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Abstract

The number of website is increasing speedily, and clients purchase their website from the enterprise that suggests them the best
domain name with a good price. In order to give the relevant domain name, enterprise is always eager to have a good system of
suggestion that suits the client request. Recommender system has been an effective key solution to guide users in a personalized
way for discovering the domain name they might be interested in from a large space of possible suggestion. They have become
fundamental applications that provides to users the best domain name that meet their needs and preferences. In this work, we
used a recommender system based on neural network as it is capable to solve many complex tasks and gives better customer
satisfaction. We proposed two approaches to recommend domain name, both of these approaches are based on neural network.
The first one consists on discovering the similarity between the vocabulary of domain name, while the second one is finding the
relevant Top Level Domain (TLD) corresponding to the context of the domain name. First experiments on GANDI datasets shows
the effectiveness of the proposed approaches.
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1. Introduction

Recommender systems can be defined as programs which attempt to recommend the most suitable items, products
or services to particular users by predicting a user’s interest in an item based on related information about the items,
the users and the interactions between items and users. The aim of developing recommender systems is to reduce
information overload by retrieving the most relevant information and services from a huge amount of data, thereby
providing personalized services. The most important feature of a recommender system is its ability to guess a user’s
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preferences and interests by analyzing the behavior of this user or the behavior of other users to generate personalized
recommendations.

Various recommender system techniques have been proposed, and many sorts of recommender system software
have been developed recently for a variety of applications. Researchers recognize that recommender systems offer
great opportunities and challenges for business, government, education, and other domains, with more recent
successful developments of recommender systems for real-world applications becoming apparent.

The past few decades have witnessed the tremendous successes of the use of neural network in many application
domains such as speech recognition, image analysis and natural language processing. Applying neural network
into recommender system has been gaining momentum thanks to its state-of-the-art performances and high-quality
recommendations. In contrast to traditional recommendation models, neural network provides a better understanding
of user’s demands, item’s characteristics and historical interactions between them.

In this paper, we suggest a system of recommendation of fully qualified domain name based on neural network.
When a customer wants to purchase a domain name he rarely knows his qualified domain name, therefore, we will
make a system of recommendation to suggest to the customer both the domain name and the extension that suits his
recommend by referring to his localization and his research. The first part is the state of the art where we will present
the existing methods concerning text similarity, through three approaches: Probabilistic-based approach, Prediction-
based approach and Hybrid approach which is the combination of the two previous approaches. The second part is the
description of the two models for suggesting domain name that are based on neural network: the first method tries to
find similarity based on neighbors, while the second one predicts the TLD (Top Level Domain) corresponding to the
context of domain name. The third part concerns the experiment results for the two models based on the real purchase
database of GANDI.

2. State of the art

In this state of the art, we will present the most used methods to find text similarity, based on three approaches: 1)
Probabilistic-based approach which is based on probabilistic models, and consists on searching in the whole corpus
to find text similarity, 2) Prediction-based approach that more commonly known as embeddings or neural language
models, which consists on looking for the neighbors of the text to find text similarity, 3) Hybrid approach which is the
combination of the two previous approaches.

2.1. Probabilistic-based approach

Probabilistic-Based approach is based on probabilistic models, this approach gives a sparse vector that can be easily
interpretable by humans. However, the sparse vector can not be very efficient to detect the semantic meaning of the
word.

2.1.1. Latent Semantic Indexing

Latent Semantic Indexing (LSI) [4] is a well-known method that allows to discover hidden concepts in a document.
It represents the documents and terms in a way to express the semantic relationship between document/term,
document/document or term/term. LSI constructs a term-document matrix from a large piece of text, this matrix
describes the occurrences of terms in documents, it is a sparse matrix whose rows correspond to terms and whose
columns correspond to documents. As an example of the weighting of the elements of the matrix is tf-idf (term
frequency inverse document frequency): the weight of an element of the matrix is proportional to the number of
times the terms appear in each document. After the construction of the occurrence matrix, LSI uses Singular Value
Decomposition (SVD) to the term-document matrix in order to reduce the number of rows while preserving the
similarity structure among columns. Then, the similarity between words could be compared using cosine similarity.

2.1.2. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [1] is a generative probabilistic model for collections of discrete data such as
text corpora. LDA consider that documents are represented as random mixtures over latent topics, where each topic
is characterized by a distribution over words. In other words, LDA allows to discover topics in text documents, where
each topic is characterized by a list of words. The generative process for each document in the corpus is:
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1. Choose a distribution over topics 8 ~ Dir(«@)
2. For each word in the document: choose a topic from the distribution over topics z,, ~ Multinomial(8) then choose
a word from the vocabulary w,, ~ Multinomial(¢.,).

Each document gives the topic with certain probabilities, each topic in the document has some words with certain
probabilities, these words are similar as they share the same context.

2.1.3. Global Vectors for Word Representation (Glove)

Glove [16] is an unsupervised learning algorithm that gives vector representations of words. This algorithm is
designed to take the advantages of the two major families of learning word vectors: global matrix factorization methods
such as Latent Semantics Analysis [4] and local context window methods such as Skip gram model [13]. Glove uses
ratios of co-occurrence probabilities, rather than the co-occurrence probabilities themselves, as the ratios between
the probabilities of words appearing next to each other carry more information than considering those probabilities
individually.

2.2. Prediction-based approach

Prediction-based approach is more commonly known as embeddings or neural language models, this approach
gives a dense vector that gives a good result in the semantic field of the word. However, this dense vector can not be
easily interpretable by humans.

2.2.1. Word2vec

Word2vec [12] is a model for learning vector representations of words, called ”word Embeddings”.

Word embeddings are a way to capture similarity across words based on the contexts in which they appear [17][10].
The intuition is that words with similar meanings often occur near each other in texts. There are two principal models
in word2vec: Continuous Bag of Words (CBOW) that Predicts the current word based on the context and Skip gram
that Predicts the context based on the current word.

In skip-gram model, we choose a window size C (often this window size is equal to five). Then, we train the neural
network to do the following: Given the current word (input word), look at the C words nearby (C words behind and C
words ahead). We train the neural network in the vocabulary in order to get the weights of the two matrix between the
input/hidden layer (W) and hidden/output layer (W’).

Figure 1 shows the schema of the skip gram model. Let’s consider that the vocabulary size is V, and the hidden
layer size is N. The input is a one-hot encoded vector, which means for a given input word, only one out of V units,
X1, ..., Xy, will be 1, and all other units are 0. The units on adjacent layers are fully connected.
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Fig. 1. The skip gram model

Finally, we will obtain two representations of each word in the vocabulary which are the rows of W and W’. Our
goal was to obtain the weights of two matrix Wy.y and W}, ,, to be able to get the vector representation of words.
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After getting the vector representation of each word we can measure similarity between words in the vocabulary using
cosine similarity.

2.2.2. Paragraph Vector (Doc2vec)

Paragraph Vector [9] is an unsupervised algorithm that models variable-length pieces of texts, such as sentences,
paragraphs or documents. The algorithm is an adaptation of word2vec, while word2vec can generate word vector,
paragraph vector can generate both document vector and word vector depending on a context (topic). Paragraph
Vector has two approaches that are similar to the models of Word2Vec [12] (Continuous Bag of Words (CBOW) and
Skip-gram).

o Distributed Memory Model of Paragraph Vectors (PV-DM)
This approach is similar to CBOW, the only difference is that an additional input representing the paragraph id
is added. PV-DM attempts to predict a word given its surrounding words and the context (topic) provided by the
paragraph id. PV-DM uses the concept of memory, it remembers what is missing from the current context (topic)
of the paragraph, which wasn’t part of Word2vec. For example, a text that contains words about mathematics is
more likely to use scientific words.

o Distributed Bag of Words version of Paragraph Vector (PV-DBOW)
This model is similar to Skip-gram, the only difference is that it takes paragraph id as input and it predicts words
in the window without any restriction on word order. PV-DBOW attempts to predict words randomly given the
paragraph id.

Paragraph Vector has the potential to overcome the weaknesses of many machine learning algorithms as bag-
of-words models [5]. Its robustness resides in: taking word order into account, taking the semantic of words into
consideration, representing the text input as a variable length vector and learning from unlabeled data.

2.2.3. Skip-Thought Vectors

Skip-Thought Vectors [7] is a model that allows to get sentence vector and it doesn’t require labeled data to
train (unsupervised sentence vectors). This model inspires from skip-gram model [11] and attempts to extend it to
sentences. So, instead of having a word to predict its context, Skip-Thought vectors have a sentence to predict the
sentences around it. This model follows the encoder-decoder model that is so pervasive in neural machine translation
[2]. Encoder maps words to a sentence vector and decoder is used to generate the surrounding sentences. Skip-thought
model uses an RNN encoder with GRU activations and an RNN decoder with a conditional GRU. Gated Recurrent
Unit (GRU) model [3] is simpler than Long Short Term Memory networks (LSTM) models [6], and has been shown
to perform as well as LSTM on sequence modeling tasks.

There are one encoder and two decoders, all of them are constructed from recurrent neural networks (RNN). The
encoder takes as input a sentence and outputs a vector. The two decoders take the vector as input: The first attempts
to predict the previous sentence and the second attempts to predict the next sentence.

While training, Skip-Thought vectors uses two separate models: the first one “uni-skip” is unidirectional encoder
(reads the sentence in the forward direction) while the other one bi-skip” is bidirectional model with forward and
backward encoders (reads the sentence forwards and backwards and concatenates the results). Another experiment
“combine-skip” was added by using a combined model which consists of the concatenation of the vectors from uni-
skip and bi-skip.

Figure 2 illustrates the model of Skip Thought, it shows the input sentence and the two predicted sentences. In this
example, the input is the sentence triplet (a door confronted her, she stopped and tried to pull it open, it didn’t budge).

Unattached arrows are connected to the encoder output. Colors indicate which components share parameters. <
eos > is the end of sentence token.
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Fig. 2. The Skip Thought model

Skip-Thought framework proves to be a robust way of modeling the semantic content of sentences through the
following tasks: semantic relatedness, paraphrase detection, image-sentence ranking and classification benchmarks.

2.3. Hybrid approach

The question is whether distributional word representations are best learned from Probabilistic-based models or
from Prediction-based models?

Probabilistic-based approach tend to form documents as a sparse mixed-membership of topics while Prediction-
based approach tend to model documents as dense vectors. The former is simpler to interpret as the vector is sparse
while the second one is better in giving the semantic of the word but the vector is uninterpretable. To take advantages
of both approaches, hybrid approach combines the best part of the two previous approaches.

2.3.1. LDA2vec

Lda2vec [14] is a model that mixes two models: the dirichlet topic model (LDA) and word embeddings (word2vec).
LDA [1] is able to create document (and topic) representations that are not so flexible but quite interpretable to humans.
While word2vec [11] create vector representations of words that can model semantic similarity between words but
the vectors are uninterpretable by humans. Thus, Lda2vec aims to solve this by embedding both words and document
vectors into the same space and trains both representations simultaneously. Inspiring from the idea of Tomas Mikolov
[12] that word vectors can be summed together to form a semantically meaningful combination of both words. We
will add word and document vectors to each other to construct a meaningful context vector of them.

For example, taking the word Germany and a document about airlines. Then the predicted similar words for
Germany will be France, Spain, and Austria. But if we apply lda2vec, instead of predicting tokens similar to Germany
alone, the predictions will be similar to both the document and the word, which will give as a result: Lufthansa,
Condor Flugdienst, and Aero Lloyd.

2.3.2. Topic2vec

Topic2vec [15] is an approach that learns topic representations in the same semantic vector space with words. This
model is inspired by word2vec, it is also separated in two models: CBOW which predicts both a word and topic vector
using the context words, and Skip gram that predicts the context given the current word and its assigned topic by LDA.

cBOW Skip-gram

AWz
///, / )
A~ >

W1

Fig. 3. The architectures of Topic2Vec where (w;—p, W1, Wi+, Wr+2) are context words and wy is the current word paired with a topic z;
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Topic2Vec aims at learning topic representations along with word representations. When training, given a word-
topic sequence of a document D = wy : zy,...,wy : 2y , Where w; is the word and z; is the topic inferred from LDA.
The learning objective function for CBOW and Skip gram can be defined as follows:

M
1
Fepow(D) = ” Z(log PWilwey) + log p(zilwesr))
]

1 M
Fstip-gran(D) = 2 > > (l0g pOwisclwi) + log p(wisclci))
i=1 —k<c<k

Thus, topic representations are learned in the same semantic vector space with words.

3. The proposed approaches

In this section, we present two approaches: the first one aims to find similarity between the vocabulary while the
second one is finding the TLD that corresponds to the context of domain name.

3.1. First approach

This approach is based on training the neural network to do the following: looking for the neighbors for each word
in the purchase database in order to find similarity between words of the domain name. First of all, we will preprocess
on the purchase data; we will retrieve the purchase data to tokenize the domain name. Then, we will remove all the
noise (stop words). After this, we will build the vocabulary which will be the fully qualified domain name which
means the union of the domain name and TLD. After this, we will train this model on the purchase database which
will allow us to get the word vector for each word in the vocabulary. Finally, we will make a scoring between the
domain name and each TLD and we will suggest the TLD with a score above to y.

3.1.1. Learning phase

We choose a window size C, which means, for each word in the vocabulary (domain name, TLD) we will look
for the C words behind and the C words ahead. We will train the neural network to do the following: Given the input
word, look at the C words nearby. The input and output for the first approach is a list of vectors that has the size of
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the vocabulary, each word is represented as a one hot vector, which means, for a given input word, only one out of the
words in the vocabulary will be 1, and all other words are 0). The vocabulary is composed of domain name and TLD.

Learning phase

Choose a window size C.

Look at the C words nearby.

parameter: Parameter for the algorithm

C: window size, n: neurones, h;: hidden layer, e,: error threshold, y: score threshold, W: weights (randomly

initialized)
Input : A list of vectors that has the size of the vocabulary.
Output : The same list of input (vocabulary).

Choose a couple (Input, Output).

Calculate the state of the network by propagation.

Determine the cost.

Apply gradient descent.

Adjust the weights W.

Repeat until obtaining an error equal to e,.

Prediction phase

Applying cosine similarity between the vector of domain name and each TLD.

Recommend the TLD with the score above of 7.
Algorithm 1: First approach

3.1.2. Prediction phase

After training the neural network, we will get the word vector for each word in the vocabulary (Domain name and
TLD). The prediction of TLD will be done by making a score between the domain name and every TLD. Then, we
will recommend the TLD with a score above 7y (fixed in the output).

3.2. Second approach

This approach is based on constructing a neural network that takes as input the domain name and outputs a TLD.
We will train the neural network on the purchase data in order to suggest the relevant TLD corresponding to the
context of the domain name. This approach is divided into two parts: the first part is training the neural network to
predict the context of the domain name while the second part is based on classifying the TLD using an unsupervised
learning method. First of all, we will preprocess on the purchase data; we will retrieve the purchase data to tokenize
the domain name. Then, we will remove all the noise (stop words). After this, we will build the vocabulary.

3.2.1. Learning phase
® Learn to predict the context of the domain name
After building the vocabulary, we will train the neural network on that vocabulary, in order to find the context
of the domain name. The neural network will be trained to do the following: Taking the domain name as input
and outputs the TLD corresponding to the context of the domain name.
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The input for the second approach is a list of vectors where each vector is represented as a one hot vector and
each vector has the dimension of the vocabulary of the domain name. The output is a list of vectors where each
vector is represented as a one hot vector and each vector has the dimension of the vocabulary of the TLD.

Learning phase

Prediction of the context of domain name

Classification of TLD

parameter: Parameter for the algorithm

n: neurones, 4;: hidden layer, e,: error threshold, W: weights (randomly initialized).

Input : A list of vectors (Domain Name).

QOutput : A list of vectors (TLD).

Choose a batch of the couple (Input, Output).

Calculate the state of the network by propagation.

Determine the cost.

Apply gradient descent.

Adjust the weights.

Repeat until obtaining an error equal to e,.

Prediction phase

Look for the cluster of the predicted TLD.

Apply cosine similarity between the predicted TLD and each TLD in the cluster.

Recommend the top K TLD.
Algorithm 2: Second approach

e Classification of TLD

To classify TLDs, we will take the word vector for each TLD from the model of the first approach that we have
already trained it. After getting the word vector for each TLD, we will calculate the TLD similarity matrix.
Then, we will classify TLDs using an unsupervised learning method. We used an orthogonal transformation
to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated
variables. This transformation is defined in such a way that the first component has the largest possible variance
(that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn
has the highest variance possible under the constraint that it is orthogonal to the preceding components. The
resulting vectors are an uncorrelated orthogonal basis set.

K-means is an unsupervised machine learning algorithm that groups a dataset into a specified number (k) of
clusters. The algorithm is somewhat naive as it clusters the data into k clusters, even if k is not the right number
of clusters to use. Therefore, when using k-means clustering, users need some way to determine whether they
are using the right number of clusters. So, here we will present how to choose the optimal number of clusters
using elbow method [8], then we will apply k-means clustering.

— Determine optimal number of clusters (K)
The technique to determine the number of clusters(K), is called the elbow method. The idea of the elbow
method is that it looks at the percentage of variance explained as a function of the number of clusters: One
should choose a number of clusters so that adding another cluster doesn’t give much better modeling of
the data. Figure 4 shows an elbow, it is called an elbow method because the curve looks like a human arm
and the elbow point gives us the optimum number of clusters. So, we will take the elbow point value as
the final number of clusters, which is K=24.
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Fig. 4. The elbow method

— Applying K-means clustering
After choosing the right K (number of clusters), we will apply K-means clustering with K=24.
Figure 5 shows the clusters of TLDs:
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Fig. 5. Clusters of TLDs

3.2.2. Prediction phase

After training the neural network, we will use it to predict the TLD that corresponds to the context of the domain
name. Then, we will search for the cluster that corresponds to the predicted TLD, and we will make cosine similarity
between the predicted TLD and each TLD in the cluster, Then we will suggest the top K TLDs, which means the one
who has high cosine similarity, and we will save the decreasing order as the client could see the relevant TLD in the
beginning.

4. Experimental results

In this section, we will present the experimental results that we get from the two approaches. In this experiment,
the sample was taking from Gandi database, the real purchases that has been done.

1. First approach
In this approach, we took a sample from the purchase database of Gandi that has 10 million purchase, and we test
the accuracy. The accuracy was based on : if the predicted TLD coincide with the 10 TLD that has the highest
score.

Domain Name

Dataset

TLD

accuracy

10M

6.293.598

386

3,98%

Table 1. The evaluation of the first approach
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Indeed, the goal of this approach is to find similarity among the purchase data not the context of the domain
name that will give the relevant TLD, that’s why we took all the domain name that were purchased not only the
one that were bought with GTLD (Generic Top Level Domain). This low accuracy is probably due to the domain
name that has been purchased with ccTLD (Country Code Top Level Domain).

2. Second approach

In this approach we took a sample of 10.000 purchase domain name, to be able to make a setting on the neural
network in order to choose the best parameters that will give the best results.

Dataset

Domain Name TLD

10K

7873

45

Table 2. The evaluation of the second approach

The activation function is a node that we add to the output end of any neural network. It is used to determine the
output of neural network like yes or no. It maps the resulting values in between O to 1 or -1 to 1 etc. (depending
upon the function). To train the neural network, we tested three activation function for the hidden layers : sigmoid
function, tanh (hyperbolic tangent), Relu (Rectified Linear Unit).

Sigmoid Relu tanh
(=) (max(0,x) | (== - 1
One hot vector 96.9% 96.76% 96.89%
Vector using indexes | 81.71% 80.67% 81.08%

Table 3. Accuracy by comparing different activation functions on 10K sample

Figure 6 shows the accuracy and the cross entropy using one hot vector with sigmoid function while figure 7
shows the accuracy and cross entropy using a vector with indexes with sigmoid function. It is noticeable that
when the cross entropy goes down the accuracy increases until reaching a predefined threshold. The axis of
abscissa represents the number of iteration while the axis of the ordinate represents the accuracy (left) and the
cross entropy (right). Results with one hot vector is much better than using vector with indexes, as the accuracy

is much better and also the number of iteration is lower than the one used by the vector with indexes.

accuracy |

Fig. 6. Results of accuracy (left) and cross entropy (right) using one hot vector and sigmoid function

cross entropy.1
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Fig. 7. Results of accuracy (left) and cross entropy (right) using vector with indexes and sigmoid function

5. Conclusion

In this work, we have proposed two approaches based on neural network to suggest a relevant domain name. The
first approach consists on finding similarity between words of domain name, while the second one is predicting TLD
corresponding to the context of domain name. Experiments on GANDI database has shown efficient results for the
second approach.
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