nature of RTS, where 

this is essentially the concept of agile manufacturing. Therefore, the objective of this 

study is to develop an RTS using the MDRs strategy to greatly improve the 

production performance compared with classical SDR based on machine learning and 

by employing heuristic individual dispatching rules based on various performance 

criteria.  

4. Development of RL-based RTS using the MDRs mechanism 

The proposed RL-based RTS using the MDRs mechanism shown in Fig. 3 comprises 

two major modules. An off-line learning module runs a simulation to generate training 

examples to determine the system state number (built using a two-level SOM). Next, the 

system state number is sent to construct the initial state–action pair table for the RL module. 
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During this operation, the Q-learning based agent is assumed to have the ability to perceive 

information from all the machines on the shop floor, 

Finally, the Q-learning-based RL module updates the value function and determines 

the most appropriate MDRs for the next scheduling period. Each of these functions is 

discussed in detail in the following. 

[Insert Fig. 3 about here] 

 

4.1. Simulation-based training example generation mechanism 

A discrete event simulation model is used to generate the training examples to verify 

the proposed method. This approach is a modified version of that proposed by Arzi and 

Iaroslavitz (2000), and it involves a simulation based on some MDRs (using a random seed 

for each pass) for the same initial state of the system attributes and arriving job streams. In 

addition, in order to provide comprehensive training examples that represent a wide range 

of possible system states, the multi-pass simulation technique (Wu & Wysk, 1989) is used 

for collecting the training examples. The state variables of the system attributes are 

recorded as well as the MDRs at a decision point. At the end of the scheduling period, the 
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MDRs are selected that yield the best performance measures as the action (i.e., decision) 

MDRs for a subset of the candidate MDRs (i.e., not including all of the MDRs) for the state 

recorded at the beginning of the scheduling period. Fig. 4 illustrates the multi-pass 

simulation technique used in this study for generating the training examples. The training 

example collection method has the advantage of being able to provide various job arrival 

patterns, which represent a wide range of possible system states, in order to learn the MDRs 

for the RTS KB in this study. Moreover, it can reduce the time required to generate the 

training examples. 

[Insert Fig. 4 about here] 

4.2. Data preprocessing mechanism 

In this study, the data preprocessing mechanisms comprise feature selection and data 

normalization, as described below. 

4.2.1. Las Vegas filter (LVF) feature selection 

Previous studies (Chen, Yih, & Wu, 1999; Su & Shiue, 2003) selected suitable system 

information based on various production requirements for constructing a RTS KB in 

machine learning-based RTS, and this is a crucial research issue because of the existence of 

a large amount of shop floor information in a manufacturing system. Using an excessive 

number of attributes may lead to overfitting of the training data and degrade the ability of 

the RTS system to generalize the KB. However, omitting even one important system 

attribute may strongly affect the learning process and the ability of the RTS system to 

classify knowledge. 

Two general approaches are used for feature selection: the filter approach and wrapper 

approach (Liu & Motoda, 1998). In the filter approach, the selection process is conducted 

independently of the learning algorithm before applying the classifier to the selected feature 
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subset. This is computationally more efficient than the wrapper approach, where the 

classifier system is given a feature subset as the input and the classification error is 

estimated using an unseen dataset. As mentioned above, RTS systems that use the MDRs 

mechanism cannot be developed with a machine learning algorithm using classifiers in 

order to construct the KB. Hence, we cannot apply the wrapper approach based on the 

predictive accuracy of a classifier for feature selection in our method.  

The LVF feature selection algorithm is shown in Table 5 (Liu & Setiono, 1996). LVF 

generates a random feature subset (denoted as RF, where RF F ) from the feature subset 

space during each iteration. If RF contains fewer features than the current best subset, then 

the inconsistency rate of the dimensionally reduced data described by RF is compared with 

the inconsistency rate of the best subset. If RF is at least as consistent as the best subset, 

then RF replaces the best subset. The inconsistency rate of the training data prescribed by a 

given feature subset is defined over all groups of matching instances. Within a group of 

matching instances, the inconsistency count is the number of instances in the group minus 

the number of instances in the group with the most frequent class value. The overall 

inconsistency rate is the sum of the inconsistency counts for all groups of matching 

instances divided by the total number of instances.  

 [Insert Table 5 about here] 

4.2.2. Data normalization 

A feature is normalized by scaling its values so they fall within a small specified range, 

such as –1.0 to +1.0. Normalization is particularly appealing with distance-based classifiers 

because after normalizing the attribute values, we can avoid attributes with large values, 

which would dominate those with smaller values. The three widely used normalization 

methods are min-max normalization, z-scores normalization, and normalization by decimal 



  

18 

 

scaling (Han & Kamber, 2006).   

Min-max normalization is most suitable for cases where the upper and lower bounds 

of the scores are known. The minimum and maximum scores are mapped to 0 and 1, 

respectively. The z-scores normalization method is useful when the actual minimum and 

maximum values of a feature are unknown, or when outliers dominate the min-max 

normalization. Decimal scaling can be applied when the values of different training 

examples are distributed on a logarithmic scale. For example, if one training example has 

values in the range of [0, 1] and another is in the range of [0, 1000], then decimal scaling 

normalization can be applied. The values of the system attributes change continually on the 

shop floor. Hence, the z-scores normalization method is suitable for attribute data 

normalization in this study. 

During z-scores normalization, the values for a feature f are normalized using the 

mean and standard deviation of f. A value v of f is normalized to 'v  by the following 

equation: 

 
f

fv
v




' ,                                                         (6) 

where f and f are the mean and standard deviation, respectively, of feature f. 

4.3. Criterion for system state number determination 

In RL, the agent perceives the current system states in the environment and then 

selects the most appropriate action to be performed. In the classical machine RTS approach, 

the number of system states is infinite. However, state–action tables are constructed to 

represent the knowledge that the RL agent perceives by investigating the results of actions 

taken in each states, so infinite system states are not feasible for an RL agent. 

Thus, the training examples obtained by LVF feature selection under performance 
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criterion o are denoted as LVFXo (i.e., LVFXo is the tuple { LVFf , current
do ,

*next
do }), where the 

system features obtained by LVF feature selection for the training examples are denoted as

LVFf . By using two-level SOM clustering analysis, LVFXo can be classified into various 

system state class. If the training data are in the same class, they can be assigned the same 

system state number labels. A training example with the same system state number label i (i 

= 1,….. k ) denoted as i

o

i

o LVFLVF Xx  becomes a four-tuple { LVFf , current
do , i

o s
*next

do }, where

i

o LVFX represents the subset of i (i.e., assign class label i) in LVFXo obtained by clustering 

analysis under performance criterion o, and i

o s is the system state number label i. Fig. 5 

shows the training examples for the two-level SOM process. The specific system state class 

number is assigned in each training example.  

 

[Insert Fig. 5 about here] 

4.4. Q-learning-based agent 

4.4.1. State–action table refinement mechanism 

For the Q-learning-based agent, state–action tables are constructed to represent the 

knowledge that the Q-learning-based agent learns by investigating the results of actions 

taken in every state. In this study, an action )( ij
a is defined as the Q-learning-based agent’s 

choice weight vector next
do  based on perceived state i

o s of the shop floor, where )( ij
a is the 

i-th state class in the j-th (j = 1,2,...,ni) training example’s (i.e., )( i
jn

x ) action. Each 

state–action pair is associate with a Q value: Q ( i

o s , )( ij
a ). A sample of a state–action table 

for the TP performance criterion is shown in Table 6. 
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[Insert Table 6 about here] 

The initial determination of the state–action value Q ( i

o s , )( ij
a ) is based on the 

performance measures for a set of training examples and the given performance criterion o 

( Xo ), where it is calculated by Equation (7), and the Q value for a state–action pair is 

updated by the Q-learning-based agent using Equation (11).  

 

                                                                       (7) 

 

where )(PM ijo is training sample )( i
jn

x at the scheduling decision point for the performance 

measure under performance criterion o, i

o minPM  is the minimum value of the performance 

measure in state class number i, and i

o maxPM is the maximum value of the performance 

measure in state class number i. 

4.4.2. MDRs selection mechanism 

The following problem must be addressed after establishing a state–action table 

refinement mechanism. A specific system state class number can be determined by using 

the two-level SOM, but it is not clear how to choose the most appropriate MDRs for the 

next scheduling period among the many candidate MDRs in a KB class label. Thus, we 

propose a method for selecting MDRs to solve this problem according to two types of key 

strategies: the policy for selecting an action (i.e., MDRs) and the reward function in MDRs 

selection mechanism must conform with the RL framework concept.  

In RL, MDRs are selected via the exploration and exploitation of two types of 

strategies for choosing an action. Exploration requires that the agent tries something 
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different in order to obtain a greater reward, whereas the agent favors actions taken 

previously and rewarded during exploitation. Exploitation may have the advantage of 

guaranteeing a good expected reward in one play, whereas exploration provides more 

opportunities for finding the maximum total reward in the long term. A popular approach 

for addressing this trade-off issue is the  -greedy policy. The -greedy policy involves 

selecting the action with the best value (exploitation) with probability 1– ; otherwise, an 

action is selected randomly with a small probability ,.  

After the agent has been trained, all state–action pair values have been updated and 

each state has a dominated action. The greedy policy is then used to select an action, which 

is defined as follows. 

),(maxarg),( )(

)(

)( i

ij

i j

i

o
a

j

i

ot asas                                           (8) 

The goal of the RL module is to learn the best choice from the MDRs at each decision 

point, where the agent learns by interacting directly with the system and responding to the 

receipt of rewards or penalties defined by a reward function, which is based on the impact 

each action has on the system. The reward function defines the goal for the learning agent 

and determines the value of the immediate action based on the perceived state of the 

environment. The learning agent tries to maximize the total reward, so the reward function 

is essentially used to guide the learning agent toward its goal.  

In the study case based on the TP criterion, the system’s objective is to maximum the 

throughput. After the one-step scheduling period is finished, the online simulation output is 

compared with the mean performance in state class label i. If the performance measure for 

the one-step scheduling period output denoted as i

SPTP PM is greater than the one sigma 

upper confidence limit (i.e., 68.27%) for the mean performance in state class label i 

denoted as i

1TP UCL , then the learning agent receives a reward of +1. In addition, if 
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i

SPTP PM is less than the one sigma lower confidence limit (i.e., 31.73%) for the mean 

performance in state class label i denoted as i

1TP LCL , then the learning agent receives a 

reward of –1. Otherwise, the learning agent receives a reward of 0. The detailed reward 

function employed in this study is shown in Table 7.  

[Insert Table 7 about here] 

The overall proposed Q-learning-based agent operating procedure is shown in Table 8. 

The state–action table associated with the Q value is update and the most appropriate 

MDRs are determined for the next scheduling period. 

[Insert Table 8 about here] 

5. Experiment  

5.1. Construction of a simulation model and generation of a training example 

To verify the proposed method, a discrete event simulation model was used to 

generate training examples. The simulation model was built and executed using Tecnomatix 

Plant Simulation (2006), an object-oriented simulation language, and it was run on a Core 

i7-4790 3.6 GHz CPU with the Windows 7 operating system.  

It was expected that the proposed approach would achieve the desired dynamic 

dispatching performance. Several parameters were determined based on a preliminary 

simulation run. The time between jobs followed an exponential distribution with a 

mean of 31 min. The due date for each job was randomly assigned from six to 10 times 

the total processing time and it was uniformly distributed. The maximum number of 

pallets (jobs) permitted in the FMS system was 100. Table 9 shows the five 

product-mix ratios used to generate the training examples. The proportions of part 
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types varied continually every 20,000 min. 

[Insert Table 9 about here] 

In order to generate a large number of different training examples, we used 100 

different random seeds to generate 100 different job arrival patterns. The warm-up 

period for each run was 10,000 min and it was followed by 60 multi-pass scheduling 

periods. The time window for the multi-pass simulation was 2000 min. In total, 6000 

training samples were collected. 

5.2. Development of the off-line learning module 

According to Figure 3, it was necessary to choose the system features to construct the 

RL system state class number (build using the two-level SOM) in advance. The LVF 

feature selection algorithm was encoded in MATLAB 7.1 (MathWorks 2005), where the 

inconsistency rate was set to 0.5. Table 10 shows the results obtained by LVF feature 

selection.  

[Insert Table 10 about here] 

In this study, the two-level SOM was used for clustering the training samples and it 

assigned a system state class number label to each performance criterion. The two-level 

SOM algorithm was encoded using the MATLAB Neural Network Toolbox (MathWorks 

2007). Some experimental parameters used in the two-level SOM are shown in Table 11. 

Table 12 shows the DB index, which used a K-mean value (i.e., the number of clusters) that 

ranged from 2–10 for each performance criterion. Thus, the minimum DB indexes in TP, 

MCT, and NT were nine, 10, and six, respectively. Fig. 6 shows the best clustering SOM 

U-matrix (unified distance matrix) obtained for the TP performance criterion. According to 

the results in Table 12, in order to meet the TP, MCT, and NT performance criteria, we 
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required 9, 10, and 6 system state class number labels, respectively. Next, the system state 

class number for each performance criterion was established as described in Section 4.3. 

[Insert Table 11 about here] 

[Insert Table 12 about here] 

[Insert Fig. 6 about here] 

5.3. Experimental verification by online simulation  

A Q-learning-based agent encoded using the Tecnomatix Plant SimTalk simulation 

object-oriented programming language (2006) was linked to a C program (by employing a 

two-level SOM coded using MATLAB for determining the system state class number) to 

examine the effectiveness of the proposed RL-based RTS using the MDRs mechanism in 

various system scenarios. 

A stream of arriving jobs was generated in a simulation over 400,000 min by using 

different sets of random seeds to investigate whether the proposed RL-based RTS using the 

MDRs mechanism was more effective over a long period than the RTS using the previously 

proposed SOM-based MDRs method (Guh, Shiue, & Tseng, 2011), as well as SDR 

approaches based on machine learning, i.e., GA+DT (Su & Shiue, 2003) and GA+SVM 

(Shiue, 2009). In addition, a single heuristic dispatching rule was compared in various 

scenarios based on three performance criteria. Table 13 shows the mean and standard 

deviation based on 30 simulation runs using 30 random seeds with different scheduling 

strategies. The proposed approach was capable of obtaining better results according to all 

the performance criteria because of its superior effectiveness. 

[Insert Table 13 about here] 
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A paired-samples t-test was used to determine whether the proposed RL-based 

MDRs approach was significantly better than the SOM-based MDRs, the GA+DT and 

GA+SVM approaches, and heuristic dispatching strategies. The null hypothesis was 

that the mean values obtained by all the scheduling strategies were equal. As shown in 

Table 14, the null hypothesis was rejected at a significance level of 95% for all the 

control strategies. Therefore, the proposed RL-based MDRs approach was 

significantly better than the SOM-based MDRs, SDR approaches, and other 

dispatching strategies. 

 [Insert Table 14 about here] 

6. Conclusion and future work 

In this study, we proposed an RL-based MDRs selection mechanism for constructing 

an RTS for FMS control. We provide the following conclusions based on the results of this 

study. 

 The proposed RL-based approach using the MDRs selection mechanism 

responds efficiently to changes in the shop floor environment and it is 

suitable for incorporating in the operation of an RTS system for a smart 

factory.  

 The proposed RL-based approach employs an intelligent and dynamic 

method for selecting MDRs, which is based on the status of a manufacturing 

system at the end of a given scheduling period, where it then determines the 

appropriate MDRs for the following period. Our results showed that over a 

long period, according to various performance criteria, this approach 

performed better than a previously proposed SOM-based MDRs selection 

mechanism, the machine learning-based RTS using the SDR approach, and 
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heuristic individual dispatching rules.  

Some potential issues for future research can be identified based on the results of this 

study, as follows. 

 The FMS model used for the experimental verification in this study is a 

relatively simple manufacturing system. Thus, it is necessary to apply the 

proposed approach to large and complex manufacturing systems, such as 

semiconductor wafer fabrication systems. The effectiveness of the RL-based 

MDRs selection mechanism might differ in more complex semiconductor 

wafer fabrication systems that incorporate input-order wafer lot release 

control and the selection of a wafer lot via an intrabay by a stocker. 

Investigating and examining proposed RL-based approach using the MDRs 

selection mechanism feasibility through various manufacturing systems 

would be a potential topic for future research. 

 Recently, deep learning, which is a type of machine learning approach, has 

attracted much attention in academic and commercial research (Bengio, 2009), 

where it has been applied successfully to classification tasks, automatic speech 

recognition, image recognition, and self-driving cars (LeCun, Bengio, & Hinton, 

2015). Deep learning algorithms use a deep architecture to extract the inherent 

features of data from the lowest level to the highest level, and they can discover 

large amounts of structure in data. Due to the existence of a large amount of shop 

floor information in CPS, deep learning algorithms can represent CPS features 

without prior knowledge. These characteristics may inspire future studies of RTS 

for smart factories by employing deep learning algorithms. 
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Fig. 3 The proposed RL-based RTS using the MDRs mechanism. 
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Fig. 6 Shows the best clustering SOM U-matrix in TP criterion 

 

LVFXo  

Two-level SOM approach 

Assign state class number  

…….. 
2so

Fig. 5 Assignment of specific system state class number using two-level SOM in training examples. 

1so  
k

o s

oSXLVF 

Subset # 1 

oSXLVF 

Subset # 2 

oSXLVF 

Subset # k 
…….. 



  

34 

 

 

 

Table 1 
 Q-learning algorithm. 

1. Initialize the Q(s, a) value functions arbitrarily. 

2. Perceive the current state, s 

3. Following a certain policy (e.g.ε-greedy), select an appropriate action (a) for the given          

state (s) 

4. Execute the selected action (a), receive immediate reward (r), and perceive the next state 's  

5. Update the value function as follows: 

    ),(-),(max),(),( ''
' asQasQasQasQ

a
                                    (4) 

6. Let s←
's  

7.  Go to 3 until s state represents terminal state 

 

 

 

 

Table 2 

Performance criteria used in this study. 

 Performance criteria Description 

TP Throughput 

MCT Mean cycle time 

NT Number of tardy parts 
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Table 3 

System attribute used in this study. 

System attribute 

ID 

Description 

1 Number of the jobs in the system  

2 The mean utilization of machines  

3 The standard deviation of machine utilization  

4 The mean utilization of load/unload stations 

5 The mean utilization of pallet buffers  

6 The mean utilization of AGVs  

7 The minimum imminent operation time of candidate jobs within 

the system  

8 The maximum imminent operation time of candidate jobs within 

the system  

9 The mean imminent operation time of candidate jobs within the 

system  

10 The standard deviation of the imminent operation time of 

candidate jobs within the system  

11 The minimum total processing time of candidate jobs within the 

system  

12 The maximum total processing time of candidate jobs within the 

system  

13 The mean total processing time of candidate jobs within the 

system  

14 The standard deviation of the total processing time of candidate 

jobs within the system  

15 The minimum remaining processing time of candidate jobs 

within the system  

16 The maximum remaining processing time of candidate jobs 

within the system  

17 The mean remaining processing time of candidate jobs within the 

system  

18 The standard deviation of the remaining processing time of 

candidate jobs within the system  

19 The minimum slack time of candidate jobs within the system  

20 The mean slack time of candidate jobs within the system 

21 The standard deviation of the slack time of candidate jobs within 

the system  
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22 The maximum tardiness of candidate jobs within the system  

23 The mean tardiness of candidate jobs within the system  

24 The standard deviation of the tardiness of candidate jobs within 

the system  

25 The maximum workload in front of any machine/station within 

the system  

26 The total workload in front of any machine/station within the 

system  

27 The mean sojourn time of candidate jobs within the system  

28 The standard deviation of the sojourn time of candidate jobs 

within the system  

29 The mean time now until due date of candidate jobs within the 

system  

30 The standard deviation of the time now until due date of 

candidate jobs within the system 

 

 

Table 4 

Dispatching rules used in this study. 

Dispatching Rule Description 

    DS Select the job with minimum slack time  

    EDD Select the job with the earliest due-date  

    SIO Select the job with the shortest imminent operation time 

SPT Select the job with the shortest processing time 

SRPT Select the job with the shortest remaining processing time 
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Table 5 

LVF algorithm.  

LVF algorithm.Input: Max-TRIES, 

      D-dataset, 

      n-number of features, 

      r-allowable inconsistency rate; 

 

initialize: Cbestn; 

for Max-TRIES loops 

begin 

   RFrandomFeatureSet (seed); 

   CnumberOfFeatures (RF); 

   if (C< Cbest) 

     if (InconCheck (RF,D) <r ; 

       RFbestRF; CbestC ; 

       Print_Current_Best (RF) 

     Else if ((Cbest = C) and (InconCheck (RF,D)<r)) 

       Print_ Current_Best (RF) 

end 

 

Output: sets of m features satisfying the inconsistency criterion 
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Table 6 

State–action table for the TP performance criterion. 

 

State class number Training sample number Q value 

1

TP s  )1(1
x  Q( 1

TP s , )1(1
a ) 

1

TP s  )1(2
x  Q( 1

TP s , )1(2
a ) 

… … … 

1

TP s  
)1(

1n
x  Q( 1

TP s , )1(
1n

a ) 

… … … 

ksTP  )(1 kx  Q( ksTP , )(1 ka ) 

ksTP  )(2 kx  Q( ksTP , )(2 ka ) 

… … … 

ksTP  )( k
kn

x  Q( ksTP ,
)( k

kn
a ) 
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Table 7 

Reward function.  

TP criterion MCT and NT criteria 

if i

SPTP PM > i

1TP UCL  

  Reward = +1 

else if i

SPTP PM < i

1TP LCL  (9) 

  Reward = –1 

else 

Reward = 0 

end if 

if    i

SPMCT PM > i

1MCT UCL or i

SPNT PM > i

1NT UCL  

  Reward = –1 

else if i

SPMCT PM < i

1MCT UCL or i

SPNT PM < i

1NT UCL  (10) 

  Reward = +1 

else 

Reward = 0 

end if 

 

 

 
 

Table 8  
Proposed Q-learning based agent operating procedure. 

Step 1  Input: performance criterion o, current system status and MDRs 

Step 2  initialize:  Q (
i

o s , )( ij
a ) // calculate by equation (7) and 𝐝𝑜

next ∗
   ;   

Step 3  Determine matching state class no. i by two-level SOM approach 

Step 4  Select an appropriate MDRs 𝐝𝑜
next ∗

(i.e., action )( ij
a ) for next scheduling interval by 

 -greedy policy. 

Step 5  Execute the selected action ( )( ij
a ), receive immediate reward (r) by equation (9) or (10), and 

 perceive the next state
's  

Step 6  Update the Q value of state-action pair as follows: 

 ),(),(max),(),( )(
)(

)(')()(

''
i

i
ij

ii j
j

ajj
asQasQrasQasQ                   (11) 

Step 7  s 's  

Step 8  Go Back to Step 3  until s state represents terminal state. 
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Table 9 

Five part mix ratios generate training examples and training examples KB. 

 

Part ID 

Part Mix Ratios (%) 

    Mix 1      Mix 2       Mix 3       Mix 4      Mix 5 

 1  11.00 14.00  6.00  9.00 14.00 

 2  11.00 14.00  6.00  9.00 14.00 

 3  11.00 15.00  6.00  9.00 14.00 

 4  12.00 10.00 15.00  8.00 15.00 

 5   6.00 12.00 15.00 13.00  7.00 

 6   8.00  8.00  9.00 12.00  5.00 

 7   8.00  5.00  8.00  3.00  5.00 

 8   7.00  3.00  8.00  9.00  4.00 

 9   7.00  3.00  7.00  8.00  4.00 

10   2.50  1.00  4.00  1.00  6.00 

11  16.50 15.00 16.00 19.00 12.00 

 

 

Table 10 

The result of selected system feature for each performance criterion. 

Performance criterion selected system feature ID No. of  feature 

selected 

TP {1, 9, 13, 17, 26} 5 

MCT {1, 2, 17, 18, 26} 5 

NT {1, 2, 10, 13, 18} 5 

 

 

 

Table 11  

SOM parameters used in this study. 

Map size 10×10 

Lattice hexagonal  

Shape sheet 

Neighborhood function Gaussian 
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Table 12 

DB index of each performance criterion 

Performance 

criterion 

No. of cluster 

2 3 4 5 6 7 8 9 10 

TP 0.8935 1.0368 0.9520 0.9548 0.7694 0.8258 0.8415 0.7597 0.8147 

MCT 0.8359 0.9965 0.8714 0.9630 0.8828 0.8664 0.8415 0.8383 0.8347 

NT 0.9765 1.1976 0.9756 0.9034 0.8532 1.2367 1.0395 0.8765 0.9266 

 

 

 

Table 13 

Results obtained using the RL-based MDRs approach and other scheduling strategies according 

to three production criteria. 

Scheduling 

strategy 

TP MCT (minutes) NT  

Mean SD Mean SD Mean SD 

RL 13122.66 33.47 947.98 206.81 1442.80  338.22 

SOM 13085.57 25.64 1155.95 270.37 1450.13  499.89 

GA+DT 13067.90 40.71 1327.98 314.22 1601.77  649.02 

GA+SVM 13078.56 37.51 1417.50 273.40 1588.77  668.74 

DS 13048.60 78.36 1569.73 395.94 3189.90 1855.20 

EDD 12978.17 91.22 2065.82 437.31 8021.40 2226.72 

SPT 13061.00 49.00 1440.84 297.91 1759.10  713.56 

SIO 13017.37 80.55 1673.51 336.97 3076.73 1575.75 

SRPT 13056.77 43.30 1536.91 346.79 1630.60  750.74 

SD, standard deviation 
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Table 14  

Results of the paired-sample t-tests to compare the performance of the RL-based MDRs 

approach and other scheduling strategies according to three production criteria. 

 

 

  

Performance 

criterion 

P-value  

SOM GA+DT GA+SVM DS  EDD  SPT SIO SRPT 

TP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MCT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NT 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Real-time scheduling for a smart factory using a reinforcement learning approach 

 

Highlights 

 We proposed an RL-based MDRs selection mechanism for the RTS problem. 

 A two-level SOM is used to determine the system state class.  

 A Q-learning algorithm is used as a reinforcement learning agent. 

 Our approach performs better than a previously proposed MDRs and SDR 

approach. 

 

 


